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Let X and Y be a normal projective schemes (of f. t. over k = k).
Hilb(X): the Hilbert scheme of proper subschemes of X.
Hom(Y,X): open subscheme ⊂ Hilb(X × Y) of morphisms from Y to X.
(their constructions are due to ..., Grothendieck and Mumford).

Theorem
Let f : Y −→ X be a morphism. Assume that Y is without embedded
points, that X has no embedded points contained in f (Y) and the image
of every irreducible component of Y intersect the smooth locus of X.
Then

The tangent space of Hom(Y,X) at [f ] is naturally isomorphic to

HomY(f ∗ΩX
1,OY).

The dimension of every irreducible component of Hom(Y,X) at [f ]
is at least

dimHomY(f ∗ΩX
1,OY)− dimExtY 1(f ∗ΩX

1,OY).
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Let f : C −→ X be a morphism from a proper curve to a scheme;
L a line bundle on X.
We define the intersection number of C and L as:

C.L := degCf ∗L

In the special case of the Hilbert scheme of curves, thank to Riemann
Roch theorem, we have the following nice result.

Theorem
Let C be a proper algebraic curve without embedded points and
f : C −→ X a morphism to a smooth variety X of pure dimension n.
Then

dim[f ]Hom(C,X) ≥ −KX
.C + nχ(OC).

Moreover equality holds if H1(C, f ∗TX) = 0.
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Proof If F is a locally free sheaf on a scheme Z, then

ExtiZ(F,OZ) = Hi(Z,F∗).

Let f : C→ X and assume X is smooth along f (C). Then the tangent
space of Hom(C,X) at [f ] is naturally isomorphic to

Hom[f ](f ∗ΩX
1,O) = H0(C, f ∗TX).

Moreover ExtC1(f ∗ΩX
1,OC) = H1(C, f ∗TX)

Thus
dim[f ]Hom(C,X) ≥ h0(C, f ∗TX)− h1(C, f ∗TX),

which, by Riemann -Roch, is equal to

χ(C, f ∗TX) = degf ∗TX + nχ(OC) = −KX
.C + nχ(OC).
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Existence of Rational Curves

A rational curve on X is a non constant morphism P1 −→ X.

The following is a fundamental result of S. Mori.

Theorem
Let X be a smooth projective variety over an algebraically closed field
(of any characteristic), C a smooth, projective and irreducible curve and
f : C −→ X a morphism. Assume that

−KX
.C > 0.

Then for every x ∈ f (C) there is a rational curve Dx ⊂ X containing x
and such for any nef R-divisor L :

L.Dx ≤ 2dimX(
L.C
−KX

.C
) and − KX

.Dx ≤ dimX + 1.
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Proof: step 1

Idea of Proof. If C has genus 0, then we are done.
Let g := g(C) > 0 and n = dimX.

Step 1. We have

dim[f ]Hom(C,X) ≥ −KX
.C + n(1− g).

Take x = f (0) ∈ f (C); since n conditions are required to fix the image of
the basepoint 0 under f , morphisms f of C into X sending 0 to x have a
deformation space of dimension

≥ −KX
.C + n(1− g)− n = −KX

.C − ng.

If this quantity is positive there must be a non-trivial one-parameter
family of deformations of the map f keeping the image of 0 fixed.
In particular, we can find a nonsingular (affine) curve D and a morphism
(evaluation) g : C × D→ X, thought of as a nonconstant family of
maps, all sending 0 to the same point x.
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Proof: step 2

Step 2. We argue now that D cannot be complete (Bend and Break). In
fact otherwise consider U, a neighborhood of x in C and the projection
map π : U × D→ U.

Then π is a proper, surjective morphism with connected fiber of
dimension 1. Moreover g(π−1(x)) is a single point.

