

Marco Andreatta

Symplectic Varieties

Rational Curves

Semismallnes

Dimension 4

Rational Curves on Symplectic Manifolds

Marco Andreatta

Dipartimento di Matematica di Trento, Italia

Korea, January 2016

Symplectic Varieties

Rational Curves

Marco Andreatta

Symplectic Varieties

Rational Curves

Semismallnes

Dimension 4

A holomorphic 2-form ω on a smooth variety is called **symplectic** if it is closed and non-degenerate at every point.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Symplectic Varieties

Rational Curves

Marco Andreatta

Symplectic Varieties

Rational Curves

Semismallness

Dimension 4

A holomorphic 2-form ω on a smooth variety is called **symplectic** if it is closed and non-degenerate at every point.

A symplectic variety is a normal variety *Y* whose smooth part admits a holomorphic symplectic form ω_Y such that its pull back to any resolution $\pi : X \to Y$ extends to a holomorphic 2-form ω_X on *X*.

We call π a **symplectic resolution** if ω_X is non degenerate on *X*, i.e. it is a symplectic form.

Symplectic Varieties

Rational Curves

Marco Andreatta

Symplectic Varieties

Rational Curves Semismallness

0 imension 4

A holomorphic 2-form ω on a smooth variety is called **symplectic** if it is closed and non-degenerate at every point.

A symplectic variety is a normal variety *Y* whose smooth part admits a holomorphic symplectic form ω_Y such that its pull back to any resolution $\pi : X \to Y$ extends to a holomorphic 2-form ω_X on *X*.

We call π a **symplectic resolution** if ω_X is non degenerate on *X*, i.e. it is a symplectic form.

More generally, a map $\pi : X \to Y$ is called a **symplectic contraction** if *X* is a symplectic manifold, *Y* is normal and π is a birational projective morphism. If moreover *Y* is affine we will call $\pi : X \to Y$ a **local symplectic contraction** or **local symplectic resolution**.

Properties of Symplectic Varieties

Rational Curves

Marco Andreatta

Symplectic Varieties

Rational Curves

Semismallnes

Dimension 4

Let *Y* be a symplectic variety and $\pi : X \to Y$ be a resolution. Then the following statement are equivalent:

 $-(i) \pi^* K_Y = K_X,$

Proposition

- (ii) π is symplectic,
- (iii) K_X is trivial,
- (iv) for every symplectic form on Y_{reg} its pull-back extends to a symplectic form on X.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Note that Y is Gorenstein and K_Y is trivial.

Properties of Symplectic Varieties

Rational Curves

Marco Andreatta

Symplectic Varieties

Rational Curves

Semismallnes

Dimension 4

Proposition

Let *Y* be a symplectic variety and $\pi : X \to Y$ be a resolution. Then the following statement are equivalent:

- $-(i) \pi^* K_Y = K_X,$
- (ii) π is symplectic,
- (iii) K_X is trivial,
- (iv) for every symplectic form on Y_{reg} its pull-back extends to a symplectic form on X.

Note that Y is Gorenstein and K_Y is trivial.

Corollary

By the Grauert Riemeschneider Teorem

$$0 = R^i \pi_* K_X = R^i \pi_* \mathcal{O}_X$$

for all positve i. In particular

- Y has rational singularities.
- All exceptional fibers of π are uniruled.

Rational Curves on Symplectic Varieties

Rational Curves

Marco Andreatta

Symplectic Varieties

Rational Curves

Semismallnes

Dimension 4

Theorem

Let $\pi : X \to Y$ be a symplectic resolution with dimX = 2n. Let also $f : \mathbb{P}^1 \to X$ be a non constant morphism such that $f(\mathbb{P}^1)$ is a π -exceptional curve. Then

dim $Hom_f(\mathbb{P}^1, X) \ge 2n + 1$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

It was proved by Z. Ran (X projective) and J. Wierzba (general).

