

Lifting

Marco Andreatt

Weighted Blow-up

Lifting Weightee Blow-up

 Δ^{r} -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results

Lifting from an ample section

Marco Andreatta

Dipartimento di Matematica di Trento, Italia

Milano, 2019

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Weighted Projective Space

Lifting

Marco Andreatt

Weighted Blow-up

Lifting Weighte Blow-up

 Δ^{r} -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results Let $\sigma = (a_1, \ldots, a_n) \in \mathbb{N}^n$ such that $a_i > 0$ and $gcd(a_1, \ldots, a_n) = 1$; let $M = lcm(a_1, \ldots, a_n)$.

Weighted Projective Space

Lifting

Marco Andreatta

Weighted Blow-up

Lifting Weighte Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results Let $\sigma = (a_1, \ldots, a_n) \in \mathbb{N}^n$ such that $a_i > 0$ and $gcd(a_1, \ldots, a_n) = 1$; let $M = lcm(a_1, \ldots, a_n)$.

The weighted projective space with weight (a_1, \ldots, a_n) , denoted by $\mathbb{P}(a_1, \ldots, a_n)$, can be defined either as:

$$\mathbb{P}(a_1,\ldots,a_n):=(\mathbb{C}^n-\{0\})/\mathbb{C}^*,$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

where $\xi \in \mathbb{C}^*$ acts by $\xi(x_1, ..., x_n) = (\xi^{a_1}x_1, ..., \xi^{a_n}x_n)$.

Weighted Projective Space

Lifting

Marco Andreatta

Weighted Blow-up

Lifting Weighte Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results Let $\sigma = (a_1, \ldots, a_n) \in \mathbb{N}^n$ such that $a_i > 0$ and $gcd(a_1, \ldots, a_n) = 1$; let $M = lcm(a_1, \ldots, a_n)$.

The weighted projective space with weight (a_1, \ldots, a_n) , denoted by $\mathbb{P}(a_1, \ldots, a_n)$, can be defined either as:

$$\mathbb{P}(a_1,\ldots,a_n):=(\mathbb{C}^n-\{0\})/\mathbb{C}^*,$$

where $\xi \in \mathbb{C}^*$ acts by $\xi(x_1, ..., x_n) = (\xi^{a_1}x_1, ..., \xi^{a_n}x_n)$. Or as:

$$\mathbb{P}(a_1,\ldots,a_n):=\operatorname{Proj}_{\mathbb{C}}\mathbb{C}[x_1,\ldots,x_n],$$

where $\mathbb{C}[x_1, ..., x_n]$ is the polynomial algebra over \mathbb{C} graded by the condition $deg(x_i) = a_i$, for i = 1, ..., n.

Cyclic quotient singularities

Lifting

Marco Andreatta

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results A cyclic quotient singularity,

$$X:=\mathbb{C}^n/\mathbb{Z}_m(a_1,\ldots,a_n),$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

is an affine variety definite as the quotient of \mathbb{C}^n by the action $\epsilon : (x_1, ..., x_n) \to (\epsilon^{a_1} x_1, ..., \epsilon^{a_n} x_n)$, where ϵ is a primitive *m*-th root of unity.

Cyclic quotient singularities

Lifting

Marco Andreatta

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results A cyclic quotient singularity,

$$X:=\mathbb{C}^n/\mathbb{Z}_m(a_1,\ldots,a_n),$$

is an affine variety definite as the quotient of \mathbb{C}^n by the action $\epsilon : (x_1, ..., x_n) \to (\epsilon^{a_1} x_1, ..., \epsilon^{a_n} x_n)$, where ϵ is a primitive *m*-th root of unity.

Equivalently *X* is isomorphic to the spectrum of the ring of invariant monomials under the group action,

$$X = Spec \ \mathbb{C}[x_1, ..., x_n]^{\mathbb{Z}_m}$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Cyclic quotient singularities

Lifting

Marco Andreatta

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results A cyclic quotient singularity,

$$X:=\mathbb{C}^n/\mathbb{Z}_m(a_1,\ldots,a_n),$$

is an affine variety definite as the quotient of \mathbb{C}^n by the action $\epsilon : (x_1, ..., x_n) \to (\epsilon^{a_1} x_1, ..., \epsilon^{a_n} x_n)$, where ϵ is a primitive *m*-th root of unity.

Equivalently *X* is isomorphic to the spectrum of the ring of invariant monomials under the group action,

$$X = Spec \ \mathbb{C}[x_1, ..., x_n]^{\mathbb{Z}_m}$$

Let $Q \in Y : (g = 0) \subset \mathbb{C}^{n+1}$ be a hypersurface singularity with a \mathbb{Z}_m action. The point $P \in Y/\mathbb{Z}_m := X$ is called a *hyperquotient singularity*.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Lifting

Marco Andreatt

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results Let $X = \mathbb{C}^n / \mathbb{Z}_m(a_1, ..., a_n)$ be a cyclic quotient singularity and consider the rational map

$$\varphi: X \to \mathbb{P}(a_1, \ldots, a_n)$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

given by $(x_1,\ldots,x_n)\mapsto (x_1:\ldots:x_n)$.

Lifting

Marco Andreatt

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results Let $X = \mathbb{C}^n / \mathbb{Z}_m(a_1, ..., a_n)$ be a cyclic quotient singularity and consider the rational map

$$\varphi: X \to \mathbb{P}(a_1, \ldots, a_n)$$

given by $(x_1,\ldots,x_n)\mapsto (x_1:\ldots:x_n)$.

