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FAMILIES OF RATIONAL CURVES

WHICH DETERMINE THE STRUCTURE OF THE

(PROJECTIVE) SPACE

MARCO ANDREATTA

Abstract. We work on algebraic uniruled varieties: we define special families
of rational curves, we introduce the tangent map and we use it to characterize

some special varieties. Finally we extend the above technique to the case of

complex symplectic (projective) manifold.

1. Hilbert Scheme

Let X and Y be a normal projective schemes (of finite type over k algebraically
closed field).

We denote with Hilb(X) the Hilbert scheme of proper subschemes of X; with
Hom(Y,X) the open subscheme of Hilb(X × Y ) of morphisms from Y to X (the
construction of the schemes is due to Grothendieck and Mumford).

Theorem 1.1. Let f : Y −→ X be a morphism. Assume that Y is without
embedded points and that X has no embedded points contained in f(Y ) and the
image of every irreducible component of Y intersect the smooth locus of X. Then

• The tangent space of Hom(Y,X) at [f ] is naturally isomorphic to

HomY (f∗ΩX
1,OY ).

• The dimension of every irreducible component of Hom(Y,X) at [f ] is at
least

dimHomY (f∗ΩX
1,OY )− dimExtY

1(f∗ΩX
1,OY ).
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Let f : C −→ X be a morphism from a proper curve to a scheme and L a line
bundle on X. We use the following notation to denote the intersection number of
C and L:

C .L := degCf
∗L

In the special case of the Hilbert scheme of curves, thank to Riemann Roch theorem,
we have the following nice result.

Theorem 1.2. Let C be a proper algebraic curve without embedded points and
f : C −→ X a morphism to a smooth variety X of pure dimension n. Then

dim[f ]Hom(C,X) ≥ −KX
.C + nχ(OC).

Moreover equality holds if H1(C, f∗TX) = 0.

Proof. If F is a locally free sheaf on a scheme Z, then ExtiX(F,OZ) = Hi(Z,F ∗).
Therefore we have dim[f ]Hom(C,X) ≥ dimHomC(f∗ΩX

1,OC)−dimExtC
1(f∗ΩX

1,OC) =

h0(C, f∗TX) − h1(C, f∗TX) = χ(C, f∗TX) = degf∗TX + nχ(OC) = −KX
.C +

nχ(OC).

Remark 1.3. Let f : P1 → X ∈ Hom(P1, X) and assume X is smooth along
f(P1). Then the tangent space of Hom(P1, X) at [f ] is naturally isomorphic to
HomY (f∗ΩX

1,OY ) = H0(P1, f∗TX).



RATIONAL 3

2. Existence of Rational Curves

A rational curve on X is a non constant morphism P1 −→ X.
The following is a fundamental result of S. Mori ([Mo82]).

Theorem 2.1. Let X be a smooth projective variety over an algebraically closed
field (of any characteristic), C a smooth, projective and irreducible curve and f :
C −→ X a morphism. Assume that

−KX
.C > 0.

Then for every x ∈ f(C) there is a rational curve Dx ⊂ X containing x
and such for any nef R-divisor L :

L.Dx ≤ 2dimX(
L.C

−KX
.C

) and −KX
.Dx ≤ dimX + 1.

Idea of Proof. If C has genus 0, then we are done. Let g := g(C) > 0 and
n = dimX.
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Step 1. We have seen that

dim[f ]Hom(C, Y ) ≥ −KY
.C + n(1− g).

Take x = f(0) ∈ f(C); since n conditions are required to fix the image of the
basepoint 0 under f , morphisms f of C into X sending 0 to x have a deformation
space of dimension

≥ −KY
.C + n(1− g)− n = −KY

.C − ng.
Thus whenever this quantity is positive there must be a non-trivial one-parameter
family of deformations of the map f keeping the image of 0 fixed.
In particular, we can find a nonsingular (affine) curve D and a morphism g : C ×
D → X, thought of as a nonconstant family of maps, all sending 0 to the same
point x.

Step 2. We argue now that D cannot be complete (Bend and Break). In fact
otherwise consider U , a neighborhood of x in C and the projection map π : U×D →
U .

Then π is a proper, surjective morphism with connected fiber of dimension 1. More-
over g(π−1(x)) is a single point.
By the rigidity Lemma, g(π−1(y) is a single point for all y in U , i.e. the family
would have to be constant.

Proof of the rigidity Lemma: (see [KM98] Lemma 1.6)
Let W = im(π × g) ⊂ U ×X and consider the proper morphisms

π : U ×D →W → U,

where the first map h = U × D → W is defined by h(t) = (π(t), g(t)) and the
second p is the projection to the first factor.
p−1(y) = h(π−1(y)) and dim p−1(x) = 0; by the upper semicontinuity of fiber
dimension there is an open set x ∈ V ⊂ U such that dim p−1(y) = 0 for every
y ∈ V . Thus h has fiber dimension 1 over p−1(V ), hence h has fiber dimension at
least 1 everywhere.
For any w ∈ W , h−1(w) ⊂ π−1(p(w), dim h−1(w) ≥ 1 and dim π−1(p(w)) =
1. Therefore h−1(w) is a union of irreducible components of π−1(p(w), and so
h(π−1(p(w))) = p−1(p(w)) is finite. It is a single point since π−1(p(w)) is connected.
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Step 3. So let D ⊂ D be a completion where D is a nonsingular projective curve.
Let G : C ×D 99K X be the rational map defined by g. Blow up a finite number of
points to resolve the undefined points to get Y → C ×D whose composition given
by π : Y → X is a morphism. Let E ⊂ Y be the exceptional curve of the last blow
up. Since it was actually needed, it can’t be collapsed to a point, and hence π(E)
is our desired curve.
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Step 4. If char(k) = p > 0 we consider another curve h : C → C ⊂ X, where h is
a composition of f with a r power of the Frobenius endomorphism Fp.
Roughly speaking if the curve C is given as zero set of algebraic equations in the
variable (y0, ..., ym), then Fp : (y0, ..., ym) → (yp0 , ..., y

p
m). Fp : C → C is injective

set-theoretically but it is an endomorphism of degree p. Take h = F rp ◦ f and call
C ′ and C ′′ the curves respectively given as image of f and of h.

