Families of Rational Curves which determine the structure of the (projective) Space

Marco Andreatta
Dipartimento di Matematica di Trento, Italia

Korea, January 2016

Hilbert Scheme

Rational Curves
Let X and Y be a normal projective schemes (of f. t. over $k=\bar{k}$). $\operatorname{Hilb}(X)$: the Hilbert scheme of proper subschemes of X. $\operatorname{Hom}(Y, X)$: open subscheme $\subset \operatorname{Hilb}(X \times Y)$ of morphisms from Y to X. (their constructions are due to ..., Grothendieck and Mumford).

Hilbert Scheme

Let X and Y be a normal projective schemes (of f. t. over $k=\bar{k}$). $\operatorname{Hilb}(X)$: the Hilbert scheme of proper subschemes of X. $\operatorname{Hom}(Y, X)$: open subscheme $\subset \operatorname{Hilb}(X \times Y)$ of morphisms from Y to X. (their constructions are due to ..., Grothendieck and Mumford).

Theorem

Let $f: Y \longrightarrow X$ be a morphism. Assume that Y is without embedded points, that X has no embedded points contained in $f(Y)$ and the image of every irreducible component of Y intersect the smooth locus of X. Then

- The tangent space of $\operatorname{Hom}(Y, X)$ at $[f]$ is naturally isomorphic to

$$
\operatorname{Hom}_{Y}\left(f^{*} \Omega_{X}{ }^{1}, \mathcal{O}_{Y}\right)
$$

- The dimension of every irreducible component of $\operatorname{Hom}(Y, X)$ at $[f]$ is at least

$$
\operatorname{dimHom}_{Y}\left(f^{*} \Omega_{X}{ }^{1}, \mathcal{O}_{Y}\right)-\operatorname{dimExt}_{Y}{ }^{1}\left(f^{*} \Omega_{X}{ }^{1}, \mathcal{O}_{Y}\right)
$$

Hilbert Scheme

Let $f: C \longrightarrow X$ be a morphism from a proper curve to a scheme; L a line bundle on X.
We define the intersection number of C and L as:

$$
C \cdot L:=\operatorname{deg}_{C} f^{*} L
$$

Hilbert Scheme

Rational Curves

Let $f: C \longrightarrow X$ be a morphism from a proper curve to a scheme; L a line bundle on X.
We define the intersection number of C and L as:

$$
C \cdot L:=\operatorname{deg}_{C} f^{*} L
$$

In the special case of the Hilbert scheme of curves, thank to Riemann Roch theorem, we have the following nice result.

Theorem

Let C be a proper algebraic curve without embedded points and $f: C \longrightarrow X$ a morphism to a smooth variety X of pure dimension n. Then

$$
\operatorname{dim}_{[f]} \operatorname{Hom}(C, X) \geq-K_{X} \cdot C+n \chi\left(\mathcal{O}_{C}\right)
$$

Moreover equality holds if $H^{1}\left(C, f^{*} T_{X}\right)=0$.

Hilbert Scheme of Curves

Proof If F is a locally free sheaf on a scheme Z, then

$$
\operatorname{Ext}_{Z}^{i}\left(F, \mathcal{O}_{Z}\right)=H^{i}\left(Z, F^{*}\right)
$$

Hilbert Scheme of Curves

Proof If F is a locally free sheaf on a scheme Z, then

$$
\operatorname{Exx}_{Z}^{i}\left(F, \mathcal{O}_{Z}\right)=H^{i}\left(Z, F^{*}\right)
$$

Let $f: C \rightarrow X$ and assume X is smooth along $f(C)$. Then the tangent space of $\operatorname{Hom}(C, X)$ at $[f]$ is naturally isomorphic to

$$
\operatorname{Hom}_{[f]}\left(f^{*} \Omega_{X}{ }^{1}, \mathcal{O}\right)=H^{0}\left(C, f^{*} T_{X}\right) .
$$

Hilbert Scheme of Curves

Proof If F is a locally free sheaf on a scheme Z, then

$$
\operatorname{Ext}_{Z}^{i}\left(F, \mathcal{O}_{Z}\right)=H^{i}\left(Z, F^{*}\right)
$$

Let $f: C \rightarrow X$ and assume X is smooth along $f(C)$. Then the tangent space of $\operatorname{Hom}(C, X)$ at $[f]$ is naturally isomorphic to

$$
\operatorname{Hom}_{[f]}\left(f^{*} \Omega_{X}{ }^{1}, \mathcal{O}\right)=H^{0}\left(C, f^{*} T_{X}\right)
$$

Moreover $\operatorname{Ext}_{C}{ }^{1}\left(f^{*} \Omega_{X}{ }^{1}, \mathcal{O}_{C}\right)=H^{1}\left(C, f^{*} T_{X}\right)$

Hilbert Scheme of Curves

Proof If F is a locally free sheaf on a scheme Z, then

$$
\operatorname{Ext}_{Z}^{i}\left(F, \mathcal{O}_{Z}\right)=H^{i}\left(Z, F^{*}\right)
$$

Let $f: C \rightarrow X$ and assume X is smooth along $f(C)$. Then the tangent space of $\operatorname{Hom}(C, X)$ at $[f]$ is naturally isomorphic to

$$
\operatorname{Hom}_{[f]}\left(f^{*} \Omega_{X}{ }^{1}, \mathcal{O}\right)=H^{0}\left(C, f^{*} T_{X}\right) .
$$

Moreover $\operatorname{Ext}_{C}{ }^{1}\left(f^{*} \Omega_{X}{ }^{1}, \mathcal{O}_{C}\right)=H^{1}\left(C, f^{*} T_{X}\right)$
Thus

$$
\operatorname{dim}_{[f]} \operatorname{Hom}(C, X) \geq h^{0}\left(C, f^{*} T_{X}\right)-h^{1}\left(C, f^{*} T_{X}\right),
$$

which, by Riemann -Roch, is equal to

$$
\chi\left(C, f^{*} T_{X}\right)=\operatorname{deg} f^{*} T_{X}+n \chi\left(\mathcal{O}_{C}\right)=-K_{X} \cdot C+n \chi\left(\mathcal{O}_{C}\right) .
$$

Existence of Rational Curves

Rational Curves

Marco Andreatta
A rational curve on X is a non constant morphism $\mathbb{P}^{1} \longrightarrow X$.