Definition

The weighted blow-up of $X = \mathbb{C}^n/\mathbb{Z}_m(a_1, ..., a_n)$ with weight $\sigma = (a_1, ..., a_n)$ (or simply the σ -blow-up), \overline{X} , is defined as the closure in $X \times \mathbb{P}(a_1, ..., a_k)$ of the graph of φ , together with the morphism $\pi_{\sigma} : \overline{X} \to X$ given by the projection on the first factor.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Lifting

Marco Andreatta

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^{r} -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results The weighted blow-up can be described by the theory of torus embeddings.

Lifting

Marco Andreatta

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results The weighted blow-up can be described by the theory of torus embeddings.

Namely, let $e_i = (0, ..., 1, ..., 0)$ for i = 1, ..., n and $e = 1/m(a_1, ..., a_n)$. *X* is the toric variety which corresponds to the lattice $\mathbb{Z}e_1 + ... + \mathbb{Z}e_n + \mathbb{Z}e$ and the cone $C(X) = \mathbb{Q}_+e_1 + ... + \mathbb{Q}_+e_n$ in \mathbb{Q}^n .

 $\pi_{\sigma}: \overline{X} \to X$ is the proper birational morphism from the normal toric variety \overline{X} corresponding to the cone decomposition of C(X) consisting of $C_i = \sum_{j \neq i} \mathbb{Q}_+ e_j + \mathbb{Q}_+ e$, for i = 1, ..., n, and their intersections.

Lifting

Marco Andreatta

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^{r} -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results Consider now the function

$$\sigma$$
-wt : $\mathbb{C}[x_1,\ldots,x_n] \to \mathbb{Q}$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

defined on a monomial $M = x_1^{s_1} \dots x_n^{s_n}$ as σ -wt $(M) := \sum_{i=1}^n s_i a_i / m$.

Lifting

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^{r} -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results Consider now the function

$$\sigma$$
-wt : $\mathbb{C}[x_1,\ldots,x_n] \to \mathbb{Q}$

defined on a monomial $M = x_1^{s_1} \dots x_n^{s_n}$ as σ -wt $(M) := \sum_{i=1}^n s_i a_i / m$. For any $d \in \mathbb{N}$ we define the σ -weighted ideal of degree d as

$$I_{\sigma,d} = \{g \in \mathbb{C}[x_1,\ldots,x_n] : \sigma\text{-wt}(g) \ge d\} = (x_1^{s_1}\cdots x_n^{s_n} : \sum_{j=1}^n s_j a_j \ge d).$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Lifting Marco Andreatts

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results

Consider now the function

$$\sigma$$
-wt : $\mathbb{C}[x_1,\ldots,x_n] \to \mathbb{Q}$

defined on a monomial $M = x_1^{s_1} \dots x_n^{s_n}$ as σ -wt $(M) := \sum_{i=1}^n s_i a_i / m$. For any $d \in \mathbb{N}$ we define the σ -weighted ideal of degree d as

$$I_{\sigma,d} = \{g \in \mathbb{C}[x_1,\ldots,x_n] : \sigma\text{-wt}(g) \ge d\} = (x_1^{s_1}\cdots x_n^{s_n} : \sum_{j=1}^n s_j a_j \ge d).$$

Proposition

The weighted blow-up of of $X = \mathbb{C}^n / \mathbb{Z}_m(a_1, ..., a_n)$ with weight σ , $\pi : \overline{X} \to X$, is given by

$$\overline{X} = \operatorname{Proj}_X(\bigoplus_{d \ge 0} I_{\sigma,d}) \to X.$$

Definition

Lifting

Marco Andreatta

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^{r} -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results

Let $X : ((g = 0) \subset \mathbb{C}^{n+1})/\mathbb{Z}_m(a_0, ..., a_n)$ be a hyperquotient singularity and let $\pi : \overline{\mathbb{C}^{n+1}}/\mathbb{Z}_m(a_0, ..., a_n) \to \mathbb{C}^{n+1}/\mathbb{Z}_m(a_0, ..., a_n)$ be the $\sigma = (a_0, ..., a_n)$ -blow-up.

Let \overline{X} be the proper transform of X via π and call again, by abuse, π its restriction to \overline{X} .

Then $\pi : \overline{X} \to X$ is also called the weighted blow-up of X with weight $\sigma = (a_1, ..., a_n)$ (or simply the σ -blow-up).

▲□▶▲□▶▲□▶▲□▶ □ のQで

Lifting

Marco Andreatta

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^{r} -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results

Definition

Let $X : ((g = 0) \subset \mathbb{C}^{n+1})/\mathbb{Z}_m(a_0, ..., a_n)$ be a hyperquotient singularity and let $\pi : \overline{\mathbb{C}^{n+1}/\mathbb{Z}_m(a_0, ..., a_n)} \to \mathbb{C}^{n+1}/\mathbb{Z}_m(a_0, ..., a_n)$ be the $\sigma = (a_0, ..., a_n)$ -blow-up. Let \overline{X} be the proper transform of X via π and call again, by abuse, π its

restriction to \overline{X} . Then $= \sqrt{\overline{X}}$ \rightarrow X is else called the weighted blow up of X with weight

Then $\pi : X \to X$ is also called the *weighted blow-up* of X with weight $\sigma = (a_1, ..., a_n)$ (or simply the σ -blow-up).