We only change the structure sheaf and not the topological space, so both curve
has genus g.

But −C ′′.KX = −pr(C ′.KX) and for r high enough we have −C ′′.KX ≥ ng + 1.
Therefore

−KY
.C ′′ − ng > 0.

In this way we prove the existence of a rational curve through x for almost all p > 0.
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Step 5. Algebra.
Principle. If a homogeneous system of algebraic equations with integral coefficients
has a non trivial solution in Fp for infinitely many p, then it has a non trivial
solution in any algebraically closed field.

A map P1 → X ⊂ PN of limited degree with respect to −KX can be given by a
system of equations. Since this system has a non trivial solution for infinitely many
p, it has a solution in any algebraically closed field by the above principle.
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Definition 2.2. A normal proper variety is called uniruled if it is covered by
rational curves.

The above Theorem proves that Fano manifolds are uniruled.

The following Theorem of Y. Miyaoka, which generalizes the Mori’s result, is the
most powerful uniruledness criteria.

Theorem 2.3. Let X be a smooth and proper variety over C. Then X is uniruled
if and only if there is a quotient sheaf ΩX

1 −→ F and a family of curves {Ct}
covering an open subset of X such that F|Ct is locally free and deg(F|Ct) < 0 for
every t.



RATIONAL 9

3. Families of rational curves

Definition 3.1. Let Hombir(P1, X) ⊂ Hom(P1, X) be the open suscheme corre-
sponding to those morphisms f : P1 −→ X which are birational onto their image,
that is f is an immersion at its generic point. This is an open condition.
If f : P1 −→ X is any morphism and h ∈ Aut(P1), thenf ◦ h is ”counted” as
a different morphism. The group Aut(P1) acts on Hombir(P1, X) and it is the
quotient that ”really parametrizes” morphisms of P1 into X.
It can be proved that the quotient exists in the sense of Mumford (Mori-Mumford-
Fogarty) ; its normalization will be denotedRatCurvesn(X) and called the space
of rational curve on X.

Given a point x ∈ X, one can similarly find a scheme Hom(P1, X, [0 : 1] → x)
whose geometric points correspond to generically injective morphisms from P1 to
X which map the point [0 : 1] to x. The quotient, in the sense of Mumford, by
the group of automorphism of P1 which fixes the point [0 : 1], will be denoted by
RatCurvesn(x,X) and called the space of rational curves through x.

Definition 3.2. An irreducible component V of RatCurvesn(X) is called a family
of rational curve.
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We obtain a diagram as follows

(3.0.1) Homn
bir(P1, X)× P1

��

U // Univ(X)

π

��

i // X

Homn
bir(P1, X)

u // RatCurvesn(X)

where U and u have the structure of principal Aut(P1)-bundle; π is a P1-bundle.
The restriction of i to any fiber of π is generically injective, i.e. birational onto its
image.
Similarly for a given point x ∈ X:
(3.0.2)

Homn
bir(P1, X, [0 : 1]→ x)× P1

��

U // Univ(x,X)

π

��

ix // X

Homn
bir(P1, X, [0 : 1]→ x)

u // RatCurvesn(x,X)

Let B = ∅ or x.

Let F : P1×Homn
bir(P1, X,B)→ X be the universal map defined by F (f, p) = f(p);

F is the composition iB ◦ U .

Let V ⊂ Homn
bir(P1, X), be an irreducible component and Vx be the set of elements

in V passing through x ∈ X.

We denote Locus(V ) := F (P1 × V ) and Locus(V, 0→ x) := F (P1 × Vx).

Let f : P1 → X ∈ Homn
bir(P1, X,B) and assume X is smooth along f(P1). Then

the tangent space of Homn
bir(P1, X,B) at [f ] is naturally isomorphic to

T[f ]Homn
bir(P1, X,B) = HomY (f∗Ω1

X(−B),OY ) = H0(P1, f∗TX(−B)).

In particular the tangent map of F at the point (f, t) :

(3.0.3) dFf,t : H0(P1, f∗TX(−B))⊕ TP1,t → TX,f(t)

is given by
(σ, u)→ (dft(u) + σ(t)).
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4. Special families of rational curves

We know that any vector bundle over P1 splits as a direct sum of line bundles, this
is sometime called a Grothendieck’ s Theorem.

Let X be a smooth projective variety of dimension n and B = ∅ (respectively
B = {x}). Let V ⊂ Homn

bir(P1, X), be an irreducible component; for a rational
curve f : P1 −→ X in V we therefore have

f∗TX ⊗ IB = OP1(a1)⊕ ...⊕OP1(an).

The splitting type, i.e. the ai, are the same for all members f ∈ V .

By the general theory of Hilbert scheme (i.e. by Theorem 1.2 and its proof) we
easily see that if ai ≥ −1 (resp. ai ≥ 0), then V (resp. Vx) is generically smooth
and dimV = dimX + Σai.

Moreover, since dimLocus(V ) = rk(dF ) at a generic point x ∈ X, using the de-
scription of the tangent map of F (see 3.0.3), we have :

dimLocus(V ) = ]{i : ai ≥ 0};
similarly , for general x ∈ X:

dimLocus(Vx) = ]{i : ai ≥ 1}.

Definition 4.1. f is called free (over B) if ai ≥ 0 for every i. Equivalently f is
free if f∗TX ⊗ IB is generated by its global sections and H1(P1, f∗T (X)⊗ IB) = 0
(for more see [K095] II.3).

From the above observations we have immediately the following.

Proposition 4.2. (Assume char(k) = 0). X is uniruled if and only through a
general point x ∈ X there is a free rational curve.
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Remark 4.3. Note that X is uniruled if and only if there exists a family of rational
curve V such that i : Univ(X) −→ X is dominant. (This follows from the fact
that the irreducible components of RatCurvesn(X) are numerable; which in turn
follows from the fact that families of a given degree, with respect to a very ample
line bundle, are finite, depending on the Hilbert polynomial).
In this case we call V a unruling for X.