Rational Curves on Symplectic Varieties

Rational Curves

Marco Andreatta

Symplectic Varieties

Rational Curves

Semismallnes

Dimension 4

Let $\pi : X \to Y$ be a symplectic resolution with dimX = 2n. Let also $f : \mathbb{P}^1 \to X$ be a non constant morphism such that $f(\mathbb{P}^1)$ is a π -exceptional curve. Then

dim $Hom_f(\mathbb{P}^1, X) \ge 2n + 1$.

It was proved by Z. Ran (*X* projective) and J. Wierzba (general). They use a Theorem of Bogomolov, Beauville, Todorov:

Theorem

Theorem

Let X be a compact symplectic manifold. Then the deformation space (the Kuranishi space) of the complex structure of X is smooth and its tangent space at [X] is excactly $H^1(X, \Omega^1_X)$. Moreover, given a homology class $\alpha \in H_2(X, \mathbb{Q}) = H^{2,0}(X)^*$ represented by a rational 1-cycle, there is a one-parameter deformation $\mathcal{X} = \{X_t\}_{t \in T}$ such that the flat lifting $\alpha \in H_2(X_t, \mathbb{Q})$ of α is no more an algebraic cycle for general $t \in T$.

Rational Curves

Marco Andreatta

Symplectic Varieties

Rational Curves

Semismallnes

Dimension 4

Proof There exists a first order symplectic deformation of X, which stays in an unobstructed deformation χ , such that all deformations of f stay in X.

Rational Curves

Marco Andreatta

Symplectic Varieties

Rational Curves

Semismallnes

Dimension 4

Proof There exists a first order symplectic deformation of X, which stays in an unobstructed deformation χ , such that all deformations of f stay in X.

After showing that all the pertinent deformations are "represented" by algebraic spaces, one shows that $f : \mathbb{P}^1 \to X \subset \chi$ deform in a family of dimension (Mori)

 $dim_{[f]}Hom(\mathbb{P}^1,\chi) = \chi(\mathbb{P}^1, f^*T_{\chi}) \ge dim\chi - degf^*K_{\chi} \ge 2n+1.$

Rational Curves

Marco Andreatta

Symplectic Varieties

Rational Curves

Semismallnes

Dimension 4

Proof There exists a first order symplectic deformation of X, which stays in an unobstructed deformation χ , such that all deformations of f stay in X.

After showing that all the pertinent deformations are "represented" by algebraic spaces, one shows that $f : \mathbb{P}^1 \to X \subset \chi$ deform in a family of dimension (Mori)

$$dim_{[f]}Hom(\mathbb{P}^1,\chi) = \chi(\mathbb{P}^1,f^*T_\chi) \ge dim\chi - degf^*K_\chi \ge 2n+1.$$

Since all the deformation of *f* stays in *X* then $\dim Hom_f(\mathbb{P}^1, X) = \dim Hom_g(\mathbb{P}^1, \chi)$ and we are done.

Rational Curves

Marco Andreatta

Symplectic Varieties

Rational Curves

Semismallness

Dimension 4

As a corollary we have the following Theorem (semismall property).

Theorem

A symplectic resolution $\pi : X \to Y$ is semismall, that is for every closed subvariety $Z \subset X$ we have $2 \operatorname{codim} Z \ge \operatorname{codim} \pi(Z)$. If equality holds Z then is called a maximal cycle.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Rational Curves

Marco Andreatta

Symplectic Varieties

Rational Curves

Semismallness

Dimension 4

Sketch of proof: let $F \subset X$ be a generic fiber of $Z \to \pi(Z)$, let also d = dimZ and $e = dim(\pi(Z))$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We know that all exceptional fibers are uniruled; take then \mathcal{V} be a generically unsplit family which covers *F* and let $V := u^{-1}(\mathcal{V})$.

Rational Curves

Marco Andreatta

Symplectic Varieties

Rational Curves

Semismallness

Dimension 4

Sketch of proof: let $F \subset X$ be a generic fiber of $Z \to \pi(Z)$, let also d = dimZ and $e = dim(\pi(Z))$.