Proposition

Let $X : ((g = 0) \subset \mathbb{C}^{n+1})/\mathbb{Z}_m(a_0, ..., a_n)$ be a hyperquotient singularity and let $i : X \to \mathbb{C}^{n+1}/\mathbb{Z}_m(a_0, ..., a_n)$ be the inclusion. Then

$$\overline{X} = \mathbb{P}_X igl(\mathcal{O}_X \oplus igoplus_{d \in \mathbb{N}, d > 0} J^\sigma(db) igr) o X,$$

where $J^{\sigma}(db) := i^{-1} (I^{\sigma}(db))^{\cdot} \mathcal{O}_X$.

3-dimensional Terminal Singularities

Lifting

Marco Andreatta

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results In the period from 1980 (Angers paper of M. Reid) to 1985(Nagoya paper of S. Mori), taking into account the Francia's example, it was decided that the good singularities for the MMP are the so called **Terminal Singularities**.

3-dimensional Terminal Singularities

Lifting

Marco Andreatt

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results In the period from 1980 (Angers paper of M. Reid) to 1985(Nagoya paper of S. Mori), taking into account the Francia's example, it was decided that the good singularities for the MMP are the so called **Terminal Singularities**.

In dimension 3 they consist of hyperquotient singularities whose associated hypersurfaces in \mathbb{C}^4 could be finetely listed.

Fano-Mori contractions

Lifting

Marco Andreatta

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^{r} -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results In a paper in the Trento proceedings of 1994 Y. Kawamata started a long lasting program aimed to classify **local divisorial contractions to a point for a MMP in dimension** 3.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

This was further carried on by M. Kawakita, T.Hayakawa and J. A. Chen.

Fano-Mori contractions

Lifting

Marco Andreatta

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^{r} -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results In a paper in the Trento proceedings of 1994 Y. Kawamata started a long lasting program aimed to classify **local divisorial contractions to a point for a MMP in dimension** 3.

This was further carried on by M. Kawakita, T.Hayakawa and J. A. Chen.

They are all weighted blow-ups of (particular) cyclic quotient or hyperquotient singularities and this should be the case for the few remaining ones. The following is probably a Theorem:

Conjecture

The divisorial contractions to a point for a MMP in dimension 3 are weighted blow-up of a specific list of hyperquotient singularities.

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Lifting WBU

Lifting

Marco Andreatt

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results The crucial technical result of our approach:

Theorem

Let $f : X \to Z$ be a local, projective, \mathbb{Q} -factorial contraction, which contracts an irreducible divisor E to an isolated \mathbb{Q} -factorial singularity $P \in Z$. Assume that dimX > 4.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Lifting WBU

Lifting

Marco Andreatta

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results The crucial technical result of our approach:

Theorem

Let $f : X \to Z$ be a local, projective, \mathbb{Q} -factorial contraction, which contracts an irreducible divisor E to an isolated \mathbb{Q} -factorial singularity $P \in Z$. Assume that dimX > 4.

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Let $Y \subset X$ be a *f*-ample Cartier divisor such that $f' = f_{1Y} : Y \to f(Y) = W$ is a $\sigma' = (a_1, \dots, a_{n-1})$ -blow-up.

Lifting WBU

Lifting

Marco Andreatta

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results The crucial technical result of our approach:

Theorem

Let $f : X \to Z$ be a local, projective, \mathbb{Q} -factorial contraction, which contracts an irreducible divisor E to an isolated \mathbb{Q} -factorial singularity $P \in Z$.

Assume that $dim X \ge 4$.

Let $Y \subset X$ be a *f*-ample Cartier divisor such that $f' = f_{|Y} : Y \to f(Y) = W$ is a $\sigma' = (a_1, \dots, a_{n-1})$ -blow-up.

Then $f: X \to Z$ is $a \sigma = (a_1, \ldots, a_{n-1}, a_n)$ -blow-up, $\pi_{\sigma}: X \to Z$, where a_n is such that $Y \sim_f -a_n E$ (\sim_f means linearly equivalent over f).

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Lifting

Marco Andreatt

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results The Theorem could be seen as a generalization of the first paper by S. Mori: *On a generalization of complete intersections*, J. Math. Kyoto Univ., 1975.

Lifting

Marco Andreatt

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results The Theorem could be seen as a generalization of the first paper by S. Mori: *On a generalization of complete intersections*, J. Math. Kyoto Univ., 1975.

Since then new spaces were born, in particular the so called Mori Dream Spaces: their Cox Rings are finitely generated.

Lifting

Marco Andreatt

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to point

Conjectures and Results The Theorem could be seen as a generalization of the first paper by S. Mori: *On a generalization of complete intersections*, J. Math. Kyoto Univ., 1975.

Since then new spaces were born, in particular the so called Mori Dream Spaces: their Cox Rings are finitely generated.

▲□▶▲□▶▲□▶▲□▶ □ ● ●

The Cox Rings of weighted blow-ups determines completely the blow-up; this is true for any Toric variety.

Lifting

Marco Andreatt

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to point

Conjectures and Results The Theorem could be seen as a generalization of the first paper by S. Mori: *On a generalization of complete intersections*, J. Math. Kyoto Univ., 1975.

Since then new spaces were born, in particular the so called Mori Dream Spaces: their Cox Rings are finitely generated.

The Cox Rings of weighted blow-ups determines completely the blow-up; this is true for any Toric variety.

Question

Does the Cox Ring of an ample section determine the one of the variety?

▲□▶▲□▶▲□▶▲□▶ □ ● ●

I part: Lifting CQS

Lifting

Marco Andreatt

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results

Proposition

Let Z be an affine variety of dimension $n \ge 4$ with an isolated \mathbb{Q} -factorial singularity at $P \in Z$.

