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1 Introduction

These are the notes of the course Foundations of Analysis delivered for the “laurea magis-
trale” in mathematics at the University of Trento. The natural audience of such a course
(and hence of such notes) is given by students who have already followed a three years
curriculum in mathematics, or, at least, who are supposed to be already familiar with
the notions of rational numbers, real numbers, ordering, sequence, series, functions, limit,
continuity, differentiation and so on. Roughly speaking, these notes are not for beginners.
Actually, many of the elementary concepts of the mathematical analysis will be recalled
along the notes, but this will be always done just thinking that the reader already knows
such concepts and moreover has already worked1 with it.

There are two main concepts that a student faces when she starts to study mathe-
matical analysis. They are the concept of limit and the concept of supremum also said
superior extremum (as well as of infimum or inferior extremum). Such two concepts are
those which are the basic bricks for constructing all the real analysis2 as we study, learn,
know, investigate and apply nowadays. We can say that “limit” and “supremum” form
the “core” of mathematical analysis, from which all is generated. In Figure 1 many of the
generated things are reported; the ones inside the ellipse are somehow touched by this
notes, in particular in Sections 2 and 6. Indeed, this is one of the main goal of the notes:
starting from the basic concepts of limit and supremum, show how all the rest comes out.
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Figure 1: The core of the Mathematical Analysis

The other goal of these notes is to break the “core”, separately analyzing and gener-

1Made exercises.
2And in some sense also the complex analysis.
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alizing the two concepts of limit and supremum. This will lead us to consider, from one
side, metrics and topologies in general sets, and, from the other side, ordered fields with
the archimedean and completeness property. Figure 2 shows such an approach, which will
be developed in Sections 3, 4, and 5. One of the main results here reported is the fact
that the set of the real numbers is the unique3 complete ordered field. In some sense, we
can say that, if we want to make analysis, we have to make it on the real numbers: no
alternatives are given.

LIMIT SUPREMUM

DISTANCE

METRIC
SPACES

TOPOLOGICAL
SPACES

COMPACTNESS
AND
CONNECTNESS

ORDER RELATION

ARCHIMEDEAN
ORDERED
FIELDS
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REAL NUMBERS AS COMPLETE
ORDERED   FIELD

co re

Figure 2: Breaking the core

The references reported as last section were all consulted and of inspiration for writ-
ing these notes. I would also like to thank some colleagues of mine with whom, during
the writing of the notes, I have discussed about the subject and asked for some clari-
fications. They are Stefano Baratella, Gabriele Greco, Valter Moretti, Francesco Serra
Cassano, Andrea Pugliese, Marco Sabatini, Raul Serapioni, and our late lamented Mimmo
Luminati.

The mathematical notations in these notes are the standard ones. In particular R, N,
Q and C respectively stand for the sets of real, natural, rational and complex numbers.
Moreover, if n ∈ N \ {0}, then Rn is, as usual, the n-dimensional space R × . . .R i.e.
the cartesian product of R n-times. With the notation [a, b] we will mean the interval
of real numbers {x ∈ R|a ≤ x ≤ b}, that is the closed interval containing its extreme
points. In the same way ]a, b[ will denote the open interval without extreme points
{x ∈ R|a < x < b}4, ]a, b] the semi-open interval {x ∈ R|a < x ≤ b} and [a, b[ the

3In the sense that they are all isomorphic.
4Here, we of course permit a = −∞ as well as b = +∞.
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semi-open interval {x ∈ R|a ≤ x < b}5

In these notes the formulas will be enumerated by (x.y) where x is the number of
the section (independently from the number of the subsection) and y is the running
number of the formula inside the section. Moreover, the statements will be labeled by “S
x.y” where “S” is the type of the statement (Theorem, Proposition, Lemma, Corollary,
Definition, Remark, Example), x is the number of the section (independently from the
number of the subsection), and y is the running number of the statement inside the section
(independently from the type of the statement).

The symbol “�” will mean the end of a proof.
Every comment, suggestion and mistake report will be welcome, both concerning math-

ematics and English.

5In the last two cases we, respectively, permit a = −∞ and b = +∞.
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2 Basic concepts in mathematical analysis and some

complements

2.1 Limit, supremum, and monotonicity

There is a rather simple but fundamental result which links together the concepts of limit
and the one of supremum. It is the result concerning the limit of monotone sequences.

Definition 2.1 A sequence of real numbers is a function from the set of natural numbers
N to the set of real numbers R. That is, for every natural numbers n = 0, 1, 2, 3, . . . we
choose a real number a0, a1, a2, a3, . . .. We indicate the sequence by the notation {an}n∈N.6

We say that the sequence is monotone increasing if

an ≤ an+1 ∀ n ∈ N.7

We say that it is monotone decreasing if

an ≥ an+1 ∀ n ∈ N.

If ` is a real number, we say that the sequence converges to ` (or that ` is the limit of
the sequence) if

∀ ε > 0 ∃n ∈ N such that n ≥ n =⇒ |an − `| ≤ ε.

Similarly, we say that the sequence converges (often also said diverges) to +∞ (or, re-
spectively, to −∞) if

∀ M > 0 ∃ n ∈ N such that n ≥ n =⇒ an ≥M (or, respectively,
∀ M < 0 ∃ n ∈ N such that n ≥ n =⇒ an ≤M).

Definition 2.2 Given a nonempty subset A ⊆ R and a real number m, we say that m is
a majorant or an upper bound (respectively: a minorant or a lower bound) of A if

a ≤ m ∀ a ∈ A (respectively: m ≤ a ∀ a ∈ A).

The set A is said bounded from above if it has a majorant, it is said bounded from below
if it has a minorant, it is said bounded if it has both majorants and minorants.

A real number ` ∈ R is said to be the supremum of A, and we write ` = supA, if it
is the minimum of the majorants of A, that is if it is a majorant of A and any other real
number strictly smaller than ` cannot be a majorant. In other words

6Actually, this is the image of the function from N to R, and indeed we will often identify the sequence
with its image, which is the subset of R {a0, a1, a2, a3, . . .} whose a more compact notation is just {an}n∈N.
Often, with an abuse of notation, we will indicate a sequence just by {an} or even by an.

7Note that such a definition of increasingness, as well as the definition of decreasingness, takes also
account of the constant case an = an+1 for some (or even every) n.
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a ≤ ` ∀ a ∈ A, and (`′ ∈ R, a ≤ `′ ∀ a ∈ A =⇒ ` ≤ `′) .

We say that ` is the infimum of A, writing ` = inf A, if it is the maximum of the minorants
of A, that is if it is a minorant and any other real number strictly larger than ` cannot be
a minorant. In other words

a ≥ ` ∀ a ∈ A, and (`′ ∈ R, a ≥ `′ ∀ a ∈ A =⇒ ` ≥ `′) .

We say that the supremum of A is +∞, and we write supA = +∞, (respectively: the
infimum is −∞, and we write inf A = −∞) if A has no majorants (respectively: A has
no minorants), that is

∀ M > 0 ∃ a ∈ A such that a > M (respectively,
∀ M < 0 ∃ a ∈ A such that a < M).

Note that when the supremum is a real number ` then, the fact that it is the minimum
of the majorants, can be stated as

a ≤ ` ∀ a ∈ A and (∀ ε > 0 ∃ a ∈ A such that a > `− ε) ,

and similarly for the maximum of the minorants

a ≥ ` ∀ a ∈ A and (∀ ε > 0 ∃ a ∈ A such that a < `+ ε) .

The following results is of fundamental importance for the whole building of the math-
ematical analysis, and indeed it will be the subject of some of the next sections8.

Theorem 2.3 Let A ⊆ R be a non empty set. Then, its supremum exists (possibly equal
to +∞) and it is unique; in particular, if A is bounded from above, then its supremum is
a finite real number. Similarly, its infimum exists (possibly equal to −∞) and it is unique;
in particular, if A is bounded from below, then its infimum is a finite real number.

Remark 2.4 Let us note that the importance of Theorem 2.3 is especially given by the
existence result for bounded sets (the uniqueness being almost obvious by the definition).
Indeed, if we look for the supremum of a set inside another universe-set, then the existence
is not more guaranteed. Think for instance to the bounded set

A =
{
q ∈ Q

∣∣∣ q2 ≤ 2
}
⊂ Q,

and look for its supremum “inside Q”, that is look for a rational number q which is a
majorant of A and such that any other different rational majorant of A is strictly larger.

8Is it really a theorem or is it an assumption, an axiom? We are going to investigate such a question
in a following part of these notes.
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It is well known that such a number q does not exists. On the other side, the supremum of
A as subset of R exists and it is equal to

√
2 (which is not a rational number, of course).

This fact is also naively referred as “Q has holes, whereas R has not holes”.
We also recall the difference between the concept of supremum and of maximum of a set

A ⊆ R. The maximum is a majorant which belongs to the set A, whereas the supremum
is not required to belong to the set. In particular, if the set A has a maximum, then such
a maximum coincides with the supremum; if the supremum belongs to the set, then it is
the maximum; if the supremum does not belong to the set, then the set has no maximum.
Similar considerations hold for minimum and infimum. For instance the interval [0, 1[⊂ R
has infimum and minimum both coincident with 0, has supremum equal to 1, but has no
maximum.

Now we are ready to state and prove the result of main interest for this section

Theorem 2.5 (Limit of monotone sequences). Let {an}n∈N be an increasing monotone
sequence of real numbers, and let ` ∈]−∞,+∞] be its supremum, that is

` = sup{a0, a1, a2, a3, . . .} ∈]−∞,+∞],

which exists as stated in Theorem 2.3. Then the sequence converges to `. In other words,
any increasing monotone sequence converges to its supremum (possibly equal to +∞).
Similarly, if the sequence is decreasing monotone, then its converges to its infimum (pos-
sibly equal to −∞).

Proof. We prove only the case of increasing monotone sequence and finite supremum
` ∈ R.9 We have to prove that the sequence converges to `, that is, for every ε > 0
we have to find a natural number n (depending on ε) such that, for every larger natural
number n, we have |an − `| ≤ ε. In doing that we have to use the monotonicity and the
property of the supremum. Since ` is a majorant, we have

an ≤ ` ∀ n ∈ N.

Let us fix ε > 0, since ` is the minimum of the majorants we find n ∈ N such that

`− ε < an.

Using the monotonicity, we then get

n ≥ n =⇒ `− ε < an ≤ an ≤ ` < `+ ε =⇒ |an − `| ≤ ε.

ut
Another way to state Theorem 2.5 is just to say “if a sequence is increasing monotone

and bounded from above, then it converges to its (finite) supremum; if it is monotone

9The reader is invited to prove the other statements, that is: increasing monotone sequence and
` = +∞, decreasing monotone sequence and ` ∈ R, and decreasing monotone sequence and ` = −∞.
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increasing and not bounded from above, then it diverges to +∞”. Note that a bounded
sequence does not necessarily converge. Take for instance the sequence an = (−1)n which,
of course, is not monotone.

Theorem 2.5 has great importance and it is widely used in analysis. In particular it
also enlightens the importance of the property of monotonicity. In the sequel we present
some important consequences of such a theorem.

2.2 The Bolzano-Weierstrass theorem and the Cauchy criterium

Definition 2.6 Given a sequence of real numbers {an}n∈N, a subsequence of it is a se-
quence of real numbers of the form {ank}k∈N where nk stays for a strictly increasing
function

N→ N, k 7→ nk.

In other words, k 7→ nk is a strictly increasing selection of indices and so a subsequence
is a sequence given by a selection of infinitely many elements of the originary sequence
an, which are labeled respecting the same originary order.

Example 2.7 Given the sequence an = n2 − n− 1, that is

−1,−1, 1, 5, 11, 19, 29, 41, 55, 71, 89, · · ·

defining nk = 2k + 1, we get the subsequence ank as

−1, 5, 19, 41, 71, · · ·

Proposition 2.8 A sequence {an} converges to ` ∈ [−∞,+∞] if and only if every strict10

subsequence of it converges to the same value `.

Proof. We prove only the necessity in the case ` ∈ R. Let us suppose that all strict
subsequences converge to ` and, by absurd, let us suppose that an does not converge to
`. This means that it is not true that

∀ ε > 0 ∃ n ∈ N such that n ≥ n =⇒ |an − `| ≤ ε.

That is, there exists ε > 0 such that it is not true that

∃ n ∈ N such that n ≥ n =⇒ |an − `| ≤ ε.

This means that, for every k ∈ N, we may find nk ≥ k such that nk > nk−1 + 1 and that

|ank − `| > ε.

Hence, the strict subsequence {ank}k does not converge to ` and this is a contradiction.
ut

The celebrated Bolzano-Weierstrass theorem is the following,

10i.e. a subsequence which is not coincident with the whole sequence itself.
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Theorem 2.9 Every bounded11 sequence of real numbers admits a convergent subse-
quence.

To prove the theorem we need the following bisection lemma.

Lemma 2.10 Let I0 = [a, b] be a bounded closed interval of R. We divide it in two closed
half-parts by sectioning it by its medium point (a+ b)/2 an we call I1 one of those parts,
for instance the first one:

I1 =

[
a,
a+ b

2

]
.

Hence we divide I1 in two closed half-parts by sectioning it by its medium point (a+ (a+
b)/2)/2 and we call I2 one of those two parts, for instance the second one:

I2 =

[
3a+ b

4
,
a+ b

2

]
.

We proceed in this way, at every step we bisect the closed interval and we choose one of
the two closed half-parts, hence, at every step, In+1 is one of the two half-parts of In.

Then, the intersection of all (nested) closed intervals In is not empty and contains just
one point only. That is there exists c ∈ [a, b] such that⋂

n∈N

In = I0 ∩ I1 ∩ I2 ∩ · · · ∩ In ∩ · · · = {c}.

Proof. Let us denote In = [an, bn] for every n and consider the two sequences
{an}, {bn}. First of all note that, since the intervals are (closed and) nested, an, bn ∈
Im ⊆ I0 for all 0 ≤ m ≤ n, and hence the sequences are bounded. It is easy to prove that
{an} is increasing and {bn} is decreasing. Hence, by Theorem 2.5 they both converge to
c′, c′′ ∈ I0 respectively, with an ≤ c′ ≤ c′′ ≤ bn for all n (this is obvious since an ≤ bn for
all n, an is increasing and bn decreasing). By construction, it is also obvious that

0 ≤ bn − an ≤
b− a

2n
,

and this would imply c′ = c′′ = c. Since a generic x belongs to ∈
⋂
In if and only if

an ≤ x ≤ bn ∀n ∈ N,

we get the conclusion12. ut
11A sequence an is bounded if there exists M > 0 such that |an| ≤M for all n ∈ N, that is if the subset
{a0, a1, · · ·} ⊂ R is bounded.

12Here we need the fact that the intervals are closed. Indeed, if for example they are open, then x
belongs to all of them if an < x < bn. But this is not guaranteed for the point c, because it may happen
that c = an for all n, if for example you take always the left half part.
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Note that if we perform the same bisection procedure but we take the open half-parts
of the intervals instead of the closed ones, then the conclusion is not more true in general.
Consider, for example, the sequence of open intervals ]0, 1/2n[ whose intersection is empty.

Proof of Theorem 2.9. Let {an} be the sequence. Since it is bounded, there exists a
closed bounded interval I = [α, β] which contains an for all n. We are going to apply the
bisection procedure to I. Let us denote by I0 one of the two closed half-parts of I which
contains infinitely many an

13 (at least one of such half-parts exists). Hence we define

n0 = min{n ∈ N
∣∣∣an ∈ I0}.

Now, let us denote by I1 one of the two closed half-parts of I0 which contains infinitely
many an (again, at least one of such half-parts exists). We define

n1 = min{n > n0

∣∣∣an ∈ I1}.

We proceed in this way by induction: we define Ik+1 as one of the two closed half-parts
of Ik which contains infinitely many an and define

nk+1 = min{n > nk

∣∣∣an ∈ Ik+1}.

By construction, the subsequence {ank}k satisfies

ank ∈ Ik =
⋂
j≤k

Ij, ∀ k ∈ N.

By Lemma 2.10, and by the definition of limit, we get that there exists c ∈ I such that
ank → c as k → +∞. ut

An immediate consequence of Theorem 2.9 is the so-called Cauchy criterium for the
convergence of a sequence of real numbers. Such a criterium gives a sufficient and nec-
essary condition for a sequence to be convergent, and this without passing through the
computation of the limit, which is usually a more difficult problem.

Proposition 2.11 A real sequence {an} converges if and only if

∀ ε > 0 ∃ m ∈ N such that n′, n′′ ≥ m =⇒ |an′ − an′′ | ≤ ε. (2.1)

The condition (2.1) is called Cauchy condition and a sequence satisfying it is called a
Cauchy sequence.

Proof. We leave the proof of the necessary of the Cauchy condition to the reader as an
exercise. Let us prove the sufficiency. We first prove that (2.1) implies the boundedness
of the sequence. Indeed, let us fix ε > 0 and let m be as in (2.1), then we have

13Better: it contains an for infinitely many indices n.
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n ≥ m =⇒ |an| ≤ |am|+ |an − am| ≤ |am|+ ε =: M ′,
n < m =⇒ |an| ≤ max{|a0|, |a1|, . . . , |am|} =: M ′′.

Hence we get |an| ≤ max{M ′,M ′′} for all n, that is the boundedness of the sequence.
Hence, by Theorem 2.9, there exists a subsequence {ank}k converging to a real number
c. If we prove that any other subsequence is convergent to the same c, then we are done.
Let {anj}j be another subsequence, let us fix ε > 0, and let m be as in (2.1). Let k, j ∈ N
be such that

nk ≥ m, |ank − c| ≤ ε, j ≥ j =⇒ nj ≥ m.

Hence we get, for every j ≥ j,

|anj − c| ≤ |anj − ank |+ |ank − c| ≤ 2ε,

from which the convergence anj → c as j → +∞. ut

Remark 2.12 What does the Cauchy condition (2.1) mean? Roughly speaking, it means
that, when n increases, the terms an of the sequence “accumulate” themselves. If we think
to a sequence as a discrete evolution of a material point that at time t = 0 occupies the
position a0 on the real line, at time t = 1 occupies the position a1 and so on, then (2.1)
says that, when time goes to infinity, the material point brakes: it occupies positions which
become closer and closer, even if it continues to move. Since the real numbers has the
supremum property, which means that it has no holes, then the braking material point has
to finish its running somewhere, that is it has to stop in a point, which exactly is the limit
of the sequence.

As it is obvious, if the same Cauchy property (2.1) holds for a sequence of rational
numbers, then such a sequence does not necessarily converge to a rational number, and
this is because the field of the rational numbers Q “has many holes”. Take for instance
the fundamental sequence (1 + 1/n)n which, as it is well known, converges to the irra-
tional (even transcendental) Napier number e. Being convergent in R it is then a Cauchy
sequence of rational numbers, but it is not convergent to any point of Q.

2.3 Superior and inferior limit and semicontinuous functions

Definition 2.13 Given a sequence {an}n, its inferior and superior limits are, respec-
tively14

a = lim inf
n→+∞

an := lim
n→+∞

(
inf
m≥n

am

)
, a = lim sup

n→+∞
an := lim

n→+∞

(
sup
m≥n

am

)
.

14It is intended that, if infm≥n am = −∞ for all n, then, formally, limn→+∞(−∞) = −∞. Note that
this happens if and only if the sequence is not bounded from below. Also note that if infm≥n am > −∞
for some n, then infm≥n an > −∞ for all n. Similar considerations hold for the superior limit.
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Example 2.14 i) The sequence {(−1)n}n has inferior limit equal to −1 and superior
limit equal to 1.

ii) The sequence

an =


n if n is odd,

1− 1

n
if n is even, but not divisible by 4,

log

(
1

n

)
if n is divisible by 4,

has inferior limit equal to −∞ and superior limit equal to +∞.
iii) The sequence

an =

 e
27n

n2−97 if n is even,

1− 1

log(n+ 1)
if n is odd,

has inferior and superior limit both equal to 115.

Proposition 2.15 i) The inferior and superior limits a, a of a sequence always exist in
[−∞,+∞];

ii) it always holds that a ≤ a;
iii) an extended number a ∈ [−∞,+∞] is the inferior limit a (respectively: the superior

limit a) of the sequence {an} if and only if the following two facts hold: for any subsequence
{ank} it is a ≤ lim infk→+∞ ank (respectively: a ≥ lim supk→+∞ ank) and there exists a
subsequence {ank} such that a = limk→+∞ ank (respectively: a = limk→+∞ ank);

iv) a and a are both equal to the same extended number a ∈ [−∞,+∞] if and only if
the whole sequence an converges (or diverges) to a.

Proof. We only prove i) for the inferior limit, iii) for the inferior limit with a ∈ R and
only concerning the necessity of the existence of the subsequence limk ank = a, and iv)
with a ∈ R. The other points and cases are left as exercise. i) For every n, we define
an = infm≥n am. It is evident that a = lim an and that the sequence {an} is monotone
increasing. Hence we conclude by Theorem 2.5. iii) By definition of infimum, for every
integer k > 0 there exists nk ≥ k such that

ank −
1

k
≤ ak = inf

m≥k
am ≤ ank ≤ ank +

1

k
.

Now, let us fix ε > 0 and take k′ ∈ N such that 1/k′ ≤ ε/2 and that |an − a| ≤ ε/2 for
n ≥ k′. Hence we conclude by

k ≥ k′ =⇒ |ank − a| ≤ |ank − ak|+ |ak − a| ≤
1

k
+
ε

2
≤ ε.

15Actually the whole series converges to 1.
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iv) If limn an = a ∈ R then, by definition of limit, for every ε > 0 there exists n′ such
that |an−a| ≤ ε for any n ≥ n′. But this of course implies that |an−a|, |an−a| ≤ ε from
which we conclude that a = a = a. Vice versa, if a = a = a, by absurd we suppose that an
does not converge to a. But then, there exists a subsequence ank whose inferior or superior
limit is respectively strictly lower or strictly greater than a, which is a contradiction to
point iii). Indeed, since an does not converge to a, we can find ε > 0 such that for every
integer k > 0 there exists nk ≥ k with |ank − a| ≥ ε, and this means that the above
claimed subsequence exists. ut

Definition 2.16 Let f : R→ R be a function and x0 ∈ R be a fixed point. The inferior
and the superior limits of f at x0 are respectively16

lim inf
x→x0

f(x) := lim
r→0+

(
inf

x∈[x0−r,x0+r]\{x0}
f(x)

)
, lim sup

x→x0
f(x) := lim

r→0+

(
sup

x∈[x0−r,x0+r]\{x0}
f(x)

)
.

The function f is said to be lower semicontinuous (l.s.c.) at x0 (respectively said
upper semicontinuous (u.s.c.) at x0) if

f(x0) ≤ lim inf
x→x0

f(x) (respectively lim sup
x→x0

f(x) ≤ f(x0)).

We just say that f is lower semicontinuous (respectively, upper semicontinuous), with-
out referring to any point, if it is lower semicontinuous (respectively, upper semicontinu-
ous) at x for every x of its domain.

We recall here the well known definitions of limit and continuity.

Definition 2.17 Let f : R→ R be a function, x0 ∈ R be a point and ` ∈ [−∞,+∞]. We
say that the limit of f at x0 is the value `, and we write limx→x0 f(x) = ` if (supposing
` ∈ R17): for every ε > 0, there exists δ > 0 such that

|x− x0| ≤ δ =⇒ |f(x)− `| ≤ ε.

If limx→x0 f(x) = ` ∈ R and f(x0) = `, then we say that f is continuous at x0.