By the Rigidity Lemma, g(π−1(y) is a single point for all y in U, i.e.
the family would have to be constant.
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Proof: step 2

Proof of the rigidity Lemma
Let W = im(π × g) ⊂ U × X and consider the proper morphisms

π : U × D→ W → U,

where the first map, h = U × D→ W, is defined by h(t) = (π(t), g(t))
and the second, p : W → U, is the projection to the first factor.

p−1(y) = h(π−1(y)) and dim p−1(x) = 0; by the upper semicontinuity
of fiber dimension there is an open set x ∈ V ⊂ U such that dim
p−1(y) = 0 for every y ∈ V . Thus h has fiber dimension 1 over p−1(V),
hence h has fiber dimension at least 1 everywhere.
For any w ∈ W, h−1(w) ⊂ π−1(p(w), dim h−1(w) ≥ 1 and dim
π−1(p(w)) = 1. Therefore h−1(w) is a union of irreducible components
of π−1(p(w)), and so h(π−1(p(w))) = p−1(p(w)) is finite.
It is a single point since π−1(p(w)) is connected.
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Proof: step 3

Step 3. So let D ⊂ D be a completion where D is a nonsingular
projective curve. Let G : C × D 99K X be the rational map defined by g.

Blow up a finite number of points to resolve the undefined points to get
Y → C × D whose composition given by π : Y → X is a morphism. Let
E ⊂ Y be the exceptional curve of the last blow up.
Since it was actually needed, it can’t be collapsed to a point, and hence
π(E) is our desired rational curve.



Rational Curves

Marco Andreatta

Hilbert Scheme

Rational Curves

Special families of
Rational Curves

Proof: step 3

Step 3. So let D ⊂ D be a completion where D is a nonsingular
projective curve. Let G : C × D 99K X be the rational map defined by g.
Blow up a finite number of points to resolve the undefined points to get
Y → C × D whose composition given by π : Y → X is a morphism. Let
E ⊂ Y be the exceptional curve of the last blow up.

Since it was actually needed, it can’t be collapsed to a point, and hence
π(E) is our desired rational curve.



Rational Curves

Marco Andreatta

Hilbert Scheme

Rational Curves

Special families of
Rational Curves

Proof: step 3

Step 3. So let D ⊂ D be a completion where D is a nonsingular
projective curve. Let G : C × D 99K X be the rational map defined by g.
Blow up a finite number of points to resolve the undefined points to get
Y → C × D whose composition given by π : Y → X is a morphism. Let
E ⊂ Y be the exceptional curve of the last blow up.
Since it was actually needed, it can’t be collapsed to a point, and hence
π(E) is our desired rational curve.



Rational Curves

Marco Andreatta

Hilbert Scheme

Rational Curves

Special families of
Rational Curves

Proof: step 4

Step 4. If char(k) = p > 0 we consider another curve h : C→ C ⊂ X,
where h is a composition of f with a r power of the Frobenius
endomorphism Fp.

Roughly speaking if the curve C is given as zero set of algebraic
equations in the variable (y0, ..., ym), then Fp : (y0, ..., ym)→ (yp

0, ..., y
p
m).

Fp : C→ C is set-theoretically injective but it is an endomorphism of
degree p. Take h = Fr

p ◦ f and call C′ and C′′ the curves respectively
given as image of f and of h.
We only change the structure sheaf and not the topological space, so
both curve has genus g.
Since Fr

p is an endomorphism of degree pr we have:
−C′′.KX = −pr(C′.KX).
For r high enough −C′′.KX ≥ ng + 1 and therefore

−KY
.C′′ − ng > 0.

In this way we prove the existence of a rational curve through x for
almost all p > 0.
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Proof: step 5

Step 5. Algebra.
Principle. If a homogeneous system of algebraic equations with integral
coefficients has a non trivial solution in Fp for infinitely many p, then it
has a non trivial solution in any algebraically closed field.

A map P1 → X ⊂ PN of limited degree with respect to −KX can be
given by a system of equations. Since this system has a non trivial
solution for infinitely many p, it has a solution in any algebraically
closed field by the above principle.



Rational Curves

Marco Andreatta

Hilbert Scheme

Rational Curves

Special families of
Rational Curves

Proof: step 5

Step 5. Algebra.
Principle. If a homogeneous system of algebraic equations with integral
coefficients has a non trivial solution in Fp for infinitely many p, then it
has a non trivial solution in any algebraically closed field.