Existence of Rational Curves

Rational Curves

A rational curve on X is a non constant morphism $\mathbb{P}^{1} \longrightarrow X$.
The following is a fundamental result of S. Mori.

Theorem

Let X be a smooth projective variety over an algebraically closed field (of any characteristic), C a smooth, projective and irreducible curve and $f: C \longrightarrow X$ a morphism. Assume that

$$
-K_{X} \cdot C>0
$$

Then for every $x \in f(C)$ there is a rational curve $D_{x} \subset X$ containing x and such for any nef \mathbb{R}-divisor L :

$$
L \cdot D_{x} \leq 2 \operatorname{dim} X\left(\frac{L \cdot C}{-K_{X} \cdot C}\right) \quad \text { and } \quad-K_{X} \cdot D_{x} \leq \operatorname{dim} X+1
$$

Proof: step 1

Rational Curves
Idea of Proof. If C has genus 0 , then we are done.
Let $g:=g(C)>0$ and $n=\operatorname{dim} X$.

Proof: step 1

Idea of Proof. If C has genus 0 , then we are done.
Let $g:=g(C)>0$ and $n=\operatorname{dim} X$.
Step 1. We have

$$
\operatorname{dim}_{[f]} \operatorname{Hom}(C, X) \geq-K_{X} \cdot C+n(1-g) .
$$

Take $x=f(0) \in f(C)$; since n conditions are required to fix the image of the basepoint 0 under f, morphisms f of C into X sending 0 to x have a deformation space of dimension

$$
\geq-K_{X} \cdot C+n(1-g)-n=-K_{X} \cdot C-n g .
$$

Proof: step 1

Idea of Proof. If C has genus 0 , then we are done.
Let $g:=g(C)>0$ and $n=\operatorname{dim} X$.
Step 1. We have

$$
\operatorname{dim}_{[f]} \operatorname{Hom}(C, X) \geq-K_{X} \cdot C+n(1-g) .
$$

Take $x=f(0) \in f(C)$; since n conditions are required to fix the image of the basepoint 0 under f, morphisms f of C into X sending 0 to x have a deformation space of dimension

$$
\geq-K_{X} \cdot C+n(1-g)-n=-K_{X} \cdot C-n g .
$$

If this quantity is positive there must be a non-trivial one-parameter family of deformations of the map f keeping the image of 0 fixed.

Proof: step 1

Idea of Proof. If C has genus 0 , then we are done.
Let $g:=g(C)>0$ and $n=\operatorname{dim} X$.
Step 1. We have

$$
\operatorname{dim}_{[f]} \operatorname{Hom}(C, X) \geq-K_{X} \cdot C+n(1-g) .
$$

Take $x=f(0) \in f(C)$; since n conditions are required to fix the image of the basepoint 0 under f, morphisms f of C into X sending 0 to x have a deformation space of dimension

$$
\geq-K_{X} \cdot C+n(1-g)-n=-K_{X} \cdot C-n g .
$$

If this quantity is positive there must be a non-trivial one-parameter family of deformations of the map f keeping the image of 0 fixed. In particular, we can find a nonsingular (affine) curve D and a morphism (evaluation) $g: C \times D \rightarrow X$, thought of as a nonconstant family of maps, all sending 0 to the same point x.

Proof: step 2

Step 2. We argue now that D cannot be complete (Bend and Break). In fact otherwise consider U, a neighborhood of x in C and the projection map $\pi: U \times D \rightarrow U$.

Proof: step 2

Step 2. We argue now that D cannot be complete (Bend and Break). In fact otherwise consider U, a neighborhood of x in C and the projection map $\pi: U \times D \rightarrow U$.

Then π is a proper, surjective morphism with connected fiber of dimension 1. Moreover $g\left(\pi^{-1}(x)\right)$ is a single point.
By the Rigidity Lemma, $g\left(\pi^{-1}(y)\right.$ is a single point for all y in U, i.e. the family would have to be constant.

Proof: step 2

Proof of the rigidity Lemma

Let $W=\operatorname{im}(\pi \times g) \subset U \times X$ and consider the proper morphisms

$$
\pi: U \times D \rightarrow W \rightarrow U
$$

where the first map, $h=U \times D \rightarrow W$, is defined by $h(t)=(\pi(t), g(t))$ and the second, $p: W \rightarrow U$, is the projection to the first factor.

Proof: step 2

Proof of the rigidity Lemma

Let $W=\operatorname{im}(\pi \times g) \subset U \times X$ and consider the proper morphisms

$$
\pi: U \times D \rightarrow W \rightarrow U
$$

where the first map, $h=U \times D \rightarrow W$, is defined by $h(t)=(\pi(t), g(t))$ and the second, $p: W \rightarrow U$, is the projection to the first factor. $p^{-1}(y)=h\left(\pi^{-1}(y)\right)$ and $\operatorname{dim} p^{-1}(x)=0$; by the upper semicontinuity of fiber dimension there is an open set $x \in V \subset U$ such that dim $p^{-1}(y)=0$ for every $y \in V$. Thus h has fiber dimension 1 over $p^{-1}(V)$, hence h has fiber dimension at least 1 everywhere.

Proof: step 2

Proof of the rigidity Lemma

Let $W=\operatorname{im}(\pi \times g) \subset U \times X$ and consider the proper morphisms

$$
\pi: U \times D \rightarrow W \rightarrow U
$$

where the first map, $h=U \times D \rightarrow W$, is defined by $h(t)=(\pi(t), g(t))$ and the second, $p: W \rightarrow U$, is the projection to the first factor. $p^{-1}(y)=h\left(\pi^{-1}(y)\right)$ and $\operatorname{dim} p^{-1}(x)=0$; by the upper semicontinuity of fiber dimension there is an open set $x \in V \subset U$ such that dim $p^{-1}(y)=0$ for every $y \in V$. Thus h has fiber dimension 1 over $p^{-1}(V)$, hence h has fiber dimension at least 1 everywhere. For any $w \in W, h^{-1}(w) \subset \pi^{-1}\left(p(w), \operatorname{dim} h^{-1}(w) \geq 1\right.$ and dim $\pi^{-1}(p(w))=1$. Therefore $h^{-1}(w)$ is a union of irreducible components of $\pi^{-1}(p(w))$, and so $h\left(\pi^{-1}(p(w))\right)=p^{-1}(p(w))$ is finite. It is a single point since $\pi^{-1}(p(w))$ is connected.