Proposition 2.18 Let f : R→ R be a function and x0 ∈ R be a point, and let us denote
` = lim infx→x0 f(x), ` = lim supx→x0 f(x).

i) The inferior and the superior limit of f at x0 always exist in [−∞,+∞] and ` ≤ `;
ii) there exists ` ∈ [−∞,+∞] such that ` = ` = ` if and only if limx→x0 f(x) = `;

16It is intended that, if infx∈[x0−r,x0+r]\{x0} f(x) = −∞ for all r → 0+, then, formally, limr→0+(−∞) =
−∞. Note that this happens if and only if the function is not bounded from below in any neighborhood
of x0. Also note that if infx∈[x0−r,x0+r]\{x0} f(x) > −∞ for some r, then infx∈[x0−r,x0+r]\{x0} f(x) > −∞
for all 0 < r ≤ r. Similar considerations hold for the superior limit.

17The reader is suggested to write down the definition of limit in the case ` = ±∞ and in the case
x0 = ±∞

14



iii) f is simultaneously lower and upper semicontinuous at x0 if and only if it is
continuous at x0;

iv) f is lower semicontinuous (respectively, upper semicontinuous) at x′ if and only if,
for every sequence xn converging to x′ we have

f(x′) ≤ lim inf
n→+∞

f(xn) (respectively, lim sup
n→+∞

f(xn) ≤ f(x′));

v) there exist two sequences {xn}, {zn} such that, respectively, limn→+∞ f(xn) = `,
limn→+∞ f(zn) = `.

Proof. Exercise. ut

Remark 2.19 Very naively speaking, we can say that a function is lower semicontinuous
(respectively, upper semicontinuous) if all its discontinuities are downward (respectively,
upward) jumps.

Example 2.20 i) A very simple example is the following: let a ∈ R and consider the
function

f(x) =


−1 if x < 0,
a if x = 0,
1 if x > 0.

Then, f is lower semicontinuous if and only if a ≤ −1, it is upper semicontinuous if and
only if a ≥ 1, it is neither lower nor upper semicontinuous if and only if −1 < a < 1.

ii) Consider the function

f(x) =


sin

(
1

x

)
if x > 0,

0 if x = 0,

x sin

(
1

x

)
if x < 0.

Then

lim inf
x→0

f(x) = −1, lim sup
x→0

f(x) = 1

If, with obvious definition, we consider the inferior and superior limits at x = 0 from left
and from right, we respectively obtain

lim inf
x→0−

f(x) = 0, lim sup
x→0−

f(x) = 0, lim inf
x→0+

f(x) = −1, lim sup
x→0+

f(x) = 1.
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Semicontinuity plays an important role in the existence of minima and maxima of
functions18. Indeed, the well known Weierstrass theorem says that a continuous function
on a compact set reaches its maximum and minimum values. But, in the Weierstrass
theorem, besides the compactness, we require the continuity of the function and this fact
simultaneously gives the existence of maximum and minimum. However, sometimes we
may be interested in minima only (for instance in the case of total energy) or in maxima
only. Hence, requiring the continuity of the function seems to be redundant. Indeed,
the semicontinuity is enough. The following result just says, for instance, that the lower
semicontinuity brings those properties of continuity which are enough to guarantee the
existence of minima.

Theorem 2.21 Let [a, b] ⊂ R be a compact interval19, and let f : [a, b] → R be a lower
(respectively, upper) semicontinuous function. Hence, there exists x ∈ [a, b] (respectively
x ∈ [a, b]) such that f(x) is the minimum of f on [a, b] (respectively, f(x) is the maximum
of f on [a, b]).

Proof. We prove only the case of lower semicontinuous functions, the other case being
left as an exercise. Let m ∈ [−∞,+∞[ be the infimum of f :

m := inf
x∈[a,b]

f(x).

By definition of infimum, there exists a sequence of points xn ∈ [a, b] such that

lim
n→+∞

f(xn) = m.

Since [a, b] is compact, there exists a subsequence {xnk}k and a point x ∈ [a, b] such that

xnk → x, as k → +∞.

By the lower semicontinuity of f and by Proposition 2.18, we have

m = lim
k→+∞

f(xnk) = lim inf
k→+∞

f(xnk) ≥ f(x),

from which we conclude since, by the definition of infimum, this implies m = f(x). ut
18This is one of the most important subject in mathematical analysis, as well as in the applied sciences.

Just think to the physical principle which says that the equilibrium positions of a physical system are
given by minima of the total energy of the system.

19i.e. closed and bounded.
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2.4 Infinite number series

Definition 2.22 Given a sequence {an}, the associated series is the series

+∞∑
n=0

an = a0 + a1 + a2 + a3 + · · · (2.2)

and the sequence is called the general term of the series.

The notation in (2.2) is obviously conventional. What is the meaning of the right-hand
side? It should have the meaning of the “sum of an infinite quantity of addenda”. But a
series tells also us the order of adding the addenda: first a1 to a0, then a2 to the previously
found sum, and so on. Hence it is natural to consider the following definition.

Definition 2.23 Given a real number s ∈ R, we say that the series
∑+∞

n=0 an converges to s
or that its sum is s, if the sequences of the k-partial summation

sk = a0 + a1 + a2 + · · ·+ ak, k ∈ N,

converges to s. In a similar way we define the convergence (or the divergence) of the
series to +∞ as well as to −∞.

Of course, there are series which are not convergent, neither to a finite sum nor to an
infinite sum; in this case we say that the series oscillates. Think for instance to the series∑+∞

n=0(−1)n = 1− 1 + 1− 1 + 1− 1 + · · ·, for which sk = 0 if k is odd and sk = 1 if k is
even.

By the definition of convergence of a series as convergence of the sequence of its partial
summations and by Proposition 2.11, we immediately get the following Cauchy criterium
for the series.

Proposition 2.24 A series
∑+∞

n=0 an of real numbers converges to a finite sum if and
only if

∀ ε > 0 ∃m ∈ N such that m ≤ n′ ≤ n′′ =⇒

∣∣∣∣∣
n′′∑
n=n′

an

∣∣∣∣∣ ≤ ε.

From the Cauchy criterium we immediately get the following necessary condition for
the convergence of the series.

Proposition 2.25 If the series
∑
an converges to a finite sum, then its general term is

infinitesimal, that is

lim
n→+∞

an = 0.

17



Proof. If, by absurd, the general term is not infinitesimal, then there exist ε > 0 and a
subsequence ank such that |ank | > ε for every k. Now, take m as in the Cauchy criterium
and k such that nk ≥ m. Hence we have the contradiction

|ank | =

∣∣∣∣∣
nk∑

n=nk

an

∣∣∣∣∣ ≤ ε.

ut

Example 2.26 The harmonic series

+∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+ · · ·

is divergent to +∞. Indeed, for any k ∈ N we have

s2k − sk =
2k∑

n=k+1

1

n
≥

2k∑
n=k+1

1

2k
=

1

2
.

By induction we then deduce

s2k ≥
k

2
+ s1 → +∞, as k → +∞,

and hence sn → +∞ because it is monotone.
This example also shows that the condition an → 0 in Proposition 2.25 is only neces-

sary for the convergence of the series and not sufficient: the harmonic series diverges but
its general term is infinitesimal.

Example 2.27 The geometric series of reason c ∈ R \ {0} is the series

+∞∑
n=0

cn = 1 + c+ c2 + c3 + · · ·

Very simple calculations yield, for any k and for c 6= 1 (for which the series is obviously
divergent: sk = k),

sk+1 = sk + ck+1

sk+1 = 1 + csk

}
=⇒ sk =

1− ck+1

1− c
.

We then conclude that the geometric series is convergent to a finite sum if and only if
−1 < c < 1 (and the sum is 1/(1 − c)), it is divergent to +∞ if c ≥ 1 and finally it
oscillates if c ≤ −1.
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Theorem 2.28 (Series with positive terms) If the general term of the series is made by
numbers which are non negative (an ≥ 0 ∀n), then the series cannot oscillate. In partic-
ular, if the sequences of the partial summations sk is bounded, then the series converges
to a finite sum, and, if sk is unbounded, then it diverges to +∞. Similar considerations
hold for the series with non positive terms.

Proof. Since an ≥ 0, then the sequence sk is increasing monotone, and so the proof is
a straightforward consequence of Theorem 2.5. ut

Theorem 2.28 gives a characterization of convergence to a finite sum for series with
positive terms: a positive terms series converges to a finite sum if and only if the sequence
of its partial summations is bounded20. Such a characterization is the main ingredient of
several convergence criteria for positive terms series.

Proposition 2.29 Let
∑+∞

n=0 an,
∑+∞

n=0 bn be two positive terms series.
i) (Comparison criterium) If

∑
bn is convergent to a finite sum, and if 0 ≤ an ≤ bn for

all n, then
∑
an is also convergent to a finite sum21.

ii) (Comparison criterium) If
∑
bn diverges to +∞, and if 0 ≤ bn ≤ an for all n, then∑

an is also divergent to +∞.
iii) (Ratio criterium) If an > 0 for all n, let ` = limn→+∞ an+1/an ∈ [0,+∞[ exist. If

0 ≤ ` < 1, then the series converges to a finite sum; if instead ` > 1, then the series is
divergent to +∞; if ` = 1, then everything is still possible22.

iv)(n-th root criterium) If an ≥ 0 for all n and if lim supn→+∞(an)1/n < 1, then the
series converges to a finite sum; if instead lim supn→+∞(an)1/n > 1, then the series is
divergent to +∞; if that superior limit is equal to 1, then everything is still possible23.

Proof. We only prove i) and the first two assertions of iii) and iv).
i) Let sk and σk be respectively the partial summations of

∑
an and of

∑
bn. Since

the latter is convergent to a finite sum, then the sequence of partial summation, being
convergent, is bounded by a constant M . But then by our comparison hypothesis, the
sequence of the partial summations of

∑
an is bounded by the same constant too. We

then conclude by Theorem 2.28.
iii) If 0 ≤ ` < 1, then there exist 0 ≤ c < 1 and a natural number nc such that

n ≥ nc =⇒ 0 <
an+1

an
≤ c =⇒ 0 < an+1 ≤ can ≤ cn−ncanc ,

where the last inequality is obtained by induction. Let σh be the h-th partial summation
of the geometric series of reason c, which is convergent and hence has bounded partial
summations. Then, if sk is the k-th partial summation of

∑
an, we have, for every k > nc,

20Since a convergent sequence is necessarily bounded, then the the boundedness of the sequence of
partial summations is also necessary.

21Not necessarily the same sum. The property an ≤ bn may be also satisfied only for all n sufficiently
large, i.e. n ≥ n for a suitable n.

22We need further investigation in order to understand the behavior of the series. This means that
there are series for which ` = 1 which are convergent as well as series which are divergent

23Same footnote as above.
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0 < sk = snc + anc+1 + · · ·+ ak ≤ snc + ancσk−nc ≤M.

Hence, also
∑
an has bounded partial summation and hence, being a positive terms series,

it converges to a finite sum.
If instead ` > 1, then there exists n such that

n ≥ n =⇒ an+1

an
> 1,

and hence, for every n ≥ n

an > an−1 > · · · > an > 0

which means that the general term of the series is not infinitesimal, and so the series is
not convergent to a finite sum.

iv) If the superior limit is less than 1, then there exist 0 ≤ c < 1 and n such that

n ≥ n =⇒ (an)
1
n < c =⇒ an < cn.

Hence, the series is dominated by the geometrical series of reason 0 ≤ c < 1, and so it
converges.

If instead the superior limit is strictly larger than 1, then there exists a subsequence
ank such that

(ank)
1
nk > 1 =⇒ ank > 1 ∀ k.

Hence the general term is not infinitesimal and the series is not convergent to a finite
sum. ut

Remark 2.30 Note that, concerning the ratio criterium, we can substitute the limit with
the superior limit only in the case “less than 1”. Indeed, even if the superior limit is
strictly larger than 1, the series may converge. Take for instance the series with general
term given by, for n ≥ 1,

an =


1

n2
if n is even,

3

n2
if n is odd

(compute the superior limit of the ratio, which is equal to 3, and compare the series with
the convergent one

∑
3/(n2)). Obviously, in this example the limit of the ratio does not

exist, being the inferior limit smaller than 1. However, for the case “larger than 1”, the
limit may be substituted by the inferior limit.
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It is clear which are the advantages of Proposition 2.29: 1) if we have a sufficiently
large family of prototypes positive terms series, then, using the points i) and ii), we
can compare them with other positive series and infer their convergence as well as their
divergence; 2) the limits in iii) and iv) are sometimes not so hard to calculate. However
its power is not confined to the study of positive terms series. Indeed, by virtue of the
following result, Proposition 2.29 is also useful for obtaining convergence results for series
with not equi-signed general term.

Proposition 2.31 Let
∑
an be a series. We say that it is absolutely convergent to a

finite sum if so is the associated series of the absolute values:
∑
|an|.

If a series is absolutely convergent to a finite sum, then it is also simply convergent to
a finite sum24, that is it is convergent by itself, without the absolute values.

Proof. It immediately follows from the inequality25∣∣∣∣∣
n′′∑
n=n′

an

∣∣∣∣∣ ≤
n′′∑
n=n′

|an|,

from the convergence of
∑
|an| and from the Cauchy criterium. ut

Of course, Proposition 2.31 is only a criterium for simple convergence, that is it does
not give a necessary condition, but only a sufficient one. For example, the alternate
harmonic series

+∞∑
n=1

(−1)n+1

n

converges26 to the finite sum log 2, but it is not absolutely convergent since its series of
absolute values is just the harmonic series.

Proposition 2.29 may be then also viewed as a criterium for absolute convergence,
which may be useful for simple convergence too.

2.5 Rearrangements

Definition 2.23 may lead to incorrectly think that the sum of an infinite number series
well behaves as the sum of a finite quantity of real numbers, and this because it links
the sum of a series to the limit of the k-partial summations, which indeed are finite sum.
Unfortunately, this is not correct. What does it mean that the finite sum of real numbers
well behaves? It just means that such an operation (the finite summation) satisfies the
well-known properties: in particular, the associative and the commutative ones. Actually,
many of these properties also hold for the convergent series.

24Not necessarily the same sum, of course.
25Recall that the absolute value of a finite sum is less than or equal to the sum of the absolute values.
26As the reader certainly well knows.
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Proposition 2.32 Let
∑+∞

n=0 an,
∑+∞

n=0 bn be two convergent series with sum a, b ∈ R
respectively, and let c a real number. Then

i) the series
∑+∞

n=0(an + bn) is also convergent, with sum a+ b;
ii) the series

∑+∞
n=0(can) is also convergent, with sum ca;

iii) defining, for every n ∈ N, αn = an/2 if n is even, αn = 0 if n is odd, then the

series
∑+∞

n=0 αn is also convergent, with sum a;
iv) given a strictly increasing subsequence of natural numbers {nj}j∈N with n0 = 0, and

defined αj = anj + anj+1 + · · ·+ anj+nj+1−1, then the sequence
∑+∞

j=0 αj is also convergent,
with sum a.

In particular, the property ii) means that the distributive property holds for the infinite
number series; property iii) (together with some of its obvious generalizations) means
that, in a convergent series, between two terms, we can insert any finite quantity of zeroes
without changing the sum of the series itself; property iv) means that the associative
property holds.

Proof. The easy proof is left as an exercise. ut
What about the most popular property, the commutative one? In general it is not

satisfied by a convergent series, as we are going to show.

Definition 2.33 Given a series
∑+∞

n=0 an a rearrangement of it is a series of the form∑+∞
n=0 aσ(n), where σ : N→ N is a bijective function.

Example 2.34 The series

a1 + a0 + a3 + a2 + a5 + a4 + · · ·

is a rearrangement of
∑+∞

n=0 an with σ(n) = n+ 1 if n is even, σ(n) = n− 1 if n is odd.

It is evident that the holding of the commutative property for the series would mean
that every rearrangement of a converging series is still converging to the same sum. Un-
fortunately such a last sentence is not true, as the following example shows.

Example 2.35 We know that the alternating harmonic series is convergent with sum
log 2:

+∞∑
n=1

(−1)n+1 1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+ · · · = log 2.

Hence, invoking points i), ii) and iii) of Proposition 2.32, we get (dividing by 2 and
inserting zeroes)

log 2 = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+ · · ·

+
log 2

2
= 0 +

1

2
+ 0− 1

4
+ 0 +

1

6
+ 0− 1

8
+ · · ·

=
3

2
log 2 = 1 + 0 +

1

3
− 1

2
+

1

5
+ 0 +

1

7
− 1

4
+ · · ·
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and, letting drop the zeroes, the last row is exactly a rearrangement of the alternating
harmonic series with σ : N \ {0} → N \ {0} given by

σ(n) =


1 if n = 1,

n+
n

2
if n is even,

n−m− 1 if n > 1, n = 4m+ 3 or n = 4m+ 5, m ∈ N.

Theorem 2.36 Let
∑+∞

n=0 an be a converging series but not absolutely convergent. Then
for every (extended) real numbers

−∞ ≤ α ≤ β ≤ +∞,

there exists a rearrangement of the series such that, denoting by s′k its k-th partial sum-
mation, we have

lim inf
k→+∞

s′k = α, lim sup
k→+∞

s′k = β.

Remark 2.37 Theorem 2.36 just says that, if the series is simply but not absolutely
convergent (as the alternate harmonic series actually is), then we can always find a re-
arrangement which diverges to −∞ (just taking α = β = −∞), a rearrangement which
converges to any a-priori fixed finite sum S (just taking α = β = S), a rearrangement
which oscillates (just taking α 6= β), and a rearrangement which diverges to +∞ (just
taking α = β = +∞).

We are going to see in Theorem 2.38 that, if instead the series is absolutely conver-
gent, than the “commutative property” holds. In some sense we can say that the “right”
extension of the concept of finite sum to the series is the absolute convergence.

Proof of Theorem 2.36. For every n ∈ N, we define

pn = (an)+, qn = (an)−,

where (an)+ = max{0, an} is the positive part of an and (an)− = max{0,−an} is the
negative part of an. Note that pn−qn = an, pn+qn = |an|, pn ≥ 0, qn ≥ 0. The series

∑
pn

and
∑
qn either converge to a finite nonnegative sum or diverge to +∞. By hypothesis,

the series
∑

(pn + qn) =
∑
|an| is divergent to +∞, hence, the series

∑
pn,
∑
qn cannot

be both convergent (otherwise their sum must be convergent). By absurd, let us suppose
that

∑
pn is convergent (and so

∑
qn divergent). Hence the series

∑
an =

∑
(pn − qn)

should be divergent, which is a contradiction. A similar conclusion holds if we suppose∑
qn convergent. Hence

∑
pn,
∑
qn are both divergent to +∞.

For every j ∈ N let us denote by Pj the j-th nonnegative term of {an}, and by Qj the
absolute value of the j-th negative term of {an}. Note that the sequences27 Pj and Qj

27They are really sequences, that is we can really make j go to +∞. Indeed, if for instance our
construction of Pj gives only a finite number of js, then the series

∑
an is definitely given by negative

terms and so its convergence would also imply its absolute convergence. Which is a contradiction.
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are both infinitesimal as j → +∞ since they are (apart for the sign) subsequences of the
sequence an which is the general term of a converging series; moreover, the series

∑
Pj

and
∑
Qj are both divergent since they respectively differ from

∑
pn and

∑
qn only for

some zero terms (when an ≥ 0 then pn = an and qn = 0, when an < 0 then pn = 0 and
qn = −an). Now, let us take two sequences {αn}, {βn} such that they are respectively
strictly increasing and decreasing and that

αn → α, βn → β as n→ +∞, αn < βn ∀ n,

where α and β are as in statement.
Let m1 be the first positive integer such that

P1 + · · ·+ Pm1 > β1,

and let be k1 be the first integer such that

P1 + · · ·+ Pm1 −Q1 − · · · −Qk1 < α1.

Again, let m2 and k2 be the first integers such that

P1 + · · ·+ Pm1 −Q1 − · · · −Qk1 + Pm1+1 + · · ·+ Pm2 > β2,
P1 + · · ·+ Pm1 −Q1 − · · · −Qk1 + Pm1+1 + · · ·+ Pm2 −Qk1+1 − · · · −Qk2 < α2.

Since the series
∑
Pj and

∑
Qj are both divergent to +∞, those integers mn and kn

always exists and hence we can repeat this procedure infinitely many times, and finally
we get two subsequences of indices {mn}n, {kn}n. We then consider the series

P1 + · · ·+ Pm1 −Q1 − · · · −Qk1 + Pm1+1 + · · ·+ Pm2 −Qk1+1 − · · · −Qk2+
Pm2+1 + · · ·+ Pm3 −Qk2+1 − · · · −Qk3 + · · · (2.3)

which is obviously a rearrangement of the series
∑
an. Let xn and yn indicate the sub-

sequence of partial summations of the series (2.3) whose last terms are Pmn and Qkn ,
respectively. By our construction of mn and kn, it is28

0 ≤ xn − βn ≤ Pmn , 0 ≤ αn − yn ≤ Qkn .

Hence, since Pmn and Qkn are infinitesimal, we get xn → β and yn → α as n → +∞.
Finally, by construction, α is the inferior limit and β is the superior limit of the sequence
of partial summation of the series (2.3). Indeed, if ζ ′j is another subsequence of partial
summations, its last term is of the form Pmnj+snj

or Qknj+rnj
(it falls inside a packet of

P ’s or Q’s). In the first and in the second case we respectively have

yknj ≤ ζ ′j ≤ xmnj+1 , yknj+1 ≤ ζ ′j ≤ xmnj ,

and we conclude by point iii) of Proposition 2.15. ut
28If, for example, it is xn−βn > Pmn

, then we would have P1+· · ·+Pm1
−Q1−· · ·−Qk1 +· · ·+Pmn−1 >

βn, which is a contradiction to the fact that mn is the first integer such that...
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Theorem 2.38 Let a ∈ R be the (simple) finite sum of an absolutely convergent series
(a =

∑
an). Then every rearrangement of it is still absolutely convergent, and it simply

converges to the same (simple) sum a.

For proving Theorem 2.38 we first need the following lemma.

Lemma 2.39 A series
∑+∞

n=0 an absolutely converges if and only if the following positive
terms series are convergent

+∞∑
n=0

(an)+,
+∞∑
n=0

(an)−.

Moreover, if the series absolutely converges, we have

+∞∑
n=0

an =
+∞∑
n=0

(an)+ −
+∞∑
n=0

(an)−,
+∞∑
n=0

|an| =
+∞∑
n=0

(an)+ +
+∞∑
n=0

(an)−. (2.4)

Proof. Let us suppose
∑
an absolutely convergent. Hence, by the inequalities

(an)+, (an)− ≤ |an| ∀ n,

and by comparison, we immediately get the convergence of the series
∑

(an)+ and
∑

(an)−.
Vice versa, if those two series are convergent, then their sum is also convergent, and we
conclude by the equality |an| = (an)+ + (an)−, which also gives the second equality in
(2.4). The other one follows from the equality an = (an)+ − (an)−.

ut
Proof of Theorem 2.38. Let us suppose that the series is given by nonnegative terms.

Let σ : N → N be a bijective function as in the definition of rearrangement Definition
2.33, and let us consider the rearrangement given by the general term bn = aσ(n). Let

αn and βn be the sequences of the partial summations of the series
∑+∞

n=0 an and
∑+∞

n=0 bn
respectively. For every n ∈ N we define mn = max{σ(k)|k = 0, 1, . . . , n}. Since the series
have nonnegative terms, we get

βn =
n∑
k=0

bk =
n∑
k=0

aσ(k) ≤
mn∑
j=0

aj = αmn ≤ a.