Theorem 4.4. Let V be an irreducible component of RatCurvesn(X). Denote by
Vfree ⊂ V the parameter space of members of V that are free. Then V is a uniruling
if and only if Vfree is nonempty. In this case, Vfree is a Zariski open subset of the
smooth locus of V.

Given a uniruling V on X and a point x ∈ X, let Vx be the normalization of the
subvariety of V parametrizing members of V passing through x. Since by the above
Theorem non-free rational curves do not cover X, for general point x ∈ X, the
structure of Vx is particularly nice ([K095] II.3.11):

Theorem 4.5. For a uniruling V on a projective manifold X and a general point
x ∈ X, all members of Vx belongs to Vfree. Furthermore, the variety Vx is a finite
union of smooth quasi-projective varieties of dimension degKX−1(V)− 2.
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Definition 4.6. A family of rational curve V on a projective manifold X is locally
unsplit or unbreakable if Vx is projective for a general x ∈ X. Members of an
unbreakable uniruling on X will be called minimal rational curves on X. (In [K095]
IV.2.1 the definition is given for all points x ∈ X, not only general, and it is called
unsplit family).

Unbreakable unirulings exist on any uniruled projective manifold. To see this, we
need the following notion.

Definition 4.7. Let L be an ample line bundle on a projective manifold X. A
uniruling V is minimal with respect to L, if degL(V) is minimal among all unirul-
ings of X. A uniruling is a minimal uniruling if it is minimal with respect to some
ample line bundle.

Proposition 4.8. Minimal unirulings exist on any uniruled projective manifold. A
minimal uniruling is unbreakable. In particular there exist unbreakable unirulings
on any uniruled projective manifold.

Sketchy geometric proof: suppose for a uniruling V, which is minimal with respect
to an ample line bundle L, the variety Vx is not projective for a general point
x ∈ X. Then the members of Vx degenerate to reducible curves all components
of which are rational curves of smaller L-degree than the members of V and some
components of which pass through x. Collecting those components passing through
x as x varies over the general points of X gives rise to another uniruling V ′ satisfying
degL(V ′) < degL(V), a contradiction to the minimality of degL(V).

Mori shows that a weaker version of this property continues to hold for unbreakable
unirulings:

Theorem 4.9. Let V be an unbreakable family. Then for a general point x ∈
Locus(V) and any other point y ∈ Locus(Vx), there does not exist a positive-
dimensional family of members of V that pass through both x and y.
(This is the definition of generically unsplit family in [K095] I.V.2.1. The Theorem
is [K095] I.V.Proposition 2.3.)

The theorem is proved again by a ”bend-and-break” plus rigidity argument. Geo-
metrically, it says that any 1-dimensional family of rational curves which share two
distinct points in common must degenerate into a reducible curve. This is the most
important geometric property of an unbreakable uniruling.

If V is unbreakable and we let V = u−1(V) and Π : V → X × X be the map
[f ]→ (f(0), f(∞)), the Theorem 4.9 says that the fiber of Π over the generic point
of Im (Π) has dimension at most one.
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Using this formulation of the Theorem we have the following:

Proposition 4.10. Let V be an unbreakable family and let V = u−1(V).
If x ∈ X is a general point in Locus(V ), then

dimV = dimLocus(V ) + dimLocus(V, 0→ x) + 1.

Proof. The proof follows from the semi continuity of the fiber dimension ([K095]
IV.2.5).
By upper-semicontinuity, for x ∈ Locus(V )

dim{[f ] ∈ V : f(0) = x} ≥ dimV − dimLocus(V ).

If y ∈ Locus(Vx) similarly

dim{[f ] ∈ V : f(0) = x, f(∞) = y} ≥ dimV − dimLocus(V )− dim(Locus(Vx),

equality holds for general x and y.
The proposition follows since

1 = dimΠ−1(x, y) = dim{[f ] ∈ V : f(0) = x, f(∞) = y}.
�

Combining this Theorem with 1.2 we obtain the following result.

Corollary 4.11. Let V be an unbreakable family and let V := u−1(V). Then

• dimX + deg−KV ≤ dimLocus(V ) + dimLocus(V, 0→ x) + 1
• dimX + deg−KV ≤ 2dimLocus(V ) + 1 ≤ 2dimX + 1
• deg−KV ≤ dimLocus(V, 0→ x) + 1 ≤ dimX + 1
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Definition 4.12. A rational curve C ⊂ X is unbending if under the normalization
vC : P1 −→ C ⊂ X, the vector bundle vC

∗T (X) has the form

vC
∗T (X) = O(2)⊕O(1)p ⊕On−1−p

for some integer p satisfying 0 ≤ p ≤ n− 1, where n = dimX.
(This is the definition of Minimal free morphism in [K095] I.V.2.8.)

The above definition allows an infinitesimal version of Theorem 4.9.

Theorem 4.13. A general member of an unbreakable uniruling is unbending.

Proof. (See [K095] 2.9, 2.10) Sketch of proof: Let [f ] ∈ V ⊂ Homn
bir(P1, X) a

general element of an irreducible component V which is an unbreakable uniruling
(i.e. V = u−1V with V an unbreakable uniruling).
Let f∗TX = OP1(a1)⊕ ...⊕OP1(an). By assumption ai ≥ 0 for every i. Then

dimX+Σai = dimV = dimLocus(V )+dimLocus(V, 0→ x)+1 = dimX+]{i : ai ≥ 1}+1.

Therefore Σai = ]{i : ai ≥ 1}+ 1, that is at most one of the ai is at least two.

Remark 4.14. If f : P1 → C ⊂ X is an unbending member of Vx the differential
Tf : T (P1) −→ f∗T (X) is an isomorphism of T (P1) and the unique O(2) summand.
Therefore Tfp is non zero at every p ∈ P1. Recall that a curve is immersed if
its normalization has rank one at every point; therefore an unbending member is
immersed.
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Definition 4.15. A family of rational curve V on a projective manifold X is un-
split if V is projective.

