

MMP on q. p.v.	
Marco Andreatta	
Polarized variety	
Weighted Blow-up	
Δ^r -MMP	
Extremal rays	
Castenuovo- Kawakita contractions	
$K_X + \Delta^{(n-1)}$. MMP	
$K_X + \Delta^{(n-2)}$. MMP	
$\begin{array}{l} (n-3) < \tau \\ (n-2) \end{array} \le$	

Minimal Model Program and Adjunction Theory

Marco Andreatta

Dipartimento di Matematica di Trento, Italia

Moscow, October 2015

Quasi polarized pairs

MMP on q. p.v. Marco Andreatta

Polarized variety

Weighted Blow-up

 Δ^r -MMP

Extremal rays

Castenuovo-Kawakita contractions

 $K_X + \Delta^{(n-1)}$ MMP

 $K_X + \Delta^{(n-2)}$ MMP

 $\binom{n-3}{n-2} < \tau \leq n-2$

Let *X* be a projective variety of dimension *n* with good singularities, for example terminal and \mathbb{Q} -factorial singularities.

Let *L* be a Cartier divisor (a line bundle) which is ample, or simply nef and big.

The pair (X, L) is called a polarized pair, or a quasi polarized pair.

Example: $X \subset \mathbb{P}^N$ be a projective variety and $L := \mathcal{O}(1)_{|X}$, or better its (partial) desingularizaton and the pull back of *L*.

Classical problems

MMP on q. p.v.

Marco Andreatta

Polarized variety

Weighted Blow-up

 Δ^r -MMP

Extremal rays

Castenuovo-Kawakita contractions

```
K_X + \Delta^{(n-1)}
MMP
K_Y + \Delta^{(n-2)}
```

 $\binom{(n-3)}{(n-2)} < \tau \le$

```
Problem Given a general element D \in |L| (assume that X is not a cone over D).
```

```
Which properties of D lift to X; do these properties determine X ?
```

Enriques–Castelnuovo studied the case in which X is a surface and D is a curve of low genus, or of minimal degree, ... Fano studied the case in which X is a 3-fold and D is a K3 surface. Mori in his first paper proved that if D is a c.i. in a weighted projective space the same is for X. Sommese proved that abelian and bi-elliptic surfaces cannot be ample

sections, unless X is a cone.

Weighted Blow-up

MMP on q. p.v.

Polarized variet

Weighted Blow-up

 Δ^r -MMP

Extremal rays

Castenuovo-Kawakita contractions

 $K_X + \Delta^{(n-1)}$ MMP $K_X + \Delta^{(n-2)}$ MMP

 $\binom{(n-3)}{(n-2)} < \tau \leq$

Let
$$\sigma = (a_1, \ldots, a_n) \in \mathbb{N}^{+^n}$$
 such that $gcd(a_1, \ldots, a_n) = 1$.

The weighted projective space with weight (a_1, \ldots, a_n) is defined as:

$$\mathbb{P}(a_1,\ldots,a_n):=(\mathbb{C}^n-\{0\})/\mathbb{C}^*,$$

where $\xi \in \mathbb{C}^*$ acts by $\xi(x_1, ..., x_n) = (\xi^{a_1}x_1, ..., \xi^{a_n}x_n)$.

A cyclic quotient singularity,

$$\mathbb{C}^n/\mathbb{Z}_m(a_1,...,a_n):=X,$$

is an affine variety definite as the quotient of \mathbb{C}^n by the action $\epsilon(x_1, ..., x_n) = (\epsilon^{a_1}x_1, ..., \epsilon^{a_n}x_n)$, where $\epsilon \in \mathbb{Z}_m$.

Weighted Blow-up

MMP on q. p.v.

Marco Andreatt

Polarized variety

Weighted Blow-up

 Δ^r -MMP

Extremal rays

Castenuovo-Kawakita contractions

 $K_X + \Delta^{(n-1)}$ MMP

 $K_X + \Delta^{(n-2)}$ MMP

 $\binom{(n-3)}{(n-2)} < \tau \le$

Consider the rational map

 $\varphi: \mathbb{C}^n/\mathbb{Z}_m(a_1,...,a_n) \to \mathbb{P}(a_1,...,a_n)$

given by $(x_1,\ldots,x_n)\mapsto (x_1:\ldots:x_n)$.