This means that the partial summations βn are bounded by a and so the rearranged series∑+∞
n=0 bn converges to a finite sum b ≤ a.
Since, just regarding

∑
an as a rearrangement of

∑
bn, we can change the role between

the two series, we then also get a ≤ b and so a = b.
If instead the series

∑
an has general term with non constant sign, then we still get the

conclusion using Lemma 2.39 and observing that
∑

(bn)+ and
∑

(bn)− are rearrangements
of
∑

(an)+ and
∑

(an)− respectively. ut
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2.6 Sequences of functions

A natural question that may arise after the study of the sequences of real numbers is
about the behavior of sequences of functions. If we have a countable family of functions
labeled by the natural numbers, {fn}n∈N, can we say something about the changing of fn
(for instance of its graph) when n goes to +∞? in particular, is there a “limit function” f
to which fn “tends” when n→ +∞? and if all the fn have the same property (convexity,
continuity, derivability...), does such a property pass to the limit function f? Of course,
before answering to such questions, it is necessary to exactly define what does it mean
that “fn tends to f”. This is a crucial point, since we can give several definitions of
convergence for functions, each one of them related to some particular properties to pass
to the limit. In this subsection we focus only to the well known pointwise and uniform
convergences.

Definition 2.40 Let {fn}n, f be respectively a sequence of real-valued functions and a
real-valued function, all defined on the same subset A ⊆ R. We say that the sequence
{fn}n pointwise converges to f on A if, for every x ∈ A, the sequence of real numbers
{fn(x)}n converges to the number f(x), in other words if

lim
n→+∞

fn(x) = f(x) ∀ x ∈ A, (2.5)

or, equivalently29,

∀ ε > 0, ∀ x ∈ A, ∃ n ∈ N such that n ≥ n =⇒ |fn(x)− f(x)| ≤ ε. (2.6)

This is a first natural definition of convergence but, as we are going to see, rather
poor.

Example 2.41 30 i) The sequence of function fn : [0, 1]→ R, for n ≥ 1, defined by

fn(x) =


nx if 0 ≤ x ≤ 1

n
,

−nx+ 2 if 1
n
≤ x ≤ 2

n
,

0 if x ≥ 2
n

is pointwise converging to f ≡ 0 in [0, 1].
ii) The sequence gn : [−1, 1]→ R defined for n ≥ 1 by

gn(x) =


−1 if x ≤ − 1

n
,

nx if − 1
n
≤ x ≤ 1

n
,

1 if x ≥ 1
n

is pointwise converging in [−1, 1] to the function

29The reader is invited to prove the equivalence of the definitions.
30The reader is invited to draw the graphs of the functions.
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g(x) =


−1 if x < 0,
0 if x = 0,
1 if x > 0.

iii) The sequence of functions un : [0, 1]→ R defined for n ≥ 1 by

un(x) =


x if 0 ≤ x ≤ 1

n
,

−x+
2

n
if 1

n
≤ x ≤ 2

n
,

0 if x ≥ 2
n

is pointwise converging to the function u ≡ 0.
iv) The sequence of functions ϕn : [0, 1]→ R defined for n ≥ 1 by

ϕn(x) =


n2x if 0 ≤ x ≤ 1

n
,

−n2x+ 2n if 1
n
≤ x ≤ 2

n
,

0 if x ≥ 2
n

is pointwise converging in [0, 1] to the function ϕ ≡ 0.

Let us make some considerations on the various cases reported in Example 2.41. i) The

functions fn are continuous and the limit f is continuous; for every n ≥ 1,
∫ 1

0
fn = 1/n

which converges (as n → +∞) to 0 which is the integral of the limit function. ii) The

functions gn are continuous, but the limit function g is not; for every n ≥ 1,
∫ 1

−1
gn = 0

which converges (as n→ +∞) to 0 which is the integral of the limit function31. iii) The

functions un are continuous and the limit u is continuous; for every n ≥ 1,
∫ 1

0
un = 1/(n2)

which converges (as n → +∞) to 0 which is the integral of the limit function. iv) The

functions ϕn are continuous and the limit ϕ is continuous; for every n ≥ 1,
∫ 1

0
ϕn = 1

which converges (as n→ +∞) to 1 which is not the integral of the limit function (which
is equal to 0).

Hence, we deduce that, in general, the pointwise convergence is not sufficient for having
the continuity of the limit (whenever the sequence is made by continuous functions) and
also for passing to the limit inside the integral:

lim
n→+∞

∫
fn =

∫
f

(
=

∫
( lim
n→+∞

fn)

)
.

Anyway, as we can see from cases i) and iii) of Example 2.41, it may happen that the
limit is continuous and that the integrals converge to the integral of the limit function.
However, between i) and iii) there is a big difference: in i) the maximum of fn is 1 which

31Note that g is discontinuous but nevertheless integrable. Moreover, also the integrals of the absolute

values converge: for every n ≥ 1,
∫ 1

−1
|gn| = (2n− 1)/n which converges (as n→ +∞) to 2 which is the

integral of the limit function |g|.
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does not converge to the maximum of the limit function which is 0; in iii) the maximum
of un is 1/n which converges to the maximum of the limit function which is 0. In some
sense, we can say that in iii) the graphs of un “converge” to the graph of u, whereas, in
i) the graphs of fn do not converge to the graph of f 32.

The convergence of maxima (as well as of minima) is of course an important property,
which unfortunately is not in general guaranteed by the pointwise convergence. Hence,
we need a stronger kind of convergence which, in some sense, takes account of the “con-
vergence of the graphs”. This is the so-called uniform convergence.

Definition 2.42 Let A ⊆ R be a subset, {fn}n and f be, respectively, a sequence of real-
valued functions and a real-valued function all defined on A. We say that the sequence
{fn} uniformly converges to f in A if

lim
n→+∞

sup
x∈A
|fn(x)− f(x)| = 0 (2.7)

or, equivalently33,

∀ ε > 0 ∃ n ∈ N such that n ≥ n =⇒ |fn(x)− f(x)| ≤ ε ∀ x ∈ A. (2.8)

It is evident the difference between the pointwise convergence of Definition 2.40 and the
uniform convergence of Definition 2.42. The former tests the convergence for every fixed
point x (in other words: point-by-point), the latter tests the convergence in a “uniform”
way, looking to the whole set A with its all points (this is pointed out by the presence
of the supremum in (2.7) which is not present in (2.5), or, equivalently, by the fact that
in (2.8) the integer n does not depend on x ∈ A, as instead happens in (2.6), but it is
chosen depending on ε only, that is in a uniform way with respect to x ∈ A).

Still referring to the “convergence of graphs”, we naively say that the uniform conver-
gence implies the convergence of graphs since for every ε-strip around the graph of the
limit function f

Nε =
{

(x, y) ∈ A× R
∣∣∣|y − f(x)| ≤ ε

}
,

for n sufficiently large, all the graphs of the fn functions stay inside the ε-strip:

∃ n ∈ N such that Γfn ⊂ Nε ∀ n ≥ n,

where Γfn is the graph of fn over A:

Γfn =
{

(x, y) ∈ A× R
∣∣∣y = fn(x)

}
.

32In the graph of fn there is always a pick at height 1 which stays well-distant from the graph of f
which is the constant 0.

33The reader is invited to prove the equivalence of the definitions.
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Remark 2.43 In example 2.41 the only uniformly convergent sequence is the sequence
un of iii).

From the Cauchy criterium Proposition 2.11, we have the following convergence cri-
teria.

i) {fn}pointwise converges to a real-valued function in A if and only if
∀ ε > 0 ∀ x ∈ A ∃ mx ∈ N such that mx ≤ n′ ≤ n′′ =⇒ |fn′(x)− fn′′(x)| ≤ ε;
i) {fn}uniformly converges to a real-valued function in A if and only if
∀ ε > 0 ∃ m ∈ N such that m ≤ n′ ≤ n′′ =⇒ |fn′(x)− fn′′(x)| ≤ ε ∀ x ∈ A.

Proposition 2.44 If the sequence fn uniformly converges to f in A ⊆ R, then the fol-
lowing facts hold:

i) the sequence fn pointwise converges to f in A;
ii) fn continuous for all n =⇒ f continuous;
iii) if A is a bounded interval and fn integrable on A for all n, then f is integrable on

A and
∫
A
fn →

∫
A
f as n→ +∞;

iv) If fn are derivable in A and if the derivatives f ′n uniformly converge on A to a
function g, then f is derivable and f ′ = g34;

v) fn bounded for all n =⇒ supA fn → supA f ∈]−∞,+∞]35.

Proof. We prove only ii), iv) and v), the other ones being left as exercise. ii) Let us
take ε > 0 and n as in the definition of uniform convergence. Let us fix x0 ∈ A and take
δ > 0 such that

x ∈ A, |x− x0| ≤ δ =⇒ |fn(x)− fn(x0)| ≤ ε.

Hence we get, for x ∈ A and |x− x0| ≤ δ

|f(x)− f(x0)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(x0)|+ |fn(x0)− f(x0)| ≤ 3ε,

which proves the continuity of f in x0, which is arbitrary36.
iv) Let us fix a point x of A (which here we suppose to be an open interval), and for

every n let us consider the functions of h > 0

gn(h) =
fn(x+ h)− fn(x)

h
.

Since the functions fn are derivable, by the Lagrange theorem applied to the function
fn − fm we get, for every n,m and h,

34Actually, it is sufficient the uniform convergence of the derivatives and the convergence of the functions
in a fixed point. Also note that the only uniform convergence of derivable functions is not sufficient for
the derivability of the limit function: think for example to a uniform approximation of the absolute value
by smooth functions.

35Similarly for what concerns the infimum. Here, the boundedness is required to give a meaning to the
convergence of suprema as real (finite) numbers.

36We need the uniform convergence in order to uniformly estimate |fn − f | in different points x0 and
x.
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gn(h)− gm(h) = f ′n(ξ)− f ′m(ξ) with ξ ∈]x, x+ h[.

From this, by the uniform convergence of the functions f ′n and by the Cauchy criterium,
we obtain the uniform convergence of gn as n → +∞, with obvious limit function γ :
h 7→ (f(x+ h)− f(x))/h37. Hence, there exists an infinitesimal quantity with respect to
n→ +∞, O(n), (in particular independent from h > 0) such that∣∣∣∣f(x+ h)− f(x)

h
− fn(x+ h)− fn(x)

h

∣∣∣∣ ≤ O(n) ∀ h > 0.

From this we get (the first line of equalities is justified by the fact that the third limit
exists)

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

(
fn(x+ h)− fn(x)

h
+O(n)

)
∀ n

=⇒ f ′(x) = f ′n(x) +O(n) ∀ n =⇒ f ′(x) = lim
n→+∞

f ′n(x),

and the proof is concluded.
v) We prove the case where supA f ∈]0,+∞[38. By absurd, let us suppose the con-

vergence of suprema not true. Hence, there exists ε > 0 and a subsequence fnk such
that

| sup
A
fnk − sup

A
f | > ε ∀ k ∈ N.

But this is obviously a contradiction to the uniform convergence. Indeed there exists k
such that |fnk(x) − f(x)| ≤ ε/4 for all k ≥ k and for all x ∈ A39, and hence, denoting
by x ∈ A a point such that f(x) ≥ supA f − ε/4 and, for every k, xk ∈ A such that
fnk(xk) ≥ supA fnk − ε/4, we get

sup
A
f − ε

4
≤ f(x) ≤ fnk(x) +

ε

4
≤ sup

A
fnk +

ε

4

≤ fnk(xk) +
ε

2
≤ f(xk) +

3ε

4
≤ sup

A
f +

3ε

4
,

which implies the contradiction

| sup
A
fnk − sup

A
f | ≤ ε

2
∀ k ≥ k.

ut
37For h ∈]0, h[, with h > 0 such that ]x, x+ h[⊆ A.
38We leave to the reader the other cases.
39If the sequence fn uniformly converges to f then any subsequence fnk

also uniformly converges to f .
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2.7 Series of functions

Given a sequence of real valued functions {fn}n defined on a set A ⊆ R, we can consider
the associated series

∑+∞
n=0 fn, and the natural question is to seek for a function f : A→ R

which possibly represents the sum of the series, that is such that

+∞∑
n=0

fn(x) = f(x) ∀ x ∈ A,

where the left-hand side is the series of real numbers fn(x).

Definition 2.45 Given a series of real-valued functions on A ⊆ R,
∑+∞

n=0 fn, and a
function f : A→ R, we say that the series pointwise converges to f on A if the sequence
of functions given by the partial summations

sk : A→ R, x 7→ sk(x) :=
k∑

n=0

fn(x) ∈ R

pointwise converges to f in A.
We say that the series uniformly converges to f in A if the sequence of partial sum-

mation {sk} uniformly converges to f in A.

Remark 2.46 From the Cauchy criterium for the numerical series Proposition 2.24, we
get the following convergence criteria:

i)
+∞∑
n=0

fn pointwise converges to a real-valued function in A if and only if

∀ ε > 0 ∀ x ∈ A ∃ mx ∈ N such that mx ≤ n′ ≤ n′′ =⇒

∣∣∣∣∣
n′′∑
n=n′

fn(x)

∣∣∣∣∣ ≤ ε;

i)
+∞∑
n=0

fn uniformly converges to a real-valued function in A if and only if

∀ ε > 0 ∃ m ∈ N such that m ≤ n′ ≤ n′′ =⇒

∣∣∣∣∣
n′′∑
n=n′

fn(x)

∣∣∣∣∣ ≤ ε ∀ x ∈ A.

The following criterium is a sufficient condition for uniform convergence. It is called the
Weierstrass criterium, and a series which satisfies it is sometimes called totally convergent.

Proposition 2.47 Let
∑+∞

n=0 fn be a series of real-valued functions on A, and let
∑+∞

n=0 Mn

be a series of positive real numbers which is convergent to a finite sum. If

sup
x∈A
|fn(x)| ≤Mn ∀ n ∈ N,

then, the series of functions is uniformly convergent in A.
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Proof. Since
∑
Mn is convergent, by the Cauchy criterium, for very ε > 0 there exists

m ∈ N such that, for m ≤ n′ ≤ n′′ it is
∑n′′

n=n′Mn ≤ ε. Hence, by our hypothesis, we get∣∣∣∣∣
n′′∑
n=n′

fn(x)

∣∣∣∣∣ ≤
n′′∑
n=n′

|fn(x)| ≤
n′′∑
n=n′

Mn ≤ ε ∀ x ∈ A,

which concludes the proof. ut

Remark 2.48 The Weierstrass criterium is only a sufficient condition for the uniform
convergence, that is there exist uniformly convergent series which do not fit the hypotheses
of the criterium (they are not totally convergent). A very simple example is the series of
constant functions for n ≥ 1, fn : R → R, fn ≡ (−1)n/n. It is uniformly convergent on
R to the constant function f ≡ log 2, but it is not totally convergent40.

Remark 2.49 By Proposition 2.44 and by the definition of convergence of a series as
convergence of the partial summations (which are finite sums), we immediately get the
following: if

∑+∞
0 fn uniformly converge to f in A then

i) fn continuous for all n =⇒ f continuous;
ii) (integration by series) if A is a bounded interval and fn is integrable on A for all

n, then f is integrable on A and ∫
A

f =
+∞∑
n+0

∫
A

fn;

iii) (derivation by series) if fn are derivable in A and the series of derivatives
∑+∞

n=0 f
′
n

uniformly converge on A to a function g, then f is derivable and

f ′ = g =
+∞∑
n=0

f ′n.

2.8 Power series

The first natural sequence of functions which are of interest are the so-called power series.
They can be viewed as the natural extension of the polynomials. A polynomial p in the
real variable x ∈ R is a real valued function given by a finite sum of powers of x with real
coefficients:

p(x) = a0 + a1x+ a2x
2 + · · ·+ amx

m,

where ai ∈ R, i = 0, 1, . . . ,m, are fixed coefficients, and m is the degree of the polyno-
mial41. For instance the polynomial

40The reader is invited to prove such a sentence.
41The highest power that occurs in its expression with non-zero coefficient.
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p(x) = −1 + x2 + 4x3 − x6,

is of degree 6 and a0 = −1, a1 = 0, a2 = 1, a3 = 4, a5 = 0, a6 = −1.
Polynomials are the functions which are better manageable, for what concerns eval-

uation, differentiation, integration and other elementary operations. It is then natural
to extend the notion of polynomials to infinite sums of powers of the variable x, that is
expressions of the form

+∞∑
n=0

anx
n = a0 + a1x+ a2x+ · · ·+ anx

n + · · · (2.9)

where {an} is a given sequence of real numbers. The expression (2.9) is called a power series
and the sequence {an} is the sequence of its coefficients42. It is evident that a power se-
ries is a series of functions

∑+∞
n=0 fn where f0 is the constant a0 and, for n ≥ 1, fn is the

monomial function

fn(x) = anx
n.

Proposition 2.50 Given a power series
∑
anx

n, there exists a convergence radius ρ ∈
[0,+∞] such that the series pointwise converges in ] − ρ, ρ[43 and does not converge for
any x such that |x| > ρ.

Moreover, if ρ > 0, the power series is uniformly convergent in any compact set
K ⊂]− ρ, ρ[.

Proof. Let us define

ρ =


+∞ if lim supn→+∞ |an|

1
n = 0,

1

lim supn→+∞ |an|
1
n

if lim supn→+∞ |an|
1
n ∈]0,+∞[,

0 if lim supn→+∞ |an|
1
n = +∞,

By the root criterium of Proposition 2.29, we immediately get that the series absolutely
converges for every x such that |x| < ρ:

lim sup
n→+∞

(|anxn|)
1
n = |x| lim sup

n→+∞
|an|

1
n < 1.

If instead |x| > ρ ≥ 0, then, by contradiction, let us suppose that the series is convergent
in x. Let us take ξ ∈ R such that ρ < |ξ| < |x|. Since the series converges in x, then the

42Actually, the power series (2.9) is “centered” in 0. A more general expression is a power series centered
in a point x0 ∈ R, which is an expression of the form

∑+∞
n=0 an(x−x0)n = a0+a1(x−x0)+a2(x−x0)2+· · ·.

However, in the sequel by “power series” we will always refer to expressions of the form (2.9), and all
results for them can be transferred to power series centered in a general point x0.

43If ρ = 0, we take {0}. Note that, every power series is convergent in x = 0, and convergent to the
constant a0 (actually, any partial summation is equal to a0).
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term anx
n must be infinitesimal. Let us take n such that 0 ≤ |anxn| < 1 for all n ≥ n.

Hence we get, for n ≥ n,

|anξn| = |anxn|
∣∣∣∣ ξx
∣∣∣∣n < ∣∣∣∣ ξx

∣∣∣∣n =: tn.

Since 0 < t < 1, the geometric series
∑
tn is convergent and hence, by comparison, the

series
∑
anξ

n is absolutely convergent, which is a contradiction to the definition of ρ and
to the root crtierium44.

Now, we prove that the power series is uniformly convergent in [−r, r] for all 0 < r < ρ.
This is immediate by the Weierstrass criterium since, we have

|anxn| ≤ |an|rn ∀ x ∈ [−r, r],

and
∑
|an|rn is convergent for the definition of ρ and the fact that 0 < r < ρ. ut

Proposition 2.51 Given a power series
∑+∞

n=0 anx
n, we can consider the power series of

derivatives

+∞∑
n=1

nanx
n−1 = a1 + 2a2x+ 3a3x

2 + · · · ,

and the power series of primitives

+∞∑
n=0

an
n+ 1

xn+1 = a0x+
a1

2
x2 +

a2

3
x3 +

a3

4
x4 + · · · .

The series of derivatives and the series of primitives have the same radius of convergence
as the originary one

∑
anx

n.

Proof. Just note that, for x 6= 0 we have that

+∞∑
n=1

nanx
n−1 converges if and only if

+∞∑
n=1

nanx
n = x

+∞∑
n=1

nanx
n−1 converges,

+∞∑
n=0

an
n+ 1

xn+1 converges if and only if
+∞∑
n=0

an
n+ 1

xn =
1

x

+∞∑
n=0

an
n+ 1

xn+1 converges.

We then get the conclusion since

lim sup
n→+∞

(n|an|)
1
n = lim sup

n→+∞
(|an|)

1
n = lim sup

n→+∞

(
|an|
n+ 1

) 1
n

.

ut
44lim supn→+∞ |anξn|1/n = |ξ|/ρ > 1.
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Remark 2.52 By the previous Proposition 2.51 and by Remark 2.49, we immediately
get the following facts. Let

∑+∞
n=0 anx

n be a power series with convergence radius ρ > 0,
and let f :] − ρ, ρ[→ R be its sum. Then f is continuous, derivable and integrable45, in
particular, for every x ∈]− ρ, ρ[,

f ′(x) =
+∞∑
n=0

nanx
n−1,

∫ x

0

f(s)ds =
+∞∑
n=0

an
n+ 1

xn+1.

Moreover, f is also a C∞ function46 and, for every k ∈ N, its k-th derivative is given by
the series of the k-th derivatives.

One of the most important results about power series is the following well-known one,
which we do not prove here.

Theorem 2.53 (Taylor series). Let f :]− a, a[→ R be a C∞ function satisfying47

∃ A > 0 such that |f (n)(x)| ≤ An!a−n ∀ x ∈]− a, a[, ∀n ∈ N. (2.10)

Then, the power series

+∞∑
n=0

f (n)(0)

n!
xn (2.11)

pointwise converges to f(x) for all x ∈] − a, a[ (and hence uniformly in every compact
subset).

In such a case, f is said an analytical function on ]−a, a[ and the power series (2.11)
is said to be the Taylor series (or Taylor expansion) of f around 048. Moreover, if a
power series uniformly converges to f on an open interval containing 0, then it must be
the power series (2.11).

The Taylor expansion can be also used for calculating the sum of several numerical
series. For instance, also suitably using Theorem 2.53, it can be proved that

45On every compact subinterval.
46Derivable infinitely many times, and then all derivatives are of course continuous.
47Here f (n) stays for the n-th derivative of f and, when n = 0, it is just f itself.
48Actually, the condition (2.10) is only a sufficient condition for the convergence of the Taylor series to

f : other conditions may be imposed to the derivatives of f , possibly restricting the set of convergence.
However, let us point out that the only fact that f ∈ C∞(]− a, a[) is not sufficient for being analytical,

that is for the convergence to f of the Taylor series (take the function f(x) = e−x
−2

if x 6= 0 and f(0) = 0
which is C∞ on R but not analytical: write down its Taylor series and look for its convergence).

Moreover, we have stated the theorem as expansion around 0, but similar statements hold for expansion
around other points x0, changing the Taylor series in

∑+∞
n=0(f (n)(x0))/(n!)(x − x0)n. Indeed, the true

definition of analiticity in an open interval I is that, for any point x0 ∈ I, there exists r > 0 such that f
is expandable in ]x0 − r, x0 + r[ as Taylor series centered in x0.
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log(1 + x) =
+∞∑
n=1

(−1)n+1

n
xn ∀ x ∈]− 1, 1[, (2.12)

from which, taking for example x = −1/2, we deduce:

− log 2 = log

(
1

2

)
= log

(
1 +

(
−1

2

))
= −

+∞∑
n=1

1

2nn

Actually, the equality in (2.12) also holds for x = 149. Hence, we also have

+∞∑
n=1

(−1)n+1

n
= log 2 =

+∞∑
n=1

1

2nn
.