Let V be an unsplit uniruling. It defines a relation of rational connectedness with
respect to V, which we shall call rcV relation for short, in the following way: x1, x2 ∈
X are in the rcV relation if there exists a chain of rational curves parametrized by
morphisms from V which joins x1 and x2. The rcV relation is an equivalence relation
and its equivalence classes can be parametrized generically by an algebraic set.
More precisely, we have the following result due to Campana and, independently,
to Kollár-Miyaoka-Mori.

Theorem 4.16. (see [K095], IV.4.16). There exist an open subset X0 ⊂ X and
a proper surjective morphism with connected fibers ϕ0 : X0 → Z0 onto a normal
variety, such that the fibers of ϕ0 are equivalence classes of the rcV relation.

We shall call the morphism ϕ0 an rcV fibration. If Z0 is just a point then we will
call X a rationally connected manifold with the respect to the family V, in short
an rcV manifold.

Lemma 4.17. Let X be a manifold which is rationally connected with the respect
to a unsplit uniruling V. Then ρ(X) := dimN1(X) = 1 and X is a Fano manifold.

Also in this case the proof is a sort of an (easy) bend and break lemma.
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5. Tangent Map

Let X be a smooth projective variety and V ⊂ RatCurvesn(X), a closed irreducible
component; fix a point x ∈ X and consider Vx.

Definition 5.1. The rational map Φx : Vx−−−− > P (TxX), defined, at [f ] ∈ Vx
which is smooth at 0 , by Φx([f ]) = [(Tf)0(∂/∂t)], c.f. [Mori79, pp.602-603], is
called the tangent map.
It sends a member of Vx which is smooth at 0 to its tangent direction.

By P we denote the “natural projectivisation” (that is vector spaces modulo homo-
theties) in opposition to “Grothendieck projectivisation” (that is projective spec-
trum of the symmetric algebra of a vector space) which we denote by P. With t we
denote a local coordinate around 0 ∈ P1.

Proposition 5.2. If f : P1 → C ⊂ X is an unbending member of Vx, the tangent
map above defined can be extended to [f ], even when C is singular at x, because the
differential Tf : T (P1) −→ f∗T (X) is injective.
Moreover Φx is immersive at [f ] ∈ Vx.

Proof. It remains to prove that Φx is immersive; we take it from [Hw01] Proposition
1.4. Let V = u−1V the Hilbert family corresponding to V; we have seen that
T[f ]Homn

bir(P1, X,B) = H0(P1, f∗TX(−B)), B = ∅ or x. Passing to the quotient

by Aut(P1), i.e. passing to V, we delete the part corresponding to T (P1); since
vC
∗T (X) = O(2)⊕O(1)p ⊕On−1−p, we have

T[f ](Vx) = ⊕Op ⊕O(−1)n−1−p ⊂ T[f ](V) = ⊕O(1)p ⊕On−1−p.

Take v ∈ T[f ](Vx)subsetT[f ](V); we can find a deformation ft of f0 := f such that
df
dt |t=0

= v. Let z be a local coordinate in P1 centered at 0.

Then the differential

dΦx : T[f ](Vx)→ TΦx([f ])P (TxX)

send v to dΦx(v) = d
dt |t=0

dft
dz |z=0

= d
dz |z=0

dft
dt |z=0

= dv
dz |z=0

.

To derive v with respect to z we think it in T[f ](V) = ⊕O(1)p⊕On−1−p; a non zero
section here has non vanishing differential. �

In particular, Theorem 4.13 implies that for an unbreakable uniruling V and a
general point x ∈ X, the tangent map Φx is generically finite over its image.

Kebekus has carried out an analysis of singularities of members of Vx and proved
that they are considerably well behaved. Among other things, he ([Keb02] [Theorem
3.3] has shown

Theorem 5.3. For an unbreakable uniruling V and a general point x ∈ X, mem-
bers of Vx which are singular are a finite number. Moreover the singular ones are
immersed at the point corresponding to x.

Using this, Kebekus has shown the following ([Keb02-2] [Theorem 3.4].

Theorem 5.4. For an unbreakable uniruling V and a general point x ∈ X (as
in Theorem 5.3), the tangent morphism Φx : Vx −→ P (TxX) can be defined by
assigning to each member C of Vx its tangent direction.
This morphism Φx is finite over its image.
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Proof. Let ix be the map in 3.0.2; by 5.3 the preimage i−1
x (x) contains a section,

which we call σ∞ ' Vx, and at most a finite number of further points. Let Ux be
the inverse image of Vx in the universal family.
Since all curves are immersed at x, the tangent morphism of ix gives a nowhere
vanishing morphism of vector bundles,

Tix : TUx|Vx|σ∞ → i∗x(TX|x).

The tangent map Φx is then given by the projectivization of the above map. As-
suming that Φx is not finite, then we can find a curve C ⊂ Vx such that Nσ∞,Ux is
trivial along C. But σ∞ can be contracted and the normal bundle must be negative.

The next result was proved in a special case (when the tangent map is surjective)
by Kebekus, in general it has been proved by Hwang and Mok [HM04].

Theorem 5.5. For an unbreakable uniruling V and a general point x ∈ X (as
in Theorem 5.3), the tangent morphism Φx : Vx −→ P (TxX) is birational (i.e.
generically injective) over its image.

Theorems 5.4 and 5.5 says that Φx is the normalization of its image in P (TxX).
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Definition 5.6. We define Sx ⊂ P (TxX) as the closure of the image of the map
Φx and we call it tangent cone of curves from V at the point x.

J.-M.Hwang and N. Mok call this Variety of Minimal Rational Tangents. The name
tangent cone follows from the fact that Sx is (at least around [f ]) the tangent cone
to Locus(Vx).

For our purposes we need the following observation which follows from the above
discussion (sse also Proposition 2.3 in [Hw01]).