We know that all exceptional fibers are uniruled; take then \mathcal{V} be a generically unsplit family which covers *F* and let $V := u^{-1}(\mathcal{V})$.

By previous disequalities we have dimV =

 $dimLocus(V) + dimLocus(V, 0 \rightarrow x) + 1 \le 2dimF + 1 = 2d - 2e + 1.$

Rational Curves

Marco Andreatta

Symplectic Varieties

Rational Curves

Semismallness

Dimension 4

Sketch of proof: let $F \subset X$ be a generic fiber of $Z \to \pi(Z)$, let also d = dimZ and $e = dim(\pi(Z))$.

We know that all exceptional fibers are uniruled; take then \mathcal{V} be a generically unsplit family which covers *F* and let $V := u^{-1}(\mathcal{V})$.

By previous disequalities we have $dimV = dimLocus(V) + dimLocus(V, 0 \rightarrow x) + 1 \le 2dimF + 1 = 2d - 2e + 1$.

Let $f : \mathbb{P}^1 \longrightarrow F$ be a rational curve in V; since $f(\mathbb{P}^1)$ gets contracted under π , all its deformations in X stay in the exceptional set and we may assume that all small deformations stay in Z.

Rational Curves

Marco Andreatta

Symplectic Varieties

Rational Curves

Semismallness

Dimension 4

Sketch of proof: let $F \subset X$ be a generic fiber of $Z \to \pi(Z)$, let also d = dimZ and $e = dim(\pi(Z))$.

We know that all exceptional fibers are uniruled; take then \mathcal{V} be a generically unsplit family which covers *F* and let $V := u^{-1}(\mathcal{V})$.

By previous disequalities we have $dimV = dimLocus(V) + dimLocus(V, 0 \rightarrow x) + 1 \le 2dimF + 1 = 2d - 2e + 1$.

Let $f : \mathbb{P}^1 \longrightarrow F$ be a rational curve in *V*; since $f(\mathbb{P}^1)$ gets contracted under π , all its deformations in *X* stay in the exceptional set and we may assume that all small deformations stay in *Z*.

$$\begin{split} & \text{Therefore } \dim_{[f]} \text{Hom}(\mathbb{P}^1, X) = \dim_{[f]} \text{Hom}(\mathbb{P}^1, Z) = \\ & \dim_{[f]} \text{Hom}(\mathbb{P}^1, F) + e \leq 2d - e + 1. \end{split}$$

Rational Curves

Marco Andreatta

Symplectic Varieties

Rational Curves

Semismallness

Dimension 4

Sketch of proof: let $F \subset X$ be a generic fiber of $Z \to \pi(Z)$, let also d = dimZ and $e = dim(\pi(Z))$.

We know that all exceptional fibers are uniruled; take then \mathcal{V} be a generically unsplit family which covers *F* and let $V := u^{-1}(\mathcal{V})$.

By previous disequalities we have $dimV = dimLocus(V) + dimLocus(V, 0 \rightarrow x) + 1 \le 2dimF + 1 = 2d - 2e + 1$.

Let $f : \mathbb{P}^1 \longrightarrow F$ be a rational curve in *V*; since $f(\mathbb{P}^1)$ gets contracted under π , all its deformations in *X* stay in the exceptional set and we may assume that all small deformations stay in *Z*.

$$\begin{split} \text{Therefore } \dim_{[f]} \text{Hom}(\mathbb{P}^1, X) &= \dim_{[f]} \text{Hom}(\mathbb{P}^1, Z) = \\ \dim_{[f]} \text{Hom}(\mathbb{P}^1, F) + e \leq 2d - e + 1. \end{split}$$

By the above Theorem we have on the other hand that $\dim_{[f]} \operatorname{Hom}(\mathbb{P}^1, X) \ge 2n + 1$ and the Theorem follows.