Proof: step 3

Step 3. So let $D \subset \bar{D}$ be a completion where \bar{D} is a nonsingular projective curve. Let $G: C \times \bar{D} \rightarrow X$ be the rational map defined by g.

Proof: step 3

Step 3. So let $D \subset \bar{D}$ be a completion where \bar{D} is a nonsingular projective curve. Let $G: C \times \bar{D} \rightarrow X$ be the rational map defined by g. Blow up a finite number of points to resolve the undefined points to get $Y \rightarrow C \times \bar{D}$ whose composition given by $\pi: Y \rightarrow X$ is a morphism. Let $E \subset Y$ be the exceptional curve of the last blow up.

Proof: step 3

Step 3. So let $D \subset \bar{D}$ be a completion where \bar{D} is a nonsingular projective curve. Let $G: C \times \bar{D} \rightarrow X$ be the rational map defined by g. Blow up a finite number of points to resolve the undefined points to get $Y \rightarrow C \times \bar{D}$ whose composition given by $\pi: Y \rightarrow X$ is a morphism. Let $E \subset Y$ be the exceptional curve of the last blow up.
Since it was actually needed, it can't be collapsed to a point, and hence $\pi(E)$ is our desired rational curve.

Proof: step 4

Step 4. If $\operatorname{char}(k)=p>0$ we consider another curve $h: C \rightarrow C \subset X$, where h is a composition of f with a r power of the Frobenius endomorphism F_{p}.

Proof: step 4

Rational Curves

Step 4. If $\operatorname{char}(k)=p>0$ we consider another curve $h: C \rightarrow C \subset X$, where h is a composition of f with a r power of the Frobenius endomorphism F_{p}.
Roughly speaking if the curve C is given as zero set of algebraic equations in the variable $\left(y_{0}, \ldots, y_{m}\right)$, then $F_{p}:\left(y_{0}, \ldots, y_{m}\right) \rightarrow\left(y_{0}^{p}, \ldots, y_{m}^{p}\right)$.

Proof: step 4

Rational Curves

Step 4. If $\operatorname{char}(k)=p>0$ we consider another curve $h: C \rightarrow C \subset X$, where h is a composition of f with a r power of the Frobenius endomorphism F_{p}.
Roughly speaking if the curve C is given as zero set of algebraic equations in the variable $\left(y_{0}, \ldots, y_{m}\right)$, then $F_{p}:\left(y_{0}, \ldots, y_{m}\right) \rightarrow\left(y_{0}^{p}, \ldots, y_{m}^{p}\right)$. $F_{p}: C \rightarrow C$ is set-theoretically injective but it is an endomorphism of degree p. Take $h=F_{p}^{r} \circ f$ and call C^{\prime} and $C^{\prime \prime}$ the curves respectively given as image of f and of h.

Proof: step 4

Rational Curves

Step 4. If $\operatorname{char}(k)=p>0$ we consider another curve $h: C \rightarrow C \subset X$, where h is a composition of f with a r power of the Frobenius endomorphism F_{p}.
Roughly speaking if the curve C is given as zero set of algebraic equations in the variable $\left(y_{0}, \ldots, y_{m}\right)$, then $F_{p}:\left(y_{0}, \ldots, y_{m}\right) \rightarrow\left(y_{0}^{p}, \ldots, y_{m}^{p}\right)$. $F_{p}: C \rightarrow C$ is set-theoretically injective but it is an endomorphism of degree p. Take $h=F_{p}^{r} \circ f$ and call C^{\prime} and $C^{\prime \prime}$ the curves respectively given as image of f and of h.
We only change the structure sheaf and not the topological space, so both curve has genus g.

Proof: step 4

Rational Curves

Step 4. If $\operatorname{char}(k)=p>0$ we consider another curve $h: C \rightarrow C \subset X$, where h is a composition of f with a r power of the Frobenius endomorphism F_{p}.
Roughly speaking if the curve C is given as zero set of algebraic equations in the variable $\left(y_{0}, \ldots, y_{m}\right)$, then $F_{p}:\left(y_{0}, \ldots, y_{m}\right) \rightarrow\left(y_{0}^{p}, \ldots, y_{m}^{p}\right)$. $F_{p}: C \rightarrow C$ is set-theoretically injective but it is an endomorphism of degree p. Take $h=F_{p}^{r} \circ f$ and call C^{\prime} and $C^{\prime \prime}$ the curves respectively given as image of f and of h.
We only change the structure sheaf and not the topological space, so both curve has genus g.
Since F_{p}^{r} is an endomorphism of degree p^{r} we have:
$-C^{\prime \prime} K_{X}=-p^{r}\left(C^{\prime} K_{X}\right)$.

Proof: step 4

Step 4. If $\operatorname{char}(k)=p>0$ we consider another curve $h: C \rightarrow C \subset X$, where h is a composition of f with a r power of the Frobenius endomorphism F_{p}.
Roughly speaking if the curve C is given as zero set of algebraic equations in the variable $\left(y_{0}, \ldots, y_{m}\right)$, then $F_{p}:\left(y_{0}, \ldots, y_{m}\right) \rightarrow\left(y_{0}^{p}, \ldots, y_{m}^{p}\right)$. $F_{p}: C \rightarrow C$ is set-theoretically injective but it is an endomorphism of degree p. Take $h=F_{p}^{r} \circ f$ and call C^{\prime} and $C^{\prime \prime}$ the curves respectively given as image of f and of h.
We only change the structure sheaf and not the topological space, so both curve has genus g.
Since F_{p}^{r} is an endomorphism of degree p^{r} we have:
$-C^{\prime \prime} K_{X}=-p^{r}\left(C^{\prime} K_{X}\right)$.
For r high enough $-C^{\prime \prime} K_{X} \geq n g+1$ and therefore