Definition

The weighted blow-up of $X = \mathbb{C}^n / \mathbb{Z}_m(a_1, ..., a_n)$ with weight σ , \overline{X} , is defined as the closure in $X \times \mathbb{P}(a_1, ..., a_k)$ of the graph of φ , together with the morphism $\pi_{\sigma} : \overline{X} \to X$ given by the projection on the first factor.

Weighted Blow-up

MMP on q. p.v.

Marco Andreatt

Polarized variety

Weighted Blow-up

 Δ^r -MMP

Extremal rays

Castenuovo-Kawakita contractions

 $K_X + \Delta^{(n-1)}$ MMP

 $K_X + \Delta^{(n-2)}$ MMP

 $\binom{(n-3)}{(n-2)} < \tau \le$

For any $d \in \mathbb{N}$ we define the σ -weighted ideal of degree d as

$$I_{\sigma,d} = \{g \in \mathbb{C}[x_1,\ldots,x_n] : \sigma\text{-wt}(g) \ge d\} = (x_1^{s_1}\cdots x_n^{s_n} : \sum_{j=1}^n s_j a_j \ge d).$$

Proposition

The weighted blow-up of of $X = \mathbb{C}^n / \mathbb{Z}_m(a_1, ..., a_n)$ with weight σ , $\pi : \overline{X} \to X$, is given by

$$\overline{X} = \operatorname{Proj}_X(\bigoplus_{d \ge 0} I_{\sigma,d}) \to X.$$

Lifting Weighted Blow-Ups

MMP on q. p.v.

Marco Andreatt

Polarized variety

Weighted Blow-up

 Δ^r -MMP

Extremal rays

Castenuovo-Kawakita contractions

 $K_X + \Delta^{(n-1)}$ MMP

 $K_X + \Delta^{(n-2)}$ MMP

 $\binom{(n-3)}{(n-2)} < \tau \le$

Let $f : X \to Z$ be an elementary local projective contraction with \mathbb{Q} -factorial singularities, which contracts a divisor E to a point $p \in Z$. Assume dim $X \ge 4$.

Let $Y \subset X$ be a f- ample Cartier divisor and assume that $f' =: f_Y : Y \to f(Y) := W$ is a $\sigma' = (a_1, \ldots, a_{n-1})$ -blow-up.

Then $f: X \to Z$ is $a \sigma = (a_1, \ldots, a_{n-1}, a_n)$ -blow-up, $\pi_{\sigma}: X \to Z$, $a_n = a$, where a is the positive integer such that $Y_{|E\cap Y} = \mathcal{O}_{\mathbb{P}}(a)$.

Remark

Theorem

The Cox Rings of weighted blow-ups determines completely the blow-up (it is Toric). The following could be a good question: does the Cox Ring of an ample section determine the one of the variety?

Proof

MMP on q. p.v.

Marco Andreatt

Polarized variety

Weighted Blow-up

 Δ^r -MMP

Extremal rays

Castenuovo-Kawakita contractions

 $K_X + \Delta^{(n-1)}$ MMP $K_X + \Delta^{(n-2)}$ MMP

 $\binom{(n-3)}{(n-2)} < \tau \le$

By assumption Z has an isolated \mathbb{Q} -factorial singularity and $W \subset Z$ is a Weil divisor which has a cyclic quotient singularity, i.e.

$$W = \mathbb{C}^{n-1}/\mathbb{Z}_m(a_1, ..., a_{n-1}).$$

We first prove that $Z = \mathbb{C}^n/\mathbb{Z}_m(a_1, ..., a_{n-1}, a_n).$

Then, let *b* a positive integer such that $-bE \sim Y$ (and therefore Cartier). By Grothendieck theory $X = \operatorname{Proj}_{\mathcal{O}_Z}(\bigoplus_{d \geq 0} f_*(\mathcal{O}_X(-dbE)))$, therefore we want to prove that

$$f_*(\mathcal{O}_X(-dbE) = I_{\sigma,db} = (x_1^{s_1} \cdots x_n^{s_n} \mid \sum_{j=1}^n a_j s_j \ge db).$$

