

Rational Curves

Marco Andreatt

The Tangent Map Characterization of \mathbb{P}^{n}

Families of Rational Curves which determine the structure of the (projective) Space

Marco Andreatta

Dipartimento di Matematica di Trento, Italia

Korea, January 2016

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Rational Curves

Marco Andreatta

The Tangent Map

Characterization of \mathbb{P}^n Let *X* be a smooth projective variety and $\mathcal{V} \subset RatCurves^n(X)$, a closed irreducible component; fix a point $x \in X$ and consider \mathcal{V}_x .

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Rational Curves

Marco Andreatta

The Tangent Map

Characterization of \mathbb{P}^{n} Let *X* be a smooth projective variety and $\mathcal{V} \subset RatCurves^n(X)$, a closed irreducible component; fix a point $x \in X$ and consider \mathcal{V}_x .

Definition

The rational map $\Phi_x : \mathcal{V}_x - - - - > P(T_xX)$, defined, at $[f] \in \mathcal{V}_x$ which is smooth at 0, by

$$\Phi_x([f]) = [(Tf)_0(\partial/\partial t)],$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

is called the tangent map (c.f. [Mori79, pp.602-603]). It sends a member of V_x which is smooth at 0 to its tangent direction.

Notation. By *P* we denote the "natural projectivisation". With *t* we denote a local coordinate around $0 \in \mathbb{P}^1$.

Rational Curves

Marco Andreatt

The Tangent Map

Characterization of \mathbb{P}^n

Proposition

If $f : \mathbb{P}^1 \to C \subset X$ is an unbending member of \mathcal{V}_x , the tangent map can be extended to [f], even when C is singular at x, because the differential $Tf : T(\mathbb{P}^1) \longrightarrow f^*T(X)$ is injective. Moreover Φ_x is immersive at $[f] \in \mathcal{V}_x$.

Rational Curves

Marco Andreatta

The Tangent Map

Characterization of \mathbb{P}^n

Proposition

If $f : \mathbb{P}^1 \to C \subset X$ is an unbending member of \mathcal{V}_x , the tangent map can be extended to [f], even when C is singular at x, because the differential $Tf : T(\mathbb{P}^1) \longrightarrow f^*T(X)$ is injective. Moreover Φ_x is immersive at $[f] \in \mathcal{V}_x$.

In particular for an unbreakable uniruling \mathcal{V} and a general point $x \in X$, the tangent map Φ_x is generically finite over its image.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Rational Curves	Proof
	11001
The Tangent Map	
Characterization of \mathbb{P}^n	

Proof The proof that Φ_x is immersive is taken from Hwang.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Rational Curves Marco Andreatta

The Tangent Map

Characterization of \mathbb{P}^n **Proof** The proof that Φ_x is immersive is taken from Hwang. Let $V = u^{-1}\mathcal{V}$ the Hilbert family corresponding to $\mathcal{V}, B = \emptyset$ or x: $T_{[f]}V_B = H^0(\mathbb{P}^1, f^*T_X(-B)) = H^0(\mathbb{P}^1, \mathcal{O}(2) \oplus \mathcal{O}(1)^p \oplus \mathcal{O}^{n-1-p}(-B)).$ Passing to the quotient by $Aut(\mathbb{P}^1)$, i.e. passing to \mathcal{V} , we delete the part corresponding to $T(\mathbb{P}^1)$:

$$T_{[f]}(\mathcal{V}_x) = H^0(\oplus \mathcal{O}^p \oplus \mathcal{O}(-1)^{n-1-p}) \subset T_{[f]}(\mathcal{V}) = H^0(\oplus \mathcal{O}(1)^p \oplus \mathcal{O}^{n-1-p}).$$

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Rational Curves Marco Andreatta The Tangent Map

Characterization of \mathbb{P}^n

Proof The proof that Φ_x is immersive is taken from Hwang. Let $V = u^{-1}\mathcal{V}$ the Hilbert family corresponding to $\mathcal{V}, B = \emptyset$ or x: $T_{[f]}V_B = H^0(\mathbb{P}^1, f^*T_X(-B)) = H^0(\mathbb{P}^1, \mathcal{O}(2) \oplus \mathcal{O}(1)^p \oplus \mathcal{O}^{n-1-p}(-B)).$ Passing to the quotient by $Aut(\mathbb{P}^1)$, i.e. passing to \mathcal{V} , we delete the part corresponding to $T(\mathbb{P}^1)$:

$$T_{[f]}(\mathcal{V}_x) = H^0(\oplus \mathcal{O}^p \oplus \mathcal{O}(-1)^{n-1-p}) \subset T_{[f]}(\mathcal{V}) = H^0(\oplus \mathcal{O}(1)^p \oplus \mathcal{O}^{n-1-p}).$$

Take $v \in T_{[f]}(\mathcal{V}_x) \subset T_{[f]}(\mathcal{V})$; we can find a deformation f_t of $f_0 := f$ such that $\frac{df}{dt}|_{t=0} = v$. Let z be a local coordinate in \mathbb{P}^1 centered at 0.