$$
-K_{Y} \cdot C^{\prime \prime}-n g>0
$$

Proof: step 4

Step 4. If $\operatorname{char}(k)=p>0$ we consider another curve $h: C \rightarrow C \subset X$, where h is a composition of f with a r power of the Frobenius endomorphism F_{p}.
Roughly speaking if the curve C is given as zero set of algebraic equations in the variable $\left(y_{0}, \ldots, y_{m}\right)$, then $F_{p}:\left(y_{0}, \ldots, y_{m}\right) \rightarrow\left(y_{0}^{p}, \ldots, y_{m}^{p}\right)$. $F_{p}: C \rightarrow C$ is set-theoretically injective but it is an endomorphism of degree p. Take $h=F_{p}^{r} \circ f$ and call C^{\prime} and $C^{\prime \prime}$ the curves respectively given as image of f and of h.
We only change the structure sheaf and not the topological space, so both curve has genus g.
Since F_{p}^{r} is an endomorphism of degree p^{r} we have:
$-C^{\prime \prime} \cdot K_{X}=-p^{r}\left(C^{\prime} K_{X}\right)$.
For r high enough $-C^{\prime \prime} K_{X} \geq n g+1$ and therefore

$$
-K_{Y} \cdot C^{\prime \prime}-n g>0
$$

In this way we prove the existence of a rational curve through x for almost all $p>0$.

Proof: step 5

Step 5. Algebra.
Principle. If a homogeneous system of algebraic equations with integral coefficients has a non trivial solution in $\overline{\mathbb{F}}_{p}$ for infinitely many p, then it has a non trivial solution in any algebraically closed field.

Proof: step 5

Step 5. Algebra.
Principle. If a homogeneous system of algebraic equations with integral coefficients has a non trivial solution in $\overline{\mathbb{F}}_{p}$ for infinitely many p, then it has a non trivial solution in any algebraically closed field.
A map $\mathbb{P}^{1} \rightarrow X \subset \mathbb{P}^{N}$ of limited degree with respect to $-K_{X}$ can be given by a system of equations. Since this system has a non trivial solution for infinitely many p, it has a solution in any algebraically closed field by the above principle.

Miyaoka test for uniruledness

Definition

A normal proper variety is called uniruled if it is covered by rational curves.

Miyaoka test for uniruledness

Definition

A normal proper variety is called uniruled if it is covered by rational curves.

The above Theorem proves that Fano manifolds are uniruled.

Miyaoka test for uniruledness

Definition

A normal proper variety is called uniruled if it is covered by rational curves.

The above Theorem proves that Fano manifolds are uniruled.
The following Theorem of Y. Miyaoka, which generalizes the Mori's result, is a powerful uniruledness criteria.

Theorem

Let X be a smooth and proper variety over \mathbb{C}. Then X is uniruled if and only if there is a quotient sheaf $\Omega_{X}{ }^{1} \longrightarrow F$ and a family of curves $\left\{C_{t}\right\}$ covering an open subset of X such that $F_{\mid C_{t}}$ is locally free and $\operatorname{deg}\left(F_{\mid C_{t}}\right)<0$ for every t.

Families of Rational Curves

Let $\operatorname{Hom}_{b i r}\left(\mathbb{P}^{1}, X\right) \subset \operatorname{Hom}\left(\mathbb{P}^{1}, X\right)$ be the open suscheme corresponding to those morphisms $f: \mathbb{P}^{1} \longrightarrow X$ which are birational onto their image, that is f is an immersion at its generic point. This is an open condition.

Families of Rational Curves

Let $\operatorname{Hom}_{b i r}\left(\mathbb{P}^{1}, X\right) \subset \operatorname{Hom}\left(\mathbb{P}^{1}, X\right)$ be the open suscheme corresponding to those morphisms $f: \mathbb{P}^{1} \longrightarrow X$ which are birational onto their image, that is f is an immersion at its generic point. This is an open condition. If $f: \mathbb{P}^{1} \longrightarrow X$ is any morphism and $h \in \operatorname{Aut}\left(\mathbb{P}^{1}\right)$, then $f \circ h$ is "counted" as a different morphism.
The group $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ acts on $\operatorname{Hom}_{\text {bir }}\left(\mathbb{P}^{1}, X\right)$ and it is the quotient that "really parametrizes" morphisms of \mathbb{P}^{1} into X. It can be proved that the quotient exists (Mori-Mumford-Fogarty) ; its normalization will be denoted RatCurves ${ }^{n}(X)$ and called the space of rational curve on X.

Let $\operatorname{Hom}_{\text {bir }}\left(\mathbb{P}^{1}, X\right) \subset \operatorname{Hom}\left(\mathbb{P}^{1}, X\right)$ be the open suscheme corresponding to those morphisms $f: \mathbb{P}^{1} \longrightarrow X$ which are birational onto their image, that is f is an immersion at its generic point. This is an open condition.
If $f: \mathbb{P}^{1} \longrightarrow X$ is any morphism and $h \in \operatorname{Aut}\left(\mathbb{P}^{1}\right)$, then $f \circ h$ is "counted" as a different morphism.
The group $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ acts on $\operatorname{Hom}_{\text {bir }}\left(\mathbb{P}^{1}, X\right)$ and it is the quotient that "really parametrizes" morphisms of \mathbb{P}^{1} into X. It can be proved that the quotient exists (Mori-Mumford-Fogarty) ; its normalization will be denoted RatCurves ${ }^{n}(X)$ and called the space of rational curve on X.
Given a point $x \in X$, one can similarly find a scheme $\operatorname{Hom}_{b i r}\left(\mathbb{P}^{1}, X, x\right)$ whose geometric points correspond to generically injective morphisms from \mathbb{P}^{1} to X which map the point $[0: 1]$ to x. The quotient, in the sense of Mumford, by the group of automorphism of \mathbb{P}^{1} which fixes the point [0:1], will be denoted by RatCurves ${ }^{n}(x, X)$ and called the space of rational curves through x.

Families of Rational Curves

Rational Curves

We obtain a diagram as follows

where U and u have the structure of principal $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$-bundle; π is a \mathbb{P}^{1}-bundle. The restriction of i to any fiber of π is generically injective, i.e. birational onto its image.