Assume that $(W, P) \subset (Z, P)$ (germs of complex spaces around P) is a Weil divisor which is a cyclic quotient singularity, i.e. $W = \mathbb{C}^{n-1}/\mathbb{Z}_m(a_1, ..., a_{n-1}).$

Then Z is a cyclic quotient singularity, i.e. $Z = \mathbb{C}^n / \mathbb{Z}_m(a_1, ..., a_{n-1}, a_n)$.

Proof of the proposition

Lifting

Marco Andreatta

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^{r} -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results If *W* is a Cartier divisor, i.e. *W* is given as a zero locus of a regular function *f*, $W : (f = 0) \subset Z$, consider the map $f : Z \to \mathbb{C}$. It is is flat, since dim_{\mathbb{C}} $\mathbb{C} = 1$.

Quotient singularities of dimension bigger or equal then three are rigid, by a fundamental theorem of M. Schlessinger. Since Z has an isolated singularity and $dimW = n - 1 \ge 3$, it implies that W is smooth, i.e. m = 1. A variety containing a smooth Cartier divisor is smooth along it,

m = 1. A variety containing a smooth Cartier divisor is smooth along it, therefore, eventually shrinking around *P*, *Z* is also smooth.

In the general case we use Reid's trick: since Z is Q-factorial, we can assume that there exists a minimal positive integer r such that rW is Cartier (r is the index of W). Take a Galois cover $\pi : Z' \to Z$, with group \mathbb{Z}_r , such that Z' is normal, π is etale over $Z \setminus P$, $\pi^{-1}(P) =: Q$ is a single point and the Q-divisor $\pi^*W := W'$ is Cartier, $W' : (f' = 0) \subset Z'$.

Lifting

Marco Andreatta

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to point

Conjectures and Results Let *b* a positive integer such that $-bE \sim Y$ (and therefore Cartier). By Grothendieck theory $X = \operatorname{Proj}_{\mathcal{O}_Z}(\bigoplus_{d \geq 0} f_*(\mathcal{O}_X(-dbE)))$, therefore we want to prove that

$$f_*(\mathcal{O}_X(-dbE) = I_{\sigma,db} = (x_1^{s_1} \cdots x_n^{s_n} \mid \sum_{j=1}^n a_j s_j \ge db).$$

Lifting

Marco Andreatta

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^{r} -MMP

Extremal rays

Divisorial contractions to point

Conjectures and Results Consider the exact sequence on *X*

$$0 \to \mathcal{O}_X(-Y - dbE) \to \mathcal{O}_X(-dbE) \to \mathcal{O}_Y(-dbE) \to 0$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Lifting

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^{r} -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results Consider the exact sequence on X

$$0
ightarrow \mathcal{O}_X(-Y-dbE)
ightarrow \mathcal{O}_X(-dbE)
ightarrow \mathcal{O}_Y(-dbE)
ightarrow 0$$

Pushing it down via φ and using the relative Vanishing theorems we have

$$0 \to f_*\mathcal{O}_X(-(d-1)bE) \xrightarrow{\cdot x_n} f_*\mathcal{O}_X(-dbE) \to f_*\mathcal{O}_Y(-dbE) \to 0.$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Lifting Marco Andreatta

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^{r} -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results Consider the exact sequence on X

$$0
ightarrow \mathcal{O}_X(-Y-dbE)
ightarrow \mathcal{O}_X(-dbE)
ightarrow \mathcal{O}_Y(-dbE)
ightarrow 0$$

Pushing it down via φ and using the relative Vanishing theorems we have

$$0 \to f_*\mathcal{O}_X(-(d-1)bE) \xrightarrow{\cdot x_n} f_*\mathcal{O}_X(-dbE) \to f_*\mathcal{O}_Y(-dbE) \to 0.$$

The proposition follows by induction on *n*

$$(f_*(\mathcal{O}_Y(-dbE) = (x_1^{s_1} \cdots x_{(n-1)}^{s_{(n-1)}} \mid \sum_{j=1}^{n-1} a_j s_j \ge db)))$$

and on d

$$(f_*(\mathcal{O}_X(-(d-1)bE) = (x_1^{s_1} \cdots x_n^{s_n} \mid \sum_{j=1}^n a_j s_j \ge (d-1)b))$$

Counterexample in dimension 3, I part

Lifting

Marco Andreatta

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results

Remark

If n = 3 we have the following example.

Example

Let $Z' = \mathbb{C}^4/\mathbb{Z}_r(a, -a, 1, 0)$; let (x, y, z, t) be coordinates in \mathbb{C}^4 and assume (a, r) = 1. Let $Z \subset Z'$ be the hypersurface given as the zero set of the function $f := xy + z^{rm} + t^n$, with $m \ge 1$ and $n \ge 2$. This is a terminal singularity which is not a cyclic quotient (it is a terminal hyperquotient singularity).

However the surface $W := Z \cap (t = 0)$, which is the surface in $\mathbb{C}^3/\mathbb{Z}_r(a, -a, 1)$ given as the zero set of $(xy + z^{rm})$, is a cyclic quotient singularity of the type $\mathbb{C}^2/\mathbb{Z}_{r^2m}(a, rm - a)$.

Counterexample in dimension 3,

Lifting

Marco Andreatt

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results

Example

Let $X = \mathbb{P}^2 \times \mathbb{P}^1$

Z be a \mathbb{F}_1 surface in the linear system $\mathcal{O}_{\mathbb{P}^2 \times \mathbb{P}^1}(1, 1)$;

the contraction of the (-1) curve of Z lifts to the \mathbb{P}^1 -bundle contraction onto \mathbb{P}^2 .

