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Let X be a smooth projective variety and V ⊂ RatCurvesn(X), a closed
irreducible component; fix a point x ∈ X and consider Vx.

Definition
The rational map Φx : Vx −−−− > P(TxX), defined, at [f ] ∈ Vx which
is smooth at 0 , by

Φx([f ]) = [(Tf )0(∂/∂t)],

is called the tangent map (c.f. [Mori79, pp.602-603]).
It sends a member of Vx which is smooth at 0 to its tangent direction.

Notation. By P we denote the “natural projectivisation”.
With t we denote a local coordinate around 0 ∈ P1.
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Proposition

If f : P1 → C ⊂ X is an unbending member of Vx, the tangent map can
be extended to [f ], even when C is singular at x, because the differential
Tf : T(P1) −→ f ∗T(X) is injective.
Moreover Φx is immersive at [f ] ∈ Vx.

In particular for an unbreakable uniruling V and a general point x ∈ X,
the tangent map Φx is generically finite over its image.
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Proof The proof that Φx is immersive is taken from Hwang.

Let V = u−1V the Hilbert family corresponding to V , B = ∅ or x:
T[f ]VB = H0(P1, f ∗TX(−B)) = H0(P1,O(2)⊕O(1)p ⊕On−1−p(−B)).
Passing to the quotient by Aut(P1), i.e. passing to V , we delete the part
corresponding to T(P1):

T[f ](Vx) = H0(⊕Op⊕O(−1)n−1−p) ⊂ T[f ](V) = H0(⊕O(1)p⊕On−1−p).

Take v ∈ T[f ](Vx) ⊂ T[f ](V); we can find a deformation ft of f0 := f such
that df

dt |t=0 = v. Let z be a local coordinate in P1 centered at 0.
Then the differential dΦx : T[f ](Vx)→ TΦx([f ])P(TxX) send v to

dΦx(v) =
d
dt |t=0

dft
dz |z=0

=
d
dz |z=0

dft
dt |z=0

=
dv
dz |z=0

.

To derive v with respect to z we think it in
T[f ](V) = H0(⊕O(1)p ⊕On−1−p); a non zero section here has non
vanishing differential.
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Using the above mentioned result of Kebekus one can prove the
following.

Theorem
For an unbreakable uniruling V and a general point x ∈ X, the tangent
morphism Φx : Vx −→ P(TxX) can be defined by assigning to each
member C of Vx its tangent direction.
This morphism Φx is finite over its image.
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Proof. Let ix : Ux → X be the evaluation map; by Kebekus the preimage
i−1
x (x) contains a section, which we call σ∞ ∼= Vx, and at most a finite

number of further points. Let Ux be the inverse image of Vx in the
universal family.

Since all curves are immersed at x, the tangent morphism of ix gives a
nowhere vanishing morphism of vector bundles,

T ix : TUx|Vx|σ∞ → i∗x (TX|x).

The tangent map Φx is given by the projectivization of this map.
Assume, by contradiction, that Φx is not finite: by the above morphism,
we can find a curve C ⊂ Vx such that Nσ∞,Ux is trivial along C.
But σ∞ is contracted and the normal bundle must be negative.
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The next result was proved in general by Hwang and Mok.

Theorem
For an unbreakable uniruling V and a general point x ∈ X, the tangent
morphism Φx : Vx −→ P(TxX) is birational (i.e. generically injective)
over its image.

Therefore Φx is the normalization of its image in P(TxX).
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Note (c.f Mori ’79 Corollary 7.ii) that if TX is ample
(in particular −KX is ample and X is uniruled)
and we take a locally unsplit (unbreakable) family of rational curves, V ,
then for every element [f ] ∈ V we have

f ∗TX = OP1(2)⊕OP1(1)⊕ ...⊕OP1(1).

Thus the tangent map Φx : Vx −−−− > P(TxX) is defined at every
point, it is finite and at every point it is immersive.
Thus it is an etale cover of P(TxX) = Pn−1. But Pn−1 is simply
connected and therefore Φx is birational and thus an isomorphism.



Rational Curves

Marco Andreatta

The Tangent Map

Characterization
of Pn

The Tangent Map if tangent bundle is ample

Note (c.f Mori ’79 Corollary 7.ii) that if TX is ample
(in particular −KX is ample and X is uniruled)
and we take a locally unsplit (unbreakable) family of rational curves, V ,
then for every element [f ] ∈ V we have

f ∗TX = OP1(2)⊕OP1(1)⊕ ...⊕OP1(1).

Thus the tangent map Φx : Vx −−−− > P(TxX) is defined at every
point, it is finite and at every point it is immersive.

Thus it is an etale cover of P(TxX) = Pn−1. But Pn−1 is simply
connected and therefore Φx is birational and thus an isomorphism.