Rational Curves Marco Andreatta The Tangent Map

Characterization of \mathbb{P}^n **Proof** The proof that Φ_x is immersive is taken from Hwang. Let $V = u^{-1}\mathcal{V}$ the Hilbert family corresponding to $\mathcal{V}, B = \emptyset$ or x: $T_{[f]}V_B = H^0(\mathbb{P}^1, f^*T_X(-B)) = H^0(\mathbb{P}^1, \mathcal{O}(2) \oplus \mathcal{O}(1)^p \oplus \mathcal{O}^{n-1-p}(-B)).$ Passing to the quotient by $Aut(\mathbb{P}^1)$, i.e. passing to \mathcal{V} , we delete the part corresponding to $T(\mathbb{P}^1)$:

$$T_{[f]}(\mathcal{V}_x) = H^0(\oplus \mathcal{O}^p \oplus \mathcal{O}(-1)^{n-1-p}) \subset T_{[f]}(\mathcal{V}) = H^0(\oplus \mathcal{O}(1)^p \oplus \mathcal{O}^{n-1-p}).$$

Take $v \in T_{[f]}(\mathcal{V}_x) \subset T_{[f]}(\mathcal{V})$; we can find a deformation f_t of $f_0 := f$ such that $\frac{df}{dt}_{|t=0} = v$. Let *z* be a local coordinate in \mathbb{P}^1 centered at 0. Then the differential $d\Phi_x : T_{[f]}(\mathcal{V}_x) \to T_{\Phi_x([f])}P(T_xX)$ send *v* to

$$d\Phi_x(v) = \frac{d}{dt} \frac{df_t}{|t=0} \frac{df_t}{dz}|_{z=0} = \frac{d}{dz} \frac{df_t}{|z=0} \frac{df_t}{dt}|_{z=0} = \frac{dv}{dz}|_{z=0}$$

Rational Curves Marco Andreatta The Tangent Map

Characterization of \mathbb{P}^{n} **Proof** The proof that Φ_x is immersive is taken from Hwang. Let $V = u^{-1}\mathcal{V}$ the Hilbert family corresponding to $\mathcal{V}, B = \emptyset$ or x: $T_{[f]}V_B = H^0(\mathbb{P}^1, f^*T_X(-B)) = H^0(\mathbb{P}^1, \mathcal{O}(2) \oplus \mathcal{O}(1)^p \oplus \mathcal{O}^{n-1-p}(-B)).$ Passing to the quotient by $Aut(\mathbb{P}^1)$, i.e. passing to \mathcal{V} , we delete the part corresponding to $T(\mathbb{P}^1)$:

$$T_{[f]}(\mathcal{V}_x) = H^0(\oplus \mathcal{O}^p \oplus \mathcal{O}(-1)^{n-1-p}) \subset T_{[f]}(\mathcal{V}) = H^0(\oplus \mathcal{O}(1)^p \oplus \mathcal{O}^{n-1-p}).$$

Take $v \in T_{[f]}(\mathcal{V}_x) \subset T_{[f]}(\mathcal{V})$; we can find a deformation f_t of $f_0 := f$ such that $\frac{df}{dt}_{|t=0} = v$. Let *z* be a local coordinate in \mathbb{P}^1 centered at 0. Then the differential $d\Phi_x : T_{[f]}(\mathcal{V}_x) \to T_{\Phi_x([f])}P(T_xX)$ send *v* to

$$d\Phi_x(v) = \frac{d}{dt} \frac{df_t}{|t=0} \frac{df_t}{dz} = \frac{d}{|z=0} \frac{df_t}{dt} = \frac{dv}{|z=0} \frac{dv}{dz} = \frac{dv}{|z=0}.$$

To derive v with respect to z we think it in $T_{[f]}(\mathcal{V}) = H^0(\oplus \mathcal{O}(1)^p \oplus \mathcal{O}^{n-1-p})$; a non zero section here has non vanishing differential.

Rational Curves

Marco Andreatta

The Tangent Map

Characterization of \mathbb{P}^n

Using the above mentioned result of Kebekus one can prove the following.

Theorem

For an unbreakable uniruling \mathcal{V} and a general point $x \in X$, the tangent morphism $\Phi_x : \mathcal{V}_x \longrightarrow P(T_xX)$ can be defined by assigning to each member C of \mathcal{V}_x its tangent direction. This morphism Φ_x is finite over its image.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Rational Curves

Marco Andreatta

The Tangent Map

Characterization of \mathbb{P}^n **Proof.** Let $i_x : U_x \to X$ be the evaluation map; by Kebekus the preimage $i_x^{-1}(x)$ contains a section, which we call $\sigma_{\infty} \cong \mathcal{V}_x$, and at most a finite number of further points. Let U_x be the inverse image of \mathcal{V}_x in the universal family.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Rational Curves

The Tangent Map Characterization **Proof.** Let $i_x : U_x \to X$ be the evaluation map; by Kebekus the preimage $i_x^{-1}(x)$ contains a section, which we call $\sigma_{\infty} \cong \mathcal{V}_x$, and at most a finite number of further points. Let U_x be the inverse image of \mathcal{V}_x in the universal family.