2.9 Fourier series

Theorem 2.53 gives a way for (usually locally) representing a function f by a power series.
However, this is not always the best way for trying to represent a function by a series of
functions. In particular, if f : R→ R is periodic, that is there exists T > 0, called period,
such that

f(x+ T ) = f(x) ∀ x ∈ R,

then, trying to represent f in the whole domain as a power series is probably not a good
thing, since powers are not periodic. Moreover, as we will see, the concept of Fourier
series that we are going to introduce is sometimes more ”manageable” because it refers
to coefficients given by integration rather than derivation, and hence it is also suitable for
treating discontinuous (but integrable) functions.

Definition 2.54 Let {an}nN and {bn}n>0 be two sequences of real numbers. A Fourier series
is an expression of the form

a0

2
+

+∞∑
n=1

an cosnx+
+∞∑
n=1

bn sinnx, (2.13)

and the sequences an, bn are said the coefficients of the Fourier series.

A Fourier series is then a series of functions
∑+∞

n=0 fn, where fn : R→ R is given by

fn(x) =

{ a0

2
if n = 0,

an cosnx+ bn sinnx if n > 0.
49This can be proved using the Leibniz criterium and the Abel theorem, which are not reported in this

notes.

36



Proposition 2.55 If the Fourier series converges to a function f , then f is periodic with
period 2π.

If the series
∑
an and

∑
bn are both absolutely convergent, then the Fourier series is

uniformly convergent on the whole R.

Proof. The first assertion is obvious by the periodicity of cos and sin. The second one
follows by the Weierstrass criterium Proposition 2.47 since

|an cosnx+ bn sinnx| ≤ |an|+ |bn| ∀ x ∈ R.

ut
Let f : R→ R be a periodic function with period 2π, and suppose that it is integrable

on ]− π, π[. Then all the following integrals exist

1

π

∫ π

−π
f(x) cosnxdx =: an ∀ n ∈ N,

1

π

∫ π

−π
f(x) sinnxdx =: bn ∀ n ∈ N, n > 0, (2.14)

and they are called the Fourier coefficients of f . If an and bn are the Fourier coefficients
of f , then the series (2.13) is called the Fourier series of f 50.

The fact that we can calculate the Fourier coefficients of a function f and hence we
can write its Fourier series does not absolutely mean that such a series converges and
moreover that converges to f .

Here we report, without proof, two results concerning the pointwise and the uniform
convergence of a Fourier series. However, we point out that in the theory of the Fourier
series, the most suitable type of convergence is the convergence in L2(−π, π) that is the
one given by the convergence to zero of the integrals of the squared difference of the
functions: fn converges to f in L2(−π, π) if∫ π

−π
(fn − f)2dx→ 0.

We do not treat such a type of convergence, however, let us note that the uniform con-
vergence implies the L2 convergence.

We first give a definition

Definition 2.56 Given a function f : R → R and a point x0 ∈ R, we say that the
function f satisfies the Dirichlet condition in x0 if at least one of the following facts hold

i) f admits derivative in x0;
ii) f is continuous in x0 and admits right derivative and left derivative in x0, respec-

tively:

50Note that if f is equal to a Fourier series (2.13), and if we can integrate term by term in the series,
then, by the orthogonality of the trigonometric functions cos and sin, the integrals in (2.14) are exactly
the coefficients of the Fourier series.
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f ′+(x0) = lim
h→0+

f(x0 + h)− f(x0)

h
∈ R, f ′−(x0) = lim

h→0−

f(x0 + h)− f(x0)

h
∈ R;

iii) f has a first-kind discontinuity in x0, that is

R 3 f+(x0) = lim
x→x+0

f(x) 6= f−(x0) = lim
x→x−

f(x) ∈ R,

and the following limits exists in R

lim
h→0+

f(x0 + h)− f+(x0)

h
, lim

h→0−

f(x0 + h)− f−(x0)

h
.

Theorem 2.57 Let f :→ R→ R be a periodic function with period 2π, which is integrable
on ]− π, π[. Moreover, let us suppose that f is piecewise continuous, that is we can split
the interval ]−π, π[ into a finite partition of subintervals ]ai, bi[ such that f is continuous
in every ]ai, bi[ and the right and left limits f+(ai), f−(bi) exist in R. Then we have the
following.

i) The Fourier series of f converges in every point x ∈ R where the Dirichlet condition
is satisfied, and it converges to the value

s(x) =
f(x)+ + f(x−)

2
.

In particular note that, if f is continuous in x, then s(x) = f(x) and so the Fourier series
converges to f(x).

ii) If f is continuous, with piecewise continuous derivative, and if the Dirichlet con-
dition holds everywhere, then the Fourier series of f uniformly converges to f in R. In
particular, if f ∈ C1(R), then the Fourier series uniformly converges to f .

Remark 2.58 It is obvious that the choice of 2π as period of the functions in this sub-
section is not relevant. All the same theory holds for function with different period τ > 0.
It is sufficient to replace (2.13) by

a0

2
+

+∞∑
n=1

an cos

(
2πn

τ
x

)
+

+∞∑
n=1

bn sin

(
2πn

τ
x

)
,

and (2.14) by

an =
2

τ

∫ τ
2

− τ
2

f(x) cos

(
2πn

τ
x

)
dx, bn =

2

τ

∫ τ
2

− τ
2

f(x) sin

(
2πn

τ
x

)
dx.
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As for the Taylor series, also the Fourier series may be used for calculating the sum of
several numerical series. For instance, let us consider the function f : R→ R periodic of
period 2π and such that f(x) = x2 for x ∈ [−π, π]. If we calculate its Fourier coefficients
we find51

a0 =
2π2

3
, an =

4(−1)n

n2
, bn = 0 ∀ n ∈ N \ {0}.

The function f is continuous and satisfies the Dirichlet condition in all points x ∈ R and
so

f(x) =
π2

3
+ 4

+∞∑
n=1

(−1)n

n2
cos(nx) ∀ x ∈ R.

Hence we have

π2 = f(π) =
π2

3
+ 4

+∞∑
n=1

(−1)n

n2
cos(nπ) =

π2

3
+ 4

+∞∑
n=1

1

n2
=⇒

+∞∑
n=1

1

n2
=
π2

6
,

0 = f(0) =
π2

3
+ 4

+∞∑
n=1

(−1)n

n2
cos(0) =

π2

3
+ 4

+∞∑
n=1

(−1)n

n2
=⇒

+∞∑
n=1

(−1)n+1

n2
=
π2

12
.

2.10 Historical notes

Since the time of the Greeks, scientists faced the problem of working with something
similar to a summation of infinite terms. The most important of such scientists was
Archimedes of Syracuse (287-212. B.C.). In several works Archimedes rigorously exploited
the so-called method of exhaustion, which however goes back to Eudoxus of Cnidus (408-
355 B.C.). The method of exhaustion may be seen as the first attempt of calculating the
areas of regions of the plane which are delimited by some curves52, and hence it is the
precursor of the integral calculus. Of course our modern concept of integrals which, very
naively speaking, may be seen as a generalization of the concept of summation to a set
of more than infinitely countable terms 53, at that time was just replaced by the sum of
a larger and larger number of addenda: the areas of some suitably inscribed figures.

The most famous application of the method of exhaustion by Archimedes was the
quadrature of a parabolic segment. Using modern notations and describing only a par-
ticular case54, the problem is the following: to calculate the area of the bounded plane
region between the x-axis and the parabola of equation y = 1− x2. Nowadays we imme-
diately answer:

51The function f is even, that is f(−x) = f(x) for all x, and so it is obvious that the coefficients bn
must be all equal to zero, since they are the coefficients of the “odd part” of f : the “sinus part”.

52i.e. not necessarily segments.
53One per every point of the integration interval.
54Archimedes actually solved the problem for a more general situation.
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Area =

∫ 1

−1

(1− x2)dx =
4

3
.

Let us sketch the argumentation of Archimedes. Consider the triangle of vertices (−1, 0),
(1, 0) and (0, 1): it has area equal to 1 and it is inscribed in our region. To such a
triangle, add two more triangles with vertices, respectively: (−1, 0), (0, 1), (−1/2, 3/4)
and (1, 0), (1/2, 3/4), (0, 1). The total area of those new triangles is 1/4. Hence the new
polygonal figure, which is still inscribed in our parabolic region, has area equal to 1+1/4.
Now we can add four more triangles and this is done adding the vertices: (±1/4, 15/16)
and (±3/4, 7/16). Such four triangles has a total area equal to 1/16. Hence the new
inscribed polygonal figure has area equal to

1 +
1

4
+

1

16
.

By his great ability in calculating, Archimedes showed that, at every steps, we can add
to the polygonal figure, a number of triangles with total area equal to one-quarter of the
added area at the previous step. Hence after n steps, the area of the inscribed polygonal
figure is55

1 +
1

4
+

1

16
+ · · ·+ 1

4n
=

n∑
k=0

1

4k
,

and he also proved that such a finite (but numerous) summation is always strictly less
than 4/3, but, on the other side, at very step the sum becomes closer to 4/3.

The method of “exhaustion” just stays to indicate that we intend to exhaust the area
of the parabolic region by inserting more and more triangles. If we really exhaust the
area, then nowadays we immediately get

Area =
∞∑
k=0

1

4k
=

1

1− 1
4

=
4

3
, (2.15)

which is the right answer. Actually, Archimedes did not compute the area as the sum of
infinite addenda, since, at that time and also for more that 2000 years after, the infinite
processes were not taken as possible56: there were many troubles with the concept of
“infinity”. However, Archimedes did prove that the area is equal to 4/3, and in what he
did we can now see the basic concept of modern definition of limit. Indeed, by a “reductio
ad absurdum” he proved that the area cannot be larger as well as cannot be smaller than
4/3: he showed that if the area were larger of 4/3 then he could inscribe triangles until the
total area was more than 4/3 and this is a contradiction to the fact that every finite sum

55In a modern notation.
56Or at least as rigorous
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is smaller than 4/3; on the other side, if the area were smaller than 4/3, then he could
find k such that, at the k − th step the inscribed area is larger: another contradiction.

In this procedure we really recover our definition of limit: when we take an arbitrary
ε > 0 and we prove that, for sufficiently large n, the partial summations satisfies |sn −
4/3| ≤ ε, we are actually saying that the sum of the series cannot be larger as well as
cannot be smaller than 4/3.

As we already said, Archimedes and the other Greeks, did not make limits, as we
understand nowadays, since the right definition of “infinity” was far from coming. What
Archimedes did was to conjecture the real value of the area and then to show that it
cannot be any different value. In doing that he used the “series” in the sense that, adding
more and more terms, he arrived to a contradiction.

However, Archimedes arrived very close to make a limit, and so to write the second
equality in (2.15). Despite to this fact, in the following of the human history, mathemati-
cians continued to have some troubles with the infinite series. From the middle age, they
certainly knew that some infinite series have a finite sum and some other ones have an
infinite sum. For instance, Nicole Oresme (France, 1323-1382) was probably the first to
prove that the harmonic series has a sum equal to +∞. Pietro Mengoli (Bologna, 1626 -
1686) showed that the alternating harmonic series has a finite sum equal to log 2. Leon-
hard Euler (Basel 1707 - St. Petersburg 1783) first proved that the harmonic series of
power 2, (

∑
1/n2), has a finite sum equal to π2/6. Brook Taylor (England, 1685 - 1731)

made his study on expansion of functions and discovered the (after him) called Taylor
series. However, a right and rigorous definition of what should be the “convergence”
of a series was yet to come until the XIX century. The lacking of a right definition of
“convergence” may be recognized in the fact that, mathematicians retained that all the
series should have a sum (finite or infinite) and so the treating of what nowadays we call
“oscillating series” was avoided or ambiguous and mistaken. For instance, one problem
pointed by Daniel Bernoulli (The Netherlands 1700 - Switzerland 1782) was the following:
the alternating series of 1’s and −1’s can be obtained by setting x = 1 in the following
power series:

1− x+ x2 − x3 + x4 − x5 + · · · = 1

1 + x
,

1− x+ x3 − x4 + x6 − x7 + · · · = (1− x)(1 + x3 + x6 + · · ·) =
1− x
1− x3

=
1

1 + x+ x2
,

1− x2 + x3 − x5 + x6 − x8 + · · · = (1− x2)(1 + x3 + x6 + · · ·) =
1− x2

1− x3
=

1 + x

1 + x+ x2
,

and we respectively obtain, as sum of the alternating series, 1/2, 1/3, 2/3 which, for
Bernoulli and his colleagues (but for us today, too) was very unsatisfactory. What was
mistaken in the reasoning is to assume that the series has a sum. A similar erratum
reasoning is the following one57: let S = 1 + 1− 1 + 1− 1 + · · · be the sum of the series.
Then we have

S = 1− 1 + 1− 1 + 1− 1 + · · · = 1− (1− 1 + 1− 1 + 1 · · ·) = 1− S =⇒ S =
1

2
.

57Which seems to be made even by Euler.

41



We now know that such a series has not a sum, however note that if it had finite sum, then
it would be 1/2: the mean value between 0 and 1 which are the values of the alternating
sequence of finite summations.

Series without sum were a serious problem. However, also the series with finite sum
were still a little bit obscure. Indeed, in the XVIII century, mathematicians were aware of
the distinction between sum with a large number of addenda and infinite series. Moreover,
they also knew that it is not always possible to treat infinite series as true summations,
since infinite series do not well behave as standard summation, but they also knew that,
when that possibility is given, then a lot powerful results are at disposal, such as the fact
that the integral of a power series can be found integrating term by term, just as in a finite
summation. They developed a sense for what was and was not legitimate, and they paid
attention to not overcome such a limit. However, at the beginning of the XIX century
this was not more sufficient, that limit must be overcome, and in particular, clarified.

One of the events that contributed to such a breakthrough was the work of Jean
Baptiste Joseph Fourier (France, 1768 - 1830). In 1807, Fourier published his study on
the propagation of heat in solid bodies and showed that, if the distribution of the heat at
a part of the boundary of the body is given by a sum of trigonometric functions then also
the solution is given by a sum of trigonometric functions. Anyway, the constant function
f(x) ≡ 1 cannot be written as sum of trigonometric functions, but, on the other side,
a constant temperature may be applied to any part of the boundary. To overcome this
difficult, Fourier showed that, for −1 < x < 1 it is possible to write the constant function
f(x) ≡ 1 as infinite sum of trigonometric functions

1 =
4

π

+∞∑
n=1

(−1)n−1

2n− 1
cos

(
(2n− 1)πx

2

)
(2.16)

and that the solution is then an infinite series of trigonometric functions. Moreover, he also
gave a method for finding the (Fourier) coefficients for any function. The contemporaries
of Fourier were very suspicious about such a solution, in particular about the infinite sum
of trigonometric functions. Such a series were already appeared in the past years, but now
Fourier bring them to a mandatory attention by the mathematicians. One of the most
evident problems with such series was about the meaning of the function they represent. If
we look to (2.16) we see that, if we take 1 < x < 2 then the series has sum equal to −1. In
practice, the function represented by the series should be equal to the constant 1, but it is
also periodic oscillating between 1 and −1 (and also 0 in the integer points). This fact was
not acceptable. At that moment “functions” only means polynomials, powers, logarithms,
trigonometric functions and any multiplication and linear combination of them and their
inverse. Moreover the functions should have a “continuous” graph. Finally, “functions”
are something differentiable infinitely many times and, knowing its derivative in a point,
means knowing the function everywhere (Taylor series). This is not obviously true for
the function in (2.16). This is not admissible. Moreover, in finding his solution, Fourier
assumed that you can integrate and differentiate the trigonometric series term by term.
However, the solution proposed by Fourier was actually modeling a real physical problem,
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and so it cannot be rejected without trying to understand why it seems to work. The
answer for rejecting it is then that there are troubles with the convergence of series of
trigonometric functions.

Actually the trouble was with the “convergence” in general. Another french math-
ematician, Augustin Luis Cauchy (1789 - 1857) started such a revolutionary process in
re-founding what do we mean by infinite series, convergence and limit. He indeed, in
some sense, went back to Archimedes’ ideas, in particular to the fact that (what now
we call the limit) must be definitely neither larger nor smaller than the approximating
sequence, that is our modern “ε− δ” definition. However, Cauchy bypassed Archimedes
and the Greeks, whose vision was more of less static (they already knew the value of the
possible limit and proved that it cannot be otherwise) since he introduced a “dynamic”
concept of convergence and limit58. The work of Cauchy was completed by other math-
ematicians, firstly by the german ones Georg Friedrich Bernhard Riemann (1826-1866)
and Karl Theodor Wilhelm Weierstrass (1815-1897).

58However, in his formulation, Cauchy avoided terms as “time” and “velocity” which were already used
by some previous mathematicians and which rely on a “physical” point of view of functions, limits and
derivatives.
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3 Real numbers and ordered fields

In this section we are going to point out the properties of the set R of the real numbers,
both from an algebraic and from an analytical point of view. At this stage, we suppose
that the reader already knows what the real numbers are.

The first properties of the real numbers are of course the algebraic properties. Let us
start from these ones.

Definition 3.1 1) Given a nonempty set A, an operation on it is a function from the
cartesian product A× A to A.

2) A nonempty set G is said to be a commutative (or abelian) group if the there is an
operation ϕ : (a, b) 7→ ϕ(a, b) =: a+ b on it which satisfies the following properties:

2i) (associative property) a+ (b+ c) = (a+ b) + c ∀ a, b, c ∈ G,
2ii) (neutral element) ∃ G 3 b =: 0 such that a+ 0 = a ∀ a ∈ G,
2iii) (opposite element) ∀ a ∈ G ∃ G 3 b =: (−a) such that 0 = a+ (−a) =: a− a,
2iv) (commutative property) a+ b = b+ a ∀ a, b,∈ G.

(3.1)
3) A nonempty set F is said a field if there are two operations on it: ϕ1(a, b) =: a+ b,

ϕ2(a, b) =: ab such that F is an abelian group with respect to ϕ1, F \ {0}59 is an abelian
group with respect to ϕ2, and if the following compatibility condition between the two
operations is satisfied:

(distributive property) c(a+ b) = ca+ cb ∀ a, b, c ∈ F (3.2)

By the associative and commutative properties it follows that the neutral element of
a group is unique as well as the opposite element. Indeed if 0, 0′ are two neutral elements,
we get

0 = 0 + 0′ = 0′ + 0 = 0′,

and for any a, b, c:

a+ c = b+ c =⇒ a+ c− c = b+ c− c =⇒ a = b,

which implies the uniqueness of the opposite element since, if b, b′ are two opposite ele-
ments of a, we have

a+ b = 0 = a+ b′ =⇒ b = b′.

59Here, 0 is the neutral element of ϕ1. The group F \ {0} has a multiplicative representation, that is
we indicate by 1 its unique neutral element and by a−1 or even by 1/a the opposite element. Also note
that, by definition, it follows that the restriction of ϕ2 to (F \ {0})× (F \ {0}) is an operation on F \ {0};
in particular, if a, b ∈ F \ {0} then ab 6= 0 and a−1 6= 0. This immediately implies that ab = 0 =⇒ a = 0
or b = 0.
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Also note that, in the case of a field F , it is, for any a ∈ F ,

0 · a = a · 0 = 0.

Indeed a · 0 = a(0 + 0) = a · 0 + a · 0 =⇒ a · 0 = 0 and similarly for 0 · a.

Proposition 3.2 If F is a field, then, for every a, b ∈ F the following holds: i) (−1)a =
−a60; ii) (−a)−1 = −a−1;

Proof. i) a+ (−1)a = a(1− 1) = a · 0 = 0; ii) (−a)(−a−1) = (−1)(−1)(aa−1) = 1.
ut

With the usual operations of sum and multiplication, the set of the real numbers R is
a field. Other well-known fields are the set of rational numbers Q61 and the set of complex
numbers C62. The set of integers Z is not a field63, but the quotient sets Z/pZ, with p ∈ N
a prime number, are all fields64. There is a main difference between Q,R,C from one side
and Z/pZ from the other side: the first ones are infinite fields, that is with infinitely
many elements, the second one are finite fields, that is with finitely many elements: just
p elements. Mathematical analysis is mainly devoted to the study of the infinite fields.
As we are going to see in this notes, there are also big differences between Q,R and C:
the first is ordered but not complete, the second is ordered and complete, the third is
complete65 but not ordered. The (real) mathematical analysis is mainly devoted to the
study of R.

3.1 Ordering and Archimedean properties

As anticipated at the end of the previous subsection, R is ordered.

Definition 3.3 An order relation (or an ordering) on a nonempty set A (which is then
said to be an ordered set) is a relation, denoted by “≤”, between its elements66 such that,
for every a, b, c ∈ A,

(transitive property) a ≤ b, b ≤ c =⇒ a ≤ c,
(reflexive property) a ≤ a,
(anti-symmetric property) a ≤ b, b ≤ a =⇒ a = b.

The order relation is said to be total if, for every couple of elements a, b ∈ A, it is
always true that at least one of the following relations hold: a ≤ b or b ≤ a. If the ordering

60From which (−1)(−1) = 1.
61With the same operations as in R.
62With the known operations which extend the ones in R.
63Z \ {0} is not a group with respect to the multiplication: there is no opposite element.
64With natural extension of sum and multiplication from elements of Z to the elements of Z/pZ, which

are equivalence classes.
65In the sense of metric space.
66A “relation” is often defined as a subset R of the cartesian product A × A, so that a is in relation

with b if and only if (a, b) ∈ R.
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is total, then A is said to be totally ordered, if instead the ordering is not total67 then A
is said partially ordered.

Given an order relation on A we can always define a strict order relation on A, denoted
by “<”, as

a < b ⇐⇒ a ≤ b and a 6= b.

Such a strict order relation satisfies the transitive property only.
If F is a field and it is also a totally ordered set, we say that F is an ordered field if

the following compatibility conditions between ordering and operations hold

i) a ≤ b =⇒ a+ c ≤ b+ c ∀c ∈ F,
ii) a ≤ b =⇒ ac ≤ bc ∀ 0 ≤ c ∈ F. (3.3)

Remark 3.4 Instead of writing a ≤ b, we will often say “a is smaller than or equal to
b”, as well as ”b is larger than or equal to a”, and also, in a more ambiguous manner, we
will sometimes say “a is smaller than b” as well as “b is larger than a” for indicating both
a ≤ b and a < b. Finally, a ≥ b (as well as a > b) will mean b ≤ a (as well as b < a).

Example 3.5 We give a simple (but important for the sequel of these notes) example of
a partially, but not totally, ordered set. Let x0 ∈ R and define the set

A =
{
A ⊆ R

∣∣∣∃ r > 0 such that ]x0 − r, x0 + r[⊆ A
}
,

so that the elements of A are subsets of R containing open intervals centered in x0
68. We

define the following relation in A:

∀ A1, A2 ∈ A, A1 ≤ A2 ⇐⇒ A2 ⊆ A1 : (3.4)

that is the “inverse inclusion order”. The reader is invited to prove that (3.4) defines a
partial, but not total, ordering on A.

With the usual ordering, both Q and R are ordered fields. A first natural total ordering
in the complex field C is the lexicographical one: given z1 = a1 + ib1, z2 = a2 + ib2 ∈ C

z1 ≤ z2 ⇐⇒ a1 < a2 or (a1 = a2 and b1 ≤ b2) .

It is immediate to see that this is a total ordering on C, but also that, with such an
ordering, C is not an ordered field: the property ii) of (3.3) does not hold69.