Rational Curves

Marco Andreatta

The Tangent Map

Characterization
of Pn

The Tangent Map if tangent bundle is ample

Note (c.f Mori ’79 Corollary 7.ii) that if TX is ample
(in particular −KX is ample and X is uniruled)
and we take a locally unsplit (unbreakable) family of rational curves, V ,
then for every element [f ] ∈ V we have

f ∗TX = OP1(2)⊕OP1(1)⊕ ...⊕OP1(1).

Thus the tangent map Φx : Vx −−−− > P(TxX) is defined at every
point, it is finite and at every point it is immersive.
Thus it is an etale cover of P(TxX) = Pn−1. But Pn−1 is simply
connected and therefore Φx is birational and thus an isomorphism.



Rational Curves

Marco Andreatta

The Tangent Map

Characterization
of Pn

The Variety of Minimal Rational Tangents

Definition
We define Sx ⊂ P(TxX) as the closure of the image of the map Φx and
we call it tangent cone of curves from V at the point x.

J.-M.Hwang and N. Mok call this Variety of Minimal Rational Tangents.
The name tangent cone follows from the fact that Sx is (at least around
[f ]) the tangent cone to Locus(Vx).
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For our purposes we need the following observation which follows from
the above discussion.

Lemma
The projectivised tangent space of the tangent cone Sx at Φx([f ]) is equal
to P((f ∗TX)+

0 ) ⊂ P((f ∗TX)0) = P(TxX).

Proof The tangent space to Locus(Vx) at f (p), for p 6= 0, is the image of
the evaluation of sections of the twisted pull-back of TX which is

Im(TF̂)p = (f ∗TX)+
p ⊂ (f ∗TX)p = Tf (p)X.

Thus passing with p to 0 we get the result.
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The following is the celebrated Theorem of Mori of 1979.

Theorem
Let X be a complex projective manifold of dimension n ≥ 3. Assume that
TX is ample. Then X is isomorphic to the projective space.

The next Theorem was first proved by Cho-Miyaoka-Shepherd Barron;
subsequently Kebekus gave a shorter proof.

Theorem
Let X be a complex projective manifold of dimension n ≥ 3. Assume that
for every curve C ⊂ X we have −KX

.C ≥ n + 1. Then X is isomorphic
to the projective space.

Note that Mori’s Theorem follows immediately from it.
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Proof. Take an unbreakable uniruling V . By our assumption and the
above results, for a general point x ∈ X we have that Vx is smooth and
dim(Vx) = −KX

.C − 2 = (n− 1).

By the above results we have that Vx ∼= σ∞ ∼= Pn−1.
Let ĩx : Vx → X̃ = BlxX be the lift up of ix; since Tix has rank one along
σ∞, then Tĩx has maximal rank along σ∞, in particular
Nσ∞,Ux

∼= NE/X̃ = OPn−1(−1).
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Proof

Consider the Stein factorization of the universal map
ix : Ux → X : Ux → Y → X, where the first map α : Ux → Y contracts
the divisor σ∞ and the second β : Y → X is a finite map.

Since R1π∗(OUx ) = 0 and OUx (σ∞)|σ∞
∼= OPn−1(−1), the push forward

of the twisted ideal sheaf sequence

0→ OUx → OUx (σ∞)→ OUx (σ∞)|σ∞ → 0

gives on Vx ∼= Pn−1 a sequence,

0→ OPn−1 → E → OPn−1(−1)→ 0,

where Ux ∼= P(E∗). Since Ext1
Pn−1(OPn−1(−1),OPn−1) = 0, then

Ux ∼= P(OPn−1(−1)⊕OPn−1).
An application of Zariski’s main theorem shows that α is the standard
contraction of σ∞, that is Y = Pn.
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Proof

We have that adiunction formula for a finite, surjective morphism:

−KPn = β∗(−KX) + branch divisor.

Let l be a line through α(x) and t = β(l); t is a curve associated with Vx.

Thus we have
n + 1 = −KX

.t = (β∗(−KX)).l = (−KPn − (branch divisor)).l =
n + 1− (branch divisor).l
Then the branch divisor is empty and β is birational, thus an
isomorphism.
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Another generalization

The following generalization of Mori’s is due to A. and Wisniewski.

Theorem
Let X be a complex projective manifold of dimension n ≥ 3. Assume that
there exist a subsheaf E ⊂ TX which is an ample vector bundle. Then X
is isomorphic to the projective space.