Proof

MMP on q. p.v. Marco Andreatta

Weighted Blow-up

 Δ^r -MMP

Extremal rays

Castenuovo-Kawakita contractions

 $K_X + \Delta^{(n-1)}$ MMP $K_X + \Delta^{(n-2)}$

 $(n-3) < \tau$

Consider the exact sequence on X

$$0
ightarrow \mathcal{O}_X(-Y-dbE)
ightarrow \mathcal{O}_X(-dbE)
ightarrow \mathcal{O}_Y(-dbE)
ightarrow 0$$

Pushing it down via φ and using the relative Vanishing theorems we have

$$0
ightarrow f_*\mathcal{O}_X(-(d-1)bE) \stackrel{\cdot x_n}{
ightarrow} f_*\mathcal{O}_X(-dbE)
ightarrow f_*\mathcal{O}_Y(-dbE)
ightarrow 0.$$

The proposition follows by induction on n

$$(f_*(\mathcal{O}_Y(-dbE) = (x_1^{s_1} \cdots x_{(n-1)}^{s_{(n-1)}} \mid \sum_{j=1}^{n-1} a_j s_j \ge db)))$$

and on d

$$(f_*(\mathcal{O}_X(-(d-1)bE) = (x_1^{s_1} \cdots x_n^{s_n} \mid \sum_{j=1}^n a_j s_j \ge (d-1)b))$$

Adjunction Theory

MMP on q. p.v. Marco Andreatta

Polarized variety

Weighted Blow-up

 Δ^r -MMP

Extremal rays

Castenuovo-Kawakita contractions

 $K_X + \Delta^{(n-1)}$ MMP

 $K_X + \Delta^{(n-2)}$ MMP

 $\binom{n-3}{n-2} < \tau \leq$

Adjunction Theory wants to classify quasi polarized pairs via the study of the nefness of the adjont bundles

$$K_X + rL$$
,

with r natural (or rational) positive number.

Assume that there exist *r* sections of |L| which intersect in a n - r variety *D*, with terminal singularities (if r = n - 1, we ask for a smooth curve). To get nefness of $K_X + rL$ implies, by adjunction $(K_X + rL)_{|D} = K_D$, to get a minimal model for *D*.

Minimal Model Program- BCHM

MMP on q. p.v.

- Marco Andreatt
- Polarized variety

Weighted Blow-up

Δ^r -MMP

Extremal rays

Castenuovo-Kawakita contractions

 $K_X + \Delta^{(n-1)}$ MMP

 $K_X + \Delta^{(n-2)}$ MMP

 $\binom{(n-3)}{(n-2)} < \tau \le$

A log pair (X, Δ) , i.e a normal variety X and an effective \mathbb{R} divisor Δ , is Kawamata log terminal (klt) if:

 $K_X + \Delta$ is \mathbb{R} -Cartier and for a (any) log resolution $g : Y \to X$ we have $g^*(K_X + \Delta) = K_Y + \Sigma b_i \Gamma_i$ with $b_i < 1$, for all *i*.

By BCHM on a klt log pair (X, Δ) , with Δ big, we can run a $K_X + \Delta$ - Minimal Model Program with scaling: $(X_0, \Delta_0) = (X, \Delta) \rightarrow (X_1, \Delta_1) \rightarrow - - - \rightarrow (X_s, \Delta_s)$

Minimal Model Program- BCHM

MMP on q. p.v.

Marco Andreatta Polarized variety

Weighted Blow-up

 Δ^r -MMP

Extremal rays

Castenuovo-Kawakita contractions

 $K_X + \Delta^{(n-1)}$ MMP $K_X + \Delta^{(n-2)}$

 $\binom{(n-3)}{(n-2)} < \tau \le$

$$(X_0, \Delta_0) = (X, \Delta) \rightarrow (X_1, \Delta_1) \rightarrow --- \rightarrow (X_s, \Delta_s)$$

such that:

1) (X_i, Δ_i) is a klt log pair, for i = 0, ..., s;

2) $\varphi_i : X_i \to X_{i+1}$ is a birational map which is either a divisorial contraction or a flip associated with an extremal ray $R_i = \mathbb{R}^+[C_i]$ such that $(K_{X_i} + \Delta_i) \cdot C_i < 0$ (notation: $R_i \in \overline{NE(X_i)}_{(K_{X_i} + \Delta_i) < 0} \subset \overline{NE(X_i)}_{K_{X_i} < 0}$)

3) either $K_{X_s} + \Delta_s$ is nef (i.e. (X_s, Δ_s) is a log Minimal Model), or $X_s \to Z$ is a Mori fiber space relatively to $K_{X_s} + \Delta_s$ (depending on the pseudeffectivity of $K_X + \Delta$).