Since all curves are immersed at *x*, the tangent morphism of i_x gives a nowhere vanishing morphism of vector bundles,

$$T i_x : T_{U_x|\mathcal{V}_x|\sigma_\infty} \to i_x^*(T_{X|x}).$$

The tangent map Φ_x is given by the projectivization of this map.

Rational Curves

The Tangent Map

Characterization of \mathbb{P}^n **Proof.** Let $i_x : U_x \to X$ be the evaluation map; by Kebekus the preimage $i_x^{-1}(x)$ contains a section, which we call $\sigma_{\infty} \cong \mathcal{V}_x$, and at most a finite number of further points. Let U_x be the inverse image of \mathcal{V}_x in the universal family.

Since all curves are immersed at x, the tangent morphism of i_x gives a nowhere vanishing morphism of vector bundles,

$$T i_x: T_{U_x|\mathcal{V}_x|\sigma_{\infty}} \to i_x^*(T_{X|x}).$$

The tangent map Φ_x is given by the projectivization of this map.

Assume, by contradiction, that Φ_x is not finite: by the above morphism, we can find a curve $C \subset \mathcal{V}_x$ such that N_{σ_∞, U_x} is trivial along *C*.

But σ_{∞} is contracted and the normal bundle must be negative.

Rational Curves

Marco Andreatta

The Tangent Map

Characterization of \mathbb{P}^n

The next result was proved in general by Hwang and Mok.

Theorem

For an unbreakable uniruling \mathcal{V} and a general point $x \in X$, the tangent morphism $\Phi_x : \mathcal{V}_x \longrightarrow P(T_xX)$ is birational (i.e. generically injective) over its image.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Rational Curves

Marco Andreatta

The Tangent Map

Characterization of \mathbb{P}^n

The next result was proved in general by Hwang and Mok.

Theorem

For an unbreakable uniruling \mathcal{V} and a general point $x \in X$, the tangent morphism $\Phi_x : \mathcal{V}_x \longrightarrow P(T_xX)$ is birational (i.e. generically injective) over its image.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Therefore Φ_x is the normalization of its image in $P(T_xX)$.

The Tangent Map if tangent bundle is ample

Rational Curves

Marco Andreatta

The Tangent Map

Characterization of \mathbb{P}^n

Note (c.f Mori '79 Corollary 7.ii) that if *TX* is ample (in particular $-K_X$ is ample and *X* is uniruled) and we take a locally unsplit (unbreakable) family of rational curves, \mathcal{V} , then for **every** element $[f] \in \mathcal{V}$ we have

$$f^*TX = \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1) \oplus ... \oplus \mathcal{O}_{\mathbb{P}^1}(1)$$

The Tangent Map if tangent bundle is ample

Rational Curves

Marco Andreatta

The Tangent Map

Characterization of \mathbb{P}^n Note (c.f Mori '79 Corollary 7.ii) that if *TX* is ample (in particular $-K_X$ is ample and *X* is uniruled) and we take a locally unsplit (unbreakable) family of rational curves, \mathcal{V} , then for **every** element $[f] \in \mathcal{V}$ we have

$$f^*TX = \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1) \oplus ... \oplus \mathcal{O}_{\mathbb{P}^1}(1).$$

Thus the tangent map $\Phi_x : \mathcal{V}_x - - - > P(T_xX)$ is defined at every point, it is finite and at every point it is immersive.

The Tangent Map if tangent bundle is ample

Rational Curves

Marco Andreatta

The Tangent Map

Characterization of \mathbb{P}^n Note (c.f Mori '79 Corollary 7.ii) that if *TX* is ample (in particular $-K_X$ is ample and *X* is uniruled) and we take a locally unsplit (unbreakable) family of rational curves, \mathcal{V} , then for **every** element $[f] \in \mathcal{V}$ we have

$$f^*TX = \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1) \oplus ... \oplus \mathcal{O}_{\mathbb{P}^1}(1).$$

Thus the tangent map $\Phi_x : \mathcal{V}_x - - - > P(T_x X)$ is defined at every point, it is finite and at every point it is immersive.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thus it is an etale cover of $P(T_xX) = \mathbb{P}^{n-1}$. But \mathbb{P}^{n-1} is simply connected and therefore Φ_x is birational and thus an isomorphism.

The Variety of Minimal Rational Tangents

Rational Curves

Marco Andreatta

The Tangent Map

Characterization of \mathbb{P}^n

Definition

We define $S_x \subset P(T_xX)$ as the closure of the image of the map Φ_x and we call it *tangent cone of curves from* \mathcal{V} *at the point* x.