Minimal Model Program- BCHM

Lifting

Marco Andreatt

Weighted Blow-up

Lifting Weighted Blow-up

Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results Consider a log pair (X, Δ) , i.e a normal variety *X* and an effective \mathbb{R} divisor Δ , which is Kawamata log terminal (klt) (that is $K_X + \Delta$ is \mathbb{R} -Cartier and for a (any) log resolution $g : Y \to X$ we have $g^*(K_X + \Delta) = K_Y + \Sigma b_i \Gamma_i$ with $b_i < 1$, for all *i*).

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Lifting

Marco Andreatta

Weighted Blow-up

Lifting Weighted Blow-up

Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results Consider a log pair (X, Δ) , i.e a normal variety X and an effective \mathbb{R} divisor Δ , which is Kawamata log terminal (klt) (that is $K_X + \Delta$ is \mathbb{R} -Cartier and for a (any) log resolution $g : Y \to X$ we have $g^*(K_X + \Delta) = K_Y + \Sigma b_i \Gamma_i$ with $b_i < 1$, for all i).

If Δ is big by BCHM on a klt log pair (X, Δ) we can run a $K_X + \Delta$ - Minimal Model Program with scaling: $(X_0, \Delta_0) = (X, \Delta) \rightarrow (X_1, \Delta_1) \rightarrow - - - \rightarrow (X_s, \Delta_s)$

Lifting

Marco Andreatt

Weighted Blow-up

Lifting Weighte Blow-up

Δ^r -MMP

Extremal rays

Divisorial contractions to point

Conjectures and Results

$$(X_0, \Delta_0) = (X, \Delta) \to (X_1, \Delta_1) \to --- \to (X_s, \Delta_s)$$

such that:

Lifting

Marco Andreatt

Weighted Blow-up

Lifting Weighted Blow-up

Δ^r -MMP

Extremal ray

Divisorial contractions to a point

Conjectures and Results

$$(X_0, \Delta_0) = (X, \Delta) \to (X_1, \Delta_1) \to --- \to (X_s, \Delta_s)$$

such that:

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1) (X_i, Δ_i) is a klt log pair, for i = 0, ..., s;

Lifting

Marco Andreatta

Weighted Blow-up

Lifting Weightee Blow-up

Δ^r -MMP

Extremal rays

Divisorial contractions to point

Conjectures and Results

$$(X_0, \Delta_0) = (X, \Delta) \rightarrow (X_1, \Delta_1) \rightarrow --- \rightarrow (X_s, \Delta_s)$$

such that:

1) (X_i, Δ_i) is a klt log pair, for i = 0, ..., s;

2) $\varphi_i : X_i \to X_{i+1}$ is a birational map which is either a divisorial contraction or a flip associated with an extremal ray $R_i = \mathbb{R}^+[C_i]$ such that $(K_{X_i} + \Delta_i) \cdot C_i < 0$ (notation: $R_i \in \overline{NE(X_i)}_{(K_{X_i} + \Delta_i) < 0} \subset \overline{NE(X_i)}_{K_{X_i} < 0}$)

Lifting

Marco Andreatta

Weighted Blow-up

Lifting Weighted Blow-up

Δ^r -MMP

Extremal rays

Divisorial contractions to point

Conjectures and Results

$$(X_0, \Delta_0) = (X, \Delta) \rightarrow (X_1, \Delta_1) \rightarrow --- \rightarrow (X_s, \Delta_s)$$

such that:

1) (X_i, Δ_i) is a klt log pair, for i = 0, ..., s;

2) $\varphi_i : X_i \to X_{i+1}$ is a birational map which is either a divisorial contraction or a flip associated with an extremal ray $R_i = \mathbb{R}^+[C_i]$ such that $(K_{X_i} + \Delta_i) \cdot C_i < 0$ (notation: $R_i \in \overline{NE(X_i)}_{(K_{X_i} + \Delta_i) < 0} \subset \overline{NE(X_i)}_{K_{X_i} < 0}$)

3) either $K_{X_s} + \Delta_s$ is nef (i.e. (X_s, Δ_s) is a log Minimal Model), or $X_s \to Z$ is a Mori fiber space relatively to $K_{X_s} + \Delta_s$ (depending on the pseudeffectivity of $K_X + \Delta$).

MMP for a q.p. pair- Adjunction Theory

Lifting

Marco Andreatt

Weighted Blow-up

Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results Let (X, L) be a quasi-polarized variety and let $r \in \mathbb{Q}^+$. Lemma (zip L into a boundary). Since *L* is nef and big there exists an effective \mathbb{Q} -divisor Δ^r on *X* such that

 $rL \sim_{\mathbb{Q}} \Delta^r$ and (X, Δ^r) is Kawamata log terminal.

MMP for a q.p. pair- Adjunction Theory

Lifting

Marco Andreatt

Weighted Blow-up Lifting Weighted

Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results Let (X, L) be a quasi-polarized variety and let $r \in \mathbb{Q}^+$. Lemma (zip L into a boundary). Since *L* is nef and big there exists an effective \mathbb{Q} -divisor Δ^r on *X* such that

 $rL \sim_{\mathbb{Q}} \Delta^r$ and (X, Δ^r) is Kawamata log terminal.

