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Symplectic

Varieties A holomorphic 2-form w on a smooth variety is called symplectic if it is
closed and non-degenerate at every point.

A symplectic variety is a normal variety ¥ whose smooth part admits a

holomorphic symplectic form wy such that its pull back to any resolution
7 : X — Y extends to a holomorphic 2-form wy on X.

We call 7 a symplectic resolution if wy is non degenerate on X, i.e. it is
a symplectic form.

More generally, a map 7 : X — Y is called a symplectic contraction if
X is a symplectic manifold, Y is normal and 7 is a birational projective
morphism. If moreover Y is affine we will call 7 : X — Y alocal
symplectic contraction or local symplectic resolution.
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Symplectic Let Y be a symplectic variety and 7 : X — Y be a resolution. Then the
Vg following statement are equivalent:

- (i) ™Ky = Ky,

- (ii) 7 is symplectic,

- (iii) Kx is trivial,

- (iv) for every symplectic form on Y, its pull-back extends to a
symplectic form on X.

Note that Y is Gorenstein and Ky is trivial.
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Symplectic Let Y be a symplectic variety and 7 : X — Y be a resolution. Then the
Varicties following statement are equivalent:

- (i) ™Ky = Ky,

- (ii) 7 is symplectic,

- (iii) Kx is trivial,

- (iv) for every symplectic form on Y, its pull-back extends to a
symplectic form on X.

Note that Y is Gorenstein and Ky is trivial.

Corollary

By the Grauert Riemeschneider Teorem

0=Rm.Ky=Rm.0Ox

for all positve i. In particular
- Y has rational singularities.
- All exceptional fibers of m are uniruled.
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Let m : X — Y be a symplectic resolution with dimX = 2n. Let also
f : P! — X be a non constant morphism such that f(P') is a
Rational Curves m-exceptional curve. Then

dim Homy(P', X) > 2n + 1.

It was proved by Z. Ran (X projective) and J. Wierzba (general).
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Rational Curves on Symplectic Varieties

Let m : X — Y be a symplectic resolution with dimX = 2n. Let also
f : P! — X be a non constant morphism such that f(P') is a
m-exceptional curve. Then

dim Homy(P', X) > 2n + 1.

It was proved by Z. Ran (X projective) and J. Wierzba (general).
They use a Theorem of Bogomolov, Beauville, Todorov:

Theorem

Let X be a compact symplectic manifold. Then the deformation space
(the Kuranishi space) of the complex structure of X is smooth and its
tangent space at [X] is excactly H' (X, Q}). Moreover, given a homology
class o € Hy(X,Q) = H*(X)* represented by a rational 1-cycle, there
is a one-parameter deformation X = {X,},cr such that the flat lifting

o € Hy(X;, Q) of « is no more an algebraic cycle for general t € T.
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Proof There exists a first order symplectic deformation of X, which
stays in an unobstructed deformation x, such that all deformations of f
stay in X.
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Proof There exists a first order symplectic deformation of X, which
stays in an unobstructed deformation x, such that all deformations of f
stay in X.

After showing that all the pertinent deformations are “represented” by
algebraic spaces, one shows that f : P! — X C y deform in a family of
dimension (Mori)

Rational Curves

dim[f]Hom(]P’l,X) = x(P',f*T,) > dimx — degf*K, > 2n+ 1.
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Proof There exists a first order symplectic deformation of X, which
stays in an unobstructed deformation x, such that all deformations of f
stay in X.

After showing that all the pertinent deformations are “represented” by
algebraic spaces, one shows that f : P! — X C y deform in a family of
dimension (Mori)

Rational Curves

dim[f]Hom(]P’l,X) = x(P',f*T,) > dimx — degf*K, > 2n+ 1.

Since all the deformation of f stays in X then
dim Homy (P!, X) = dim Homg(P", x) and we are done.
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Semismallness

As a corollary we have the following Theorem (semismall property).

A symplectic resolution 7 : X — Y is semismall, that is for every closed
subvariety Z C X we have 2 codimZ > codim 7 (Z). If equality holds Z
then is called a maximal cycle.
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Sketch of proof: let F C X be a generic fiber of Z — w(Z), let also
d = dimZ and e = dim(7(Z)).