Local symplectic contractions in dimension 4

Rational Curves

Marco Andreatta

Symplectic Varieties Rational Curv Semismallness Dimension 4 Let $\pi : X \to Y$ be a local symplectic contraction, dim X = 4. By the semismall property, the fibers of π have dimension less or equal to 2. We will denote with 0 the unique (up to shrinking *Y* to a smaller affine set) point such that dim $\pi^{-1}(0) = 2$. If π is divisorial then the general non trivial fiber has dimension 1.

Marco Andreatta

Symplectic Varieties Rational Curve Semismallness Dimension 4 Let $\pi : X \to Y$ be a local symplectic contraction, dim X = 4. By the semismall property, the fibers of π have dimension less or equal to 2. We will denote with 0 the unique (up to shrinking *Y* to a smaller affine set) point such that dim $\pi^{-1}(0) = 2$. If π is divisorial then the general non trivial fiber has dimension 1.

The following theorem is a sort of *relative* characterization of the projective space: the hard part is to prove that the two dimensional fiber is normal.

(Proved by Wierzba-Wisniewski and in any dimension by Cho-Miyaoka-Shepherd-Barron.)

Theorem

Suppose that π is small (i.e. it does not contract any divisor). Then π is locally analytically isomorphic to the collapsing of the zero section in the cotangent bundle of \mathbb{P}^2 . Therefore X admits a Mukai flop

4-dimensional local symplectic contr. are MDS

Rational Curves

Marco Andreatta

Symplectic Varieties Rational Curves Semismallness

Dimension 4

The above theorem, together with Matsuki's termination of 4-dimensional flops, is the key ingredient in the proof of the following result.

Theorem

Let $\pi : X \to Y$ be a 4-dimensional local symplectic contraction and let $\pi^{-1}(0)$ be its only 2-dimensional fiber. Then X is a Mori Dream Space over Y. Moreover any SQM model of X over Y is smooth and any two of them are connected by a finite sequence of Mukai flops whose centers are over $0 \in Y$. In particular, there are only finitely many non isomorphic (local) symplectic resolutions of Y.

Rational Curves

Marco Andreatta

Symplectic Varieties Rational Curves Semismallness

Dimension 4

Let *S* be a smooth surface and denote by $S^{(n)}$ the *symmetric product* of *S*, that is $S^{(n)} = S^n / \sigma_n$, where σ_n is the group of permutations. Let also $Hilb^n(S)$ be the *Hilbert scheme* of 0-cycles of degree *n*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ →□ ◆○ ◆○

Rational Curves

Marco Andreatta

Symplectic Varieties Rational Curves Semismallness Dimension 4 Let *S* be a smooth surface and denote by $S^{(n)}$ the *symmetric product* of *S*, that is $S^{(n)} = S^n / \sigma_n$, where σ_n is the group of permutations. Let also $Hilb^n(S)$ be the *Hilbert scheme* of 0-cycles of degree *n*. Classical: $Hilb^n(S)$ is smooth and that $\tau : Hilb^n(S) \to S^{(n)}$ is a crepant resolution of singularities (Hilb-Chow map).

Rational Curves

Marco Andreatta

Symplectic Varieties Rational Curves Semismallness Dimension 4 Let *S* be a smooth surface and denote by $S^{(n)}$ the symmetric product of *S*, that is $S^{(n)} = S^n / \sigma_n$, where σ_n is the group of permutations. Let also $Hilb^n(S)$ be the *Hilbert scheme* of 0-cycles of degree *n*. Classical: $Hilb^n(S)$ is smooth and that $\tau : Hilb^n(S) \to S^{(n)}$ is a crepant resolution of singularities (Hilb-Chow map).

Suppose now that $S \to S'$ is a resolution of a Du Val singularity: $S' = \mathbb{C}^2/H$ with $H < SL(2, \mathbb{C})$ a finite group. The composition

$$Hilb^n(S) \to S^{(n)} \to (S')^{(n)}$$

is a local symplectic contraction.