J.-M.Hwang and N. Mok call this Variety of Minimal Rational Tangents. The name tangent cone follows from the fact that S_x is (at least around [f]) the tangent cone to Locus (V_x) .

▲□▶▲□▶▲□▶▲□▶ □ のQで

Variety of Minimal Rational Tangents

Rational Curves

Marco Andreatta

The Tangent Map

Characterization of \mathbb{P}^{n}

For our purposes we need the following observation which follows from the above discussion.

Lemma

The projectivised tangent space of the tangent cone S_x at $\Phi_x([f])$ is equal to $P((f^*TX)_0^+) \subset P((f^*TX)_0) = P(T_xX)$.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Variety of Minimal Rational Tangents

Rational Curves

Marco Andreatta

The Tangent Map

Characterization of \mathbb{P}^{n} For our purposes we need the following observation which follows from the above discussion.

Lemma

The projectivised tangent space of the tangent cone S_x at $\Phi_x([f])$ is equal to $P((f^*TX)_0^+) \subset P((f^*TX)_0) = P(T_xX)$.

Proof The tangent space to $Locus(V_x)$ at f(p), for $p \neq 0$, is the image of the evaluation of sections of the twisted pull-back of *TX* which is

$$\operatorname{Im}(T\hat{F})_p = (f^*TX)_p^+ \subset (f^*TX)_p = T_{f(p)}X.$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Thus passing with *p* to 0 we get the result.

Characterization of \mathbb{P}^n

Rational Curves

Marco Andreatta

The Tangent Map

Characterization of \mathbb{P}^n

The following is the celebrated Theorem of Mori of 1979.

Theorem

Let X be a complex projective manifold of dimension $n \ge 3$. Assume that TX is ample. Then X is isomorphic to the projective space.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Characterization of \mathbb{P}^n

Rational Curves

Marco Andreatta

The Tangent Map

Characterization of \mathbb{P}^n The following is the celebrated Theorem of Mori of 1979.

Theorem

Let X be a complex projective manifold of dimension $n \ge 3$. Assume that TX is ample. Then X is isomorphic to the projective space.

The next Theorem was first proved by Cho-Miyaoka-Shepherd Barron; subsequently Kebekus gave a shorter proof.

Theorem

Let X be a complex projective manifold of dimension $n \ge 3$. Assume that for every curve $C \subset X$ we have $-K_X C \ge n + 1$. Then X is isomorphic to the projective space.

Note that Mori's Theorem follows immediately from it.

Rational Curves Marco Andreatta The Tangent Map

Characterization of \mathbb{P}^n

Proof. Take an unbreakable uniruling \mathcal{V} . By our assumption and the above results, for a general point $x \in X$ we have that \mathcal{V}_x is smooth and $dim(\mathcal{V}_x) = -K_X \cdot C - 2 = (n-1)$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Marco Andreatta The Tangent Map Characterization

Rational Curves

of \mathbb{P}^n

Proof. Take an unbreakable uniruling \mathcal{V} . By our assumption and the above results, for a general point $x \in X$ we have that \mathcal{V}_x is smooth and $dim(\mathcal{V}_x) = -K_X \cdot C - 2 = (n-1)$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

By the above results we have that $\mathcal{V}_x \cong \sigma_\infty \cong \mathbb{P}^{n-1}$.

Marco Andreatta The Tangent Map Characterization

Rational Curves

of \mathbb{P}^n

Proof. Take an unbreakable uniruling \mathcal{V} . By our assumption and the above results, for a general point $x \in X$ we have that \mathcal{V}_x is smooth and $dim(\mathcal{V}_x) = -K_X \cdot C - 2 = (n-1)$.

By the above results we have that $\mathcal{V}_x \cong \sigma_\infty \cong \mathbb{P}^{n-1}$.

Let $\tilde{i}_x : \mathcal{V}_x \to \tilde{X} = Bl_x X$ be the lift up of i_x ; since Ti_x has rank one along σ_∞ , then $T\tilde{i}_x$ has maximal rank along σ_∞ , in particular $N_{\sigma_\infty, U_x} \cong N_{E/\tilde{X}} = O_{\mathbb{P}^{n-1}}(-1)$.

Rational Curves

Marco Andreatta

The Tangent Ma

Characterization of \mathbb{P}^n

Consider the Stein factorization of the universal map $i_x : U_x \to X : U_x \to Y \to X$, where the first map $\alpha : U_x \to Y$ contracts the divisor σ_{∞} and the second $\beta : Y \to X$ is a finite map.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Rational Curves

Marco Andreatta

The Tangent Map

Characterization of \mathbb{P}^n Consider the Stein factorization of the universal map $i_x: U_x \to X: U_x \to Y \to X$, where the first map $\alpha: U_x \to Y$ contracts the divisor σ_{∞} and the second $\beta: Y \to X$ is a finite map.