We know that all exceptional fibers are uniruled; take then V be a
generically unsplit family which covers F and let V := u~'(V).
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By previous disequalities we have dimV =

dimLocus(V) + dimLocus(V,0 — x) + 1 < 2dimF + 1 = 2d — 2e + 1.
Letf : P! — F be a rational curve in V; since f(P') gets contracted
under 7, all its deformations in X stay in the exceptional set and we may
assume that all small deformations stay in Z.
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Sketch of proof: let F C X be a generic fiber of Z — w(Z), let also
d = dimZ and e = dim(7(Z)).

We know that all exceptional fibers are uniruled; take then V be a
generically unsplit family which covers F and let V := u~'(V).

Semismallness

By previous disequalities we have dimV =

dimLocus(V) + dimLocus(V,0 — x) + 1 < 2dimF + 1 = 2d — 2e + 1.
Letf : P! — F be a rational curve in V; since f(P') gets contracted
under 7, all its deformations in X stay in the exceptional set and we may
assume that all small deformations stay in Z.

Therefore dimyyHom(P', X) = dimyHom(P', Z) =

dimypHom(P',F) + ¢ <2d — e + 1.

By the above Theorem we have on the other hand that
dimypHom(P',X) > 2n + 1 and the Theorem follows.
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to 2. We will denote with O the unique (up to shrinking Y to a smaller
affine set) point such that dim 7—!(0) = 2. If 7 is divisorial then the
general non trivial fiber has dimension 1.

Dimension 4
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By the semismall property, the fibers of 7 have dimension less or equal
to 2. We will denote with O the unique (up to shrinking Y to a smaller
affine set) point such that dim 7—!(0) = 2. If 7 is divisorial then the
general non trivial fiber has dimension 1.

Dimension 4

The following theorem is a sort of relative characterization of the
projective space: the hard part is to prove that the two dimensional fiber
is normal.

(Proved by Wierzba-Wisniewski and in any dimension by
Cho-Miyaoka-Shepherd-Barron.)

Theorem

Suppose that 7 is small (i.e. it does not contract any divisor). Then T is
locally analytically isomorphic to the collapsing of the zero section in
the cotangent bundle of P?.

Therefore X admits a Mukai flop
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The above theorem, together with Matsuki’s termination of
4-dimensional flops, is the key ingredient in the proof of the following
result.

Let m : X — Y be a 4-dimensional local symplectic contraction and let
7=1(0) be its only 2-dimensional fiber. Then X is a Mori Dream Space
over Y. Moreover any SOM model of X over Y is smooth and any two of
them are connected by a finite sequence of Mukai flops whose centers
are over 0 € Y. In particular, there are only finitely many non
isomorphic (local) symplectic resolutions of Y.

Dimension 4
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Let S be a smooth surface and denote by S the symmetric product of S,
that is S = §" /o,,, where o, is the group of permutations.

Let also Hilb"(S) be the Hilbert scheme of 0-cycles of degree n.

Dimension 4
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Let S be a smooth surface and denote by S the symmetric product of S,
that is S = §" /o,,, where o, is the group of permutations.

Let also Hilb"(S) be the Hilbert scheme of 0-cycles of degree n.
Classical: Hilb"(S) is smooth and that 7 : Hilb"(S) — S is a crepant
resolution of singularities (Hilb-Chow map).
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Let S be a smooth surface and denote by S the symmetric product of S,
that is S = §" /o,,, where o, is the group of permutations.
Let also Hilb"(S) be the Hilbert scheme of 0-cycles of degree n.

N Classical: Hilb"(S) is smooth and that 7 : Hilb"(S) — NORTP crepant
resolution of singularities (Hilb-Chow map).

Suppose now that S — §’ is a resolution of a Du Val singularity:
S’ = C*/H with H < SL(2, C) a finite group. The composition
Hilb"(S) — §™ — (§)™

is a local symplectic contraction.
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that is S = §" /o,,, where o, is the group of permutations.

Let also Hilb"(S) be the Hilbert scheme of 0-cycles of degree n.
Classical: Hilb"(S) is smooth and that 7 : Hilb"(S) — S is a crepant
resolution of singularities (Hilb-Chow map).
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Suppose now that S — §’ is a resolution of a Du Val singularity:

S’ = C*/H with H < SL(2, C) a finite group. The composition
Hilb"(S) — §™ — (§)™

is a local symplectic contraction.