Run a $K_X + \Delta^r$ -MMP and get a birational klt pair (X_s, Δ_s^r) which is - either a Minimal Model $(K_{X_s} + \Delta_s \text{ is nef})$

▲□▶▲□▶▲□▶▲□▶ □ のQで

- or $X_s \to Z$ is a Mori fiber space relatively to $K_{X_s} + \Delta_s$.

MMP for a q.p. pair- Adjunction Theory

Lifting

Marco Andreatt

Weighted Blow-up Lifting Weighted

Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results Let (X, L) be a quasi-polarized variety and let $r \in \mathbb{Q}^+$.

Lemma (zip L into a boundary). Since L is nef and big there exists an effective \mathbb{Q} -divisor Δ^r on X such that

 $rL \sim_{\mathbb{Q}} \Delta^r$ and (X, Δ^r) is Kawamata log terminal.

Run a $K_X + \Delta^r$ -MMP and get a birational klt pair (X_s, Δ_s^r) which is - either a Minimal Model $(K_{X_s} + \Delta_s \text{ is nef})$

- or $X_s \to Z$ is a Mori fiber space relatively to $K_{X_s} + \Delta_s$.

Remarks/Problems

- (X_s, Δ_s^r) is not necessarily an (r) q.p. pair, i.e. we do not have a priori a nef and big Cartier divisor L_s such that $rL_s \sim_{\mathbb{Q}} \Delta_s^r$.
- Beyond the existence of the MMP, it would be nice to have a "description" of each steps and eventually of the Mori fiber spaces.

Extremal rays

Lifting

Marco Andreatt

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results For the above program we study the (Fano-Mori) contractions:

 $\varphi:X\to Y$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

associated to a rays $R = \mathbb{R}^+[C] \in \overline{NE(X)}_{(K_X+rL)<0} \subset \overline{NE(X)}_{K_X<0}$.

Extremal rays

Lifting

Marco Andreatt

Weighted Blow-up

Lifting Weightee Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results For the above program we study the (Fano-Mori) contractions:

 $\varphi:X\to Y$

associated to a rays $R = \mathbb{R}^+[C] \in \overline{NE(X)}_{(K_X+rL)<0} \subset \overline{NE(X)}_{K_X<0}$.

That is φ is a projective map between normal variety, with connected fibers, X has terminal \mathbb{Q} -factorial singularities and an irreducible curve $C \subset X$ is mapped to a point by φ iff $[C] \in R$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Extremal rays

Lifting

Marco Andreatt

Weighted Blow-up

Lifting Weightee Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results For the above program we study the (Fano-Mori) contractions:

 $\varphi:X\to Y$

associated to a rays $R = \mathbb{R}^+[C] \in \overline{NE(X)}_{(K_X+rL)<0} \subset \overline{NE(X)}_{K_X<0}$.

That is φ is a projective map between normal variety, with connected fibers, X has terminal \mathbb{Q} -factorial singularities and an irreducible curve $C \subset X$ is mapped to a point by φ iff $[C] \in R$.

 φ can be of fiber type (dimX > dimY), a Mori fiber space, or birational, more precisely either divisorial or small.

Apollonio method

Lifting

Marco Andreatt

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results Let $X' \in |L|$ a generic divisor with "good singularities".

Apollonio method

Lifting

Marco Andreatt

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to point

Conjectures and Results Let $X' \in |L|$ a generic divisor with "good singularities".

- $\varphi_{|X'} := \varphi' : X' \to Y'$ is the Fano-Mori contraction associated to $R' \in \overline{NE(X')}_{(K_{X'}+(r-1)L')<0}$.

Apollonio method

Lifting

Marco Andreatt

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to point

Conjectures and Results Let $X' \in |L|$ a generic divisor with "good singularities".

- $\varphi_{|X'} := \varphi' : X' \to Y'$ is the Fano-Mori contraction associated to $R' \in \overline{NE(X')}_{(K_{X'}+(r-1)L')<0}$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Any section of L on X' extends to a section of L on X.

Base point free technique

is of fiber type.

Lifting	
Lifting Weighted Blow-up	
Extremal rays	Theorem (Fano, Fujita, Kawamata, Kollar, Shokurov,,
Divisorial contractions to a point Conjectures and Results	A-Wisniewski, Mella, A-Tasin)
	If dim $F \le r + 2$ then there exists $X' \in L $ with "good" singularities (i.e. as in X), except for two cases in which $n = 3$, dim $F = r + 2$ and φ

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Lifting

Marco Andreatt

Weighted Blow-up

Theorem

- Lifting Weighted Blow-up
- Δ^r -MMP
- Extremal rays

Divisorial contractions to a point

Conjectures and Results Let $\varphi : X \to Y$ be a birational contraction in a $K_X + \Delta^{n-2}$ -MMP (i.e. it is associated with an extremal ray on a q.p. pair such that $R = \mathbb{R}^+[C] \in \overline{NE(X)}_{(K_X+(n-2)L)<0} \subset \overline{NE(X)}_{K_X<0}$ and $L \cdot C > 0$).

Lifting

Marco Andreatt

Weighted Blow-up

Theorem

- Lifting Weighted Blow-up
- Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results Let $\varphi : X \to Y$ be a birational contraction in a $K_X + \Delta^{n-2}$ -MMP (i.e. it is associated with an extremal ray on a q.p. pair such that $R = \mathbb{R}^+[C] \in \overline{NE(X)}_{(K_X+(n-2)L)<0} \subset \overline{NE(X)}_{K_X<0}$ and $L \cdot C > 0$).

Then $\varphi : X \to Y$ is the weighted blow-up of a smooth point in Y of weights (1, 1, b, ..., b), where b is a natural positive number.