Lemma 5.7. The projectivised tangent space of the tangent cone Sx at Φx([f ]) is
equal to P ((f∗TX)+

0 ) ⊂ P ((f∗TX)0) = P (TxX).

Proof. By 3.0.3 the tangent space to Locus(Vx) at f(p) for p 6= 0 is the image

of the evaluation of sections of the twisted pull-back of TX which is Im(T F̂ )p =
(f∗TX)+

p ⊂ (f∗TX)p = Tf(p)X. Thus passing with p to 0 we get the result.



20 ANDREATTA

6. Characterization of Pn

The following is the celebrated Theorem of Mori of 1979 ([Mo79].

Theorem 6.1. Let X be a complex projective manifold of dimension n ≥ 3. As-
sume that TX is ample. Then X is isomorphic to the projective space.

The next Theorem was first proved by Cho-Miyaoka-Shepherd Barron; subsequently
Kebekus gave a shorter proof in [Keb02-2].
Note that Mori’s Theorem follows immediately from it.

Theorem 6.2. Let X be a complex projective manifold of dimension n ≥ 3. As-
sume that for every curve C ⊂ X we have −KX

.C ≥ n+ 1. Then X is isomorphic
to the projective space.

Proof. Take an unbreakable uniruling V. By 4.5, and our assumption, for a general
point x ∈ X we have that Vx is smooth and dim(Vx) = −KX

.C − 2 = (n− 1).
By 5.4 and 5.5 and Zariski Main Theorem (birational morphism into a normal

scheme has connected fibers), we have that Vx ' σ∞ ' Pn−1. Let ĩx : Vx → X̃ =
BlxX be the lift up of ix; since Tix has rank one along σ∞, then T ĩx has maximal
rank along σ∞, in particular Nσ∞,Ux ' NE/X̃ = OPn−1(−1).

We conclude via an argument of Mori,
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Mori’s argument as in 3.2 of [Keb02-2].
Consider the Stein factorization of the universal map ix : Ux → X : Ux → Y → X,
where the first map α : Ux → Y contracts the divisor σ∞ and the second β : Y → X
is a finite map.
Since R1π∗(OUx) = 0 and OUx(σ∞)|σ∞

' OPn−1(−1), the push forward of the
twisted ideal sheaf sequence

0→ OUx → OUx(σ∞)→ OUx(σ∞)|σ∞
→ 0

gives on Vx ' Pn−1 a sequence

0→ OPn−1 → E → OPn−1(−1)→ 0,

where E is a vector bundle of rank 2 and Ux ' P(E∗).
Since Ext1Pn−1(OPn−1(−1),OPn−1) = 0, then Ux ' P(OPn−1(−1) ⊕ OPn−1). An
application of Zariski’s main theorem shows that α is the standard contraction of
σ∞, that is Y = Pn
We have that adiunction formula for a finite, surjective morphism:

−KPn = β∗(−KX) + branch divisor.

Let l be a line through α(x) and t = β(l); t is a curve associated with Vx. Thus we
have

n+1 = −KX
.t = (β∗(−KX)).l = (−KPn)−branch divisor).l = n+1−branch divisor.l

Thus the branch divisor is empty and β is birational, thus an isomorphism.
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The following generalization of 6.1 is due to Andreatta and Wisniewski [AW01].

Theorem 6.3. Let X be a complex projective manifold of dimension n ≥ 3. As-
sume that there exist a subsheaf E ⊂ TX which is an ample vector bundle. Then
X is isomorphic to the projective space.

Proof. By the assumption that there exist a subsheaf E ⊂ TX which is an ample
vector bundle we can apply the Theorem 2.3 and therefore X is uniruled. Take an
unbreakable uniruling V.
For a general f ∈ V we have f∗TX = O(2) ⊕ O(1)⊕d ⊕ O⊕(n−d−1) where d =
deg(f∗(−KX))− 2 (see 4.13).

Lemma 6.4. For any f ∈ V the pull-back f∗E is isomorphic either to O(1)⊕r

or to O(2) ⊕ O(1)⊕(r−1). In particular the family of curves parametrized by V is
unsplit.

Proof. For a general f ∈ V the pull-back f∗E is an ample subbundle of f∗TX =
O(2)⊕O(1)⊕(d)⊕O⊕(n−d−1) and thus it is as in the lemma. Since E is ample this
is true also for all f ∈ V . Since deg(f∗E) = r or deg(f∗E) = r + 1 and r > 1, and
for any ample bundle E over a rational curve we have deg(E) ≥ rank(E), it follows
that no curve from V can be split into a sum of two or more rational curves, hence
V is unsplit. �

We shall analyze X using the notions of rcV relation and rcV fibration. The fol-
lowing is a key observation.

Lemma 6.5. Let X, E and V be as above and moreover assume that ϕ0 : X0 → Z0

is an rcV fibration. Then E is tangent to a general fiber of ϕ0. That is, if Xg is a
general fiber of ϕ0, then the injection E|Xg → TX|Xg factors via E|Xg ↪→ TXg.

Proof. Choose a general Xg (in particular smooth) and let moreover x ∈ Xg and
f ∈ Vx be general as well. Then Locus(Vx) ⊂ Xg. By 3.0.3 the tangent space to
Locus(Vx) at f(p) is the image of the evaluation of sections of the twisted pull-back
of TX, which is = (f∗TX)+

p , therefore (f∗TX)+
p ⊂ (f∗TXg)p for every p ∈ P1\{0}.

This implies that E|Xg → TX|Xg factors to E|Xg → TXg generically and since the
map TXg → TX|Xg has cokernel which is torsion free (it is the normal sheaf which
is locally free) this yields E|Xg ↪→ TXg, a sheaf injection.
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Proposition 6.6. The general fiber of ϕ0, Xg, is Pk and E|Xg = O(1)⊕r or E|Xg =
TXg.