Families of Rational Curves

Rational Curves

We obtain a diagram as follows

$$
\begin{align*}
& \operatorname{Hom}_{b i r}^{n}\left(\mathbb{P}^{1}, X\right) \times \mathbb{P}^{1} \longrightarrow U \operatorname{Univ}(X) \xrightarrow{i} X \tag{2.0.1}\\
& \operatorname{Hom}_{\text {bir }}^{n}\left(\mathbb{P}^{1}, X\right) \longrightarrow \operatorname{RatCurves}^{n}(X)
\end{align*}
$$

where U and u have the structure of principal $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$-bundle; π is a \mathbb{P}^{1}-bundle. The restriction of i to any fiber of π is generically injective, i.e. birational onto its image. Similarly for a given point $x \in X$:

Families of Rational Curves

Let $B=\emptyset$ or x.
Let $F: \mathbb{P}^{1} \times \operatorname{Hom}_{b i r}^{n}\left(\mathbb{P}^{1}, X, B\right) \rightarrow X$ be the universal map defined by $F(f, p)=f(p) ; F$ is the composition $i_{B} \circ U$.

Families of Rational Curves

Let $B=\emptyset$ or x.
Let $F: \mathbb{P}^{1} \times \operatorname{Hom}_{b i r}^{n}\left(\mathbb{P}^{1}, X, B\right) \rightarrow X$ be the universal map defined by $F(f, p)=f(p) ; F$ is the composition $i_{B} \circ U$.
Let $V \subset \operatorname{Hom}_{b i r}^{n}\left(\mathbb{P}^{1}, X\right)$, be an irreducible component and V_{x} be the set of elements in V passing through $x \in X$.
We denote $\operatorname{Locus}(V):=F\left(V \times \mathbb{P}^{1}\right)$ and $\operatorname{Locus}\left(V_{x}\right):=F\left(V_{x} \times \mathbb{P}^{1}\right)$.

Families of Rational Curves

Hilbert Scheme

Rational Curves

Special families of Rational Curves

Let $f: \mathbb{P}^{1} \rightarrow X \in \operatorname{Hom}_{\text {bir }}^{n}\left(\mathbb{P}^{1}, X, B\right)$ and assume X is smooth along $f\left(\mathbb{P}^{1}\right)$. Then the tangent space of $\operatorname{Hom}_{\text {bir }}^{n}\left(\mathbb{P}^{1}, X, B\right)$ at $[f]$ is naturally isomorphic to

$$
T_{[f]} \operatorname{Hom}_{b i r}^{n}\left(\mathbb{P}^{1}, X, B\right)=\operatorname{Hom}_{Y}\left(f^{*} \Omega_{X}^{1}(-B), \mathcal{O}_{Y}\right)=H^{0}\left(\mathbb{P}^{1}, f^{*} T_{X}(-B)\right)
$$

Families of Rational Curves

Hilbert Scheme

Rational Curves

Let $f: \mathbb{P}^{1} \rightarrow X \in \operatorname{Hom}_{\text {bir }}^{n}\left(\mathbb{P}^{1}, X, B\right)$ and assume X is smooth along $f\left(\mathbb{P}^{1}\right)$. Then the tangent space of $\operatorname{Hom}_{b i r}^{n}\left(\mathbb{P}^{1}, X, B\right)$ at $[f]$ is naturally isomorphic to

$$
T_{[f]} \operatorname{Hom}_{b i r}^{n}\left(\mathbb{P}^{1}, X, B\right)=\operatorname{Hom}_{Y}\left(f^{*} \Omega_{X}^{1}(-B), \mathcal{O}_{Y}\right)=H^{0}\left(\mathbb{P}^{1}, f^{*} T_{X}(-B)\right) .
$$

In particular the tangent map of F at the point (f, t) :

$$
\begin{equation*}
d F_{f, t}: H^{0}\left(\mathbb{P}^{1}, f^{*} T_{X}(-B)\right) \oplus T_{\mathbb{P}^{1}, t} \rightarrow T_{X, f(t)} \tag{2.0.3}
\end{equation*}
$$

is given by

$$
(\sigma, u) \rightarrow\left(d f_{t}(u)+\sigma(t)\right) .
$$

Splitting of the Tangent

We know that any vector bundle over \mathbb{P}^{1} splits as a direct sum of line bundles (this is sometime called Grothendieck' s Theorem).

Splitting of the Tangent

We know that any vector bundle over \mathbb{P}^{1} splits as a direct sum of line bundles (this is sometime called Grothendieck' s Theorem).

Let X be a smooth projective variety of dimension n. Let $V \subset \operatorname{Hom}_{b i r}^{n}\left(\mathbb{P}^{1}, X\right)$, be an irreducible component; for a rational curve $f: \mathbb{P}^{1} \longrightarrow X$ in V we therefore have

$$
f^{*} T X=\mathcal{O}_{\mathbb{P}^{1}}\left(a_{1}\right) \oplus \ldots \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(a_{n}\right) .
$$

The splitting type, i.e. the a_{i}, are the same for all members $f \in V$.

Splitting of the Tangent

We know that any vector bundle over \mathbb{P}^{1} splits as a direct sum of line bundles (this is sometime called Grothendieck' s Theorem).

Let X be a smooth projective variety of dimension n. Let $V \subset \operatorname{Hom}_{b i r}^{n}\left(\mathbb{P}^{1}, X\right)$, be an irreducible component; for a rational curve $f: \mathbb{P}^{1} \longrightarrow X$ in V we therefore have

$$
f^{*} T X=\mathcal{O}_{\mathbb{P}^{1}}\left(a_{1}\right) \oplus \ldots \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(a_{n}\right) .
$$

The splitting type, i.e. the a_{i}, are the same for all members $f \in V$.
Note that $-K_{X} \cdot f\left(\mathbb{P}^{1}\right)=\Sigma a_{i}=: \operatorname{deg}_{K_{X}^{-1}} V$.

Splitting of the Tangent

We know that any vector bundle over \mathbb{P}^{1} splits as a direct sum of line bundles (this is sometime called Grothendieck' s Theorem).