Rational Curves

Marco Andreatta

Symplectic Varieties Rational Curves Semismallness Dimension 4 Let *S* be a smooth surface and denote by $S^{(n)}$ the symmetric product of *S*, that is $S^{(n)} = S^n / \sigma_n$, where σ_n is the group of permutations. Let also $Hilb^n(S)$ be the *Hilbert scheme* of 0-cycles of degree *n*. Classical: $Hilb^n(S)$ is smooth and that $\tau : Hilb^n(S) \to S^{(n)}$ is a crepant resolution of singularities (Hilb-Chow map).

Suppose now that $S \to S'$ is a resolution of a Du Val singularity: $S' = \mathbb{C}^2/H$ with $H < SL(2, \mathbb{C})$ a finite group. The composition

$$Hilb^n(S) \to S^{(n)} \to (S')^{(n)}$$

is a local symplectic contraction.

Note that $(S')^{(n)}$ is a quotient singularity with respect to the action of the wreath product $H \wr \sigma_n = (H^n) \rtimes \sigma_n$ (σ_n permutes factors in $H^n = H^{\times n}$).

Central fiber in resolutions of $\mathbb{C}^4/(\mathbb{Z}_3 \wr \mathbb{Z}_2)$

Rational Curves

Marco Andreatta

Symplectic Varieties Rational Curv Semismallness Dimension 4 Let consider the case n = 2 and $H := \mathbb{Z}_3 < SL(2)$. Note that $\mathbb{Z}_3 \wr \mathbb{Z}_2$ has another nice presentation, namely $D_6 \rtimes \mathbb{Z}_3$, where D_6 is the dihedral group and \mathbb{Z}_3 acts on it by rotations.

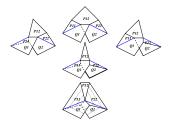
Central fiber in resolutions of $\mathbb{C}^4/(\mathbb{Z}_3 \wr \mathbb{Z}_2)$

Rational Curves

Marco Andreatta

Symplectic Varieties Rational Curve Semismallness Dimension 4 Let consider the case n = 2 and $H := \mathbb{Z}_3 < SL(2)$. Note that $\mathbb{Z}_3 \wr \mathbb{Z}_2$ has another nice presentation, namely $D_6 \rtimes \mathbb{Z}_3$, where D_6 is the dihedral group and \mathbb{Z}_3 acts on it by rotations.

The Figure presents a description of configurations of components in the special fiber of different symplectic resolutions



◆□▶ ◆□▶ ◆□▶ ◆□▶ →□ ◆○ ◆○

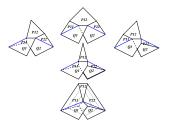
Central fiber in resolutions of $\mathbb{C}^4/(\mathbb{Z}_3 \wr \mathbb{Z}_2)$

Rational Curves

Marco Andreatta

Symplectic Varieties Rational Curve Semismallness Dimension 4 Let consider the case n = 2 and $H := \mathbb{Z}_3 < SL(2)$. Note that $\mathbb{Z}_3 \wr \mathbb{Z}_2$ has another nice presentation, namely $D_6 \rtimes \mathbb{Z}_3$, where D_6 is the dihedral group and \mathbb{Z}_3 acts on it by rotations.

The Figure presents a description of configurations of components in the special fiber of different symplectic resolutions



The configuration at the top is the Hilb-Chow map. The one in the bottom, obtained by first resolving the singularities of the action of $D_6 = \sigma_3$ and then by resolving the singularities of the \mathbb{Z}_3 action, is called a $D_6 \rtimes \mathbb{Z}_3$ -resolution.

Rational Curves

Marco Andreatta

Symplectic Varieties Rational Curve Semismallness Dimension 4 Let $\pi : X \to Y$ is a local symplectic divisorial contraction, dim X = 4, $D \subset X$ the exceptional locus, dimD = 3, and $S = \pi(D) \subset Y$ (dimS = 2). A general fiber of π over any component of *S* is a configuration of \mathbb{P}^1 's with dual graph being a Dynkin diagram (Wierzba).