MMP for a q.p. pair

MMP on q. p.v.

- Marco Andreatta Polarized variety
- Weighted Blow-up

Δ^r -MMP

Extremal rays

Castenuovo-Kawakita contractions

 $K_X + \Delta^{(n-1)}$ MMP

 $K_X + \Delta^{(n-2)}$ MMP

 $\binom{n-3}{n-2} < \tau \le \frac{1}{2}$

Let (X, L) be a quasi-polarized variety and let $r \in \mathbb{Q}^+$. Lemma (zip L into a boundary). Since L is nef and big there exists an effective \mathbb{Q} -divisor Δ^r on X such that

 $rL \sim_{\mathbb{Q}} \Delta^r$ and (X, Δ^r) is Kawamata log terminal.

Run a $K_X + \Delta^r$ -MMP and get a birational klt pair (X_s, Δ_s^r) which is - either a Minimal Model $(K_{X_s} + \Delta_s \text{ is nef})$

- or $X_s \to Z$ is a Mori fiber space relatively to $K_{X_s} + \Delta_s$.

Remarks/Problems

- (X_s, Δ_s^r) is not necessarily an (r) q.p. pair, i.e. we do not have a priori a nef and big Cartier divisor L_s such that $rL_s \sim_{\mathbb{Q}} \Delta_s^r$.
- Beyond the existence of the MMP, it would be nice to have a "description" of each steps and eventually of the Mori fiber spaces.

Extremal rays

MMP on q. p.v.

Marco Andreatta Polarized variety Weighted Blow-up Δ^r -MMP

Extremal rays

Castenuovo-Kawakita contractions

 $K_X + \Delta^{(n-1)}$ MMP $K_X + \Delta^{(n-2)}$ MMP

 $\binom{n-3}{n-2} < \tau \le$

For the above program we study the (Fano-Mori) contractions:

$$\varphi:X\to Y$$

associated to a rays $R = \mathbb{R}^+[C] \in \overline{NE(X)}_{(K_X+rL)<0} \subset \overline{NE(X)}_{K_X<0}$.

That is φ is a projective map between normal variety, with connected fibers, X has terminal \mathbb{Q} -factorial singularities and an irreducible curve $C \subset X$ is mapped to a point by φ iff $[C] \in R$.

- φ can be of fiber type (*dimX* > *dimY*), φ is called a Mori fiber space

- or birational, φ can then be divisorial or small

Let *F* be a non trivial fiber of φ ; we possibly restrict to an affine neighborhood of the image of *F* (local set up). Then $(K_X + \tau L) \sim_{\varphi} \mathcal{O}_X$ for a rational $\tau > r$.

Apollonio method

MMP on q. p.v.

- Marco Andreatt
- Polarized variety
- Weighted Blow-up
- Δ^r -MMP

Extremal rays

- Castenuovo-Kawakita contractions
- $K_X + \Delta^{(n-1)}$ **MMP** $K_{xx} + \Delta^{(n-2)}$
- WMP
- $\begin{array}{l}(n-3)<\tau\leq\\(n-2)\end{array}$

- Let $X' \in |L|$ a generic divisor with "good singularities". We have:
- $-\varphi_{|X'} := \varphi' : X' \to Y'$ is a contraction with connected fibre, around $F' := F \cap X'$;

it is the Fano-Mori contraction associate to $R' \in \overline{NE(X')}_{(K_{X'}+(r-1)L')<0}$.

- Any section of L on X' extends to a section of L on X.

Base point free technique

MMP on q. p.v.