67That is there exist two elements a, b ∈ A such neither a ≤ b nor b ≤ a holds true.
68Neighborhoods of x0?
690 ≤ i, but i2 = i · i = −1 < 0 = 0 · i.
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Proposition 3.6 If F is an ordered field, then, the implications in (3.3) are indeed
equivalence, and moreover, for every a, b ∈ F , we have: i) a ≤ b ⇐⇒ −b ≤ −a70,
ii) a2 := aa ≥ 071, iii) a > 0 ⇐⇒ a−1 > 0, iv) 0 < a < b ⇐⇒ 0 < b−1 < a−1, v)
a ≤ b⇐⇒ a− b ≤ 0, vi) a < 0, b > 0 =⇒ ab < 0.

Proof. For the first sentence, just take in (3.3-i).ii)) c = 0 and c = 1 respectively. i)
a ≤ b =⇒ a + (−a − b) ≤ b + (−a − b) =⇒ −b ≤ −a; the opposite implication similarly
comes starting from −b ≤ −a; ii) If a ≥ 0 then it is obvious by point ii) of (3.3), if
instead a < 0 then −a > 0 and so, being a = −(−a), −a2 = (−1)(−1)(−1)(−a)2 =
−(−a)2 ≤ 0 =⇒ a2 ≥ 0; iii) if a−1 < 0 then 1 = a(a−1) < 0 which is absurd; the
opposite implication similarly comes from the equality (a−1)−1 = a; iv) if by absurd
hypothesis we have 0 < a−1 < b−1, then multiplying by ab > 0 we obtain a contradiction,
v) a ≤ b =⇒ 0 = a− a ≤ b− a, vice versa 0 ≤ b− a =⇒ a = 0 + a ≤ (b− a) + a = b; vi)
if it was ab > 0 then a = abb−1 > 0, which is absurd. ut

Remark 3.7 From the point ii) of Proposition 3.6 we immediately get the inequality
x2 + 1 > 0 for all x ∈ F . This means that, if F is an ordered field, then the equation
x2 + 1 = 0 has no solutions in F . In particular, this implies that there is not an ordering
on the complex field C which makes C an ordered field.

Many of the usual definitions which we already know and use for the real numbers can
be suitably transferred to any ordered field (for instance all the definitions in Definition
2.2 (majorants, minorants, bounded subsets, superior extremum, inferior extremum)72),
moreover we may also define:

(non-negative values (resp: positive values)): x ∈ F such that 0 ≤ x (resp. 0 < x),
(non-positive values (resp: negative values)): x ∈ F such that 0 ≥ x (resp. 0 > x),

(absolute value) ∀ x ∈ F, |x| =
{
x if x ≥ 0,
−x if x < 0.

(3.5)
It can be also easily proved that the absolute value satisfies the following expected prop-
erties for every x, y ∈ F :

|x| ≥ 0, |x| = 0 ⇐⇒ x = 0,

|x+ y| ≤ |x|+ |y|,
∣∣∣|x| − |y|∣∣∣ ≤ |x− y|,

|xy| = |x||y|, if y 6= 0 :

∣∣∣∣xy
∣∣∣∣ =

∣∣∣∣ |x||y|
∣∣∣∣ .

Proposition 3.8 If F is an ordered field, then it contains infinitely many elements.
Moreover, F is dense, that is

∀ x, y ∈ F, x < y =⇒ ∃ z ∈ F such that x < z < y. (3.6)
70Which in particular implies: either a < 0 or −a < 0 for all a ∈ F \ {0}.
71This of course implies 1 = 12 > 0, which is of great importance.
72Obviously, the existence of infimum and of supremum is not necessarily guaranteed.
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Proof. The first sentence easily comes from the following inequalities73

0 < 1 < 1 + 1 < 1 + 1 + 1 < 1 + 1 + 1 + 1 < · · ·

Let us prove the second sentence. First note that

0 < a < 1 =⇒ 0 < ax < x ∀ x > 0.

Indeed, if it is not the case we would have 0 < x ≤ ax which implies, multiplying by x−1,
a ≥ 1. Now, let us take x < y. By point iv) of Proposition 3.6 we have 0 < (1 + 1)−1 < 1.
Hence, if x = 0 we immediately get

x = 0 < z = (1 + 1)−1y < y,

and similarly for the case y = 0. If instead 0 < x < y, let us first note the following

(1 + 1)−1 = 1− (1 + 1)−1,

indeed: (1 + 1) (1− (1 + 1)−1) = (1 + 1)− 1 = 1. Hence z = (1 + 1)−1(x+ y) satisfies the
inequalities. Indeed, for instance, by absurd

x > (1 + 1)−1(x+ y) =⇒ (1 + 1)−1y < x− (1 + 1)−1x = (1− (1 + 1)−1)x = (1 + 1)−1x,

which is a contradiction to 0 < x < y74. Similarly for the case x < y < 0. The case
x < 0 < y is obvious.

ut

Remark 3.9 If F is a finite field75, then there is not an ordering which makes F an
ordered field.

Definition 3.10 As suggested by the proof of Proposition 3.8, if F is an ordered field,
we can consider the following infinite subset

{0, 1, 1 + 1, 1 + 1 + 1, 1 + 1 + 1 + 1, . . .}

which we obviously call the subset of the natural elements of F and, from now on, we will
denote

2 := 1 + 1, 3 := 1 + 1 + 1 = 2 + 1, 4 := 1 + 1 + 1 + 1 = 3 + 1 . . .

We then say that x ∈ F is an integer element if x or −x is natural; we say that x is a
rational element if there exist two integers m,n with n 6= 0 such that x = m/n := mn−1.

73By point i) of (3.3) and by the inequality 0 < 1 we get 1 = 0 + 1 < 1 + 1 and so on.
74Recall that (1 + 1)−1 is positive.
75In particular Z/pZ with p prime.
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We denote by NF ,ZF ,QF the set of naturals, of integers and of rationals of F , respec-
tively. We then have: NF ⊂ QF ⊂ QF

Also note that the sum and the product between rational elements follow the usual rules
as for the rational numbers:

m1

n1

+
m2

n2

= m1n
−1
1 +m2n

−1
2 = (n1n2)(n1n2)−1

(
m1n

−1
1 +m2n

−1
2

)
= (n1n2)−1(m1n2 +m2n1) =

m1n2 +m2n1

n1n2

,

m1

n1

m2

n2

=
(
m1n

−1
1

) (
m2n

−1
2

)
= n−1

1 n−1
2 m1m2 =

m1m2

n1n2

.

Remark 3.11 Another possible, equivalent, definitions of the natural elements are the
following. We first give the definition of inductive subset A ⊆ F : A is inductive if
x + 1 ∈ A whenever x ∈ A. We say that x ∈ F is natural if it belongs to all inductive
subsets A ⊆ F which contain the neutral element 0. Hence, we can say that NF is the
smallest inductive subset of F containing 0.

Also note that, for every x ∈ F and n ∈ NF , the element nx ∈ F is exactly given by
the sum of x with itself for n-times, where this second n is the familiar natural number
n = 1 + 1 + · · ·+ 1 ∈ N. So, when we write nx we can think to n as element of NF as well
as element of the natural numbers N, that is, in this particular context, we can identify
NF with N. Actually, as we are going to see in the sequel, such an identification is always
possible via some suitable isomorphisms, and of course it extends to the identifications of
ZF with the integer numbers Z and of QF with the rational numbers Q.

Proposition 3.12 If F is an ordered field, then NF is well-ordered, that is every non-
empty subset A ⊆ NF has a minimum element:

∅ 6= A ⊆ NF =⇒ ∃ n ∈ A such that n ≤ n ∀ n ∈ A.

Proof. Let us suppose that ∅ 6= A ⊆ NF has no minimum. Since 0 = minNF
76, this

implies that 0 6∈ A77. Let us define

P =
{
n ∈ NF

∣∣∣m 6∈ A ∀m = 0, 1, . . . , n
}
.

The set P is not empty since 0 ∈ P and moreover it is inductive. Indeed, if n ∈ P then
also n+1 ∈ P , otherwise n+1 would be the minimum of A. Hence, we must have P = NF

since NF is the smallest non-empty inductive set in F . This implies A = ∅ which is a
contradiction. ut

Definition 3.13 An ordered field F is said to be an archimedean field if NF is not bounded
from above. Equivalently if:

a, b ∈ F, b > 0 =⇒ ∃n ∈ N such that nb > a. (3.7)
76NF has only non-negative elements, because NF \ {x < 0} is an inductive set containing 0 and so

NF ⊆ NF \ {x < 0}.
77Otherwise 0 would also be the minimum of A.
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The equivalence between the two definitions is easy

=⇒) nb < a∀ n ∈ N =⇒ n < ab−1 ∀ n ∈ NF , contradiction;
⇐=) n < M ∀ n ∈ NF =⇒ n · 1 < M ∀ n ∈ N, contradiction.

The reader is invited to prove the following two facts: if F is an archimedean field
then

i) inf

{
1

k
= k−1

∣∣∣k ∈ NF \ {0}
}

= 0; (3.8)

ii) denoting by A one of the subsets NF ,ZF ,QF or F , we say that A ⊆ A is bounded
from above (respectively, bounded from below, bounded) in A if there exists x ∈ A such
that a ≤ x (respectively, x ≤ a, a ≤ |x|) for all a ∈ A; then, for every A ⊆ A,

A is bounded from above (respectively: bounded from below, bounded) in A ⇐⇒
A is bounded from above (respectively: bounded from below, bounded) in F.

The field of rational numbers Q and the field of real numbers R are archimedean fields.

Proposition 3.14 If F is an ordered field, then QF is an archimedean field.

Proof. The fact that QF is an ordered field is obvious78. Let us take m,n ∈ NF , n 6= 0.
Since n ≥ 1 we then immediately get

QF 3
m

n
≤ m < m+ 1 ∈ NF ,

which implies that NQF = NF is not bounded from above in QF (by the arbitrariness of
m/n). ut

Proposition 3.15 If F is an archimedean field, then QF is dense in F , that is

∀ a, b ∈ F with a < b, ∃ q ∈ QF such that a < q < b.

Proof. It is not restrictive to assume a > 079. Since b − a > 0, by (3.8) there exists
n ∈ NF such that

0 <
1

n
< b− a.

Let m be the smallest element of NF such that

m

n
> a.

78Note that it is also obvious that NQF
= NF .

79If a = 0 the we conclude by (3.8), if a < 0 < b then just take q = 0, if a < b ≤ 0 then just invert
signs and inequalities.
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Note that such m exists by the well-ordering property, and that it is certainly larger than
0. Hence, by the definition of m, we have

a <
m

n
=
m− 1

n
+

1

n
< a+ (b− a) = b,

and we conclude taking q = m/n. ut

Proposition 3.16 Let F be an ordered field. A section of F is a couple of subsets of F ,
(A,B), such that A,B 6= ∅, F , A ∪B = F and x ∈ A, y ∈ B =⇒ x ≤ y.

If F is archimedean and (A,B) is a section of F , then there exist two sequences
{an}n∈N, {bn}N in F such that

an ∈ A, bn ∈ B ∀ n ∈ N, {an} is increasing, {bn} is decreasing,
∀ c ∈ F, c > 0 ∃n ∈ N such that bn − an < c.

Proof. This is very similar to the proof of the Bisection Lemma 2.10. Let us take
a0 ∈ A and b0 ∈ B and, for every n ∈ N, define

cn =
an + bn

2
, an+1 =

{
cn if cn ∈ A,
an otherwise

, bn+1 =

{
bn if cn ∈ A,
cn otherwise

.

The first properties of the sequences are obvious. For the last one, we can certainly
assume that an 6= bn for all n, otherwise we must definitely have an = bn = cn and the
statement becomes obvious. Hence, we have

bn − an = (b0 − a0) (2n)−1 ,

where 2n means the element 2 ∈ F multiplied n-times by itself. Since 2n ≥ n for every
n80 (where the second n is the “n” of NF ), then, by (3.8) we have

inf
{

(b0 − a0)(2n)−1
∣∣∣n ∈ N

}
= (b0 − a0) inf

{
(2n)−1

∣∣∣n ∈ N
}

= 0,

which concludes the proof. ut

3.2 Isomorphisms and complete ordered fields

Definition 3.17 An ordered operative structure is a non-empty set A endowed by a num-
ber of operations ϕ1

A, · · · , ϕ
nA
A and of an ordered relation ≤A.

We say that two ordered operative structures A,B, are isomorphic if nA = nB and
there exists a bijective function ψ : A→ B such that

a ≤A b ⇐⇒ ψ(a) ≤B ψ(b) ∀ a, b ∈ A,
ψ
(
ϕiA(a, b)

)
= ϕiB (ψ(a), ψ(b)) ∀ a, b ∈ A ∀ i = 1, · · · , nA = nB.

Such a function ψ is called an isomorphism between the structures A and B.
80Let A ⊆ F be the sets of all positive natural elements such that 2n < n and suppose that is is not

empty. Since 21 > 1, then the minimum n0 of A, which exists because of the well-ordering property,
satisfies n0 ≥ 2. Hence, 2n0 < n0 and 2n0−1 ≥ n0 − 1 and we get a contradiction.

51



Remark 3.18 It is quite obvious that, if F and G are ordered fields, then NF and NG

are isomorphic, and then QF and QG are isomorphic.

Definition 3.19 An ordered field F is said to be a complete ordered field if every non-
empty subset A ⊂ F which is bounded from above, admits superior extremum in F , that
is there exists a ∈ F such that

a ≤ a ∀ a ∈ A; x < a =⇒ ∃ a ∈ A such that x < a.

From the definition it easily follows that a is unique, moreover the “supremum prop-
erty” of Definition 3.19 is equivalent to the obvious dual “inferior property”. We will also
write supA for the supremum and inf A for the infimum.

Proposition 3.20 If an ordered field F is complete then it is also archimedean. If an
ordered field F strictly contains a complete ordered field G81, then F is not archimedean.

Proof. Let us prove the first sentence. By absurd, let us suppose that F is not
archimedean, and so NF is bounded from above. Then, since NF is not empty, by com-
pleteness, there exists M = supNF ∈ F . Since M − 1 < M there exists n ∈ NF such that
M − 1 < n ≤M . But NF is an inductive subset and so n+ 1 ∈ NF . Since n+ 1 > M we
get a contradiction.

Let us prove the second sentence. First of all note that NF = NG. Let us take ξ ∈ F \G,
and suppose that ξ > 0, which is not restrictive. If there is not a natural element n ∈ NF

such that ξ < n, then NF is bounded from above and F is not archimedean. Otherwise,
the set

A =
{
x ∈ G

∣∣∣x < ξ
}

is not empty (it contains 0) and is bounded from above in G82. Since G is complete there
exists x = supA ∈ G83. For any n ∈ NF \ {0}, we then have84

x− 1

n
< ξ < x+

1

n
=⇒ 0 < |ξ − x| < 1

n
,

which implies that (3.8) does not hold in F , and hence that F is not archimedean. ut

Proposition 3.21 Let F be an archimedean ordered field. Then there exists a complete
ordered field F̃ which contains a subfield isomorphic to F .

81Of course with the same operations and ordering.
82There exists n ∈ NF = NG such that ξ < n; hence if x ∈ A it cannot be x > n.
83Here the supremum “is in G”, that is x ∈ G is the minimum among all elements w ∈ G such that

x ≤ w for all x ∈ A.
84Since x = supA in G, for every n there exists ξ ∈ A such that x − 1/n < ξ < ξ. On the other side,

by contradiction, if it exists n such that ξ ≥ x + 1/n, then we would have ξ > x + 1/(n + 1) ∈ G from
which x+ 1/(n+ 1) ∈ A which is a contradiction to the fact that x is the supremum of A. Note that we
need all these considerations because ξ 6∈ G and so we may have both x > ξ and x < ξ. But, what we
certainly have is that whenever we subtract or add 1/n to x we get under and get over ξ respectively.

52



Proof.
We define a half-section of F as any subset L ⊂ F such that

L 6= ∅; L 6= F ; L has not maximum; x, y ∈ F, x ∈ L, y < x =⇒ y ∈ L.

An example of a half-section is the left-half-line

L =
{
x ∈ F

∣∣∣x < r
}
,

where r ∈ F is fixed85. We define

F̃ :=
{
L
∣∣∣L is a half-section of F

}
.

Order relation.

∀ L,M ∈ F̃ , L ≤M ⇐⇒ L ⊆M.

It is easy to see that this is a total relation on F̃ .
Existence of supremum. Let A ⊆ F̃ be a non-empty bounded above subset. We define
the subset of F

H =
⋃
L∈A

L ⊆ F, that is x ∈ H ⇐⇒ ∃ L ∈ A such that x ∈ L.

Let us prove that H is a half-section. Obviously, it is not empty. Since A is bounded
from above, then there exists L such that L ⊆ L for every L ∈ A, and so H cannot be the
whole F . It does not have maximum since, for every x ∈ H it is x ∈ L for some L ∈ A,
and L has not maximum, hence there exists x′ ∈ L ⊆ H such that x < x′. Finally, let us
take x ∈ H and y < x, hence x ∈ L ⊆ H and so y ∈ L ⊆ H. Hence H is a half-section,
that is H ∈ F̃ . Now we prove that H = supA. By definition, it is obvious that L ≤ H
for every L ∈ A. Moreover, if L′ is a majorant of A, then L ⊆ L′ for all L ∈ A, and so,
by definition, H ⊆ L′. Hence, H is the supremum.

Sum. We define a sum in F̃ by

L+M =
{
z ∈ F

∣∣∣∃x ∈ L, y ∈M such that z = x+ y
}
∀L,M ∈ F̃ .

First, we have to prove that L+M is a half-section of F , that is an element of F̃ . Let us
prove only the fourth condition. If z ∈ L + M , then by definition there exist x ∈ L and
y ∈M such that z = x+ y. Hence, if w < z, then w− z < 0 and so x+w− z < x, which
implies x+ w − z ∈ L, from which w = x+ w − z + y ∈ L+M .

85However, the half-sections are not all of this kind, otherwise, in some sense, we would repli-
cate F itself. Indeed, think for instance to the case F = Q, we also consider the half-section{
q|q ≤ 0 or

(
q > 0 and q2 < 2

)}
, which is not of the previous kind.
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Now, we sketch the proof that such a sum in F̃ makes F̃ an abelian group86. It can
be proved that the sum is commutative and associative, and also that the half-section

0̃ =
{
x ∈ F

∣∣∣a < 0
}
,

is the neutral element. Let us show the construction of the opposites with more details.
If L ∈ F̃ , then we define the sets

L̂ =
{
x ∈ F

∣∣∣− x 6∈ L} , L∗ =

{
L̂ if L̂ has no maximum,

L̂ \ {max L̂} otherwise

It can be proved that L∗ is a half-section of F and that L + L∗ ⊆ 0̃. Let us prove
the opposite inclusion. Note that (L, F \ L) is a section of F , and take two sequences
{an}, {bn} as in Proposition 3.1687. Hence we have, for every n > 0:

an ∈ L, −bn ∈ L̂, −bn −
1

n
∈ L∗, (3.9)

and, by the property of the sequences an and bn and by the archimedean property, for
every z < 0, there exists n such that

0 < (bn − an) +
1

n
< −z =⇒ z < −(bn − an)− 1

n
∈ L+ L∗ =⇒ z ∈ L+ L∗, (3.10)

and so 0̃ ⊆ L+ L∗.
Product. We define the following product in F̃ , for only positive elements L,M > 0:

L ·M := 0̃ ∪ {0} ∪
{
z ∈ F

∣∣∣∃0 < x ∈ L, 0 < y ∈M such that z = xy
}

Again, it can be proved that it is well defined (the product is a half-section), that it is
associative commutative, distributive, and that the neutral element is

1̃ =
{
x ∈ F

∣∣∣x < 1
}
.

Moreover, similarly as above, in particular using the archimedean property, for every
0 < L ∈ F̃ we can define

L̂ = 0̃ ∪ {0} ∪
{

0 < x ∈ F
∣∣∣x−1 6∈ L

}
, L∗ =

{
L̂ if L̂ has no maximum,

L̂ \ {max L̂} otherwise
,

and prove that L∗ = L−1.

86Most of such a proof is tedious and long. We only sketch the passages where the archimedean property
of F is crucial.

87Here, the archimedean property of F plays an essential role.
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Once we have defined a product between positive elements, then we can extend it to
negative elements by defining, for instance,

L ·M := − (L · (−M)) ∀ L > 0,M < 0.

Compatibility with the ordering. This is almost immediate. For example, let us prove
the compatibility between product of positive terms and ordering. Let 0 < L ≤ M and
0 < C be chosen, and take z ∈ L · C. If z ≤ 0, then obviously z ∈ M · C too. Let us
suppose z > 0. Hence, there exist 0 < a ∈ L and 0 < b ∈ C such that z = ab. Since
L ⊆M then we also have a ∈M and so z = ab ∈M · C too.

Hence, we have proved that F̃ is a complete ordered field. It remains to prove that it
contains a subfield which is isomorphic to F . But the isomorphism is immediate, it is the
restriction of

ψ : F → F̃ x 7→ ψ(x) =
{
z ∈ F

∣∣∣z < x
}
.

to its image as codomain88.
ut

Let us collect some of the results till now obtained and also some other obvious facts89:

i) F,G ordered fields =⇒ QF ,QG archimedean and isomorphic
ii) F,G isomorphic =⇒ (F archimedean/complete ⇐⇒ G archimedean/complete)
iii) F,G complete, G ⊆ F =⇒ F = G,

iv) F,G archimedean and isomorphic =⇒ F̃ , G̃ isomorphic

v) F complete =⇒ F, F̃ isomorphic
(3.11)

Proposition 3.22 If F is an archimedean field, then F̃ is isomorphic to Q̃F .

Proof. Let us define the following function

ψ : Q̃F → F̃ , L 7→ L′ =
{
x ∈ F

∣∣∣∃q ∈ L, x < q
}
. (3.12)

It is easy to prove that L′ is indeed an half-section of F and that ψ is injective. For
instance, about the injectivity: if L,M ∈ Q̃F and L < M , then let us take q1, q2 ∈M \ L
with q1 < q2, which exist since, at least one q ∈ M \ L exists, and M has no maximum.
Hence, being F dense, there exists x ∈ F such that q1 < x < q2 which of course implies
x ∈M ′ \ L′, that is L′ 6= M ′.

88What is immediate is that such a restriction of ψ is a good candidate to be isomorphism. To prove
that it really is an isomorphism requires, again, some patience.

89iii) holds because if G is not the whole F , than F strictly contains a complete field and so it cannot
be complete; iv): if ψ : F → G is isomorphism, then ψ̃ : F̃ → G̃, ψ̃(L) = {ψ(x) : x ∈ L} is isomorphism;
v) is true since F̃ contains a subfield isomorphic to F which is complete, and hence it must coincide with
that subfield.
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The fact that ψ maintains the orderings is easy. About the operations, let us prove
as example the compatibility with the product of positive elements. Let L,M ∈ Q̃F ,
L,M > 0, and prove that (LM)′ = L′M ′. It is sufficient to work with positive elements
0 < x ∈ F . If x ∈ (LM)′ then there exist 0 < qL ∈ L, 0 < qM ∈ M such that
x < qLqM . From this we get that x/qL < qM and hence x/qL ∈ M ′. Since we obviously
have qL ∈ L′90, we finally get x = (x/qL)qL ∈ L′M ′. On the other side, if x ∈ L′M ′ then
there exist xl ∈ L′, xM ∈M ′ such that x = xLxM . Moreover, there exist qL ∈ L, qM ∈M
such that xL < qL, xM < qM . Since qLqM ∈ LM we conclude by x = xLxM < qLqM .

