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Symplectic Varieties

A holomorphic 2-form ω on a smooth variety is called symplectic if it is
closed and non-degenerate at every point.

A symplectic variety is a normal variety Y whose smooth part admits a
holomorphic symplectic form ωY such that its pull back to any resolution
π : X → Y extends to a holomorphic 2-form ωX on X.
We call π a symplectic resolution if ωX is non degenerate on X, i.e. it is
a symplectic form.

More generally, a map π : X → Y is called a symplectic contraction if
X is a symplectic manifold, Y is normal and π is a birational projective
morphism. If moreover Y is affine we will call π : X → Y a local
symplectic contraction or local symplectic resolution.
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Properties of Symplectic Varieties

Proposition

Let Y be a symplectic variety and π : X → Y be a resolution. Then the
following statement are equivalent:
- (i) π∗KY = KX ,
- (ii) π is symplectic,
- (iii) KX is trivial,
- (iv) for every symplectic form on Yreg its pull-back extends to a
symplectic form on X.
Note that Y is Gorenstein and KY is trivial.

Corollary

By the Grauert Riemeschneider Teorem

0 = Riπ∗KX = Riπ∗OX

for all positve i. In particular
- Y has rational singularities.
- All exceptional fibers of π are uniruled.
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Rational Curves on Symplectic Varieties

Theorem
Let π : X → Y be a symplectic resolution with dimX = 2n. Let also
f : P1 → X be a non constant morphism such that f (P1) is a
π-exceptional curve. Then

dim Homf (P1,X) ≥ 2n + 1.

It was proved by Z. Ran (X projective) and J. Wierzba (general).

They use a Theorem of Bogomolov, Beauville, Todorov:

Theorem
Let X be a compact symplectic manifold. Then the deformation space
(the Kuranishi space) of the complex structure of X is smooth and its
tangent space at [X] is excactly H1(X,Ω1

X). Moreover, given a homology
class α ∈ H2(X,Q) = H2,0(X)∗ represented by a rational 1-cycle, there
is a one-parameter deformation X = {Xt}t∈T such that the flat lifting
α ∈ H2(Xt,Q) of α is no more an algebraic cycle for general t ∈ T.
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Rational Curves

Proof There exists a first order symplectic deformation of X, which
stays in an unobstructed deformation χ, such that all deformations of f
stay in X.

After showing that all the pertinent deformations are ”represented” by
algebraic spaces, one shows that f : P1 → X ⊂ χ deform in a family of
dimension (Mori)

dim[f ]Hom(P1, χ) = χ(P1, f ∗Tχ) ≥ dimχ− degf ∗Kχ ≥ 2n + 1.

Since all the deformation of f stays in X then
dim Homf (P1,X) = dim Homg(P1, χ) and we are done.



Rational Curves

Marco Andreatta

Symplectic
Varieties

Rational Curves

Semismallness

Dimension 4

Rational Curves

Proof There exists a first order symplectic deformation of X, which
stays in an unobstructed deformation χ, such that all deformations of f
stay in X.
After showing that all the pertinent deformations are ”represented” by
algebraic spaces, one shows that f : P1 → X ⊂ χ deform in a family of
dimension (Mori)

dim[f ]Hom(P1, χ) = χ(P1, f ∗Tχ) ≥ dimχ− degf ∗Kχ ≥ 2n + 1.

Since all the deformation of f stays in X then
dim Homf (P1,X) = dim Homg(P1, χ) and we are done.



Rational Curves

Marco Andreatta

Symplectic
Varieties

Rational Curves

Semismallness

Dimension 4

Rational Curves

Proof There exists a first order symplectic deformation of X, which
stays in an unobstructed deformation χ, such that all deformations of f
stay in X.
After showing that all the pertinent deformations are ”represented” by
algebraic spaces, one shows that f : P1 → X ⊂ χ deform in a family of
dimension (Mori)

dim[f ]Hom(P1, χ) = χ(P1, f ∗Tχ) ≥ dimχ− degf ∗Kχ ≥ 2n + 1.

Since all the deformation of f stays in X then
dim Homf (P1,X) = dim Homg(P1, χ) and we are done.



Rational Curves

Marco Andreatta

Symplectic
Varieties

Rational Curves

Semismallness

Dimension 4

Semismallness

As a corollary we have the following Theorem (semismall property).