Proof. By the assumption we can apply the Theorem of Miyaoka,
therefore X is uniruled.
Take an unbreakable uniruling V: for a general f ∈ V we have
f ∗TX = O(2)⊕O(1)⊕d ⊕O⊕(n−d−1) ,where d = deg(f ∗(−KX))− 2.
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Proof

Lemma
For any f ∈ V the pull-back f ∗E is isomorphic either to O(1)⊕r or to
O(2)⊕O(1)⊕(r−1). In particular the family of curves parametrized by
V is unsplit.

Proof. For a general f ∈ V the pull-back f ∗E is an ample subbundle of
f ∗TX = O(2)⊕O(1)⊕(d) ⊕O⊕(n−d−1) and thus it is as in the lemma.

Since E is ample this is true also for all f ∈ V .
Since deg(f ∗E) = r or deg(f ∗E) = r + 1 and r > 1, and for any ample
bundle E over a rational curve we have deg(E) ≥ rank(E), it follows that
no curve from V can be split into a sum of two or more rational curves,
hence V is unsplit.
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We shall analyze X using the notions of rcV relation and rcV fibration.

The following is a key observation.

Lemma
Let X, E and V be as above and moreover assume that ϕ0 : X0 → Z0 is
an rcV fibration. Then E is tangent to a general fiber of ϕ0.
That is, if Xg is a general fiber of ϕ0, then the injection E|Xg → TX|Xg

factors via E|Xg ↪→ TXg.

Proof Choose a general Xg (in particular smooth) and let x ∈ Xg and
f ∈ Vx be general as well. By construction Locus(Vx) ⊂ Xg.
The tangent space to Locus(Vx) at f (p) is the image of the evaluation of
sections of the twisted pull-back of TX, which is = (f ∗TX)+

p , therefore
(f ∗TX)+

p ⊂ (f ∗TXg)p for every p ∈ P1 \ {0}.
This implies that E|Xg → TX|Xg factors to E|Xg → TXg generically and
since the map TXg → TX|Xg has cokernel which is torsion free (it is the
normal sheaf which is locally free) this yields E|Xg ↪→ TXg, a sheaf
injection.
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Proposition

The general fiber of ϕ0, Xg, is Pk and E|Xg = O(1)⊕r or E|Xg = TXg.

Proof By abuse we denote the general fiber with X := Xg. We consider
here only the case when for f ∈ V the pull-back f ∗E is isomorphic to
O(2)⊕O(1)⊕(r−1). In particular f ∗E ⊂ (f ∗TX)+.

Comparing the splitting type of f ∗E and f ∗TX we see that the tangent
map Tf : TP1 → f ∗TX factors to a vector bundle (nowhere degenerate)
injection TP1 → f ∗E. (In other words, we have surjective morphism
(f ∗E)∗ → ΩP1 ∼= O(−2)).
The vector bundle (nowhere degenerate) injection TP1 → f ∗E implies
(f ∗TX)+ ↪→ f ∗E. In fact, choose a general f which is an immersion at
0→ x. Then Φx([f ]) ∈ P(Ex) = P((f ∗E)0) ⊂ P(TxX) = P((f ∗TX)0)
and the same holds for morphisms in a neighborhood of [f ] in Vx. Thus
around Φx([f ]) the tangent cone Sx is contained in P(Ex) = P((f ∗E)0),
so is its tangent space P((f ∗TX)+

0 ).
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Therefore f ∗E = (f ∗TX)+ and thus deg(f ∗E) = deg(f ∗(−KX)).
Since ρ(X) = 1 it follows that det(E) = −KX .

The embedding E ↪→ TX gives rise to a non-trivial morphism
det(E)→ ΛrTX and thus to a non-zero section of ΛrTX ⊗ KX . We use
dualities to have the equalities:

h0(X,ΛrTX⊗KX) = hn(X,Ωr
X) = hr(X,Ωn

X) = hr(X,KX) = hn−r(X,OX)

and, since X is Fano, the latter number is non-zero only if r = n.
Thus ΛrTX ⊗ (detE)−1 ∼= OX so E ↪→ TX is nowhere degenerate, hence
an isomorphism.
We conclude by the Theorem of Mori.
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Finally we prove that dimZ0 is zero , i.e. X is rationally connected.
By contradiction if dimZ0 ≥ 1 one can prove that :

Lemma
Outside a subset of codimension ≥ 2 the morphism ϕ0 is a Pk-bundle (in
the analytic topology).

Then we take a complete curve B ⊂ Z0 and we consider the Pk-bundle
ϕ0 : XB := ϕ−1

0 (B)→ B with the ample vector bundle E|XB .
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We get a contradiction applying the following straightforward result, due
to Campana and Peternell.

Lemma
Let X be a n-dimensional projective manifold, ϕ : X → Y a Pk bundle
(k < n) of the form X = P(V) with a vector bundle V on Y. Then the
relative tangent sheaf TX/Y does not contain an ample locally free
subsheaf
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