- Marco Andreatt
- Weighted Blow-u
- Δ^r -MMP

Extremal rays

- Castenuovo-Kawakita contractions
- $K_X + \Delta^{(n-1)}$ MMP
- $K_X + \Delta^{(n-2)}$ MMP
- $\binom{(n-3)}{(n-2)} < \tau \le$

- Theorem [Fano, Fujita, Kawamata, Kollar, Shokurov, ...,, A-Wisniewski, Mella, A-Tasin]
 - dimF > (r-1); if φ is birational then dimF > r.
 - If dim F < r + 1, or dim $F \le r + 1$ if φ is birational, then *L* is very ample (relatively to φ).
 - If dim F < r + 2 then there exists $X' \in |L|$ with "good" singularities (i.e. as in X). The same is true if dim F = r + 2, except for two cases in which n = 3 and φ is of fiber type.

Castelnuovo-Kawakita

MMP on q. p.v.

- Marco Andreatta
- Polarized variety
- Weighted Blow-up
- Δ^r -MMP
- Extremal rays

Castenuovo-Kawakita contractions

 $K_X + \Delta^{(n-1)}$ MMP $K_X + \Delta^{(n-2)}$ MMP

 $\begin{array}{l}(n-3) < \tau \leq \\(n-2)\end{array}$

Theorem

Let $\varphi : X \to Y$ be a birational contraction in a $K_X + \Delta^{n-2}$ -MMP) (i.e. it is associated with an extremal ray on a q.p. pair such that $R = \mathbb{R}^+[C] \in \overline{NE(X)}_{(K_X+(n-2)L)<0} \subset \overline{NE(X)}_{K_X<0}$ and $L \cdot C > 0$.

Then $\varphi : X \to Y$ is the weighted blow-up of a smooth point in *Y* of weights (1, 1, b, ..., b), where *b* is a natural positive number.

 $L' = \varphi_*(L)$ is a Cartier divisor on Y.

Definition

We call such φ a Castelnuovo-Kawakita contraction.

Proof

MMP on q. p.v.

- Marco Andreatta
- Polarized variety
- Weighted Blow-up
- $\Delta^r\text{-}\mathbf{M}\mathbf{M}\mathbf{P}$
- Extremal rays

Castenuovo-Kawakita contractions

 $K_X + \Delta^{(n-1)}$ MMP $K_X + \Delta^{(n-2)}$ MMP

 $\binom{n-3}{n-2} < \tau \le$

We have dim F > (n - 2); thus dim F = (n - 1) and φ is a contraction of a divisor to a point.

By the base point free theorem, we can assume *L* is very ample.

Thus we get the existence of sections in |L| with terminal singularities. Inductively, slicing with (n-2) general sections of |L|, we can reduce to the case of a Fano Mori contraction on a surface, $f' : S \to W$. Surfaces with terminal singularities are smooth. Apply now **Castelnuovo's Theorem** to have that W is smooth and f' is a (1, 1)-blow-up.

Apply the "lifting of weighted blow-up".

r = (n - 1)

MMP on q. p.v.

Marco Andreatta

Polarized variety

Weighted Blow-up

 Δ^r -MMP

Extremal rays

Castenuovo-Kawakita contractions

 $K_X + \Delta^{(n-1)}$. MMP

 $(n-3) < \tau$

Consider a $K_X + \Delta^r$ -MMP with r = (n - 1) (or $\geq (n - 1)$) and let $R_i = \mathbb{R}^+[C_i]$ be a birational ray in the sequence.

Inductively construct a nef and big Cartier divisor L_i on X_i such that $rL_i \sim_{\mathbb{Q}} \Delta_i^{(n-1)}$:

1) $L_iC_i = 0$, otherwise, by the above Theorem, we have the contradiction $(n-1) \ge \dim F > r \ge (n-1)$. 2) Let $\varphi_i : X_i \to Y$ be the contraction associated with R_i . We have a Cartier divisor L'_{i+1} such that $\varphi^*(L'_{i+1}) = L_i$. If φ is birational $(X_{i+1}, L_{i+1}) := (Y, L'_{i+1})$, if φ is small $(X_{i+1}, L_{i+1}) := (X_i^+, \varphi^+(L'_{i+1}))$, where $\varphi^+ : X_i^+ \to Y$ is the flip.

the zero reduction

MMP on q. p.v.