Since $R^1 \pi_*(\mathcal{O}_{U_x}) = 0$ and $\mathcal{O}_{U_x}(\sigma_\infty)|_{\sigma_\infty} \cong \mathcal{O}_{\mathbb{P}^{n-1}}(-1)$, the push forward of the twisted ideal sheaf sequence

$$0 o \mathcal{O}_{U_x} o \mathcal{O}_{U_x}(\sigma_\infty) o \mathcal{O}_{U_x}(\sigma_\infty)_{|\sigma_\infty} o 0$$

gives on $\mathcal{V}_x \cong \mathbb{P}^{n-1}$ a sequence,

$$0 o \mathcal{O}_{\mathbb{P}^{n-1}} o \mathcal{E} o \mathcal{O}_{\mathbb{P}^{n-1}}(-1) o 0,$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

where $U_x \cong \mathbb{P}(\mathcal{E}^*)$. Since $Ext^1_{\mathbb{P}^{n-1}}(\mathcal{O}_{\mathbb{P}^{n-1}}(-1), \mathcal{O}_{\mathbb{P}^{n-1}}) = 0$, then $U_x \cong \mathbb{P}(\mathcal{O}_{\mathbb{P}^{n-1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{n-1}})$.

Rational Curves

Marco Andreatta

The Tangent Map

Characterization of \mathbb{P}^n Consider the Stein factorization of the universal map $i_x: U_x \to X: U_x \to Y \to X$, where the first map $\alpha: U_x \to Y$ contracts the divisor σ_{∞} and the second $\beta: Y \to X$ is a finite map.

Since $R^1 \pi_*(\mathcal{O}_{U_x}) = 0$ and $\mathcal{O}_{U_x}(\sigma_\infty)|_{\sigma_\infty} \cong \mathcal{O}_{\mathbb{P}^{n-1}}(-1)$, the push forward of the twisted ideal sheaf sequence

$$0 o \mathcal{O}_{U_x} o \mathcal{O}_{U_x}(\sigma_\infty) o \mathcal{O}_{U_x}(\sigma_\infty)_{|\sigma_\infty} o 0$$

gives on $\mathcal{V}_x \cong \mathbb{P}^{n-1}$ a sequence,

$$0 \to \mathcal{O}_{\mathbb{P}^{n-1}} \to \mathcal{E} \to \mathcal{O}_{\mathbb{P}^{n-1}}(-1) \to 0,$$

where $U_x \cong \mathbb{P}(\mathcal{E}^*)$. Since $Ext^1_{\mathbb{P}^{n-1}}(\mathcal{O}_{\mathbb{P}^{n-1}}(-1), \mathcal{O}_{\mathbb{P}^{n-1}}) = 0$, then $U_x \cong \mathbb{P}(\mathcal{O}_{\mathbb{P}^{n-1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{n-1}})$.

An application of Zariski's main theorem shows that α is the standard contraction of σ_{∞} , that is $Y = \mathbb{P}^n$.

Rational Curves Marco Andreatta

Characterization of \mathbb{P}^n

We have that adjunction formula for a finite, surjective morphism:

 $-K_{\mathbb{P}^n} = \beta^*(-K_X) + \text{branch divisor.}$

Let *l* be a line through $\alpha(x)$ and $t = \beta(l)$; t is a curve associated with \mathcal{V}_x .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Marco Andreatta The Tangent Map

Rational Curves

Characterization of \mathbb{P}^n We have that adjunction formula for a finite, surjective morphism:

$$-K_{\mathbb{P}^n} = \beta^*(-K_X) + \text{branch divisor.}$$

Let *l* be a line through $\alpha(x)$ and $t = \beta(l)$; t is a curve associated with \mathcal{V}_x . Thus we have $n+1 = -K_X \cdot t = (\beta^*(-K_X)) \cdot l = (-K_{\mathbb{P}^n} - (\text{branch divisor})) \cdot l = n+1 - (\text{branch divisor}) \cdot l$

Then the branch divisor is empty and β is birational, thus an isomorphism.

Another generalization

Rational Curves Marco Andreatta

The Tangent Map

Characterization of \mathbb{P}^n

The following generalization of Mori's is due to A. and Wisniewski.

Theorem

Let X be a complex projective manifold of dimension $n \ge 3$. Assume that there exist a subsheaf $E \subset TX$ which is an ample vector bundle. Then X is isomorphic to the projective space.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Another generalization

Rational Curves Marco Andreatta The Tangent Man

Characterization of \mathbb{P}^n

The following generalization of Mori's is due to A. and Wisniewski.

Theorem

Let X be a complex projective manifold of dimension $n \ge 3$. Assume that there exist a subsheaf $E \subset TX$ which is an ample vector bundle. Then X is isomorphic to the projective space.

Proof. By the assumption we can apply the Theorem of Miyaoka, therefore *X* is uniruled.