Note that (S")(") is a quotient singularity with respect to the action of the
wreath product H ! o, = (H") X 0, (0, permutes factors in H" = H*").
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The Figure presents a description of configurations of components in the
special fiber of different symplectic resolutions

O
e

Dimension 4
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The Figure presents a description of configurations of components in the
special fiber of different symplectic resolutions
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e
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Dimension 4

The configuration at the top is the Hilb-Chow map.

The one in the bottom, obtained by first resolving the singularities of the
action of D¢ = o3 and then by resolving the singularities of the Z;
action, is called a Dg X Zs-resolution.
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Let m : X — Y is a local symplectic divisorial contraction, dim X = 4,
D C X the exceptional locus, dimD = 3, and S = 7(D) C Y (dimS = 2).
A general fiber of 7 over any component of S is a configuration of P!’s
with dual graph being a Dynkin diagram (Wierzba).

Dimension 4
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A general fiber of 7 over any component of S is a configuration of P!’s
with dual graph being a Dynkin diagram (Wierzba).
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Choose S’ C S an irreducible component, C =2 P! irreducible curve in a
(general) fiber over a point in §’ \ {0} and let D’ be the irreducible
component of D which contains C.

Let V C Chow(X/Y) be (the normalization of) an irreducible
component of the Chow scheme of X containing C, p : U/ — V be the
universal family and ¢ : Y — D' C X be the evaluation map.
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Choose S’ C S an irreducible component, C =2 P! irreducible curve in a
(general) fiber over a point in §’ \ {0} and let D’ be the irreducible
component of D which contains C.

Let V C Chow(X/Y) be (the normalization of) an irreducible
component of the Chow scheme of X containing C, p : U/ — V be the
universal family and ¢ : Y — D' C X be the evaluation map.

The contrgction 7 determines a morphism 7 : V — §, let

w:V — 8 — § beits Stein factorization.

The exceptional locus of 1 is 4~ !(v=1(0)) = |, V; where V; C V are
irreducible curves.
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Theorem

The surface S' has at most Du Val singularity at v~ 0)and pu:V — s
is its, possibly non-minimal, resolution. In particular every V; is a
rational curve.
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Consider the following maps:
- derivative map Dq : ¢*Qx — Qyy

-Dp:p*Qy — Yy — Qyyy — 0,

-itsdual 0 — Ty py —> Tyy — p*Ty.

Dimension 4 - the isomorphism wy : Tx — {2x given by the symplectic form wy on X.
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Consider the following maps:
- derivative map Dq : ¢*Qx — Qyy

-Dp:p*Qy — Yy — Qyyy — 0,

-itsdual 0 — Ty py —> Tyy — p*Ty.

Dimension 4 - the isomorphism wy : Tx — {2x given by the symplectic form wy on X.

Collect them in the following diagram

(op)s *
Ty Ty ——> p*(Ty) P*(Qy) (4.0.2)

J/ (Dg)* le
Dq

qTx T q Qx Qy Qv
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Qv

Claim: the dotted arrow exists and it is obtained by a pull back of a two
form wy, on V.
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Dimension 4

Qv

Claim: the dotted arrow exists and it is obtained by a pull back of a two
form wy, on V.

Dgq is of maximal rank outside of p~'(|J, V;) and p is just a P'-bundle
there. Thus wy does not assume zero outside the exceptional set of .
Hence Ky = a;V;, with a; > 0 being the discrepancy of V;.
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We note that although the surface ' is the same for all the symplectic
resglutions of Y, the parametric scheme for lines, which is a resolution
of §’, may be different for different SQM models.
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We note that although the surface ' is the same for all the symplectic
resglutions of Y, the parametric scheme for lines, which is a resolution
of §’, may be different for different SQM models.
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In the previous example we denote by V, the component of Chow(X/Y)
dominating " and parametrizing curves equivalent to ey; it will change
under flops.

Lemma

If X is the Hilbert-Chow resolution then V is the minimal resolution of
A, singularity. If X is the D¢ X Zs-resolution then V) is non-minimal,
with one (—1) curve in the central position of three exceptional curves.



Thank you for your attention
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Busan lighthouse
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