A map P1 → X ⊂ PN of limited degree with respect to −KX can be
given by a system of equations. Since this system has a non trivial
solution for infinitely many p, it has a solution in any algebraically
closed field by the above principle.



Rational Curves

Marco Andreatta

Hilbert Scheme

Rational Curves

Special families of
Rational Curves

Miyaoka test for uniruledness

Definition
A normal proper variety is called uniruled if it is covered by rational
curves.

The above Theorem proves that Fano manifolds are uniruled.

The following Theorem of Y. Miyaoka, which generalizes the Mori’s
result, is a powerful uniruledness criteria.

Theorem
Let X be a smooth and proper variety over C. Then X is uniruled if and
only if there is a quotient sheaf ΩX

1 −→ F and a family of curves {Ct}
covering an open subset of X such that F|Ct is locally free and
deg(F|Ct ) < 0 for every t.
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Let Hombir(P1,X) ⊂ Hom(P1,X) be the open suscheme corresponding
to those morphisms f : P1 −→ X which are birational onto their image,
that is f is an immersion at its generic point. This is an open condition.

If f : P1 −→ X is any morphism and h ∈ Aut(P1), then f ◦ h is
”counted” as a different morphism.
The group Aut(P1) acts on Hombir(P1,X) and it is the quotient that
”really parametrizes” morphisms of P1 into X. It can be proved that the
quotient exists (Mori-Mumford-Fogarty) ; its normalization will be
denoted RatCurvesn(X) and called the space of rational curve on X.

Given a point x ∈ X, one can similarly find a scheme Hombir(P1,X, x)
whose geometric points correspond to generically injective morphisms
from P1 to X which map the point [0 : 1] to x. The quotient, in the sense
of Mumford, by the group of automorphism of P1 which fixes the point
[0 : 1], will be denoted by RatCurvesn(x,X) and called the space of
rational curves through x.
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We obtain a diagram as follows

Homn
bir(P1,X)× P1

��

U // Univ(X)

π

��

i // X

Homn
bir(P1,X)

u // RatCurvesn(X)

(2.0.1)

where U and u have the structure of principal Aut(P1)-bundle; π is a
P1-bundle. The restriction of i to any fiber of π is generically injective,
i.e. birational onto its image.

Similarly for a given point x ∈ X:

Homn
bir(P1,X, x)× P1

��

U // Univ(x,X)

π

��

ix // X

Homn
bir(P1,X, x)

u // RatCurvesn(x,X)

(2.0.2)
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Let B = ∅ or x.
Let F : P1 × Homn

bir(P1,X,B)→ X be the universal map defined by
F(f , p) = f (p); F is the composition iB ◦ U.

Let V ⊂ Homn
bir(P1,X), be an irreducible component and Vx be the set

of elements in V passing through x ∈ X.
We denote Locus(V) := F(V × P1) and Locus(Vx) := F(Vx × P1).
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Let f : P1 → X ∈ Homn
bir(P1,X,B) and assume X is smooth along f (P1).

Then the tangent space of Homn
bir(P1,X,B) at [f ] is naturally isomorphic

to

T[f ]Homn
bir(P1,X,B) = HomY(f ∗Ω1

X(−B),OY) = H0(P1, f ∗TX(−B)).

In particular the tangent map of F at the point (f , t) :

dFf ,t : H0(P1, f ∗TX(−B))⊕ TP1,t → TX,f (t) (2.0.3)

is given by
(σ, u)→ (dft(u) + σ(t)).
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Splitting of the Tangent

We know that any vector bundle over P1 splits as a direct sum of line
bundles (this is sometime called Grothendieck’ s Theorem).

Let X be a smooth projective variety of dimension n.
Let V ⊂ Homn

bir(P1,X), be an irreducible component; for a rational
curve f : P1 −→ X in V we therefore have

f ∗TX = OP1(a1)⊕ ...⊕OP1(an).

The splitting type, i.e. the ai, are the same for all members f ∈ V .

Note that −KX
.f (P1) = Σai =: degK−1

X
V.