Take an unbreakable uniruling \mathcal{V} : for a general $f \in \mathcal{V}$ we have $f^*TX = \mathcal{O}(2) \oplus \mathcal{O}(1)^{\oplus d} \oplus \mathcal{O}^{\oplus (n-d-1)}$, where $d = deg(f^*(-K_X)) - 2$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Rational Curves

Marco Andreatta

The Tangent Map

Characterization of \mathbb{P}^n

Lemma

For any $f \in \mathcal{V}$ the pull-back f^*E is isomorphic either to $\mathcal{O}(1)^{\oplus r}$ or to $\mathcal{O}(2) \oplus \mathcal{O}(1)^{\oplus (r-1)}$. In particular the family of curves parametrized by V is unsplit.

Proof. For a general $f \in \mathcal{V}$ the pull-back f^*E is an ample subbundle of $f^*TX = \mathcal{O}(2) \oplus \mathcal{O}(1)^{\oplus (d)} \oplus \mathcal{O}^{\oplus (n-d-1)}$ and thus it is as in the lemma.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Rational Curves

Marco Andreatta

The Tangent Map

of \mathbb{P}^n

Lemma

For any $f \in \mathcal{V}$ the pull-back f^*E is isomorphic either to $\mathcal{O}(1)^{\oplus r}$ or to $\mathcal{O}(2) \oplus \mathcal{O}(1)^{\oplus (r-1)}$. In particular the family of curves parametrized by *V* is unsplit.

Proof. For a general $f \in \mathcal{V}$ the pull-back f^*E is an ample subbundle of $f^*TX = \mathcal{O}(2) \oplus \mathcal{O}(1)^{\oplus (d)} \oplus \mathcal{O}^{\oplus (n-d-1)}$ and thus it is as in the lemma. Since *E* is ample this is true also for all $f \in V$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Rational Curves

Marco Andreatta

The Tangent Map Characterization

of \mathbb{P}^n

Lemma

For any $f \in \mathcal{V}$ the pull-back f^*E is isomorphic either to $\mathcal{O}(1)^{\oplus r}$ or to $\mathcal{O}(2) \oplus \mathcal{O}(1)^{\oplus (r-1)}$. In particular the family of curves parametrized by *V* is unsplit.

Proof. For a general $f \in \mathcal{V}$ the pull-back f^*E is an ample subbundle of $f^*TX = \mathcal{O}(2) \oplus \mathcal{O}(1)^{\oplus (d)} \oplus \mathcal{O}^{\oplus (n-d-1)}$ and thus it is as in the lemma. Since *E* is ample this is true also for all $f \in V$.

Since $deg(f^*E) = r$ or $deg(f^*E) = r + 1$ and r > 1, and for any ample bundle \mathcal{E} over a rational curve we have $deg(\mathcal{E}) \ge rank(\mathcal{E})$, it follows that no curve from *V* can be split into a sum of two or more rational curves, hence *V* is unsplit.

Rational Curves Marco Andreatta The Tangent Map Characterization of \mathbb{P}^n

We shall analyze X using the notions of rcV relation and rcV fibration.

Rational Curves Marco Andreatta

The Tangent Map

Characterization of \mathbb{P}^n

We shall analyze *X* using the notions of rcV relation and rcV fibration. The following is a key observation.

Lemma

Let X, E and V be as above and moreover assume that $\varphi^0 : X^0 \to Z^0$ is an rcV fibration. Then E is tangent to a general fiber of φ^0 . That is, if X_g is a general fiber of φ^0 , then the injection $E_{|X_g} \to TX_{|X_g}$ factors via $E_{|X_g} \hookrightarrow TX_g$.

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Rational Curves Marco Andreatta

The Tangent Map

Characterization of \mathbb{P}^n

We shall analyze *X* using the notions of rcV relation and rcV fibration. The following is a key observation.

Lemma

Let X, E and V be as above and moreover assume that $\varphi^0 : X^0 \to Z^0$ is an rcV fibration. Then E is tangent to a general fiber of φ^0 . That is, if X_g is a general fiber of φ^0 , then the injection $E_{|X_g} \to TX_{|X_g}$ factors via $E_{|X_g} \hookrightarrow TX_g$.

Proof Choose a general X_g (in particular smooth) and let $x \in X_g$ and $f \in \mathcal{V}_x$ be general as well. By construction $Locus(\mathcal{V}_x) \subset X_g$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Rational Curves Marco Andreatta

The Tangent Map

Characterization of \mathbb{P}^n

We shall analyze *X* using the notions of rcV relation and rcV fibration. The following is a key observation.

Lemma

Let X, E and V be as above and moreover assume that $\varphi^0 : X^0 \to Z^0$ is an rcV fibration. Then E is tangent to a general fiber of φ^0 . That is, if X_g is a general fiber of φ^0 , then the injection $E_{|X_g} \to TX_{|X_g}$ factors via $E_{|X_g} \hookrightarrow TX_g$.