Hence, Q̃F is isomorphic to ψ
(
Q̃F

)
which is a complete subfield of F̃ . Since F̃ is

complete too, then F̃ = ψ
(
Q̃F

)
, and hence F̃ is isomorphic to Q̃F . ut

Now, we can add a new point vi) to the collection (3.11)

vi) F archimedean =⇒ F̃ isomorphic to Q̃F . (3.13)

Here is the main result of this section.

Theorem 3.23 If F and G are two complete ordered fields, then they are isomorphic.

Proof. Just using the six points in (3.11)–(3.13), denoting by “=̃” the relation of being
isomorphic, and noting the obvious fact that such a relation is transitive, we immediately
get

F =̃F̃ =̃Q̃F =̃Q̃G=̃G̃=̃G.

ut

Remark 3.24 By Theorem 3.23 we can say that “there exists only one complete ordered
field”, where ”uniqueness” must be intended as “they are all isomorphic”. In some sense,
two different complete fields are the same objects with the same rules just only painted
with different colors. We call such a unique field ”the field of the real numbers” and we
denote it by R.

Moreover, as conclusion of this section, we also deduce that: 1) R is the unique com-
plete ordered field; 2) Q is the smallest ordered field: indeed every ordered field contains
Q, and it is also archimedean (and so the smallest archimedean); 3) every archimedean
ordered field F is contained between Q and R: Q ⊆ F ⊆ R91; 4) if an ordered field is
contained between Q and R, then it is archimedean (because so is R); 5) if an ordered
field strictly contains R then, it is not archimedean.

We end this section reporting two examples of an archimedean field strictly contained
between Q and R and of a non-archimedean field, respectively.

90This is because L has no maximum.
91because F ⊆ F̃ = R.
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Example 3.25 We consider the set

Q
[√

2
]

=
{
x ∈ R

∣∣∣∃a, b ∈ Q such that x = a+
√

2b
}
.

It is evident that Q ⊂ Q
[√

2
]
⊂ R with strict inclusions. Moreover, Q

[√
2
]

is an
archimedean ordered field. Since it is a subset of the archimedean ordered field R, it is
sufficient to prove that it is a field, that is closed for the sum and the product and their
inversions. However, first of all note that, since a, b ∈ Q, a +

√
2b = 0 if and only if

a = b = 0, and the same also holds for a2 − 2b2 = (a+
√

2b)(a−
√

2b).

(a+
√

2b) + (α +
√

2β) = (a+ α) +
√

2(b+ β) ∈ Q
[√

2
]

;

−(a+
√

2b) = (−a) +
√

2(−b) ∈ Q
[√

2
]

;

(a+
√

2b)(α +
√

2β) = (aα + 2bβ) +
√

2(bα + aβ) ∈ Q
[√

2
]

;

if a 6= 0 or b 6= 0 :
1

a+
√

2b
=

1

a+
√

2b

a−
√

2b

a−
√

2b
=

a

a2 − 2b2
−
√

2
b

a2 − 2b2
∈ Q

[√
2
]

Example 3.26 Let us consider the following set of rational functions

F =

{
P (x)

Q(x)

∣∣∣P,Q polynomials in the variable x ∈ R, Q 6= 0

}
Note that, for every rational function P/Q in F there exists a neighborhood of +∞, that
is a half-line [m,+∞[, such that P/Q is defined on it (i.e. Q(x) 6= 0 for all x ∈ [m,+∞[).
Obviously F is endowed of a sum and of a multiplication which make it a field:

P1

Q1

+
P2

Q2

=
P1Q2 + P2Q1

Q1Q2

,
P1

Q1

P2

Q2

=
P1P2

Q1Q2

,

the neutral element for the sum is the null function (which corresponds to P ≡ 0 with
every Q) and the unity is the constant function 1 (which corresponds to P = Q ≡ 1).

It is not restrictive to suppose that all the elements of F have the denominator Q
such that its leading coefficient (the one of the maximum power) is strictly positive92. We
introduce the following total ordering in F :

P1

Q1

≤ P2

Q2

⇐⇒ P2

Q2

− P1

Q1

has the numerator with non-negative leading coefficient .

Let us prove that it is an order relation. First of all note that a polynomial P has
null leading coefficient if and only if it is the null polynomial (the null constant function),
and this fact immediately gives the reflexivity and the anti-symmetry. Just a calculation
gives that the sum of non-negative elements gives a non-negative element. Hence we get
the transitivity:

P1

Q1

≤ P2

Q2

,
P2

Q2

≤ P3

Q3

=⇒ P3

Q3

− P1

Q1

=

(
P3

Q3

− P2

Q2

)
+

(
P2

Q2

− P1

Q1

)
≥ 0

92If not, just multiply P and Q by −1.
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Checking the compatibility of the ordering with the operations is also easy.
Hence F is an ordered field. It is obvious that NF is given by the constant functions

f ≡ n with n ∈ N (corresponding to P ≡ n, Q ≡ 1). Let us note that

1 > 0,
1

x
> 0, and 1− 1

x
=
x− 1

x
> 0 =⇒ 0 <

1

x
< 1.

But we also have n · 1/x < 1 for every n ∈ N, indeed

1− n

x
=
x− n
x

> 0.

Hence, F is not archimedean (otherwise n · 1/x ≥ 1 for some n.).

Remark 3.27 We know that the archimedean fields are contained between Q and R. We
also know that if an ordered field strictly contains R, then it is not archimedean. The field
in Example 3.26 indeed strictly contains an isomorphic copy of R: the constant functions
f ≡ α ∈ R93. However, it is not necessary for an non-archimedean field to contain the
real numbers. Just take the field of rational functions given by polynomials with rational
coefficients: it is a non-archimedean field but it does not contain the real numbers94.

3.3 Choose your axiom, but choose one!

In the previous sections we have stated and proved several results about ordered field, and
in particular, we arrived to prove that every two complete fields are isomorphic, which,
in some sense, means that there exists at most only one complete ordered field, which
we call the real numbers field. The natural question that must be done at this stage is
whether the real numbers exist or, in other words, whether a complete ordered field exists
or not. We already know that, if an archimedean ordered field exists then a complete
ordered field exists too. Hence the question may be shifted to a ”lower level”: does an
archimedean ordered field exist?, which is in some sense equivalent to ask whether the
field of rational numbers exits or not. However, the rational numbers can be naturally
constructed starting from the natural numbers. Hence the question may be posed in a
further ”lower level”: do the natural numbers exist?

93By the way, note the little bit surprising fact, but coherent with an already done observation in
a previous footnote, infR{α ∈ R|α ≥ (1/x)} = 0 < (1/x)}, where infR means the infimum inside the
subfield R.

94This last example may well explain why we need the archimedean property for the construction of
the complete field F̃ as done using the half-sections. It is almost clear that the constant function

√
2 is

a ”hole” of the field of the rational functions with rational coefficients. Hence, consider the half-section
L given by the sets of the elements smaller than

√
2. Its opposite with respect to the sum should be the

half-section L∗ of elements smaller than −
√

2. But the ”hole
√

2” also contains all the elements which
differ from

√
2 by an infinitesimal quantity (i.e. by a non-zero quantities whose absolute value is less than

every 1/n): for example, the function
√

2− 1/x. But then, it is not more true that L+ L∗ = 0̃. Indeed,
we cannot obtain −1/x as sum of two elements of L and L∗, because we cannot ”approximate”

√
2 more

than any non-negative element as in the archimedean case: we always remain far from
√

2 of at least the
quantity 1/x > 0 (compare with (3.9),(3.10)).
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At the end of the XIX century, an italian mathematician, together with his school,
Giuseppe Peano (Cuneo 1858- Torino 1932) intensively studied the problem of formalizing
all the structure of mathematics, in particular the set of numbers and their properties.
His goal was to develop a formal language able to contain the mathematical logic and all
the results of the most important sectors of mathematics. In doing that he also introduced
most of the symbols we are still using nowadays for formulas, such as ∈, ⊂, ∪, ∩, ∀, ∃.
This was one of the power of his method: to avoid as more as possible any ”metaphysical”
language and to rely all the theory on rigorous symbolism, together with going to the
essential properties of the structure under study. In particular, for what concerns the
construction of natural numbers, he identified the basic characteristic properties of the
set of natural numbers which are now worldwide recognized as the Peano axioms. Such
axioms are the following:

there exists a non empty set N such that:
i) (successor function) there exist an element, denoted by 0, in N and an injective

function s : N→ N \ {0} (and s(n) is said the successor of n),
ii) (Principle of Induction) if a collection of predicates P (n), one per every n ∈ N,

satisfies both

a) P (0) is true,
b) P (n) true =⇒ P (s(n)) true,

then P (n) is true for all n ∈ N.
If N is a set satisfying the Peano axioms, then it can be endowed, in a natural manner,

of a sum, a product and an order with the obvious compatibility conditions between them.
Indeed, let us define 1 := s(0), then we can define, for all n,m ∈ N

n+ 1 := s(n), n+ (m+ 1) := (n+m) + 1,
n · 1 := n, n(m+ 1) := nm+ n,
2 := 1 + 1 = s(1) = s(s(0)) > 1 > 0.

It can be shown that, using the Principle of Induction, these formulas well-define a sum,
a product and a total ordering on N.

If N,N′ are two sets satisfying the Peano axioms, then there is an isomorphism between
them, again defined using the Principle of Induction,

ψ : N→ N′, 0 7→ ψ(0) = 0′, s(0) 7→ ψ(s(0)) = s′(0′), s(n) 7→ s′(ψ(n)),

where s, s′ are the two successor functions. Hence, we can say that, if a set satisfying the
Peano axioms exists, then it is unique: they are all isomorphic.

We now prove that, if F is an ordered field, then NF satisfies the Peano axioms. Of
course there is an element 0 ∈ NF and the injective function s is s : x → x + 1. The
Principle of Induction holds for the fact that NF is well-ordered, that is every non empty
subset of NF has a minimum element (see Proposition 3.12). Indeed, let us consider the
set A ⊆ NF such that n ∈ A if and only if P (n) is false, and, by absurd, suppose that A is
non-empty. Then it must have a minimum element n, which of course is not 0 since P (0)
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A complete ordered
field F exists

A complete ordered
field F exists

An ordered field
F exists

An ordered field
F exists

There exists NF 
well-ordered 
inductive set

There exists QF
archimedean 
ordered field 

An archimedean 
ordered field F exists
An archimedean 

ordered field F exists

There exists N
natural numbers
Peano axioms

There exists N
natural numbers
Peano axioms

There exists Q
rational numbers
archimedean field

There exists Q
rational numbers
archimedean field

There exists R
real numbers

complete ordered
 field

There exists R
real numbers

complete ordered
 field

Figure 3: The sentences in the shaded rectangles may be chosen as axioms. Please, choose
one.

is true. Hence, n is not the minimum of NF and so it has a predecessor, which means
that n− 1 ∈ NF and, of course, n− 1 6∈ A for the minimality of n. Hence P (n− 1) is true
and, by the inductive assumption, we also get P (n) true, which is a contradiction since
n ∈ A. Hence it must be A = ∅, that is P (n) true for all n ∈ NF .

When we assume the Peano axioms, in particular the existence of such a set, the
natural numbers, then it is easy to arrive to the construction of the set of rational numbers
which turns out to be an archimedean field. From the field of rational numbers, by
Proposition 3.21, we get the existence of a complete field which, by Theorem 3.23, turns
out to be the unique complete field: the real numbers. On the other way, we can assume
that the real numbers, as we imagine and know, exist (in particular that they satisfy the
superior extremum property, that is that they form a complete field), and we immediately
arrive to the existence of the natural numbers (i.e. NR), satisfying the Peano axioms.
Moreover, as explained above, we can also assume the existence of a generic ordered field
F and we obtain the existence of a set satisfying the Peano axioms (NF ) from which
we obtain the existence of an archimedean field (QF ), and then obtain the existence of
a complete ordered field (F̃ = Q̃F ). In similar way, we can assume the existence of an
archimedean ordered field (typically the rational numbers Q) and then we get the existence
of the natural numbers satisfying the Peano axioms and the existence of a complete field
(the real numbers, by uniqueness). In conclusion, we cannot avoid to assume an axiom
between the following ones: a) the natural numbers exists satisfying the Peano axioms, b)
the rational numbers exist forming an archimedean field, c) the real numbers exist forming
a complete field, d) an ordered field exists, e) an archimedean field exists, f) a complete
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field exists. Whichever axiom we have chosen, all the other ones become theorems95 and,
in any case, we arrive to the real numbers as unique complete field. What is mandatory
is to make such a choice: since nothing comes from nothing, one axiom must be chosen
and all the rest will come. Figure 3 tries to explain this fact.

3.4 Historical notes and complements

As we have seen in the previous sections, the archimedean property of the rational (and
so of the real) numbers plays an important role. In particular the consequence (3.8) is
of great importance also in practice, because, for instance, it concerns the calculation of
limits. Another (similar) important consequence is the density of the rationals in any
archimedean field.

From a geometric point of view, the archimedean property, in its formulation as in
(3.7), is equivalent to the geometric fact that, given two segments with positive lengths,
it is always possible to cover one of the two by the union of a suitable finite number of
subsequent copies of the other one. This absolutely intuitive property of the real line is at
the basis of the method of exhaustion of Eudoxus and Archimedes. Indeed, as reported
in the books of Elements by Euclid of Alexandria (325 B.C.-265 B.C.), the method of
exhaustion relies on the sentence: “If from any quantity96 we subtract not less than its
half-part, and if from the remaining we subtract again not less than its half-part, and if
we proceed in this way as many times as we want, then, at the end, we will remain with a
quantity which is smaller than any other quantity could have been a-priori fixed”97. Such
a sentence comes from the archimedean property just by a “reductio ad absurdum”. In
our modern language, this formulation of the method of exhaustion is of course equivalent
to

0 < r < 1 =⇒ lim
n→+∞

rn = 0,

where 1− r is the fraction of the quantity to be subtracted. But, as already said, Greeks
did not make limits.

The archimedean property is in some sense close to the completeness, because every
complete field is archimedean and every archimedean field can be completed in a complete
field. Indeed, the right use of the method of exhaustion should require the completeness,
otherwise, said in a modern language, we do not know where we are converging to. For
instance, in his studies about the area of the circle, Archimedes proved the fact that
a circle is equivalent to the triangle with the circumference as basis and the radius as
height, and in proving that he approximated the circle with inscribed and circumscribed
regular polygons. For being rigorous, this procedure requires to suppose that any Cauchy

95That is statements which are proved to be true.
96Here, “quantity” means a geometric quantity as a length or a surface and so on.
97Of course, the sentence continues to be true if we replace the half-part with any other fractional part:

one third, one fourth, and so on. Moreover, as already said in the previous historical section, this has not
to be understood as if Greeks made limits, but as the fact that repeating such a process a high number
of times we can make the quantity smaller than an a-piori fixed quantity.
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sequence of rationals numbers98 is converging in R, and we know that this fact is in
some sense equivalent to the completeness of the real numbers (see Proposition 2.11 and
Remark 2.12).

The completeness of the real numbers was always assumed (tacitly or not, consciously
or not) to be true as an axiom in the history of mathematics. Even if the concept of
“real number” is rather modern, however the representation of the numbers on the line
is rather natural, and the completeness of the lines of the geometry is rather obvious to
be assumed. Such a principle of completeness can be explained in the following “nested
interval principle” which is only another version of the Bolzano-Weierstrass Theorem 2.9
(or of the Bisection Lemma 2.10):

Nested interval principle. Let {an} and {bn} be, respectively, an increasing and de-
creasing sequence of real numbers, such that an < bn for all n, and such that the difference
bn − an can be made arbitrarily small, then there exists one and only one real number x
such that an < x < bn for all n. Such an element x is of course the limit of both an and
bn.

This principle was taken as an axiom, that is as an unproven assumption, until the
later XIX century. Also Cauchy and Bernard Bolzano (Prague, 1781 - 1848) used it
without proof. As already said it is the nowadays known as Bolzano-Weierstrass theorem,
and such a name aknowledges the first two mathematicians that recognized the need to
state it explicitly. A direct consequence of the nested interval principle is the nowadays
known as Bolzano Theorem or Intermediate Value Theorem: a continuous function f on
an interval [a, b] attains all the values between f(a) and f(b).

Until a model of real numbers (i.e. of complete field) is not given, the completeness
of the real numbers should be part of the definition itself of the real numbers. In that
case the only right thing to do is to define the real numbers as the (unique) field which
contains the rational numbers and has the nested interval property. But this is how we
argue nowadays, who know that we must choose an axiom and we can decide to choose
“the real numbers has the nested interval property” as our axiom/starting point. This
was not completely clear before the year 1872. Indeed, before of that year, the problem of
defining the real numbers was obviously addressed, but in an ambiguous and non rigorous
manner. For instance, Cauchy an Bolzano, and their contemporaries, went into a sort
of “circular definition” of a real number: they substantially first defined the limit of a
sequence as a real number, and then they defined a real number as the limit of a sequence
of rational numbers. Indeed, Cauchy said that if a sequence is “internally convergent”
(that is what we now call a Cauchy sequence), then it is also “externally convergent”, that
is convergent to a real number `. Hence, at this level, you must already know what a real
number is, and so, if you use the convergence of a sequence for defining a real number,
then you go into circularity.

98For instance the rational sequence a2n = the area of the inscribed polygon with n vertices, and
a2n+1 = the area of the circumscribed polygon with n vertexes, which converges to the area of the circle
which may not be rational.
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This lacking of rigor in defining the real numbers was first addressed by Charles Meray
(France, 1835 - 1911) who, in the year 1872, published his studies about infinitesimal anal-
ysis and modified the definition of Cauchy and Bolzano. He indeed defined the convergence
of a sequence just using the “Cauchy property” of the sequence, without referring to any
number as its limit (as instead was done by Cauchy and Bolzano). Hence, he supposed
that a convergent (in Q) sequence of rational numbers defines a rational number and the
non convergent (in Q) Cauchy sequence defines a “fictitious number”, what we now call
an irrational number. He also proved that such fictitious numbers can be ordered and
well-behave with respect to the sum and product.

Weierstrass also tried to overcome the logic error made by Cauchy. Similarly to Meray,
he realized the need of a definition of real number which was independent from the concept
of limit. In some sense, going further Meray, he identified the real numbers with the
Cauchy sequences of rational numbers, an so bypassing the problem of defining what
the limit is. In our modern language, this is indeed another way than what we have
done before with the half-sections, to complete the archimedean field of rational numbers.
We can introduce the set F of all the Cauchy sequences of rational numbers. On F we
introduce the following equivalence relation

{an} ∼ {bn} ⇐⇒ ∀ ε > 0 ∃ nε ∈ N such that |an − bn| ≤ ε ∀ n ≥ nε,

and we consider the quotient set F̃ = F/ ∼. On F̃ it is possible to introduce a sum,
a product and an order in such a way that F̃ is a complete ordered field. Moreover, F̃
contains an isomorphic copy of Q, the equivalence classes of sequences constantly equal
to a rational number.

Weierstrass did not publish these studies, but they were published by some of his
students/collaborators. Eduard Heine (1821-1881), in the year 1872, published an article
where he put together the ideas of Weierstrass and some simplifications of recent studies
by Georg Cantor (1845-1918). In particular, both Heine and Cantor were on the same
streamline as Meray (and Weierstrass) in searching of a definition of real numbers using
convergent sequences of rational numbers, but avoiding to refer to the concept of limit.

A completely different approach was instead published, in the same year 1872, by
another German mathematician, Richard Dedekind (1831 - 1916), even if he was conscious
of his ideas since 1858. The Dedekind’s method for “constructing” the real numbers is
probably the most known nowadays99, even if it is not very useful by an operative point of
view. Dedekind realized that the property of “continuity” of the points of a line does not
rely on a property of “density”100, that is it is not equivalent to the sentence: “between
two points there always exist a third point”, since the rational numbers are “dense” but
do not form a “continuum”. Instead, Dedekind completely changed the point of view:
the “continuity” of the line is not a property which can be formalized as the fact that
it consists of a unique dense piece101, but, on the contrary, as the fact that when you

99It is substantially the method of half-sections we presented before.
100For instance, Galileo (Pisa 1564-Arcetri 1642) and Leibniz were instead convinced of that.
101In some sense “indivisible”.
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cut the line you get exactly one point on the cut102. For every section of the points of a
line into two non empty classes, such that every point of the first class stays on the left
of every point of the second one, there exists one and only one point which determines
such a division103. Dedekind however left this geometrical vision and transposed it in a
completely analytical property of sections of rational numbers. A Dedekind section of
the rational numbers is a couple of subset (A,B) as defined in Proposition 3.16. Inspired
by the property of the line, Dedekind said that, for every section (A,B) of the rational
numbers, there is one and only one real number which produces such a section (cut).
Roughly speaking, we can say that there exists one and only one real number x such that

A \ {x} =
{
q ∈ Q

∣∣∣q < x
}
, B \ {x} =

{
q ∈ Q

∣∣∣q > x
}
.

If A has a maximum or B has a minimum, then such a separating number is a rational
number, otherwise it is an irrational number.

At the beginning of the XX century, Bertrand Russell (1872 - 1970)104 made a simple
observation: if (A,B) is a Dedekind section of the real numbers, then B is uniquely
determined by A and vice-versa. Hence it is sufficient to consider just the “half-section”
A. And this is what we have done in the previous section105.

In the Example 3.26, we have described a non-archimedean field and we have shown
that the element 1/x is smaller than any element of the form 1/n. In the same way we
can see that the element x is larger than any n ∈ N.

If F is a non-archimedean field, it is natural to call infinitesimal all the elements a
such that 0 < |a| < 1/n for all n ∈ N \ {0} and infinite elements all the elements a such
that |a| > n for all n ∈ N. Of course, if a is infinitesimal then 1/a is an infinite and
vice-versa. The existence of infinitesimal elements (as well as of infinite elements) is a
characteristic property of the non-archimedean fields. Gottfried Wilhelm Leibniz (1646 -
1716) and Isaac Newton (1643-1727) were very involved in formalizing calculus rules for
the use of infinitesimal quantities106. By their rules for treating infinitesimal quantities,
Newton and Leibniz discovered many results about what concerns limits, derivatives and

102In some sense, as a property on how the line can be divided.
103Note that the novelty of such a sentence is not rather on the uniqueness of the divisor point, but on

its existence!
104Look to the coincidence: Bertrand Russell was born in the year 1872!
105Note that the isomorphism in (3.12) just says that the section (L,QF \L) and the section (L′, F \L′)

define the same separating element (think to the case QF = Q, F = R).
106Actually, Leibniz and Newton may be considered the fathers of the infinitesimal analysis. Newton

called his infinitesimal quantities “fluxions” and Leibniz “differentials”. They both introduced many of
the notations and symbols we are now still using, for instance Newton : “ẋ” and “x′” for derivatives, and
Leibniz“dx” for the infinitesimal increment of the abscissa x, “

∫
fdx” for the integral. Leibniz also first

used the term “function” for denoting exactly what we now call a function. We have to say that Newton
and Leibniz, in the last years of their lives, were involved in a bitter dispute about the paternity of the
“invention” of infinitesimal calculus: in particular Newton and his school accused Leibniz of plagiarism
and an (English!) commission gave completely reason to Newton. Nowadays we can say that Newton
certainly first arrived to his results and methods, but Leibniz was independent in his results and studies.
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integration. Using the infinitesimals, all of such results were obtained just by some “alge-
braic calculations” and not by a limit procedure. A very simple example is the calculation
of the derivative of the function f(x) = x2. The derivative is the ratio between: the in-
crement of the function when the abscissa is incremented by an infinitesimal dx and such
infinitesimal increment dx itself. We then have

f ′(x) =
f(x+ dx)− f(x)

dx
=
x2 + 2xdx+ (dx)2 − x2

dx
= 2x+ dx = 2x, (3.14)

where the last equality is due to the fact that we neglect the infinitesimal quantity dx.
This kind of procedure was strongly criticized by other mathematicians in the following
years. Indeed it seems to be without logic foundations: these infinitesimal quantities
are sometimes treated as non-zero elements (as in the second and in the third term of
(3.14), where the denominator must be different from zero; and also in the third equality,
where we divide by dx) and some other times as null quantities (as in the fourth equality
in (3.14) where we substantially put dx = 0). The use of the infinitesimal quantities is
certainly a powerful tool for “direct calculation” and for inferring the right result, but it is
lacking of any rigorous foundation. This fact was not acceptable and the ε−δ formulation
of Weierstrass and Cauchy of the late XIX century will definitely rigorously define the
limit, the derivative and the integration procedures without the use of any infinitesimal
quantity: just using finite real numbers which can be taken as small as we want.