Rational Curves

Marco Andreatta

Symplectic Varieties Rational Curves Semismallness Dimension 4 Let $\pi : X \to Y$ is a local symplectic divisorial contraction, dim X = 4, $D \subset X$ the exceptional locus, dimD = 3, and $S = \pi(D) \subset Y$ (dimS = 2). A general fiber of π over any component of *S* is a configuration of \mathbb{P}^1 's with dual graph being a Dynkin diagram (Wierzba).

Choose $S' \subset S$ an irreducible component, $C \cong \mathbb{P}^1$ irreducible curve in a (general) fiber over a point in $S' \setminus \{0\}$ and let D' be the irreducible component of D which contains C.

Let $\mathcal{V} \subset Chow(X/Y)$ be (the normalization of) an irreducible component of the Chow scheme of *X* containing *C*, $p : \mathcal{U} \to \mathcal{V}$ be the universal family and $q : \mathcal{U} \to D' \subset X$ be the evaluation map.

Rational Curves

Marco Andreatta

Symplectic Varieties Rational Curves Semismallness Dimension 4 Let $\pi : X \to Y$ is a local symplectic divisorial contraction, dim X = 4, $D \subset X$ the exceptional locus, dimD = 3, and $S = \pi(D) \subset Y$ (dimS = 2). A general fiber of π over any component of *S* is a configuration of \mathbb{P}^1 's with dual graph being a Dynkin diagram (Wierzba).

Choose $S' \subset S$ an irreducible component, $C \cong \mathbb{P}^1$ irreducible curve in a (general) fiber over a point in $S' \setminus \{0\}$ and let D' be the irreducible component of D which contains C.

Let $\mathcal{V} \subset Chow(X/Y)$ be (the normalization of) an irreducible component of the Chow scheme of *X* containing *C*, $p : \mathcal{U} \to \mathcal{V}$ be the universal family and $q : \mathcal{U} \to D' \subset X$ be the evaluation map.

The contraction π determines a morphism $\tilde{\pi} : \mathcal{V} \to S'$, let $\mu : \mathcal{V} \to \tilde{S}' \to S'$ be its Stein factorization. The exceptional locus of μ is $\mu^{-1}(\nu^{-1}(0)) = \bigcup_i V_i$ where $V_i \subset \mathcal{V}$ are irreducible curves.

 $\longrightarrow D' \subset X$

 π

 $\xrightarrow{\nu} S' \subset Y$

(4.0.1)

Rational Curves

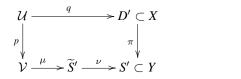
Marco Andreatta

Symplectic Varieties

Rational Curves

Semismallness

Dimension 4



(4.0.1)

▲□▶▲□▶▲□▶▲□▶ □ のQで

Theorem

The surface \widetilde{S}' has at most Du Val singularity at $\nu^{-1}(0)$ and $\mu : \mathcal{V} \to \widetilde{S}'$ is its, possibly non-minimal, resolution. In particular every V_i is a rational curve.

Rational Curves

Marco Andreatta

Symplectic Varieties

Rational Curves

Semismallness

Dimension 4

Consider the following maps:

- derivative map $Dq: q^*\Omega_X \to \Omega_U$
- $-Dp:p^*\Omega_{\mathcal{V}}\to\Omega_{\mathcal{U}}\longrightarrow\Omega_{\mathcal{U}/\mathcal{V}}\longrightarrow 0,$
- its dual $0 \longrightarrow T_{\mathcal{U}/\mathcal{V}} \longrightarrow T_{\mathcal{U}} \longrightarrow p^*T_{\mathcal{V}}$.
- the isomorphism $\omega_X : T_X \to \Omega_X$ given by the symplectic form ω_X on X.