- Marco Andreatt
- Polarized variety
- Weighted Blow-u
- Δ^r -MMP
- Extremal rays
- Castenuovo-Kawakita contractions
- $\frac{K_X}{MMP} + \Delta^{(n-1)}$
- $K_X + \Delta^{(n-2)}$ MMP
- $\binom{(n-3)}{(n-2)} < \tau \leq$

Proposition. Given a q.p. pair (X, L) it is possible to run a MMP which contracts all extremal rays on which *L* is zero and obtain a q.p. pair (X', L') which is birational equivalent to (X, L) and such that:

- either $K_{X'} + (n-1)L'$ is nef
- or (X', L') is a Mori space relative to $K_{X'} + (n-1)L'$ and L' is a (relatively) very ample Cartier divisor.

Definition. (X', L') is called a zero reduction of (X, L).

By very classical results in the second case the q.p. pair (X', L') is in a obvious finite list of examples: $(\mathbb{P}^n, \mathcal{O}(1)), (Q, \mathcal{O}(1))$, scrolls, del Pezzo.

Applications

MMP on q. p.v.

- Marco Andreatt
- Polarized variety
- Weighted Blow-up
- Δ^r -MMP
- Extremal rays
- Castenuovo-Kawakita contractions
- $\frac{K_X + \Delta^{(n-1)}}{\text{MMP}}$
 - $(n-3) < \tau$

Let (X, L) be a quasi-polarized variety and g(X, L) be its sectional genus: $2g(X, L) - 2 = (K_X + (n-1)L) \cdot L \cdot ... \cdot L)$.

(if L is spanned it is the genus of a curve intersection of n - 1 general elements in |L|.

- Classification of pairs $g(X, L) \leq 0$ ($K_X + (n 1)L$ is not nef (therefore not pseudoeffective) and the zero reduction of (X, L) is among the above pairs
- Classification of pairs with g(X, L) = 1.
- Classification of pairs of minimal degree (i.e. $L^n = h^0(X, L) - n$).

First Reduction

MMP on q. p.v.

Marco Andreatt

Polarized variety

Weighted Blow-u

 Δ^r -MMP

Extremal rays

Castenuovo-Kawakita contractions

 $K_X + \Delta^{(n-1)}$ MMP

 $K_X + \Delta^{(n-2)}$. MMP

 $\binom{(n-3)}{(n-2)} < \tau \leq$

Proposition-Part 1. Let (X, L) be a q.p. pair. There exists a q.p. pair (X'', L'') which is a $(K_X + \Delta^{n-2})$ -MM and which can be obtained with the following procedure:

Take a zero reduction (X', L').

Contract, step by step, all Castelnuovo-Kawakita type extremal rays, such that $L'_{|E} = -bE_{|E}$; $\varphi' : X' \to X''$.

 $\blacksquare \text{ Let } L'' := \varphi'_*L'.$

Definition The pair (X'', L'') is called a First Reduction of the pair (X, L).

First Reduction

MMP on q. p.v.

- Marco Andreatt
- Polarized variety
- Weighted Blow-u
- Δ^r -MMP
- Extremal rays
- Castenuovo-Kawakita contractions
- $K_X + \Delta^{(n-1)}$ MMP
- $\frac{K_X}{MMP} + \Delta^{(n-2)}$.
 - $\binom{(n-3)}{(n-2)} < \tau \le$

Proposition-Part 2. Let (X, L) be a q.p. pair and let (X'', L'') be its First Reduction. Then

- either $K_{X''} + (n-2)L''$ is nef
- or $X'' \to Z$ is a Mori fiber space relatively to $K_{X''} + (n-2)L''$ and L'' is (relatively) very ample with one exception (del Pezzo manifold). In all cases there exists a divisor in |L''| with good singularities.

Remark. The classification of the pairs in the second part, thank to the existence of a good section, is classical and reduces to the theory of algebraic surfaces. (Quadric fibration, del Pezzo manifolds,)

Applications

MMP on q. p.v.

- Marco Andreatt
- Polarized variety
- Weighted Blow-up
- Δ^r -MMP
- Extremal rays
- Castenuovo-Kawakita contractions

 $K_X + \Delta^{(n-1)}$ MMP

 $K_X + \Delta^{(n-2)}.$ MMP

 $\binom{n-3}{n-2} < \tau \le$

Theorem. Let $Y \subset \mathbb{P}^N$ be a non degenerate projective variety of dimension $n \geq 3$ of degree d and let $\tilde{L} := \mathcal{O}(1)_{|Y}$. Assume that $d < 2codim_{\mathbb{P}^N}(X) + 2$.