In the year 1966, 250 years after Leibniz’s death, Abraham Robinson (Germany/Poland
1918-USA 1974) published his famous book “Non-standard analysis”. Using deep math-
ematical logic tools, he was successful in constructing a suitable non-archimedean field
containing the real numbers, denoted by R∗ and called the hyperreals, with the following
properties: everything is true in the standard universe R is also true in the non-standard
universe R∗ (when, of course, concerning R itself). Moreover the algebraic rules for the
infinitesimals of R∗ are rigorous and well-behave as Leibniz has imagined. In particular,
if x ∈ R, then we can define the following relation

x′ ∈ R∗, x′ ∼ x ⇐⇒ x− x′ is infinitesimal in R∗,

and, for every finite107 y ∈ R∗ there exists a unique x ∈ R such that y ∼ x108 and it is
denoted by st(y): the standard part of y. Moreover, for every function f : R → R there
is a unique extension f ∗ : R∗ → R∗. Hence, many of the usual definitions in the standard
universe, such as continuity, uniform continuity and derivatives, become very easier and
more intuitive in the non standard universe. For instance, if f : R→ R is a function and
x0 ∈ R is a fixed real number:

107Finite means that there exists n ∈ N such that |y| ≤ n.
108For x ∈ R, the subset {y ∈ R∗|y ∼ x} ⊂ R∗ is also called the monad of x, so using a term which was

important in Leibniz’s philosophy.
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f is continuous at x0 ∈ R ⇐⇒
(
R∗ 3 x ∼ x0 =⇒ f ∗(x) ∼ f ∗(x0)

)
,

f is uniformly continuous ⇐⇒ f ∗(x) ∼ f ∗(y) ∀x, y ∈ R∗, x ∼ y,

if f ′(x0) exists, then f ′(x0) = st

(
f ∗(x0 + y)− f ∗(x0)

y

)
where y is any non-null infinitesimal.

Note in particular that, the non-standard formulation of the continuity in x0 is very simple
and it represents what every student would like to be true: if x is close to x0, then f(x) is
close to f(x0). Instead, the ε−δ formulation is rather more complicated: first you take an
arbitrary criterium of vicinity for the images, ε, then you find a criterium of vicinity for
the points, δ, and then you test again the criterium of vicinity for the images. Moreover,
also the equivalent definition of derivative makes rigorous the calculation in (3.14)109.

In this way, many statements and proofs of the standard analysis have an easier for-
mulation in the non-standard analysis. However recall that whatever, about the standard
analysis, you can prove using standard notations (ε − δ procedure) you can also prove
using non-standard analysis and vice-versa. So, the non-standard analysis does not in-
troduce more true facts (already proved or not) with respect to the ones in the standard
analysis, but only provides a different way to look to them and, sometimes, a more in-
tuitive way to prove them. Using non-standard analysis Robinson, together with Allen
Bernstein, first proved as true a particular case of an open question about operators in
Hilbert spaces. Such a proof was however immediately “translated” in the standard tools,
even in a shorter way. However, the first non-standard proof was certainly illuminating.

109Actually, it is also true that: if st ((f∗(x0 + y)− f∗(x0))/y) exists for all infinitesimal y and it is
independent from y, then, f is derivable in x0 and f ′(x0) = st ((f∗(x0 + y)− f∗(x0))/y).
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4 Cardinality

In this chapter we are concerned with the power (or cardinality) of the sets. That is with
the possibility of counting the elements of a set and of comparing two different sets by
their quantity of elements. Such an argument is somehow linked to the theory of the
topological spaces, which will be treated in the next Chapter.

4.1 The power of a set

Definition 4.1 Let A and B two sets. We say that A and B are equivalent if there exists
a bijective function ϕ : A → B and we write A ∼ B. We say that A is finite if there
exists n ∈ N \ {0} such that A is equivalent to Jn = {1, 2, . . . , n}110. We say that the
empty set ∅ is finite. We say that A is infinite if it is not empty and not equivalent to Jn
for all n ∈ N \ {0}. We say that A is countable if it is infinite and equivalent to N \ {0}.
We say that A is uncountable if it is infinite but not countable. Finally, we say that A is
at most countable if it is finite or countable.

Remark 4.2 It is easy to see that the relation A ∼ B between sets is an “equivalence
relation”, i.e. reflexive, symmetric and transitive111112.

Moreover, N and N \ {0} are infinite and in particular countable113, and so a set is
countable if and only if it is equivalent to N (without a priori requiring to be infinite,
which is just a consequence.).

If two sets are equivalent, then they in some sense have the same number of ele-
ments114, however we say that they have the same power or the same cardinality.

It is evident the origin of the term “countable”: it takes account of the possibility
of counting the elements of A. Also note that every infinite set A contains a countable
subset. Indeed, since A is not empty, we can take an element a1 ∈ A and define an

110This of course means that A has exactly n elements.
111The quotation marks here stand for the fact that, for defining an equivalence relation, we need a set

and we say that the equivalence relation is a suitable subset of the cartesian product. But, which is the
set where we have defined the equivalence relation “∼”? The natural answer would be “the set of all the
sets”, but the existence of such a set cannot be accepted, otherwise we encounter various problems as the
Russell Paradox. The only thing we can say is that, whenever we take a family of sets (i.e. a collection
(a set) of sets which we put in such a collection), then, on such a collection, ∼ is an equivalence relation.

112On the Russell paradox. If we assume the existence of the set of all the sets, I, then, since a property
on the elements of a set must define a subset corresponding to the elements satisfying that property,
we can consider the set Ã = {A ∈ I|A 6∈ A}. Hence, any answer to the question Ã ∈ Ã leads to a
contradiction (see also the proof of Theorem 4.14). Note that the contradiction comes from the fact that
we have assumed the existence of the set I. If instead we consider the set B̃ = {B ∈ P(A)|B 6∈ B} (that
is the universe is now P(A)), where A is a given set and P(A) is the set of all the subsets of A, then the
question ”B̃ ∈ B̃ yes or no?” does not leads to a contradiction. Indeed, as it is easy to see, B̃ = P(A)
but P(A) 6∈ P(A) and hence the answer B̃ 6∈ B̃ does not leads to the contradiction B̃ ∈ B̃.

113Just use the successor function of Peano.
114This is rigorous only for finite set, for infinite set the concept of “having the same number of elements”

needs a clarification.
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injective function ϕ1 : J1 → A, 1 7→ a1. Of course, such a function is not surjective,
otherwise A would be equivalent to J1. Hence there exists an element a2 ∈ A such that
a1 6= a2. Hence, we have an injective function ϕ2 : J2 → A, i 7→ ai for i = 1, 2. Also
ϕ2 is not surjective, and so there exists a3 ∈ A such that a3 6= a1, a2. Proceeding in this
way, by induction, for every n > 1 we get an injective function ϕn : Jn → A which is
not surjective and such that, when restricted to Jn−1 it coincides with ϕn−1. If we define
C =

⋃
n∈N\{0} ϕn(Jn) ⊆ A, then we have the bijection

ϕ : N \ {0} → C n 7→ ϕn(n) = an.

In some sense we can say that the countable sets are the “smallest” infinite sets. From
the fact that (see Remark 4.2) N \ {0} is a proper subset of N but nevertheless equivalent
to N, then we can also easily deduce that a set A is infinite if and only if it is equivalent
to a proper own part115.

Proposition 4.3 i) The set of integers Z is countable; ii) every infinite subset B of a
countable set A is countable; iii) if A has an infinite subset, then A is infinite too, iv) if
A is a countable index set (i.e. a countable family of indices) and, for every a ∈ A, Ba

is a countable set, then B =
⋃
a∈ABa is countable, v) if {Ai}i=1,...,n is a finite family of

countable sets, then A1 × A2 × · · · × An is countable; vi) Q is countable.

Proof. i)

ϕ : N→ Z n 7→


n

2
if n is even,

−n+ 1

2
if n is odd.

ii) Let ϕ : N→ A be a bijection. By induction, we define the following other bijection

ϕ̃ : N→ B,

{
0 7→ ϕ(n0) n0 = min{n ∈ N|ϕ(n) ∈ B}
m 7→ ϕ(nm) nm = min{n > nm−1|ϕ(n) ∈ B} m ≥ 1

iii) Obvious.
iv) Since Ba is countable, then its elements form a sequence which can be enumerated:

{ba1, ba2, ba3, . . .} = Ba. Moreover let ϕ : N \ {0} → A be a bijection. We form an infinite
table with a countable quantity of rows (one per very element a ∈ A), and such that
every n-th row consists of the sequence of the elements of Bϕ(n). Then we can count the
elements of such a table with the following (diagonal) bijection116:

115If A is infinite, then it contains a countable set B, which is then equivalent to both N and N \ {0}.
From this we can deduce that, for every x0 ∈ B, B ∼ B \ {x0} and also that A ∼ A \ {x0}. On the
contrary, if A is finite, it is easy to see that it cannot be equivalent to any proper subset because Jn 6∼ Jm
if n 6= m.

Of course, it is not necessary to remove only a finite number of elements, but it is also possible to
remove a suitable infinite quantity of elements: think to the set of even natural numbers, which differ
from N by an infinitely many quantity of removed elements, and nevertheless it is equivalent to N itself.

116We are counting along bottom-left to top-right diagonals, starting from top-left of the table. The
reader is invited to draw a picture of the procedure.

68



ϕ̃(1) = bϕ(1)1, ϕ̃(2) = bϕ(2)1, ϕ̃(3) = bϕ(1)2, ϕ̃(4) = bϕ(3)1, ϕ̃(5) = bϕ(2)2 ϕ̃(6) = bϕ(1)3,

and, by induction, whenever we have counted the term ϕ̃(k) = bϕ(1)m for some k,m, then
the following m + 1 terms are of the form ϕ̃(k + j) = bϕ(m+2−j)j for all j = 1, . . . ,m + 1,
and moreover, it will be ϕ̃(k + m + 2) = bϕ(1)(m+2). Hence the position-elements of the
table form a countable set. Since some of such elements may be repeated more than one
time (if it belongs to more than one Ba) then

⋃
a∈ABa is an infinite set which is equivalent

to a subset of position-element of the table, and hence it is countable by point ii).
v) We only prove the sentence for n = 2. For every a1 ∈ A1, let us define the set

Aa
1

2 = {(a1, a)|a ∈ A2} ⊆ A1 × A2, and note that A1 × A2 =
⋃
a1∈A1

Aa
1

2 . Hence, the
sentence immediate follows from point iv).

vi) Q is an infinite subset of N× N and so we conclude by points v) and ii), ut

Remark 4.4 Of course, in Proposition 4.3, in points iv) and v) we can consider collec-
tions Ba and Ai respectively of at most countable sets with at least one countable, and the
conclusions remain the same. Also, if one of Ba is countable, then the index set A may
be finite.

Proposition 4.5 If {an}n≥1 is a sequence of natural numbers belonging to {0, 1, . . . , 9},
then the series

a1

10
+

a2

102
+

a3

103
+ · · ·+ ak

10k
+ · · ·

is convergent117 to a real number x ∈]0, 1]. We write

x = 0.a1a2a3a4 · · ·

and we call it the decimal expansion of x.
Every real number x ∈]0, 1[ has a decimal expansion and such expansion is unique

unless x is a rational number of the form m/10n for some m,n ∈ N in which case it has
precisely two decimal expansions.

Proof. Take a1 as the largest natural number in {0, 1, . . . , 9} such that

0 ≤ x− a1

10
,

and note that we have118 x− a1/10 < 1/10. By induction, take an as the largest natural
number in {0, 1, . . . , 9} such that

117By comparison with a geometric series.
118If a1 = 9, then x − 9/10 ≥ 1/10 would imply x ≥ 1 which is a contradiction. If a1 ≤ 8, then
x − a1/10 ≥ 1/10 would imply x ≥ (a1 + 1)/10) which is a contrradiction to the maximality fo a1,
because a1 + 1 ∈ {1, . . . , 9}.
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0 ≤ x−
n∑
k=1

ak
10k

,

and note again that x −
∑n

k=1(ak/10k) < 1/10n. It is easy to see that, in this way, we
have constructed a decimal expansion of x.

If x 6= m/10k, if {an}, {bn} are two decimal expansions of x and if we suppose that
a1 < b1 then we have119

a1

10
<
b1

10
< x,

and hence

1

10
< x− a1

10
=
∞∑
n=1

an
10n
− a1

10
=
∞∑
n=2

an
10n
≤ 9

(
∞∑
n=2

1

10n

)
=

1

10
,

which is a contradiction. Hence a1 = b1, and proceeding in this way, an = bn for all
n ≥ 1120. If instead x = m/10k for some m, k121, then, until n = k − 1, with the same
argument as before we must have an = bn. Now, let us suppose ak < bk; with the same
argument, it must be ak = bk − 1122. Hence we have

k∑
n=1

bn
10n
−

k∑
n=1

an
10n

=
1

10k
,

and then the only possibility is an = 9, bn = 0 for all n > k, which exactly forms two
decimal expansions.. ut

Remark 4.6 Of course, a similar conclusion of Proposition 4.5 holds for very x ∈ R,
and, for x > 0 the expansion is of the form a0.a1a2a3 · · · where a0 is the largest natural
number smaller than x and 0.a1a2a3 · · · is the decimal expansion of x− a0. Note that we
get two expansions for x = 1: 0.999 . . . and 1.000 . . ..

Theorem 4.7 The set of real numbers is uncountable.

119Of course, in this case, we certainly have x 6= a1/10, b1/10. We also have b1 ≥ 1 because a1 ≥ 0.
Also note that, being the series made by positive terms, every partial summation is not larger than the
final sum. Moreover, any partial summation is of the form m/10k.

120Roughly speaking, if for some k we have ak 6= bk, the rest of the series cannot fill the gap (having
both series the same sum x).

121We assume that k is the least natural number such that the equality holds for some m.
122Otherwise, if ak ≤ bk − 2, the rest of the series with ai cannot fill the gap and reach the same sum x

of the series with bi.
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Proof. We prove that the set S of points x ∈]0, 1[ which have a unique decimal
expansion is uncountable. From this we then get that ]0, 1[ is uncountable (otherwise it
can have only at most countable subsets, by point ii) of Proposition 4.3), and similarly R
is uncountable.

First of all, note that S is infinite. Indeed, for example, it contains the countable set
{π/(10)n|n ∈ N}. Now, we prove that any function f : N→ S cannot be surjective, from
which the conclusion follows123. For every n, let us denote xn = f(n) ∈ S ⊆]0, 1[ and
write the decimal expansion of xn (which is unique) as

xn = 0.an1an2an3 · · · .

For every n ∈ N \ {0}, we define

bn =

{
8 if ann 6= 8,
1 if ann = 8,

and consider the decimal expansion

y = 0.b1b2b3 · · · ∈ S.

Obviously y ∈ S, since its decimal expansion does not contain either 0 or 9, and so it is
unique. We prove that f(n) 6= y for all n ∈ N, which will conclude the proof. This is true
since, for every n, the decimal expansion of y differs from the one of xn in its n-th place,
and xn has a unique expansion. ut

In Remark 4.2 we have said that two equivalent sets have the same power. But what
is the power of a set? It would be a common property of all the sets belonging to the
same “equivalent class”, but as explained, the use of the quotation marks means that we
have to be very careful when speaking about classes of equivalence of sets. Anyway we
can certainly say when a set has a power strictly greater than the power of another set.

Definition 4.8 Given two sets A and B we say that the power of A is strictly less than
the power of B, and we write m(A) < m(B), if A is equivalent to a subset of B and no
subsets of A are equivalent to B124.

One can ask whether, giving two arbitrary sets A and B, it is always true that A and
B are equivalent, and hence have the same power (m(A) = m(B)), or that one of the two
set has strictly smaller power than the other one. In other words the question is whether
the powers of sets can always be compared. We can positively answer to such a question

123S is infinite and hence at least countable, but, being no such a surjective function, it is certainly
more than countable.

124It is easy to see that this is equivalent to the existence of a injection from A to B and no existence
of a surjection.
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since the following two results are true. In particular the first result can be proved125, the
second one must be taken as an axiom, since it comes from the Axiom of Choice126.

Theorem 4.9 Let A and B two well-ordered sets. Then it is certainly true that m(A) =
m(B) or m(A) < m(B) or m(A) > m(B). In other words, the powers of two well-ordered
sets are always comparable.

Theorem 4.10 (Well-ordering principle) Every set can be well-ordered. That is, for
every set, there exists an order relation on it which makes it a well-ordered set.

We now prove the following result, which is important for comparing sets, and also
shows that the case stated in Definition 4.8 is exhaustive.

Theorem 4.11 (Cantor-Bernstein theorem) Given any two sets A and B, suppose that
A contains a subset A1 equivalent to B and that B contains a subset B1 equivalent to A.
Then A and B are equivalent.

To prove this theorem we first need the following Proposition

Proposition 4.12 Let {An}n and {Bn}n be countable collections of pairwise disjoint sets
respectively (An ∩ Am = ∅, Bn ∩ Bm = ∅ for all n 6= m). Moreover, let us suppose that
An ∼ Bn for all n. Hence ⋃

n

An ∼
⋃
n

Bn.

Proof. For every n we have the bijection ϕn : An → Bn. By the pairwise disjointness,
the following function is well-defined and a bijection

ϕ :
⋃
n

An →
⋃
n

Bn, a 7→ ϕn(a), where n is such that a ∈ An.

ut
Proof of Theorem 4.11. Let ϕA : A→ B1 and ϕB : B → A1 be bijections. We define

A2 = ϕB(ϕA(A)) = ϕB(B1) ⊆ A1 ⊆ A.

Since compositions of bijections are bijections, we have that A2 is a subset of A1 equivalent
to A. We then define A3 = ϕB(ϕA(A1)) ⊆ ϕB(ϕA(A)) = A2 which is a subset of A2

125But we do not do that.
126Axiom of Choice: given any set M , there exists a “choice function” f from the parts of M , P(M),

to M such that for every non-empty set A ⊆M , f(A) ∈ A.
Actually, without saying it, we have already used the axiom of choice several times. For instance in the

proof of the fact that every infinite set A contains a countable set: in the possibility of choosing a point
a ∈ A such that a 6∈ {a1, a2, . . . , an−1} for every step n. Also the Bolzano-Weierstrass theorem requires
the use of the axiom of choice.
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equivalent to A1. By induction (defining A0 = A), we have a sequence of nested subsets
of A

Ak+2 = ϕB(ϕA(Ak)) ⊆ Ak+1 ∀ k ∈ N \ {0},

such that Ak+2 is equivalent to Ak and that Ak \ Ak+1 is equivalent to Ak+2 \ Ak+3 for
every k127. Now, we define

D =
⋂
k

Ak

and write

A =
[
(A \ A1) ∪ (A2 \ A3) ∪ (A4 \ A5) ∪ · · ·

]
∪[

(A1 \ A2) ∪ (A3 \ A4) ∪ (A5 \ A6) ∪ · · ·
]
∪D

A1 =
[
(A2 \ A3) ∪ (A4 \ A5) ∪ (A6 \ A7) ∪ · · ·

][
(A1 \ A2) ∪ (A3 \ A4) ∪ (A5 \ A6) ∪ · · ·

]
∪D

By Proposition 4.12 we then conclude that A ∼ A1 which of course implies A ∼ B. ut

Remark 4.13 By the Cantor-Bernstein theorem, we deduce that, whenever there exists
an injection between two sets ϕ : A→ B, then m(A) ≤ m(B). Indeed, being ϕ injective, A
is equivalent to a subset of B, ϕ(A) ⊆ B. Hence, if A contains a subset which is equivalent
to B then m(A) = m(B) by the Cantor-Bernstein theorem, otherwise m(A) < m(B) by
the definition.

The fact that ϕ : A → B injection implies m(A) ≤ m(B) is obvious in the finite
case. By Proposition 4.3, this is also true in the countable case. However, in the infinite
uncountable case, it is not a-priori obvious. We need the Cantor-Bernstein theorem.

Now, the question is: is there a set with power bigger than all the others? The answer
is “no, there is not”, as deduced from the following result.

Theorem 4.14 Let A be a non-empty set. Then, the set of the parts of A

P(A) =
{
B
∣∣∣B ⊆ A

}
,

has power strictly greater than the power of A: m(A) < m (P(A)).

Proof. Obviously the power of P(A) cannot be strictly smaller than the power of A,
since there is the injection

ψ : A→ P(A), a 7→ {a}.
127Because the latter is exactly equal to ϕB(ϕA(Ak \Ak+1)) = ϕB(ϕA(Ak)) \ ϕB(ϕA(Ak+1)).
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By contradiction, let us suppose that there exists a bijection ϕ : A → P(A), and let us
define the following subset of A

X =
{
a ∈ A

∣∣∣a 6∈ ϕ(a)
}
∈ P(A).

Possibly empty, but X, as subset of A, exists. Hence, there should exist x ∈ A such
that x = ϕ−1(X). Now, ask whether x ∈ X or not. Both answers (yes or no) give a
contradiction:

x ∈ X =⇒ x 6∈ ϕ(x) = X,
x 6∈ X =⇒ x ∈ ϕ(x) = X.

Hence, the bijection ϕ cannot exist and so m(A) < m(P(A)). ut
Now, we conclude this section reporting some useful results and some comparison

between important sets.
i) If M is uncountable and A is countable (or finite), then M ∪ A ∼M ∼M \ A.

For the second equivalence, observe that if Ã = {a0, a1, a2, a3, . . .} ⊆ M is countable and
Ã0 = {ai ∈ Ã|i is even}, Ã1 = {ai ∈ Ã|i is odd} we then have Ã ∼ Ã0 ∼ Ã1. Hence,
writing M = Ã ∪ (M \ Ã), M \ Ã1 = Ã0 ∪ (M \ Ã) we get M ∼ M \ Ã1. Conclude by
showing that any countable A ⊆ M can be seen as the set of the “odd” elements of a
suitable countable set Ã ⊆M .128

ii) For any −∞ ≤ a < b ≤ +∞ (extended) real numbers, ]a, b[ is equivalent to R.
Just take a strictly increasing continuous function f on ]a, b[ such that limx→a+(x) = −∞
and limx→b−(x) = +∞.

iii) For any −∞ ≤ a < b ≤ +∞ (extended) real numbers, the closed or semi-open
interval with a and b as extremes is equivalent to R.
For example, apply point i) to [a, b] =]a, b[∪{a, b}.

iv) The countable (or finite) union of sets equivalent to R is still equivalent to R.
Let An ∼ R and suppose that they are pairwise disjoint (which is not restrictive). By point
ii), An ∼]n, n+1[. Let ϕn : An →]n, n+1[ be a bijection. Hence ϕ :

⋃
nAn → [0,+∞[\N,

a 7→ ϕn(a), where n is such that a ∈ An, is a bijection.
v) The set of algebraic129 real number is countable.