Proof. By abuse during the proof we denote the general fiber with X := Xg. We
consider here only the case when for f ∈ V the pull-back f∗E is isomorphic to
O(2)⊕O(1)⊕(r−1). In particular f∗E ⊂ (f∗TX)+

Comparing the splitting type of f∗E and f∗TX we see that the tangent map
Tf : TP1 → f∗TX factors to a vector bundle (nowhere degenerate) injection
TP1 → f∗E. (In other words, we have surjective morphism (f∗E)∗ → ΩP1 '
O(−2)).
The vector bundle (nowhere degenerate) injection TP1 → f∗E implies (f∗TX)+ ↪→
f∗E. In fact, choose a general f which is an immersion at 0→ x. Then Φx([f ]) ∈
P (Ex) = P ((f∗E)0) ⊂ P (TxX) = P ((f∗TX)0) and the same holds for morphisms
in a neighborhood of [f ] in Vx. Thus around Φx([f ]) the tangent cone Sx is contained
in P (Ex) = P ((f∗E)0), so is its tangent space P ((f∗TX)+

0 ) (see 5.7).
Therefore f∗E = (f∗TX)+ and thus deg(f∗E) = deg(f∗(−KX)). Since ρ(X) = 1
it follows that det(E) = −KX .

The embedding E ↪→ TX gives rise to a non-trivial morphism det(E)→ ΛrTX and
thus to a non-zero section of ΛrTX ⊗KX . We use dualities to have the equalities:

h0(X,ΛrTX ⊗KX) = hn(X,ΩrX) = hr(X,ΩnX) = hr(X,KX) = hn−r(X,ØX)

and, since X is Fano, the latter number is non-zero only if r = n. Thus ΛrTX ⊗
(detE)−1 ' OX so E ↪→ TX is nowhere degenerate, hence an isomorphism. We
conclude by Theorem 6.1.
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Finally we prove that dimZ0 is zero , i.e. X is rationally connected. By contradic-
tion if dimZ0 ≥ 1 in [AW01] we proved that :

Lemma 6.7. Outside a subset of codimension ≥ 2 the morphism ϕ0 is a Pk-bundle
(in the analytic topology).

Then we take a complete curve B ⊂ Z0 and we consider the Pk-bundle ϕ0 : XB :=
ϕ−1

0 (B)→ B with the ample vector bundle E|XB .

We get a contradiction applying the following result, which is due to Campana and
Peternell.

Lemma 6.8. Let X be a n-dimensional projective manifold, ϕ : X → Y a Pk
bundle (k < n) of the form X = P(V ) with a vector bundle V on Y . Then the
relative tangent sheaf TX/Y does not contain an ample locally free subsheaf
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7. Rational Curves on Symplectic varieties

A holomorphic 2-form ω on a smooth variety is called symplectic if it is closed
and non-degenerate at every point.
A symplectic variety is a normal variety Y whose smooth part admits a holo-
morphic symplectic form ωY such that its pull back to any resolution π : X → Y
extends to a holomorphic 2-form ωX on X.
We call π a symplectic resolution if ωX is non degenerate on X, i.e. it is a
symplectic form.
More generally, a map π : X → Y is called a symplectic contraction if X is
a symplectic manifold, Y is normal and π is a birational projective morphism. If
moreover Y is affine we will call π : X → Y a local symplectic contraction or
local symplectic resolution. The following facts are well known.

Proposition 7.1. Let Y be a symplectic variety and π : X → Y be a resolution.
Then the following statement are equivalent: (i) π∗KY = KX , (ii) π is symplectic,
(iii) KX is trivial, (iv) for every symplectic form on Yreg its pull-back extends to a
symplectic form on X.
Note that Y is Gorenstein and KY is trivial.

Corollary 7.2. By the Grauert Riemeschneider Teorem 0 = Riπ∗KX = Riπ∗OX
for all positve i. In particular
- Y has rational singularities.
- All exceptional fibers of π are uniruled.

Theorem 7.3. Let π : X → Y be a symplectic resolution with dimX = 2n. Let
also f : P1 → X be a non constant morphism such that f(P1) is an f -exceptional
curve.
Then dim Homf (P1, X) ≥ 2n+ 1.

Proof. The Theorem was proved by Z. Ran [Ra95] in the case X is projective. In
general it was proved by J. Wierzba [Wie03].
Wierza uses a Theorem of Bogomolov, Beauville, Todorov which says the following:

Theorem 7.4. Let X be a compact symplectic manifold. Then the deforma-
tion space (the Kuranishi space) of the complex structure of X is smooth and its
tangent space at [X] is excactly H1(X,Ω1

X). Moreover, given a homology class
α ∈ H2(X,Q) = H2,0(X)∗ which is represented by a rational 1-cycle, there is a
one-parameter deformation Y = {Yt}t∈T such that the flat lifting α ∈ H2(Xt,Q) of
α is no more an algebraic cycle for general t ∈ T .

Thus there exists a first order symplectic deformation of X, which stays in an
unobstructed deformation χ, such that all deformations of f stay in X. After
showing that all the pertinent deformations are ”represented” by algebraic spaces,
he shows that g : P1 → X ⊂ χ deform in a family of dimension (Mori)

dimgHom(P1, χ) = χ(P1, g∗Tχ) ≥ dimχ− degf∗Kχ ≥ 2n+ 1.

Since all the deformation of f stays inX then dimHomf (P1, X) = dimHomg(P1, χ)
and we are done. �

It follows from this last result the following Theorem (semismall property).
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Theorem 7.5. A symplectic resolution π : X → Y is semismall, that is for every
closed subvariety Z ⊂ X we have 2 codimZ ≥ codimπ(Z). If equality holds Z then
is called a maximal cycle.

Proof. Sketch: let F ⊂ X be a generic fiber of Z → π(Z), let also d = dimZ and
e = dim(π(Z)). We know that all exceptional fibers are uniruled (7.2); take then V
be a generically unsplit family which covers F as in 4.9 and let V := u−1(V). Then
by 4.10 we have

dimV = dimLocus(V ) + dimLocus(V, 0→ x) + 1 ≤ 2dimF + 1 = 2d− 2e+ 1.