Let X be a smooth projective variety of dimension n. Let $V \subset \operatorname{Hom}_{b i r}^{n}\left(\mathbb{P}^{1}, X\right)$, be an irreducible component; for a rational curve $f: \mathbb{P}^{1} \longrightarrow X$ in V we therefore have

$$
f^{*} T X=\mathcal{O}_{\mathbb{P}^{1}}\left(a_{1}\right) \oplus \ldots \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(a_{n}\right) .
$$

The splitting type, i.e. the a_{i}, are the same for all members $f \in V$.
Note that $-K_{X} \cdot f\left(\mathbb{P}^{1}\right)=\Sigma a_{i}=: \operatorname{deg}_{K_{X}^{-1}} V$.
By the general theory of Hilbert scheme we have presented above, if $a_{i} \geq-1$ (resp. $a_{i} \geq 0$), then $V\left(\right.$ resp. $\left.V_{x}\right)$ is smooth at $[f]$ and $\operatorname{dim} V=\operatorname{dim} X+\Sigma a_{i}$.

Splitting of the Tangent

Moreover, since $\operatorname{dimLocus}(V)=r k(d F)$ at a generic point $x \in X$, using the above description of the tangent map of F, we have :

$$
\operatorname{dimLocus}(V)=\sharp\left\{i: a_{i} \geq 0\right\} .
$$

Similarly, for general $x \in X$:

$$
\operatorname{dimLocus}\left(V_{x}\right)=\sharp\left\{i: a_{i} \geq 1\right\} .
$$

Special Families of R.C.

Definition

f is called free if $a_{i} \geq 0$ for every i. Equivalently f is free if $f^{*} T X$ is generated by its global sections or if $H^{1}\left(\mathbb{P}^{1}, f^{*} T(X)(-1)\right)=0$.

Special Families of R.C.

Definition

f is called free if $a_{i} \geq 0$ for every i. Equivalently f is free if $f^{*} T X$ is generated by its global sections or if $H^{1}\left(\mathbb{P}^{1}, f^{*} T(X)(-1)\right)=0$.

From the above observations we have immediately the following.

Proposition

(Assume char $(k)=0$). X is uniruled if and only through a general point $x \in X$ there is a free rational curve.

Special Families of R.C.

Remark

Note that X is uniruled if and only if there exists a family of rational curve \mathcal{V} such that $i: \operatorname{Univ}(X) \longrightarrow X$ is dominant.
(This follows from the fact that the irreducible components of RatCurves ${ }^{n}(X)$ are numerable; which in turn follows from the fact that families of a given degree, with respect to a very ample line bundle, are finite, depending on the Hilbert polynomial).
In this case we call \mathcal{V} a unruling for X.

Special Families of R.C.

Remark

Note that X is uniruled if and only if there exists a family of rational curve \mathcal{V} such that $i: \operatorname{Univ}(X) \longrightarrow X$ is dominant.
(This follows from the fact that the irreducible components of RatCurves ${ }^{n}(X)$ are numerable; which in turn follows from the fact that families of a given degree, with respect to a very ample line bundle, are finite, depending on the Hilbert polynomial).
In this case we call \mathcal{V} a unruling for X.

Theorem

Let \mathcal{V} be an irreducible component of RatCurves ${ }^{n}(X)$. Denote by $\mathcal{V}^{\text {free }} \subset \mathcal{V}$ the parameter space of members of \mathcal{V} that are free. Then \mathcal{V} is a uniruling if and only if $\mathcal{V}^{\text {free }}$ is nonempty. In this case, $\mathcal{V}^{\text {free }}$ is a Zariski open subset of the smooth locus of \mathcal{V}.

Special Families of R.C.

Given a uniruling \mathcal{V} on X and a point $x \in X$, let \mathcal{V}_{x} be the normalization of the subvariety of \mathcal{V} parametrizing members of \mathcal{V} passing through x. Since by the above Theorem non-free rational curves do not cover X, for general point $x \in X$, the structure of \mathcal{V}_{x} is particularly nice:

Special Families of R.C.

Given a uniruling \mathcal{V} on X and a point $x \in X$, let \mathcal{V}_{x} be the normalization of the subvariety of \mathcal{V} parametrizing members of \mathcal{V} passing through x. Since by the above Theorem non-free rational curves do not cover X, for general point $x \in X$, the structure of \mathcal{V}_{x} is particularly nice:

Theorem

For a uniruling \mathcal{V} on a projective manifold X and a general point $x \in X$, all members of \mathcal{V}_{x} belongs to $\mathcal{V}^{\text {free } . ~ F u r t h e r m o r e, ~ t h e ~ v a r i e t y ~} \mathcal{V}_{x}$ is a finite union of smooth quasi-projective varieties of dimension $\operatorname{deg}_{K_{X}-1}(\mathcal{V})-2$.

Special Families: unbreakable

Definition

A family of rational curve \mathcal{V} on a projective manifold X is locally unsplit or unbreakable if \mathcal{V}_{x} is projective for a general $x \in X$. Members of an unbreakable uniruling on X will be called minimal rational curves on X.

Special Families: unbreakable

Definition

A family of rational curve \mathcal{V} on a projective manifold X is locally unsplit or unbreakable if \mathcal{V}_{x} is projective for a general $x \in X$. Members of an unbreakable uniruling on X will be called minimal rational curves on X.

Unbreakable unirulings exist on any uniruled projective manifold. To see this, we need the following notion.

Special Families: unbreakable

Definition

A family of rational curve \mathcal{V} on a projective manifold X is locally unsplit or unbreakable if \mathcal{V}_{x} is projective for a general $x \in X$. Members of an unbreakable uniruling on X will be called minimal rational curves on X.

Unbreakable unirulings exist on any uniruled projective manifold. To see this, we need the following notion.

Definition

Let L be an ample line bundle on a projective manifold X. A uniruling \mathcal{V} is minimal with respect to L, if $\operatorname{deg}_{L}(\mathcal{V})$ is minimal among all unirulings of X. A uniruling is a minimal uniruling if it is minimal with respect to some ample line bundle.

Minimals are Unbreakables.