Then on a desingularization (X, L) the divisor $K_X + (n-2)L$ is not pseudoeffective.

Therefore $(Y, \mathcal{O}(1))$ is equivalent, via birational equivalence and first-reduction, to a q.p. pair (X'', L'') in the above Remark.

 $(n-3) < \tau < (n-2)$

MMP on q. p.v.

- Marco Andreatta Polarized variety
- Weighted Blow-u
- Δ^r -MMP
- Extremal rays
- Castenuovo-Kawakita contractions
- $K_X + \Delta^{(n-1)}$ MMP
- $K_X + \Delta^{(n-2)}$ MMP
- $\binom{(n-3)}{(n-2)} < \tau \le$

Let $\varphi : X \to Y$ be a birational contraction associated with an extremal ray $R = \mathbb{R}^+[C]$ on a q.p. pair, such that $L \cdot C > 0$ and $(n-3) < \tau \le (n-2)$. (These are the birational maps in a $K_X + \Delta^{n-3}$ -MMP).

We have the following possibilities for φ .

- 1 φ contracts a divisor to a curve (it is a special case of the next theorem),
- **2** φ contracts a divisor to a point,
- **3** φ is a small contraction with exc. locus of dimension (n-2).

In all cases we can apply the "base point free technique", find therefore a section $X' \in |L|$ and, by induction if possible, reduce to the case n = 3 where we have a complete classification.

Then we like to "lift" this classification and the examples to higher dimension.

Divisorial contractions with small fibers

MMP on q. p.v.

Marco Andreatta

- Polarized variety
- Weighted Blow-up
- Δ^r -MMP
- Extremal rays
- Castenuovo-Kawakita contractions
- $K_X + \Delta^{(n-1)}$ MMP
- $K_X + \Delta^{(n-2)}$ MMP
- $\binom{(n-3)}{(n-2)} < \tau \le$

Theorem. Let $f : X \to Z$ be a divisorial contraction associated to an extremal ray R in $\overline{NE(X)}_{(K_X+rL)<0}$, where $r \in \mathbb{N}^+$, such that L : C > 0. Let E be the exceptional locus of f and set $C := f(E) \subset Z$.

Assume that all fibres have dimension less or equal to r + 1.

- Then there is a closed subset $S \subset Z$ of codimension al least 3 such that $Z' = Z \setminus S$ and $C' = C \setminus S$ are smooth, $\operatorname{codim}_{Z'} C' = r + 2$ and $f' : X' = X \setminus f^{-1}(S) \to Z'$ is a weighted blow-up along C' with weight $\sigma = (1, 1, b \dots, b, 0, \dots, 0)$, where the number of *b*'s is *r*.
- 2 Let *I'* be a σ-weighted ideal sheaf of degree *b* for *Z'* ⊂ *X'* and let *i* : *Z'* → *Z* be the inclusion; let also *I* := *i*_{*}(*I'*) and *I*^(m) be the *m*-th symbolic power of *I*. Then *X* = Proj ⊕_{m>0} *I*^(m).

Kawakita Contractions

MMP on q. p.v.

- Marco Andreatt
- Polarized variety
- Weighted Blow-up
- Δ^r -MMP
- Extremal rays
- Castenuovo-Kawakita contractions
- $K_X + \Delta^{(n-1)}$ MMP $K_X + \Delta^{(n-2)}$ MMP
- $\binom{(n-3)}{(n-2)} < \tau \le$

The second case was treated for n = 3 in a series of paper by Kawakita. By the Theorem on lifting weighted blow-up we can extend Kawakita classification and show that φ is a weighted blow-up of a (possible singular) point.

Small Contractions

MMP on q. p.v.

- Marco Andreatt
- Polarized variety
- Weighted Blow-up
- Δ^r -MMP
- Extremal rays
- Castenuovo-Kawakita contractions
- $K_X + \Delta^{(n-1)}$ MMP $K_X + \Delta^{(n-2)}$ MMP

 $\binom{(n-3)}{(n-2)} < \tau \le$

The third case was treated for n = 3 by S. Mori and by S.Mori and J. Kollar.

At the moment we can extend to higher dimension the Francia's flip, i.e. the case where *X* has only points of index one and two.