Let f : P1 −→ F be an rational curve in V ; since f(P1) gets contracted under π, all
its deformation in X stay in the exceptional set and we may assume that all small
deformations stay in Z. Therefore

dim[f ]Hom(P1, X) = dim[f ]Hom(P1, Z) = dim[f ]Hom(P1, F ) + e ≤ 2d− e+ 1.

By the above Theorem 7.3 we have on the other hand that dim[f ]Hom(P1, X) ≥
2n+ 1 and the Theorem follows. �
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8. Local symplectic contractions in dimension 4.

8.1. MDS structure. In this section π : X → Y is a local symplectic contraction
and dimX = 4.
By the semismall property (see Theorem 7.5), the fibers of π have dimension less
or equal to 2. We will denote with 0 the unique (up to shrinking Y to a smaller
affine set) point such that dimπ−1(0) = 2. If π is divisorial then the general non
trivial fiber has dimension 1.
By N1(X/Y ) we denote the Q vector space of 1-cycles proper over Y , modulo
numerical equivalence (c.f. [KM98, Example 2.16]). Then N1(X/Y ) and N1(X/Y )
are dual via the intersection pairing. Since Riπ∗OX = 0 for i > 0, it follows that
N1(X/Y ) is a finite dimensional vector space.
The following theorem was proved by Wierzba-Wisniewski, a version in higher
dimension has been proved independently by Cho-Miyaoka-Shepherd-Barron. It is
a sort of relative characterization of the projective space: the hard part is to prove
that the two dimensional fiber is normal, then the proof is as in Section 6.

Theorem 8.1. Suppose that π is small (i.e. it does not contract any divisor).
Then π is locally analytically isomorphic to the collapsing of the zero section in the
cotangent bundle of P2. Therefore X admits a Mukai flop

The above theorem, together with Matsuki’s termination of 4-dimensional flops is
the key ingredient in the proof of the following result.

Theorem 8.2. Let π : X → Y be a 4-dimensional local symplectic contraction and
let π−1(0) be its only 2-dimensional fiber. Then X is a Mori Dream Space over Y .
Moreover any SQM model of X over Y is smooth and any two of them are connected
by a finite sequence of Mukai flops whose centers are over 0 ∈ Y . In particular,
there are only finitely many non isomorphic (local) symplectic resolutions of Y ,.
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9. Rational curves and differential forms

9.1. The set-up. In this section π : X → Y will be a local symplectic divisorial
contraction and dimX = 4. Call D ⊂ X the exceptional locus (of dimension 3)
and S = π(D) ⊂ Y (of dimension 2).
A general fiber of π over any component of S is a configuration of P1’s with dual
graph being a Dynkin diagram (see Theorem 1.3 of [Wie03] for further details).

Choose an irreducible component of S, call it S′. Take an irreducible curve C ' P1

in a (general) fiber over a point in S′ \{0} and let D′ be the irreducible component
of D which contains C; note that π(D′) = S′ and S′ may be (and usually is) non-
normal. Let V ′ ⊂ Chow(X/Y ) be an irreducible component of the Chow scheme
of X containing C. By V we denote its normalization and p : U → V is the
normalized pullback of the universal family over V ′. Finally, let q : U → D′ ⊂ X be
the evaluation map. The contraction π determines a morphism π̃ : V → S′, which is

surjective because C was chosen in a general fiber over S′. We let µ : V → S̃′ → S′

be its Stein factorization.
We will assume that µ is not an isomorphism which is equivalent to say that D′

has a 2-dimensional fiber over 0.
We will assume that S′ is analytically irreducible at 0 or that ν−1(0) consists of
single point. The exceptional locus of µ is µ−1(ν−1(0)) =

⋃
i Vi where Vi ⊂ V are

irreducible curves.

(9.1.4) U

p

��

q // D′ ⊂ X

π

��
V

µ // S̃′
ν // S′ ⊂ Y

If necessary, we can take V to be smooth, eventually by replacing it with its desin-
gularization and U with the normalized fiber product.

Theorem 9.1. The surface S̃′ has at most Du Val (or A − D − E) singularity at

ν−1(0) and µ : V → S̃′ is its, possibly non-minimal, resolution. In particular every
Vi is a rational curve.

We note that although the surface S̃′ is the same for all the symplectic resolutions

of Y , the parametric scheme for lines, which is a resolution of S̃′ may be different
for different SQM models, see 9.2 for an explicit example.
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9.2. Proof: the differentials. Let us consider the derivative map Dq : q∗ΩX →
ΩU . We have another derivation map into ΩU , namely Dp : p∗ΩV → ΩU . It fits in
the exact sequence

(9.2.5) p∗ΩV −→ ΩU −→ ΩU/V −→ 0,

whose dual sequence is

(9.2.6) 0 −→ TU/V −→ TU −→ p∗TV

The symplectic form on X, that is ωX , gives an isomorphism ωX : TX → ΩX . We
consider the following diagram involving morphism of sheaves over U appearing in
the above sequences.

(9.2.7) TU/V // TU

(Dq)∗

��

(Dp)∗ // p∗(TV)

p∗(ωV)
--
p∗(ΩV)

Dp

��
q∗TX

q∗(ωX)
// q∗ΩX

Dq // ΩU // ΩU/V

We claim that the dotted arrow exists and it is obtained by a pull back of a two
form ωV on V, and it is an isomorphism outside the exceptional set of µ which is⋃
i Vi.