Proposition

Minimal unirulings exist on any uniruled projective manifold. A minimal uniruling is unbreakable. In particular there exist unbreakable unirulings on any uniruled projective manifold.

Minimals are Unbreakables.

Proposition

Minimal unirulings exist on any uniruled projective manifold. A minimal uniruling is unbreakable. In particular there exist unbreakable unirulings on any uniruled projective manifold.

Sketchy geometric proof: suppose for a uniruling \mathcal{V}, which is minimal with respect to an ample line bundle L, the variety \mathcal{V}_{x} is not projective for a general point $x \in X$. Then the members of \mathcal{V}_{x} degenerate to reducible curves all components of which are rational curves of smaller L-degree than the members of \mathcal{V} and some components of which pass through x. Collecting those components passing through x, as x varies over the general points of X, gives rise to another uniruling \mathcal{V}^{\prime} satisfying $\operatorname{deg}_{L}\left(\mathcal{V}^{\prime}\right)<\operatorname{deg}_{L}(\mathcal{V})$, a contradiction to the minimality of $\operatorname{deg}_{L}(\mathcal{V})$.

Property of Unbreakables

Mori shows that a weaker version of this property continues to hold for unbreakable unirulings:

Theorem

Let \mathcal{V} be an unbreakable family. Then for a general point $x \in \operatorname{Locus}(\mathcal{V})$ and any other point $y \in \operatorname{Locus}\left(\mathcal{V}_{x}\right)$, there does not exist a positive-dimensional family of members of \mathcal{V} that pass through both x and y. (This is the definition of generically unsplit family in [Ko] IV.2.1)

Property of Unbreakables

Mori shows that a weaker version of this property continues to hold for unbreakable unirulings:

Theorem

Let \mathcal{V} be an unbreakable family. Then for a general point $x \in \operatorname{Locus}(\mathcal{V})$ and any other point $y \in \operatorname{Locus}\left(\mathcal{V}_{x}\right)$, there does not exist a positive-dimensional family of members of \mathcal{V} that pass through both x and y. (This is the definition of generically unsplit family in [Ko] IV.2.1)

The theorem is proved again by a "bend-and-break" plus rigidity argument. Geometrically, it says that any 1-dimensional family of rational curves which share two distinct points in common must degenerate into a reducible curve. This is the most important geometric property of an unbreakable uniruling.

Property of Unbreakables

Mori shows that a weaker version of this property continues to hold for unbreakable unirulings:

Theorem

Let \mathcal{V} be an unbreakable family. Then for a general point $x \in \operatorname{Locus}(\mathcal{V})$ and any other point $y \in \operatorname{Locus}\left(\mathcal{V}_{x}\right)$, there does not exist a positive-dimensional family of members of \mathcal{V} that pass through both x and y. (This is the definition of generically unsplit family in [Ko] IV.2.1)

The theorem is proved again by a "bend-and-break" plus rigidity argument. Geometrically, it says that any 1-dimensional family of rational curves which share two distinct points in common must degenerate into a reducible curve. This is the most important geometric property of an unbreakable uniruling.

If \mathcal{V} is unbreakable and we let $V=u^{-1}(\mathcal{V})$ and $\Pi: V \rightarrow X \times X$ be the $\operatorname{map}[f] \rightarrow(f(0), f(\infty))$, the Theorem says that the fiber of Π over the generic point of $\operatorname{Im}(\Pi)$ has dimension at most one.

Inequalities for Unbreakable Loci

Rational Curves

Proposition

Let \mathcal{V} be an unbreakable family and let $V=u^{-1}(\mathcal{V})$. If $x \in X$ is a general point in $\operatorname{Locus}(V)$, then

$$
\operatorname{dim} V=\operatorname{dimLocus}(V)+\operatorname{dimLocus}\left(V_{x}\right)+1
$$

Inequalities for Unbreakable Loci

Proposition

Let \mathcal{V} be an unbreakable family and let $V=u^{-1}(\mathcal{V})$. If $x \in X$ is a general point in Locus (V), then

$$
\operatorname{dim} V=\operatorname{dimLocus}(V)+\operatorname{dimLocus}\left(V_{x}\right)+1
$$

Proof. By upper-semicontinuity, for $x \in \operatorname{Locus}(V)$

$$
\operatorname{dim}\{[f] \in V: f(0)=x\} \geq \operatorname{dim} V-\operatorname{dimLocus}(V)
$$

If $y \in \operatorname{Locus}\left(V_{x}\right)$ similarly

$$
\operatorname{dim}\{[f] \in V: f(0)=x, f(\infty)=y\} \geq \operatorname{dim} V-\operatorname{dimLocus}(V)-\operatorname{dim}\left(\operatorname{Locus}\left(V_{x}\right)\right.
$$

equality holds for general x and y. The proposition follows since

$$
1=\operatorname{dim} \Pi^{-1}(x, y)=\operatorname{dim}\{[f] \in V: f(0)=x, f(\infty)=y\}
$$

Inequalities for Unbreakable Loci

Combining this Theorem with 2 we obtain the following result.

Corollary

Let \mathcal{V} be an unbreakable family and let $V:=u^{-1}(\mathcal{V})$. Then
$\square \operatorname{dim} X+\operatorname{deg}_{-K} V \leq \operatorname{dimLocus}(V)+\operatorname{dimLocus}(V, 0 \rightarrow x)+1$
■ $\operatorname{dim} X+\operatorname{deg}_{-K} V \leq 2 \operatorname{dimLocus}(V)+1 \leq 2 \operatorname{dim} X+1$
■ $\operatorname{deg}_{-K} V \leq \operatorname{dimLocus}(V, 0 \rightarrow x)+1 \leq \operatorname{dim} X+1$

Special Families: Unbendings

Definition

A rational curve $C \subset X$ is unbending if under the normalization $v_{C}: \mathbb{P}^{1} \longrightarrow C \subset X$, the vector bundle $v_{C}{ }^{*} T(X)$ has the form

$$
v_{C}^{*} T(X)=\mathcal{O}(2) \oplus \mathcal{O}(1)^{p} \oplus \mathcal{O}^{n-1-p}
$$

for some integer p satisfying $0 \leq p \leq n-1$, where $n=\operatorname{dimX}$. (This is the definition of Minimal free morphism in [Ko] IV.2.8.)