Proof Choose a general X_g (in particular smooth) and let $x \in X_g$ and $f \in \mathcal{V}_x$ be general as well. By construction $Locus(\mathcal{V}_x) \subset X_g$. The tangent space to $Locus(\mathcal{V}_x)$ at f(p) is the image of the evaluation of sections of the twisted pull-back of TX, which is $= (f^*TX)_p^+$, therefore $(f^*TX)_p^+ \subset (f^*TX_g)_p$ for every $p \in \mathbb{P}^1 \setminus \{0\}$.

Rational Curves Marco Andreatta

The Tangent Map

Characterization of \mathbb{P}^n We shall analyze *X* using the notions of rcV relation and rcV fibration. The following is a key observation.

Lemma

Let X, E and V be as above and moreover assume that $\varphi^0 : X^0 \to Z^0$ is an rcV fibration. Then E is tangent to a general fiber of φ^0 . That is, if X_g is a general fiber of φ^0 , then the injection $E_{|X_g} \to TX_{|X_g}$ factors via $E_{|X_g} \hookrightarrow TX_g$.

Proof Choose a general X_g (in particular smooth) and let $x \in X_g$ and $f \in \mathcal{V}_x$ be general as well. By construction $Locus(\mathcal{V}_x) \subset X_g$. The tangent space to $Locus(\mathcal{V}_x)$ at f(p) is the image of the evaluation of sections of the twisted pull-back of TX, which is $= (f^*TX)_p^+$, therefore $(f^*TX)_p^+ \subset (f^*TX_g)_p$ for every $p \in \mathbb{P}^1 \setminus \{0\}$. This implies that $E_{|X_g} \to TX_{|X_g}$ factors to $E_{|X_g} \to TX_g$ generically and since the map $TX_g \to TX_{|X_g}$ has cokernel which is torsion free (it is the

normal sheaf which is locally free) this yields $E_{|X_g} \hookrightarrow TX_g$, a sheaf injection.

Rational Curves

Marco Andreatta

The Tangent Map

Characterization of \mathbb{P}^n

Proposition

The general fiber of
$$\varphi^0$$
, X_g , is \mathbb{P}^k and $E_{|X_g} = \mathcal{O}(1)^{\oplus r}$ or $E_{|X_g} = TX_g$.

Proof By abuse we denote the general fiber with $X := X_g$. We consider here only the case when for $f \in \mathcal{V}$ the pull-back f^*E is isomorphic to $\mathcal{O}(2) \oplus \mathcal{O}(1)^{\oplus (r-1)}$. In particular $f^*E \subset (f^*TX)^+$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Rational Curves

Marco Andreatt

The Tangent Map

Characterization of \mathbb{P}^n

Proposition

The general fiber of
$$\varphi^0$$
, X_g , is \mathbb{P}^k and $E_{|X_g} = \mathcal{O}(1)^{\oplus r}$ or $E_{|X_g} = TX_g$.

Proof By abuse we denote the general fiber with $X := X_g$. We consider here only the case when for $f \in \mathcal{V}$ the pull-back f^*E is isomorphic to $\mathcal{O}(2) \oplus \mathcal{O}(1)^{\oplus (r-1)}$. In particular $f^*E \subset (f^*TX)^+$.

Comparing the splitting type of f^*E and f^*TX we see that the tangent map $Tf: T\mathbb{P}^1 \to f^*TX$ factors to a vector bundle (nowhere degenerate) injection $T\mathbb{P}^1 \to f^*E$. (In other words, we have surjective morphism $(f^*E)^* \to \Omega_{\mathbb{P}^1} \cong \mathcal{O}(-2)$).

Rational Curves

Marco Andreatt

The Tangent Map

Characterization of \mathbb{P}^n

Proposition

The general fiber of
$$\varphi^0$$
, X_g , is \mathbb{P}^k and $E_{|X_g} = \mathcal{O}(1)^{\oplus r}$ or $E_{|X_g} = TX_g$.

Proof By abuse we denote the general fiber with $X := X_g$. We consider here only the case when for $f \in \mathcal{V}$ the pull-back f^*E is isomorphic to $\mathcal{O}(2) \oplus \mathcal{O}(1)^{\oplus (r-1)}$. In particular $f^*E \subset (f^*TX)^+$.

Comparing the splitting type of f^*E and f^*TX we see that the tangent map $Tf: T\mathbb{P}^1 \to f^*TX$ factors to a vector bundle (nowhere degenerate) injection $T\mathbb{P}^1 \to f^*E$. (In other words, we have surjective morphism $(f^*E)^* \to \Omega_{\mathbb{P}^1} \cong \mathcal{O}(-2)$).