Theorem
A symplectic resolution π : X → Y is semismall, that is for every closed
subvariety Z ⊂ X we have 2 codim Z ≥ codimπ(Z). If equality holds Z
then is called a maximal cycle.
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Semismallness

Sketch of proof: let F ⊂ X be a generic fiber of Z → π(Z), let also
d = dimZ and e = dim(π(Z)).
We know that all exceptional fibers are uniruled; take then V be a
generically unsplit family which covers F and let V := u−1(V).

By previous disequalities we have dimV =
dimLocus(V) + dimLocus(V, 0→ x) + 1 ≤ 2dimF + 1 = 2d − 2e + 1.
Let f : P1 −→ F be a rational curve in V; since f (P1) gets contracted
under π, all its deformations in X stay in the exceptional set and we may
assume that all small deformations stay in Z.
Therefore dim[f ]Hom(P1,X) = dim[f ]Hom(P1,Z) =
dim[f ]Hom(P1,F) + e ≤ 2d − e + 1.
By the above Theorem we have on the other hand that
dim[f ]Hom(P1,X) ≥ 2n + 1 and the Theorem follows.
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Local symplectic contractions in dimension 4

Let π : X → Y be a local symplectic contraction, dim X = 4.
By the semismall property, the fibers of π have dimension less or equal
to 2. We will denote with 0 the unique (up to shrinking Y to a smaller
affine set) point such that dimπ−1(0) = 2. If π is divisorial then the
general non trivial fiber has dimension 1.

The following theorem is a sort of relative characterization of the
projective space: the hard part is to prove that the two dimensional fiber
is normal.
(Proved by Wierzba-Wisniewski and in any dimension by
Cho-Miyaoka-Shepherd-Barron.)

Theorem
Suppose that π is small (i.e. it does not contract any divisor). Then π is
locally analytically isomorphic to the collapsing of the zero section in
the cotangent bundle of P2.
Therefore X admits a Mukai flop



Rational Curves

Marco Andreatta

Symplectic
Varieties

Rational Curves

Semismallness

Dimension 4

Local symplectic contractions in dimension 4

Let π : X → Y be a local symplectic contraction, dim X = 4.
By the semismall property, the fibers of π have dimension less or equal
to 2. We will denote with 0 the unique (up to shrinking Y to a smaller
affine set) point such that dimπ−1(0) = 2. If π is divisorial then the
general non trivial fiber has dimension 1.
The following theorem is a sort of relative characterization of the
projective space: the hard part is to prove that the two dimensional fiber
is normal.
(Proved by Wierzba-Wisniewski and in any dimension by
Cho-Miyaoka-Shepherd-Barron.)

Theorem
Suppose that π is small (i.e. it does not contract any divisor). Then π is
locally analytically isomorphic to the collapsing of the zero section in
the cotangent bundle of P2.
Therefore X admits a Mukai flop



Rational Curves

Marco Andreatta

Symplectic
Varieties

Rational Curves

Semismallness

Dimension 4

4-dimensional local symplectic contr. are MDS

The above theorem, together with Matsuki’s termination of
4-dimensional flops, is the key ingredient in the proof of the following
result.

Theorem
Let π : X → Y be a 4-dimensional local symplectic contraction and let
π−1(0) be its only 2-dimensional fiber. Then X is a Mori Dream Space
over Y. Moreover any SQM model of X over Y is smooth and any two of
them are connected by a finite sequence of Mukai flops whose centers
are over 0 ∈ Y. In particular, there are only finitely many non
isomorphic (local) symplectic resolutions of Y.
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Examples: quotient symplectic singularities

Let S be a smooth surface and denote by S(n) the symmetric product of S,
that is S(n) = Sn/σn, where σn is the group of permutations.
Let also Hilbn(S) be the Hilbert scheme of 0-cycles of degree n.

Classical: Hilbn(S) is smooth and that τ : Hilbn(S)→ S(n) is a crepant
resolution of singularities (Hilb-Chow map).

Suppose now that S→ S′ is a resolution of a Du Val singularity:
S′ = C2/H with H < SL(2,C) a finite group. The composition

Hilbn(S)→ S(n) → (S′)(n)

is a local symplectic contraction.