Special Families: Unbendings

Rational Curves

Definition

A rational curve $C \subset X$ is unbending if under the normalization $v_{C}: \mathbb{P}^{1} \longrightarrow C \subset X$, the vector bundle $v_{C}{ }^{*} T(X)$ has the form

$$
v_{C}^{*} T(X)=\mathcal{O}(2) \oplus \mathcal{O}(1)^{p} \oplus \mathcal{O}^{n-1-p}
$$

for some integer p satisfying $0 \leq p \leq n-1$, where $n=\operatorname{dimX}$. (This is the definition of Minimal free morphism in [Ko] IV.2.8.)

Remark

Iff $: \mathbb{P}^{1} \rightarrow C \subset X$ is an unbending member of \mathcal{V}_{x} the differential $T f: T\left(\mathbb{P}^{1}\right) \longrightarrow f^{*} T(X)$ is an isomorphism of $T\left(\mathbb{P}^{1}\right)$ and the unique $\mathcal{O}(2)$ summand. Therefore $T f_{p}$ is non zero at every $p \in \mathbb{P}^{1}$. Recall that a curve is immersed if its normalization has rank one at every point; therefore an unbending member is immersed.

Unbreakable are generically Unbending

Rational Curves

The above definition allows an infinitesimal version of Theorem 11.

Theorem

A general member of an unbreakable uniruling is unbending.

Unbreakable are generically Unbending

The above definition allows an infinitesimal version of Theorem 11.

Theorem

A general member of an unbreakable uniruling is unbending.
Sketch of proof. Let $[f] \in V \subset \operatorname{Hom}_{b i r}^{n}\left(\mathbb{P}^{1}, X\right)$ a general element of an unbreakable uniruling V
(i.e. $V=u^{-1} \mathcal{V}$ with \mathcal{V} an unbreakable uniruling).

Let $f^{*} T X=\mathcal{O}_{\mathbb{P}^{1}}\left(a_{1}\right) \oplus \ldots \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(a_{n}\right)$; by assumption $a_{i} \geq 0$ for every i.

Unbreakable are generically Unbending

The above definition allows an infinitesimal version of Theorem 11.

Theorem

A general member of an unbreakable uniruling is unbending.
Sketch of proof. Let $[f] \in V \subset \operatorname{Hom}_{b i r}^{n}\left(\mathbb{P}^{1}, X\right)$ a general element of an unbreakable uniruling V
(i.e. $V=u^{-1} \mathcal{V}$ with \mathcal{V} an unbreakable uniruling).

Let $f^{*} T X=\mathcal{O}_{\mathbb{P}^{1}}\left(a_{1}\right) \oplus \ldots \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(a_{n}\right)$; by assumption $a_{i} \geq 0$ for every i.
Then
$\operatorname{dim} X+\Sigma a_{i}=\operatorname{dim} V=\operatorname{dimLocus}(V)+\operatorname{dimLocus}(V, 0 \rightarrow x)+1=$ $\operatorname{dim} X+\sharp\left\{i: a_{i} \geq 1\right\}+1$.
Therefore $\Sigma a_{i}=\sharp\left\{i: a_{i} \geq 1\right\}+1$, that is at most one of the a_{i} is at least two.

Unbreakable are generically Immersed

Kebekus has carried out an analysis of singularities of members of \mathcal{V}_{x} and proved that they are considerably well behaved. Among other things, he has shown

Theorem

For an unbreakable uniruling \mathcal{V} and a general point $x \in X$, members of \mathcal{V}_{x} which are singular are a finite number. Moreover the singular ones are immersed at the point corresponding to x.

Special Families: Unsplit

Rational Curves

Definition

A family of rational curve \mathcal{V} on a projective manifold X is unsplit if \mathcal{V} is projective.

Special Families: Unsplit

Definition

A family of rational curve \mathcal{V} on a projective manifold X is unsplit if \mathcal{V} is projective.

Let \mathcal{V} be an unsplit uniruling. It defines a relation of rational connectedness with respect to \mathcal{V}, which we shall call rc \mathcal{V} relation for short, in the following way: $x_{1}, x_{2} \in X$ are in the rc \mathcal{V} relation if there exists a chain of rational curves parametrized by morphisms from \mathcal{V} which joins x_{1} and x_{2}. The rc \mathcal{V} relation is an equivalence relation and its equivalence classes can be parametrized generically by an algebraic set.

ReV fibration

Rational Curves

We have the following result due to Campana and, independently, to Kollár-Miyaoka-Mori (see ([Ko], IV.4.16).

Theorem

There exist an open subset $X^{0} \subset X$ and a proper surjective morphism with connected fibers $\varphi^{0}: X^{0} \rightarrow Z^{0}$ onto a normal variety, such that the fibers of φ^{0} are equivalence classes of the $r \mathcal{V}$ relation.

We shall call the morphism φ^{0} an $\mathrm{rc} \mathcal{V}$ fibration. If Z_{0} is just a point then we will call X a rationally connected manifold with the respect to the family \mathcal{V}, in short an $\mathrm{rc} \mathcal{V}$ manifold.

ReV fibration

We have the following result due to Campana and, independently, to Kollár-Miyaoka-Mori (see ([Ko], IV.4.16).

Theorem

There exist an open subset $X^{0} \subset X$ and a proper surjective morphism with connected fibers $\varphi^{0}: X^{0} \rightarrow Z^{0}$ onto a normal variety, such that the fibers of φ^{0} are equivalence classes of the $r \mathcal{V}$ relation.

We shall call the morphism φ^{0} an $\mathrm{rc} \mathcal{V}$ fibration. If Z_{0} is just a point then we will call X a rationally connected manifold with the respect to the family \mathcal{V}, in short an $\mathrm{rc} \mathcal{V}$ manifold.

Lemma

Let X be a manifold which is rationally connected with the respect to a unsplit uniruling \mathcal{V}. Then $\rho(X):=\operatorname{dim}_{1}(X)=1$ and X is a Fano manifold.

Also in this case the proof is a sort of an (easy) bend and break lemma.