The vector bundle (nowhere degenerate) injection $T\mathbb{P}^1 \to f^*E$ implies $(f^*TX)^+ \hookrightarrow f^*E$. In fact, choose a general f which is an immersion at $0 \to x$. Then $\Phi_x([f]) \in P(E_x) = P((f^*E)_0) \subset P(T_xX) = P((f^*TX)_0)$ and the same holds for morphisms in a neighborhood of [f] in V_x . Thus around $\Phi_x([f])$ the tangent cone S_x is contained in $P(E_x) = P((f^*E)_0)$, so is its tangent space $P((f^*TX)_0^+)$.

Rational Curves

Marco Andreatt

The Tangent Map Characterization

of \mathbb{P}^n

Therefore $f^*E = (f^*TX)^+$ and thus $\deg(f^*E) = \deg(f^*(-K_X))$. Since $\rho(X) = 1$ it follows that $\det(E) = -K_X$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Marco Andreatta The Tangent Map Characterization

Rational Curves

of \mathbb{P}^n

Therefore $f^*E = (f^*TX)^+$ and thus $\deg(f^*E) = \deg(f^*(-K_X))$. Since $\rho(X) = 1$ it follows that $\det(E) = -K_X$.

The embedding $E \hookrightarrow TX$ gives rise to a non-trivial morphism $\det(E) \to \Lambda^r TX$ and thus to a non-zero section of $\Lambda^r TX \otimes K_X$. We use dualities to have the equalities:

$$h^{0}(X, \Lambda^{r}TX \otimes K_{X}) = h^{n}(X, \Omega_{X}^{r}) = h^{r}(X, \Omega_{X}^{n}) = h^{r}(X, K_{X}) = h^{n-r}(X, \mathcal{O}_{X})$$

and, since X is Fano, the latter number is non-zero only if r = n.

Marco Andreatta The Tangent Map Characterization

Rational Curves

Characterization of Pⁿ Therefore $f^*E = (f^*TX)^+$ and thus $\deg(f^*E) = \deg(f^*(-K_X))$. Since $\rho(X) = 1$ it follows that $\det(E) = -K_X$.

The embedding $E \hookrightarrow TX$ gives rise to a non-trivial morphism $\det(E) \to \Lambda^r TX$ and thus to a non-zero section of $\Lambda^r TX \otimes K_X$. We use dualities to have the equalities:

$$h^{0}(X, \Lambda^{r}TX \otimes K_{X}) = h^{n}(X, \Omega_{X}^{r}) = h^{r}(X, \Omega_{X}^{n}) = h^{r}(X, K_{X}) = h^{n-r}(X, \mathcal{O}_{X})$$

and, since *X* is Fano, the latter number is non-zero only if r = n. Thus $\Lambda^r TX \otimes (\det E)^{-1} \cong \mathcal{O}_X$ so $E \hookrightarrow TX$ is nowhere degenerate, hence an isomorphism.

Marco Andreatta The Tangent Map Characterization

of Pn

Rational Curves

Therefore $f^*E = (f^*TX)^+$ and thus $\deg(f^*E) = \deg(f^*(-K_X))$. Since $\rho(X) = 1$ it follows that $\det(E) = -K_X$.

The embedding $E \hookrightarrow TX$ gives rise to a non-trivial morphism $\det(E) \to \Lambda^r TX$ and thus to a non-zero section of $\Lambda^r TX \otimes K_X$. We use dualities to have the equalities:

$$h^{0}(X, \Lambda^{r}TX \otimes K_{X}) = h^{n}(X, \Omega_{X}^{r}) = h^{r}(X, \Omega_{X}^{n}) = h^{r}(X, K_{X}) = h^{n-r}(X, \mathcal{O}_{X})$$

and, since X is Fano, the latter number is non-zero only if r = n. Thus $\Lambda^r TX \otimes (\det E)^{-1} \cong \mathcal{O}_X$ so $E \hookrightarrow TX$ is nowhere degenerate, hence an isomorphism. We conclude by the Theorem of Mori.

Rational Curves Marco Andreatta The Tangent Map

Characterization of \mathbb{P}^n

Finally we prove that $dimZ_0$ is zero, i.e. *X* is rationally connected. By contradiction if $dimZ_0 \ge 1$ one can prove that :

Lemma

Outside a subset of codimension ≥ 2 *the morphism* φ_0 *is a* \mathbb{P}^k *-bundle (in the analytic topology).*

Then we take a complete curve $B \subset Z_0$ and we consider the \mathbb{P}^k -bundle $\varphi_0 : X_B := \varphi_0^{-1}(B) \to B$ with the ample vector bundle $E_{|X_B}$.

Rational Curves Marco Andreatta

The Tangent Map

Characterization of \mathbb{P}^n

We get a contradiction applying the following straightforward result, due to Campana and Peternell.

Lemma

Let X be a n-dimensional projective manifold, $\varphi : X \to Y$ a \mathbb{P}^k bundle (k < n) of the form $X = \mathbb{P}(V)$ with a vector bundle V on Y. Then the relative tangent sheaf $T_{X/Y}$ does not contain an ample locally free subsheaf