By the general theory of Hilbert scheme we have presented above, if
ai ≥ −1 (resp. ai ≥ 0), then V (resp. Vx) is smooth at [f ] and
dimV = dimX + Σai.
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Splitting of the Tangent

Moreover, since dimLocus(V) = rk(dF) at a generic point x ∈ X, using
the above description of the tangent map of F, we have :

dimLocus(V) = ]{i : ai ≥ 0}.

Similarly, for general x ∈ X:

dimLocus(Vx) = ]{i : ai ≥ 1}.
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Special Families of R.C.

Definition
f is called free if ai ≥ 0 for every i. Equivalently f is free if f ∗TX is
generated by its global sections or if H1(P1, f ∗T(X)(−1)) = 0.

From the above observations we have immediately the following.

Proposition

(Assume char(k) = 0). X is uniruled if and only through a general point
x ∈ X there is a free rational curve.
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Remark
Note that X is uniruled if and only if there exists a family of rational
curve V such that i : Univ(X) −→ X is dominant.
(This follows from the fact that the irreducible components of
RatCurvesn(X) are numerable; which in turn follows from the fact that
families of a given degree, with respect to a very ample line bundle, are
finite, depending on the Hilbert polynomial).

In this case we call V a unruling for X.

Theorem
Let V be an irreducible component of RatCurvesn(X). Denote by
V free ⊂ V the parameter space of members of V that are free. Then V is
a uniruling if and only if V free is nonempty. In this case, V free is a Zariski
open subset of the smooth locus of V .
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Given a uniruling V on X and a point x ∈ X, let Vx be the normalization
of the subvariety of V parametrizing members of V passing through x.
Since by the above Theorem non-free rational curves do not cover X, for
general point x ∈ X, the structure of Vx is particularly nice:

Theorem
For a uniruling V on a projective manifold X and a general point x ∈ X,
all members of Vx belongs to V free. Furthermore, the variety Vx is a finite
union of smooth quasi-projective varieties of dimension degKX

−1(V)− 2.
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Special Families: unbreakable

Definition
A family of rational curve V on a projective manifold X is locally
unsplit or unbreakable if Vx is projective for a general x ∈ X. Members
of an unbreakable uniruling on X will be called minimal rational curves
on X.

Unbreakable unirulings exist on any uniruled projective manifold. To
see this, we need the following notion.

Definition
Let L be an ample line bundle on a projective manifold X. A uniruling V
is minimal with respect to L, if degL(V) is minimal among all unirulings
of X. A uniruling is a minimal uniruling if it is minimal with respect to
some ample line bundle.
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Minimals are Unbreakables.

Proposition

Minimal unirulings exist on any uniruled projective manifold. A minimal
uniruling is unbreakable. In particular there exist unbreakable
unirulings on any uniruled projective manifold.

Sketchy geometric proof: suppose for a uniruling V , which is minimal
with respect to an ample line bundle L, the variety Vx is not projective
for a general point x ∈ X. Then the members of Vx degenerate to
reducible curves all components of which are rational curves of smaller
L-degree than the members of V and some components of which pass
through x. Collecting those components passing through x, as x varies
over the general points of X, gives rise to another uniruling V ′ satisfying
degL(V ′) < degL(V), a contradiction to the minimality of degL(V).
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Property of Unbreakables

Mori shows that a weaker version of this property continues to hold for
unbreakable unirulings:

Theorem
Let V be an unbreakable family. Then for a general point x ∈ Locus(V)
and any other point y ∈ Locus(Vx), there does not exist a
positive-dimensional family of members of V that pass through both x
and y. (This is the definition of generically unsplit family in [Ko] IV.2.1)

The theorem is proved again by a ”bend-and-break” plus rigidity
argument. Geometrically, it says that any 1-dimensional family of
rational curves which share two distinct points in common must
degenerate into a reducible curve. This is the most important geometric
property of an unbreakable uniruling.

If V is unbreakable and we let V = u−1(V) and Π : V → X × X be the
map [f ]→ (f (0), f (∞)), the Theorem says that the fiber of Π over the
generic point of Im (Π) has dimension at most one.
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Inequalities for Unbreakable Loci

Proposition

Let V be an unbreakable family and let V = u−1(V).
If x ∈ X is a general point in Locus(V), then

dimV = dimLocus(V) + dimLocus(Vx) + 1.