Lifting

Marco Andreatt

Weighted Blow-up

Theorem

- Lifting Weighted Blow-up
- Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results

Let $\varphi : X \to Y$ be a birational contraction in a $K_X + \Delta^{n-2}$ -MMP (i.e. it is associated with an extremal ray on a q.p. pair such that $R = \mathbb{R}^+[C] \in \overline{NE(X)}_{(K_X+(n-2)L)<0} \subset \overline{NE(X)}_{K_X<0}$ and L : C > 0).

Then $\varphi : X \to Y$ is the weighted blow-up of a smooth point in Y of weights (1, 1, b, ..., b), where b is a natural positive number. $L' = \varphi_*(L)$ is a Cartier divisor on Y.

Lifting

Marco Andreatt

- Weighted Blow-up
- Lifting Weighted Blow-up
- Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results

Let $\varphi: X \to Y$ be a birational contraction in a $K_X + \Delta^{n-2}$ -MMP (i.e. it is associated with an extremal ray on a q.p. pair such that $R = \mathbb{R}^+[C] \in \overline{NE(X)}_{(K_Y+(n-2)L) < 0} \subset \overline{NE(X)}_{K_X < 0}$ and $L \cdot C > 0$).

Then $\varphi : X \to Y$ is the weighted blow-up of a smooth point in Y of weights (1, 1, b, ..., b), where b is a natural positive number. $L' = \varphi_*(L)$ is a Cartier divisor on Y.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

Theorem

We call such φ a Castelnuovo-Kawakita contraction.

Proof

Lifting

Marco Andreatta

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results We have dim F > (n - 2); thus dim F = (n - 1) and φ is a contraction of a divisor to a point.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

By the base point free theorem, we can assume *L* is very ample.

Proof

Lifting

Marco Andreatta

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results We have dim F > (n - 2); thus dim F = (n - 1) and φ is a contraction of a divisor to a point.

By the base point free theorem, we can assume *L* is very ample.

Thus we get the existence of sections in |L| with terminal singularities. Inductively, slicing with (n-2) general sections of |L|, we can reduce to the case of a Fano Mori contraction on a surface, $f' : S \to W$. Surfaces with terminal singularities are smooth. Apply now **Castelnuovo's Theorem** to have that W is smooth and f' is a (1, 1)-blow-up.

Proof

Lifting

Marco Andreatta

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results We have dim F > (n - 2); thus dim F = (n - 1) and φ is a contraction of a divisor to a point.

By the base point free theorem, we can assume *L* is very ample.

Thus we get the existence of sections in |L| with terminal singularities. Inductively, slicing with (n-2) general sections of |L|, we can reduce to the case of a Fano Mori contraction on a surface, $f' : S \to W$. Surfaces with terminal singularities are smooth. Apply now **Castelnuovo's Theorem** to have that W is smooth and f' is a (1, 1)-blow-up.

Apply the "lifting of weighted blow-up".

Divisorial contractions in the (n-3)-MMP

Lifting

Marco Andreatt

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results

Theorem

Let X be a variety with \mathbb{Q} -factorial terminal singularities of dimension $n \ge 3$ and let $f : X \to Z$ be a local, projective, divisorial contraction which contracts a prime divisor E to an isolated \mathbb{Q} -factorial singularity $P \in Z$ such that $-(K_X + (n - 3)L)$ is f-ample, for a f-ample Cartier divisor L on X.

Then $P \in Z$ *is a hyperquotient singularity and f is a weighted blow-up.*

▲□▶▲□▶▲□▶▲□▶ □ のQで

Lifting

Marco Andreatt

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^{r} -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results

Conjecture (Mori)

Let X be a projective variety with canonical singularities, if $k(X) = -\infty$ then X is uniruled

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Lifting

Marco Andreatt

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^{r} -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results

Conjecture (Mori)

Let X be a projective variety with canonical singularities, if $k(X) = -\infty$ then X is uniruled

It is false for general singularities, for instance for \mathbb{Q} -Gorenstein rational.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Lifting

Marco Andreatta

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^{r} -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results

Conjecture (Mori)

Let X be a projective variety with canonical singularities, if $k(X) = -\infty$ then X is uniruled

It is false for general singularities, for instance for \mathbb{Q} -Gorenstein rational.

Following Mori's approach, BDPP and then BCHM proved, using the bend and breaking theory, the following

Theorem

Let X be a projective variety with canonical singularities, if K_X is not pseudoeffective then X is uniruled

Lifting

Marco Andreatta

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^{r} -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results

Conjecture (Mori)

Let X be a projective variety with canonical singularities, if $k(X) = -\infty$ then X is uniruled

It is false for general singularities, for instance for \mathbb{Q} -Gorenstein rational.

Following Mori's approach, BDPP and then BCHM proved, using the bend and breaking theory, the following

Theorem

Let X be a projective variety with canonical singularities, if K_X is not pseudoeffective then X is uniruled

Lifting

Marco Andreatt

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^{r} -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results

Conjecture (Mori)

Let X be a projective variety with canonical singularities, if $k(X) = -\infty$ then K_X is not pseudoeffective.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Lifting

Marco Andreatt

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results

Conjecture (Mori)

Let X be a projective variety with canonical singularities, if $k(X) = -\infty$ then K_X is not pseudoeffective.