Rational Curves

Marco Andreatta

Symplectic Varieties Rational Curve Semismallness

Dimension 4

Consider the following maps:

- derivative map $Dq: q^*\Omega_X \to \Omega_U$
- $-Dp:p^*\Omega_{\mathcal{V}}\to\Omega_{\mathcal{U}}\longrightarrow\Omega_{\mathcal{U}/\mathcal{V}}\longrightarrow 0,$
- its dual $0 \longrightarrow T_{\mathcal{U}/\mathcal{V}} \longrightarrow T_{\mathcal{U}} \longrightarrow p^*T_{\mathcal{V}}$.
- the isomorphism $\omega_X : T_X \to \Omega_X$ given by the symplectic form ω_X on X.

Collect them in the following diagram

Rational Curves

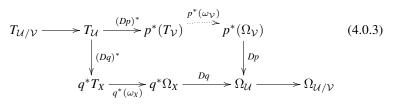
Marco Andreatta

Symplectic Variaties

Rational Curves

Semismallness

Dimension 4



▲□▶▲□▶▲□▶▲□▶ □ のQで

Rational Curves

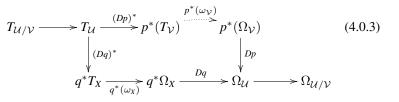
Marco Andreatta

Symplectic Varieties

Rational Curves

Semismallnes

Dimension 4



Claim: the dotted arrow exists and it is obtained by a pull back of a two form $\omega_{\mathcal{V}}$ on \mathcal{V} .

▲□▶▲□▶▲□▶▲□▶ □ のQで

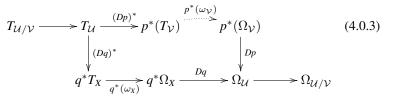
Rational Curves

Marco Andreatta

Symplectic Varieties

Semismallness

Dimension 4



Claim: the dotted arrow exists and it is obtained by a pull back of a two form $\omega_{\mathcal{V}}$ on \mathcal{V} .

Dq is of maximal rank outside of $p^{-1}(\bigcup_i V_i)$ and p is just a \mathbb{P}^1 -bundle there. Thus $\omega_{\mathcal{V}}$ does not assume zero outside the exceptional set of μ . Hence $K_{\mathcal{V}} = \sum a_i V_i$, with $a_i \ge 0$ being the discrepancy of V_i .

Chow scheme in resolutions of $\mathbb{C}^4/(\mathbb{Z}_3 \wr \mathbb{Z}_2)$

Rational Curves

Marco Andreatta

Symplectic Varieties Rational Curves Semismallness Dimension 4 We note that although the surface \tilde{S}' is the same for all the symplectic resolutions of *Y*, the parametric scheme for lines, which is a resolution of \tilde{S}' , may be different for different SQM models.

Chow scheme in resolutions of $\mathbb{C}^4/(\mathbb{Z}_3 \wr \mathbb{Z}_2)$

Rational Curves

Marco Andreatta

Symplectic Varieties Rational Curves Semismallness Dimension 4 We note that although the surface \tilde{S}' is the same for all the symplectic resolutions of *Y*, the parametric scheme for lines, which is a resolution of \tilde{S}' , may be different for different SQM models.

In the previous example we denote by \mathcal{V}_0 the component of Chow(X/Y) dominating *S'* and parametrizing curves equivalent to e_0 ; it will change under flops.

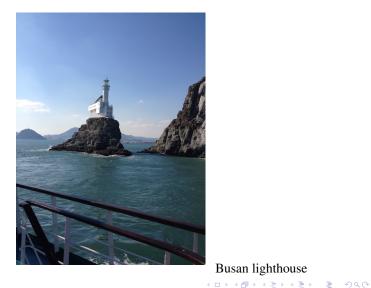
Lemma

If X is the Hilbert-Chow resolution then V_0 is the minimal resolution of A_2 singularity. If X is the $D_6 \rtimes \mathbb{Z}_3$ -resolution then V_0 is non-minimal, with one (-1) curve in the central position of three exceptional curves.

Thank you for your attention

Rational Curves

- **Dimension** 4



Busan lighthouse