Note that (S′)(n) is a quotient singularity with respect to the action of the
wreath product H o σn = (Hn) o σn (σn permutes factors in Hn = H×n).
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Central fiber in resolutions of C4/(Z3 o Z2)

Let consider the case n = 2 and H := Z3 < SL(2).
Note that Z3 o Z2 has another nice presentation, namely D6 o Z3, where
D6 is the dihedral group and Z3 acts on it by rotations.

The Figure presents a description of configurations of components in the
special fiber of different symplectic resolutions

P12

P12
P12

P12

P12

P11

P11

P11

P11

P11

P22

P22

P22

P22

Q1

Q1

Q1

Q1

Q1

Q2

Q2

Q2

Q2

Q2

P22

The configuration at the top is the Hilb-Chow map.
The one in the bottom, obtained by first resolving the singularities of the
action of D6 = σ3 and then by resolving the singularities of the Z3
action, is called a D6 o Z3-resolution.
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The Chow Scheme in dimension 4

Let π : X → Y is a local symplectic divisorial contraction, dim X = 4,
D ⊂ X the exceptional locus, dimD = 3, and S = π(D) ⊂ Y (dimS = 2).
A general fiber of π over any component of S is a configuration of P1’s
with dual graph being a Dynkin diagram (Wierzba).

Choose S′ ⊂ S an irreducible component, C ∼= P1 irreducible curve in a
(general) fiber over a point in S′ \ {0} and let D′ be the irreducible
component of D which contains C.
Let V ⊂ Chow(X/Y) be (the normalization of) an irreducible
component of the Chow scheme of X containing C, p : U → V be the
universal family and q : U → D′ ⊂ X be the evaluation map.

The contraction π determines a morphism π̃ : V → S′, let
µ : V → S̃′ → S′ be its Stein factorization.
The exceptional locus of µ is µ−1(ν−1(0)) =

⋃
i Vi where Vi ⊂ V are

irreducible curves.
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The Chow Scheme in dimension 4

U

p

��

q // D′ ⊂ X

π

��
V

µ // S̃′ ν // S′ ⊂ Y

(4.0.1)

Theorem
The surface S̃′ has at most Du Val singularity at ν−1(0) and µ : V → S̃′

is its, possibly non-minimal, resolution. In particular every Vi is a
rational curve.
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The differential

Consider the following maps:
- derivative map Dq : q∗ΩX → ΩU
- Dp : p∗ΩV → ΩU −→ ΩU/V −→ 0,
- its dual 0 −→ TU/V −→ TU −→ p∗TV .
- the isomorphism ωX : TX → ΩX given by the symplectic form ωX on X.

Collect them in the following diagram

TU/V // TU

(Dq)∗

��

(Dp)∗ // p∗(TV) p∗(ΩV)

Dp

��
q∗TX

q∗(ωX)
// q∗ΩX

Dq // ΩU // ΩU/V

(4.0.2)
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The differential

TU/V // TU

(Dq)∗

��

(Dp)∗ // p∗(TV)

p∗(ωV)--
p∗(ΩV)

Dp

��
q∗TX

q∗(ωX)
// q∗ΩX

Dq // ΩU // ΩU/V

(4.0.3)

Claim: the dotted arrow exists and it is obtained by a pull back of a two
form ωV on V .

Dq is of maximal rank outside of p−1(
⋃

i Vi) and p is just a P1-bundle
there. Thus ωV does not assume zero outside the exceptional set of µ.
Hence KV =

∑
aiVi, with ai ≥ 0 being the discrepancy of Vi.
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Chow scheme in resolutions of C4/(Z3 o Z2)

We note that although the surface S̃′ is the same for all the symplectic
resolutions of Y , the parametric scheme for lines, which is a resolution
of S̃′, may be different for different SQM models.

In the previous example we denote by V0 the component of Chow(X/Y)
dominating S′ and parametrizing curves equivalent to e0; it will change
under flops.

Lemma
If X is the Hilbert-Chow resolution then V0 is the minimal resolution of
A2 singularity. If X is the D6 o Z3-resolution then V0 is non-minimal,
with one (−1) curve in the central position of three exceptional curves.
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Thank you for your attention

Busan lighthouse


	Symplectic Varieties
	Rational Curves
	Semismallness
	Dimension 4