Equivalently K_X pseudo-effective $\implies \exists N \in \mathbb{N}^+ \text{ s.t. } H^0(X, NK_X) \neq \emptyset$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Lifting

Marco Andreatta

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^{r} -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results

Conjecture (Mori)

Let X be a projective variety with canonical singularities, if $k(X) = -\infty$ then K_X is not pseudoeffective.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Equivalently K_X pseudo-effective $\implies \exists N \in \mathbb{N}^+$ s.t. $H^0(X, NK_X) \neq \emptyset$

The following result is Theorem D in BCHM

Theorem (BCHM)

Let (X, L) be a quasi polarized pair and t > 0.

Lifting

Marco Andreatta

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^{r} -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results

Conjecture (Mori)

Let X be a projective variety with canonical singularities, if $k(X) = -\infty$ then K_X is not pseudoeffective.

Equivalently K_X pseudo-effective $\implies \exists N \in \mathbb{N}^+ \text{ s.t. } H^0(X, NK_X) \neq \emptyset$

The following result is Theorem D in BCHM

Theorem (BCHM)

Let (X, L) be a quasi polarized pair and t > 0. $K_X + tL$ pseudo-effective $\Longrightarrow \exists N \in \mathbb{N}^+$ s.t. $H^0(X, N(K_X + tL)) \neq \emptyset$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Effectivity of non vanishing

Lifting

Marco Andreatt

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^{r} -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results

Theorem (BCHM)

Let (X, L) be a quasi polarized pair and t > 0.

Effectivity of non vanishing

Lifting

Marco Andreatt

- Weighted Blow-up
- Lifting Weighted Blow-up
- Δ^r -MMP
- Extremal rays
- Divisorial contractions to a point
- Conjectures and Results

Theorem (BCHM)

Let (X, L) be a quasi polarized pair and t > 0.

 $K_X + tL \text{ pseudo-effective} \Longrightarrow \exists N \in \mathbb{N}^+ \text{ s.t. } H^0(X, N(K_X + tL)) \neq \emptyset$

The next Conjecture is an effective version of the above Theorem.

Conjecture

Let (X, L) be a quasi polarized pair and t > 0. $K_X + tL$ pseudo-effective $\Longrightarrow H^0(X, (K_X + tL)) \neq \emptyset$

For t = 1 this is a version of the so-called Ambro-Ionescu-Kawamata conjecture, which is true for $n \le 3$. For t = n - 1 this is a conjecture by Beltrametti and Sommese.

Some Results

Lifting

Marco Andreatt

Weighted Blow-up

Lifting Weighte Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results A proof of the Conjecture should go through a $K_X + \Delta^t$ -MMP with $tL \sim_{\mathbb{Q}} \Delta^t$ and (X, Δ^t) is Kawamata log terminal, as explained above.

Some Results

Lifting

Marco Andreatt

Weighted Blow-up

Lifting Weighte Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to point

Conjectures and Results A proof of the Conjecture should go through a $K_X + \Delta^t$ -MMP with $tL \sim_{\mathbb{Q}} \Delta^t$ and (X, Δ^t) is Kawamata log terminal, as explained above.

The Conjecture is true for t = n. This case happens if and only if the pair (X, L) is birationally equivalent (via a 0-reduction) to the pair $(\mathbb{P}^n, \mathcal{O}(1))$.

Some Results

Lifting

Marco Andreatta

Weighted Blow-up

Lifting Weighte Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to point

Conjectures and Results A proof of the Conjecture should go through a $K_X + \Delta^t$ -MMP with $tL \sim_{\mathbb{Q}} \Delta^t$ and (X, Δ^t) is Kawamata log terminal, as explained above.

The Conjecture is true for t = n. This case happens if and only if the pair (X, L) is birationally equivalent (via a 0-reduction) to the pair $(\mathbb{P}^n, \mathcal{O}(1))$.

For t = n - 1 the conjecture was essentially proved by Höring (if *L* is effective). We prove a slightly more explicit version of his result, namely, we show that this case happens if and only if the pair (X, L) is birationally equivalent (via a 1-reduction) to a finite list of pairs.

Some Results

Lifting

Marco Andreatta

Weighted Blow-up

Lifting Weighte Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to point

Conjectures and Results A proof of the Conjecture should go through a $K_X + \Delta^t$ -MMP with $tL \sim_{\mathbb{Q}} \Delta^t$ and (X, Δ^t) is Kawamata log terminal, as explained above.

The Conjecture is true for t = n. This case happens if and only if the pair (X, L) is birationally equivalent (via a 0-reduction) to the pair $(\mathbb{P}^n, \mathcal{O}(1))$.

For t = n - 1 the conjecture was essentially proved by Höring (if *L* is effective). We prove a slightly more explicit version of his result, namely, we show that this case happens if and only if the pair (X, L) is birationally equivalent (via a 1-reduction) to a finite list of pairs.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If t = n - 2 and n = 4 the conjecture is true (Fukuma and some generalizations).

Termination of Adjunction

Lifting

Marco Andreatt

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results

Conjecture

Let (X, L) be a quasi polarized pair. If $H^0(X, (mK_X + L)) = \emptyset$ for all $m \ge m_o > 0$ then X is uniruled.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Termination of Adjunction

Lifting

Marco Andreatt

Weighted Blow-up

Lifting Weighted Blow-up

 Δ^r -MMP

Extremal rays

Divisorial contractions to a point

Conjectures and Results

Conjecture

Let (X, L) be a quasi polarized pair. If $H^0(X, (mK_X + L)) = \emptyset$ for all $m \ge m_o > 0$ then X is uniruled.

This Conjecture is true for surfaces (Castelnuovo and Enriques) and for threefolds.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

It follows from the above Conjecture (for arbitrary small t > 0).