Proof. By upper-semicontinuity, for x ∈ Locus(V)

dim{[f ] ∈ V : f (0) = x} ≥ dimV − dimLocus(V).

If y ∈ Locus(Vx) similarly

dim{[f ] ∈ V : f (0) = x, f (∞) = y} ≥ dimV−dimLocus(V)−dim(Locus(Vx),

equality holds for general x and y. The proposition follows since

1 = dimΠ−1(x, y) = dim{[f ] ∈ V : f (0) = x, f (∞) = y}.
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Inequalities for Unbreakable Loci

Combining this Theorem with 2 we obtain the following result.

Corollary

Let V be an unbreakable family and let V := u−1(V). Then

dimX + deg−KV ≤ dimLocus(V) + dimLocus(V, 0→ x) + 1
dimX + deg−KV ≤ 2dimLocus(V) + 1 ≤ 2dimX + 1
deg−KV ≤ dimLocus(V, 0→ x) + 1 ≤ dimX + 1
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Special Families: Unbendings

Definition
A rational curve C ⊂ X is unbending if under the normalization
vC : P1 −→ C ⊂ X, the vector bundle vC

∗T(X) has the form

vC
∗T(X) = O(2)⊕O(1)p ⊕On−1−p

for some integer p satisfying 0 ≤ p ≤ n− 1, where n = dimX.
(This is the definition of Minimal free morphism in [Ko] IV.2.8.)

Remark
If f : P1 → C ⊂ X is an unbending member of Vx the differential
Tf : T(P1) −→ f ∗T(X) is an isomorphism of T(P1) and the unique
O(2) summand. Therefore Tfp is non zero at every p ∈ P1. Recall that a
curve is immersed if its normalization has rank one at every point;
therefore an unbending member is immersed.
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Unbreakable are generically Unbending

The above definition allows an infinitesimal version of Theorem 11.

Theorem
A general member of an unbreakable uniruling is unbending.

Sketch of proof. Let [f ] ∈ V ⊂ Homn
bir(P1,X) a general element of an

unbreakable uniruling V
(i.e. V = u−1V with V an unbreakable uniruling).
Let f ∗TX = OP1(a1)⊕ ...⊕OP1(an); by assumption ai ≥ 0 for every i.

Then
dimX + Σai = dimV = dimLocus(V) + dimLocus(V, 0→ x) + 1 =
dimX + ]{i : ai ≥ 1}+ 1.
Therefore Σai = ]{i : ai ≥ 1}+ 1, that is at most one of the ai is at least
two.
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Unbreakable are generically Immersed

Kebekus has carried out an analysis of singularities of members of Vx

and proved that they are considerably well behaved. Among other
things, he has shown

Theorem
For an unbreakable uniruling V and a general point x ∈ X, members of
Vx which are singular are a finite number. Moreover the singular ones
are immersed at the point corresponding to x.
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Special Families: Unsplit

Definition
A family of rational curve V on a projective manifold X is unsplit if V is
projective.

Let V be an unsplit uniruling. It defines a relation of rational
connectedness with respect to V , which we shall call rcV relation for
short, in the following way: x1, x2 ∈ X are in the rcV relation if there
exists a chain of rational curves parametrized by morphisms from V
which joins x1 and x2. The rcV relation is an equivalence relation and its
equivalence classes can be parametrized generically by an algebraic set.
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RcV fibration

We have the following result due to Campana and, independently, to
Kollár-Miyaoka-Mori (see ([Ko], IV.4.16).

Theorem
There exist an open subset X0 ⊂ X and a proper surjective morphism
with connected fibers ϕ0 : X0 → Z0 onto a normal variety, such that the
fibers of ϕ0 are equivalence classes of the rcV relation.

We shall call the morphism ϕ0 an rcV fibration. If Z0 is just a point then
we will call X a rationally connected manifold with the respect to the
family V , in short an rcV manifold.

Lemma
Let X be a manifold which is rationally connected with the respect to a
unsplit uniruling V . Then ρ(X) := dimN1(X) = 1 and X is a Fano
manifold.

Also in this case the proof is a sort of an (easy) bend and break lemma.
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