Indeed, the composition of arrows in the diagram which yields TU → ΩU is given
by the 2-form Dq(ωX); it is zero on TU/V ⊂ TU , because this is a torsion free sheaf

and its restriction to any fiber of p outside
⋃
i Vi (any fiber of p is there a P1) is

O(2) while the restriction of ΩU is O(−2)⊕O⊕O. Therefore we have that it is in
fact a map p∗TV → ΩU .
By the same reason the composition TU → ΩU → ΩU/V is zero since TU on any
fiber of p outside

⋃
i Vi is O(2) ⊕ O ⊕ O while ΩU/V is O(−2). Thus the map

Dq(ωX) : p∗TV → ΩU factors through p∗(TV)→ p∗(ΩV).
As a result, since it is trivial on the fiber of p, Dq(ωX) = Dp(ωV), for some 2-form
ωV on V.
Since Dq is of maximal rank outside of p−1(

⋃
i Vi) and p is just a P1-bundle there,

it follows that ωV does not assume zero outside the exceptional set of µ. Hence
KV =

∑
aiVi, with ai ≥ 0 being the discrepancy of Vi.
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9.3. Examples: quotient symplectic singularities. Let S be a smooth surface
(proper or not). Denote by S(n) the symmetric product of S, that is S(n) = Sn/σn,
where σn is the symmetric group of peremutations of n elements. Let also Hilbn(S)
be the Hilbert scheme of 0-cycles of degree n. A classical result says that Hilbn(S)
is smooth and that τ : Hilbn(S)→ S(n) is a crepant resolution of singularities. We
will call it a Hilb-Chow map.
Suppose now that S → S′ is a resolution of a Du Val singularity which is of type
S′ = C2/H with H < SL(2,C) a finite group. Then the composition Hilbn(S) →
S(n) → (S′)(n) is a local symplectic contraction.
We note that (S′)(n) is a quotient singularity with respect to the action of the
wreath product H oσn = (Hn)oσn (the group σn permutes factors in Hn = H×n).
Let consider the case n = 2, i.e. let H < SL(2) be a finite subgroup and let G :=
H×2 oZ2 where Z2 interchanges the factors in the product. We write G = H o Z2.
Note that Zn+1oZ2 has another nice presentation, namely (Zn+1)×2oZ2 = D2noZn,
where D2n is the dihedral group of the regular n-gon and Zn acts on it by rotations.
We consider the projective symplectic resolution described above:

π : X := Hilb2(S)→ S(2) → (C2/H)(2) := Y

where ν : S → C2/H is the minimal resolution with the exceptional set
⋃
i Ci,

where Ci, i = 1, ..., k, are (−2)-curves.
The morphism τ : Hilb2(S)→ S(2) is just a blow-up of the locus of A1 singularities
(the image of the diagonal under S2 → S(2)) with irreducible exceptional divisor
E0 which is a P1 bundle over S. We set S′ = π(E0). By Ei, with i = 1, . . . , k we
denote the strict transform, via τ , of the image of Ci×S under the map S2 → S(2).
By ei we denote the class of an irreducible component of a general fiber of π|Ei .

The image π(Ei) for i ≥ 1 is the surface S′′ ' C2/H. The singular locus of Y is
the union S = S′ ∪ S′′.
The irreducible components of π−1(0) are described in the following.

• Pi,i, for i = 1, ..., k. They are the strict transform of C
(2)
i via τ . They are

isomorphic to P2.
• Pi,j , for i, j = 1, ..., k and i < j. They are the strict transform via τ of the

image of Ci × Cj under the morphism S2 → S(2). They are isomorphic to
P1 × P1 if Ci ∩ Cj = ∅ and to the blow up of P1 × P1 if Ci ∩ Cj 6= ∅.
• Qi, for i = 1, ..., k. They are the preimage τ−1(∆Ci), where ∆Ci is the

diagonal embedding of Ci in S(2). They are isomorphic to P(TS|Ci) =
P(OCi(2)⊕OCi(−2)), i.e. to the Hirzebruch surface F4.

The Figure 1 presents a “realistic” description of configurations of components in
the special fiber of symplectic resolutions of C4/(Z3 o Z2). By abuse, the strict
transforms of the components and the results of the flopping of P2’s are denoted
by the same letters.
The position of these configurations in Figure 1 is consistent with the decomposition
of the cone Mov(X/Y ). In particular, the configuration at the top is associated with
the Hilbert-Chow resolution. Note that the central configuration of this diagram
cointains three copies of P2, denoted Pij , which contain lines whose classes are
e0 − e1, e0 − e2 and e1 + e2 − e0.
On the other hand, the configuration in the bottom is associated with the resolution
which can be factored by two different divisorial elementary contractions of classes
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P12

P12
P12

P12

P12

P11

P11

P11

P11

P11

P22

P22

P22

P22

Q1

Q1

Q1

Q1

Q1

Q2

Q2

Q2

Q2

Q2

P22

Figure 1. Components of the central fiber in resolutions of
C4/(Z3 o Z2)

e1 and e2. In fact, contracting both e1 and e2 is a resolution of A2 singularities
which is a part of a resolution of Y which comes from presenting Z3 oZ2 as D6oZ3.
That is, X is then obtained by first resolving the singularities of the action of
D6 = σ3 and then by resolving the singularities of the Z3 action on this resolution.
The rulings of the respective surfaces coming from this last blow up are indicated
by dotted line segments. We will call such X a D6 o Z3-resolution.

By V0 we denote the component of Chow(X/Y ) dominating S′ and parametrizing
curves equivalent to e0, while by V1 and V2 we denote components dominating S′′

parameterizing deformations of e1 and e2. The surfaces Vi may depend on the
resolution and, in fact, while V1 and V2 remain unchanged, the component V0 will
change under flops.

Lemma 9.2. If X is the Hilbert-Chow resolution then V0 is the minimal resolution
of A2 singularity. If X is the D6 oZ3-resolution then V0 is non-minimal, with one
(−1) curve in the central position of three exceptional curves.

Proof. The first statement is immediate. To see the second one, note that we have
the map of V0 to Chow of lines in the resolution of C4/σ3 divided by Z3 action. The
Z3-action in question is just a lift up of the original linear action on the fixed point
set of rotations in σ3 = D6 hence V0 resolves 2 cubic cone singularities associated
with the eigenvectors of the original action. �
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One may verify that in the D6oZ3-resolution the exceptional set in V0 parametrizes
curves consisting of three components: Q2 ∩P11, Q1 ∩P22 and a line in P12, whose
classes are, respectively, e2, e1 and e0 − (e1 + e2).
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