The set of polynomials with rational coefficients is countable...
vi) The set of transcendental130 real numbers is equivalent to R.

Use points i) and v).
vii) The set of real numbers in ]0, 1[ with exactly one decimal expansion has the power

of R.

128Note that being M uncountable and A countable, then M \A is still infinite (otherwise M would be
countable) and hence it contains another countable set. In the simple case of R\N ∼ R, denoting by Z− the
set of strictly negative integer numbers (which is countable), we have R = Z∪(R\Z) ∼ Z−∪(R\Z) = R\N,
being the unions disjointed. Also note that, in general, if M is only countable, then M \ A, with A also
countable, may be still countable (natural numbers without even numbers), or finite (natural numbers
without numbers larger than 3) or even empty (natural numbers without natural numbers).

129A real number is “algebraic” if it is the root of a polynomial with rational coefficients.
130A real number is “transcendental” if it is not algebraic.
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Note that the set of numbers with two decimal expansions is countable (they are rationals).
Conclude by points i) and ii).

ix) m(P(N)) = m(R).
In the same way as in Proposition 4.5, we can prove that for every natural number
b ∈ N \ {0, 1}, every points x ∈]0, 1[ admits an expansion

x = 0.β1β2β3 · · ·
where βi ∈ {0, 1, 2, . . . , b − 1} and x =

∑∞
n=1 βn/(b

n). Moreover, also in this case, the
expansion is unique unless x is of the from m/bk for some natural numbers m, k in which
case there are exactly two expansions. Hence, also in this case the set of points with
exactly one expansion has the power of R. Consider the binary expansions, that is take
b = 2, and prove that R is equivalent to the set of all sequences with value in {0, 1}.
Conclude by noting that the set of the sequences with value in {0, 1} is equivalent to the
set of the parts of N (consider the characteristic functions χA(n) = 1 if n ∈ A, χA(n) = 0
if n 6∈ A, for all A ⊆ N).

x) The set of all sequences of rational numbers is equivalent to R.
If s : N → Q is a sequence, define ϕ(s) = {(n, s(n))|n ∈ N} ⊆ P(N × Q), which is an
injection. From this, by point ix) and the countability of N×Q, we have

m(R) = m({sequences in {0, 1}}) ≤ m({sequences in Q}) ≤ m(P(N×Q)) = m(R).

xi) The set of all sequences of real numbers is equivalent to R.
By considering the binary expansions, we have the equivalence of the set of sequences of
real numbers with the set X of the sequences of sequences taking values in {0, 1}. If {sk}k
is an element of such a set (that is for every k ∈ N, sk : N → R is a sequence) we define
ϕ({sk}k) = {(k, n, sk(n))|k, n ∈ N} ⊆ P(N×N×N), which is an injection. We then have

m(R) = m({sequences in {0, 1}}) ≤ m(X) ≤ m(P(N× N× N)) = m(R).

xii) For every n ∈ N \ {0}, Rn is equivalent to R.
Rn is equivalent to ]0, 1[n which is equivalent to the set of n-uple of sequences of 0 and 1 not
always null (i.e. every such a sequence has a non-null term, otherwise it would represent
x = 0 which is not a point of ]0, 1[), which is equivalent to the set131 (P(N) \ ∅)n which is
equivalent to P((N \ ∅)n) which is equivalent to R.

xiii) The set of all continuous functions on [0, 1] is equivalent to R.
By continuity and the density of Q in [0, 1], a continuous function on [0, 1] is completely
determined by its real values on Q ∩ [0, 1], which is a countable set. Hence there is an
injection between the set of continuous functions and the set of sequences of real numbers.
Hence, by point xi), the power of the continuous functions is not more than the power
of R. On the other hand, R is injected into the set of continuous functions (as constant
functions) and so the the powers coincide.

xiv) The set of all functions on [0, 1] (continuous or discontinuous) has power strictly
greater than the power of R.
It contains the characteristic functions... Apply Theorem 4.14.

131The null sequence represents, via characteristic function, the empty set.
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4.2 Historical notes and comments

Georg Cantor was the first to prove that the real numbers has a power larger than the
power of the rational numbers. He also firstly proved that there are “infinitely many
powers”, that is that there is not an upper bound on the possible power of a set. All
such powers were called by Cantor “transfinite numbers” and he also constructed a real
arithmetics and an order on such numbers.

All these studies by Cantor (also Dedekind was a pioneer on the subject), even if
opposed by many of his contemporaries, certainly leaded, in the following decades, to
the beginning of the set theory that is the branch of mathematics which is interested
on sets just as collections of objects, and on their possible relations. Such a branch of
mathematics, or such a way to look to sets and their elements, has become in the XX
century the main tool for research in mathematics, having leaded to the creation of the
theory of many abstract structures such as groups, rings, fields, vector space, metric
spaces, topological spaces and so on.

Concerning the power of sets, there is a natural question that may arise when studying
such a subject. The question is “Is there a set whose power is strictly greater than the
power of the natural numbers132, and strictly less than the power of the real numbers?”.
Also Cantor addressed such a question and he was not able to answer. Anyway he
conjectured that the answer is “No, such a set does not exist”. Since the power of the
real numbers is also called the power of the continuum, such a conjecture is known as
the continuum hypothesis.: “There is not a set A whose power satisfies m(N) < m(A) <
m(R)”.

In the year 1900, at the congress of mathematicians in Paris, the important German
mathematician David Hilbert (Königsberg 1862 - Göttingen 1943) gave a list of twenty-
three open problems on which, in his authoritative opinion, mathematicians of XX century
should had to be interested. The first one of such problems was the validity or falsity of
the continuum hypothesis. Despite to this fact, no mathematician was able to prove the
validity (or the falsity) of the continuum hypothesis. In the year 1940, Kurt Gödel (1906-
1978) showed that the affirmative answer to the continuum hypothesis (i.e. there is not
the set) is consistent with the axiomatization of the set theory133, that is no contradiction
may arise if we accept the continuum hypothesis as true. However, in the year 1963, Paul
Cohen (1934-2007) proved that also the negative answer to the continuum hypothesis (i.e.
the set exists) is consistent with the set theory, that is no contradiction may arise if we
reject the continuum hypothesis. So the continuum hypothesis is independent from the
axioms of the set theory134

The question whether a set A such that m(N) < m(A) < m(R) exists or not has
then become a question whether the continuum hypothesis must be added as an axiom
or not135. Both behaviors would lead to several different, but interesting, results.

132Which is, as we know, the minimum infinite power.
133The so called ZF set theory.
134As the Euclid’s fifth postulate on the parallel lines is independent from the first four ones.
135Another possible question may be to find some other “natural axioms” which imply the validity (or

the falsity) of the continuum hypothesis.
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5 Topologies

In this chapter, we analyze the other component of the broken core in Figure 2, the one
concerning the concept of limit and its consequences as well as generalizations, in one
word the concept of topology. We start revisiting the concept of limit in R.

5.1 On the topology in R
Look to the definition of limit of a sequence of real numbers Definition 2.1, and consider
the case ` ∈ R. We can ingenuously say that ` is the limit of the sequence an if “taking n
larger and larger, then an becomes closer and closer to `”. Where is the ingenuity? It is
of course in the meaning of the expressions “larger and larger” and “closer and closer”.
For instance, when n becomes larger and larger, the sequence an = 1/n becomes closer
and closer to −1. But −1 is not its limit! The problem here is that an does become closer
and closer to −1, but not so close as we want: it always remains from −1 at a distance
more than 1. We can then modify our ingenuous sentence as “taking n larger and larger,
we can make an be so close to ` as we want”. But also this one is not correct. Indeed,
take the sequence an = 0 if n is even, an = 1 − 1/n if n is odd. For this sequence it is
true that taking n larger and larger (the larger and larger odd natural numbers), then
an becomes close to 1 as we want. But 1 is not its limit! The problem here is that an
becomes so close to 1 as we want not for all sufficiently large natural numbers, but only
for all sufficiently large odd natural numbers. Hence, we finally modify our sentence as

“taking n sufficiently large we can definitely make an be as close to ` as we want”.
(5.1)

Are we satisfied with such a sentence? Certainly yes, if we know the meaning of “large”
and “close”. Let us suppose that we already know what “large” means for a natural
number, and concentrate on the meaning of “closeness” in R. By our exterior experience,
for giving a meaning to the word “closeness” we must have a concept of distance. And,
by our identification of R with the line, we have a natural concept of distance from two
elements x, y of R: it is the length of the segment which links the two points, in other
words the distance is the non-negative real number |x − y|. Hence we say: the distance
between two real numbers is the absolute value of their difference. So, we can view the
distance in R as a function from R × R to R which maps the couple (x, y) to the real
number |x−y|. Hence, making an definitely as close to ` as we want means making |an−`|
as small as we want for all n ≥ n, with a suitable n, in other words it means that:

∀ ε > 0 ∃ n ∈ N such that |an − `| ≤ ε ∀ n ≥ n. (5.2)

Note that in (5.2) we take ε > 0, that is we never require that an = `, which means to
permit ε = 0, since this would be too strong. We only require that an stays “around” to
`, even if want to make such “aroundness” as small as we want (but never collapsing to

77



the single `). A natural concept of points which stay around to ` is of course the concept
of interval centered in `. Hence we can rewrite (5.1) (or equivalently (5.2)) as

∀ interval I centered on ` ∃ n ∈ N such that an ∈ I ∀ n ≥ n.

But then some natural questions are: can we take another function ϕ : R × R → R
as a “distance” in R? Which properties has ϕ to satisfy in order to be considered as a
distance in R? Can we define a distance in any other different set than R? To answer to
such questions we have to go back to our exterior experience: the distance is the length
of the segment which links the two points. With this flashback in mind we can certainly
say what is the distance in R2 (the plane) and in R3 (the 3D physical space): indeed
in such sets we know what is a segment linking two points and what is its length. Of
course we can extend such a concept to Rn for every n. But these facts are not enough for
answering to the second question, which is the most important. Looking more precisely
to the concept of “segment” in the plane and in the 3D-space, and also thinking to our
exterior experience, we can say that it is the shorter path linking the two points. Hence
the distance between two elements, if coherent with our experience, should represent the
minimum length among the lengths of all paths linking the two points136. Hence, thinking
to distance as “ minimum length”, it is natural to require that i) a distance is non-negative
valued, ii) every path has strictly positive length, iii) the distance between x and y is the
same of the distance between y and x137, iv) the distance between x and y is not larger
than the sum of the distances between x and z and z and y respectively138.

The following subsection will analyze the concept of distance, whereas a subsequent
one will be concerned with the concept of “aroundness”.

5.2 Metric spaces

Let X be a non empty set. Looking to the points i)–iv) at the end of the previous
subsection, we can consider, as a distance on X, a function d : X × X → [0,+∞[ such
that

a) (positive definition) ∀ x, y ∈ X, d(x, y) = 0 ⇐⇒ x = y,
b) (symmetry) d(x, y) = d(y, x) ∀ x, y ∈ X,
c) (triangular inequality) d(x, y) ≤ d(x, z) + d(z, y) ∀ x, y, z ∈ X.

(5.3)

Point a) together with the choice of co-domain of d (i.e. [0,+∞[) takes account of points
i) and ii), point b) takes account of point iii) and point c) takes account of point iv).

136This of course would imply that we know what a “path” inside a set and its length are, but we do
not go further in such a rigorous argumentation.

137All the paths linking x to y also link y to x and vice-versa.
138This comes from the minimality: if it was the contrary, then instead of directly going from x to y it

would be more convenient, in between, to pass through z .
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Definition 5.1 A non empty set X is said a metric space if there exists a function d :
X × X → [0,+∞[ satisfying (5.3). The function d is said a distance or a metrics on
X139.

Example 5.2 Here are some examples of metrics spaces.
1) R with d(x, y) = |x− y|.
2) N, Z, Q with the distance of R.
3) R with the distance d(x, y) = | arctanx− arctan y|.
4) Rn with d(x, y) = ‖x− y‖Rn =

√
(x1 − y1)2 + · · · (xn − yn)2.

5) C with the distance of R2.
6) R2 with d(x, y) = max{|x1 − y1|, |x2 − y2|}.
7) R2 with d(x, y) = |x1 − y1|+ |x2 − y2|.
8) C0([a, b];R) =

{
f : [a, b]→ R

∣∣∣f is continuous
}

with the metrics given by d(f, g) =

‖f − g‖∞ = maxx∈[a,b] |f(x)− g(x)|.
9) Cn([a, b];R) =

{
f : [a, b]→ R

∣∣∣f is derivable n times with continuous derivatives
}

with d(f, g) = ‖f − g‖∞.

10) Cn([a, b];R) =
{
f : [a, b]→ R

∣∣∣f is derivable n times with continuous derivatives
}

with d(f, g) =
∑n

i=1 ‖f (i) − g(i)‖∞, where f (i) states for the i-th derivative140.

The reader is invited to prove that all those are really metric spaces. The metrics in 1)
and in 4) will be called “Euclidean” or also “standard” metrics. The metrics in 8) is
also said the “uniform” metrics (or the uniform topology, or the metrics/topology of the
uniform convergence)

Definition 5.3 Let X and Y be metric spaces with metrics dX and dY respectively, f :
X → Y be a function and x ∈ X be fixed.

i) We say that a sequence {xn}n∈N ⊆ X converges to x in X, and we write xn → x, if
the sequence of real numbers an = dX(xn, x) converges to 0 ∈ R141.

ii) We say that f is continuous at x if

f(xn)→ f(x) in Y (i.e. dY (f(xn), f(x))→ 0) ∀ sequence xn → x in X.

iii) We say that f is continuous if it is continuous at all points of X.
iv) Given x0 ∈ X and r > 0, the open and closed ball of radius r centered in x0 are,

respectively

B(x0, r) =
{
x ∈ X

∣∣∣dX(x, x0) < r
}
, B(x0, r) =

{
x ∈ X

∣∣∣d(x, xo) ≤ r
}
. (5.4)

139Actually, to be rigorous, we have to speak of a metric space as the couple (X, d) where X is a set and
d is a function satisfying (5.3). We prefer the easier way of considering only X as a metric space, with
the warning that when we say “X is a metric space” we will always mean that the metrics d is already
fixed.

140With f (0) = f .
141And hence, by definition, ∀ε > 0 ∃n such that |an| = d(xnx) ≤ ε for all n ≥ n.
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v) If ∅ 6= A ⊆ X and x0 ∈ X, then the diameter of A and the distance of x0 from A
are, respectively

diam(A) = sup
x,y∈A

dX(x, y), d(x0, A) = inf
x∈A

dX(x, x0).

vi) A non-empty subset A ⊆ X is said to be bounded if its diameter is bounded
diam(A) < +∞.

vii) A subset C ⊆ X is said to be closed if it contains the limit of every converging
sequence of its points:

{xn} ⊆ C, xn → x ∈ X =⇒ x ∈ C.

vii) If A ⊆ X is a subset, then its closure in X, denoted by A or by cl(A), is the least
closed set containing A, and it coincides with all points of X which are limit of a sequence
of points of A.

viii) A subset A ⊆ X is said dense in X if A = X.

The reader is invited to prove that a) if a sequence is convergent then the limit is unique,
b) Definition 5.3 ii) exactly recovers the usual definition ε − δ of continuity for function
f : Rn → Rm, when they are endowed with the metrics in 1) and/or 4), c) definition v)
of boundedness is equivalent to the fact that there exists a ball B(x0, r), for some x0 ∈ X
and r > 0, which contains A, d) the definition of closedness vii) in the case of Rn coincides
with the usual definition, e) X and ∅ are closed in X, and the closed balls in (5.4) are
closed sets, f) in (5.4) the closed balls are the closure of the respective open balls, g) Q is
dense in R, Qn is dense in Rn, with the standard Euclidean metrics.

Remark 5.4 By the definition of continuity, we immediately get that, for every x ∈ X,
the function “distance from x”

d(·, x) : X → [0,+∞[, x 7→ d(x, x)

is continuous.
Moreover, if X is a metric space and A ⊆ X is a subset, then also A is a metric space

endowed with the metrics d|A×A : A×A→ [0,+∞[, (a, b) 7→ d(a, b) for all a, b ∈ A, which
is also called the induced metrics by X on A.

5.3 Completeness

We have seen that a consequence of the completeness of R (as ordered field, i.e. existence
of supremum) is the fact that a sequence converges if and only if it is a Cauchy sequence
(see Proposition 2.11). Actually, also the converse is true, as it is easy to prove: the fact
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that every Cauchy sequence in R converges implies that every set bounded from above
has the supremum142.

A metric space is not necessary ordered and so speaking of infimum and supremum
is meaningless. However, the notion of Cauchy sequence is certainly natural for a metric
space. Hence we have the following definition.

Definition 5.5 Let X be a metric space. A sequence {xn}n of points of X is said to be
a Cauchy sequence if

∀ε > 0 ∃ n ∈ N such that d(xn, xm) ≤ ε ∀ n,m ≥ n. (5.5)

The metric space X is said to be complete if every Cauchy sequence is convergent143.

In Example 5.2, all those metric spaces are complete except Q in 2)144, the metric
space in 3) and the one in 9).

The metric space in 3) is not complete because the sequence xn = n is a Cauchy
sequence145 but obviously divergent.

Let us prove that the space in 8) is complete. Note that the convergencefn → f is
exactly the uniform convergence on [a, b]. Let us consider a Cauchy sequence {fn}. By
definition of d(f, g) = ‖f − g‖∞, for every x ∈ [a, b] fixed, the sequence fn(x) is also a
Cauchy sequence in R. Hence, for the completeness of R, it converges. Let us denote by
f(x) the limit of such a sequence. We are going to prove that f ∈ C([a, b];R) and that

lim
n→+∞

‖fn − f‖∞ = 0,

which will conclude the proof. Let us fix ε > 0 and take the corresponding n as in (5.5).
Hence, for n,m ≥ n, we have

‖fn − fm‖∞ ≤ ε =⇒ |fn(x)− fm(x)| ≤ ε ∀x ∈ [a, b]
=⇒ lim

m→+∞
|fn(x)− fm(x)| ≤ ε ∀x ∈ [a, b] =⇒ |fn(x)− f(x)| ≤ ε ∀x ∈ [a, b]

=⇒ ‖fn − f‖∞ ≤ ε.

Since the convergence in metrics is the uniform convergence, then the limit is also con-
tinuous: f ∈ C([a, b];R), and the proof is finished.

142Let m0 be a majorant of ∅ 6= A ⊆ R such that m0 − 1 is not a majorant (it exists). Take m0 − 1 <
a1 ≤ m0 and set m1 = m0 if m0 − (1/2) is not a majorant, m1 = m0 − (1/2) otherwise. In any case m1

is majorant and m1 − (1/2) is not. Hence take m1 − (1/2) < a2 ≤ m1 and define m2 = m1 if m1 − (1/4)
is not a majorant, m2 = m1 − (1/4) otherwise. In any case m2 is a majorant and m2 − (1/4) is not.
Proceeding in this way, the sequence an is a Cauchy sequence and so convergent to a pont a ∈ R which
cannot be nothing else but the supremum of A. However, note that, in this argumentation, we have
somewhere used the archimedean property of R.

143The opposite is always true: any convergent sequence is a Cauchy sequence.
144N and Z are complete because they are discrete and hence, taking ε < 1 the Cauchy sequence is

constant from n on.
145d(xn, xm) = | arctann− arctanm| → 0 as n,m→ +∞.
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Also the space in 10) is complete, this can be seen arguing as before and applying
Proposition 2.44.

The space in 9) is not complete since we can always uniformly approximate a non-
derivable function by a sequence of derivable functions: such a sequence is then a Cauchy
sequence but it converges to an element which does not belong to the space.

Theorem 5.6 (Nested spheres theorem) Let xn be a sequence of points of a metric space
X, and rn > 0 be a sequence of radii. We say that the closed balls B(xn, rn) are nested if

B(xn−1, rn−1) ⊇ B(xn, rn) ⊇ B(xn+1, rn+1) ∀ n ≥ 1.

The metric space is complete if and only if every sequence of nested closed balls, with
rn → 0, has nonempty intersection146 .

Proof. If X is complete and we have a nested sequence of closed balls B(xn, rn), as
in the statement, then the sequence of the centers xn is a Cauchy sequence147 and so
convergent. Let x be its limit. Let us prove that x ∈ B(xn, rn) for all n, which will imply
the conclusion, that is

x ∈
⋂
n

B(xn, rn) 6= ∅.

Indeed, for n ∈ N, by the fact that the balls are closed and nested and by the continuity
of the distance function (see Remark 5.4) we have

d(xn, xm) ≤ rn ∀m ≥ n =⇒ rn ≥ lim
m→+∞,m≥n

d(xn, xm) = d(xn, x) =⇒ x ∈ B(xn, rn).

Note that, if the balls are only open, then, in general, the conclusion does not hold.
Indeed, the first inequality here above must be replaced by d(xn, xm) < r but, at the limit,
we still get rn ≥ d(xn, x) which only implies that x belongs to the closed ball B(xn, rn)
and not to the open one (it may belong to the boundary).

We now prove the opposite implication. Let X be a metric space with the nested
closed balls property, and let xn be a Cauchy sequence. Let us take n1 ∈ N such that

d(xn, xn1) ≤
1

2
∀ n ≥ n1,

which is possible since {xn} is a Cauchy sequence. Let B1 be the closed ball or radius 1
with center in xn1 . Then, let us take n2 > n1 such that

d(xn, xn2) ≤
1

22
∀n ≥ n2,

146Obviously, if the intersection is not empty, then it contains just one point only. Indeed, if x′, x′′ both
belong to the intersection of the balls, then, by the definition of balls, d(x′, x′′) ≤ 2rn → 0 =⇒ x′ = x′′.

147Fixed n, for all n,m ≥ n it is d(xn, xm) ≤ 2rn because xn, xm ∈ B(xn, rn), and rn → 0.
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and define B2 as the closed ball of radius 1/2 with centered in xn2 . By induction, let nk
and xnk be such that

d(xn, xnk) ≤
1

2k
∀ n ≥ nk, Bk = B

(
xnk ,

1

2k−1

)
.

The sequence of closed balls Bk is then nested with radii converging to 0. Hence
there exists x belonging to all such balls. This easily implies that the subsequence {xnk}
converges to x. But if a Cauchy sequence, as {xn} is, admits a convergent subsequence,
then all the sequence converges to the same limit (see the proof of Proposition 2.11). ut

Remark 5.7 Note that if the balls are not closed, then they may have empty intersection
even if the space is complete. Take for instance xn = 1/n for n > 0 and the open balls,
in R, ]0, 2/n[ which are nested open balls of radius rn = 1/n and center xn = 1/n. Their
intersection is obviously empty

⋂
n>0]0, 2/n[= ∅.

Moreover, an equivalent version of Theorem 5.6 can be given using closed nested subsets
instead of closed balls. Indeed X is complete if and only if every nested sequence of non-
empty closed subsets Cn−1 ⊇ Cn ⊇ Cn+1, such that diam(Cn) → 0, has non empty
intersection. Also in this case note that the closedness is necessary, but also the condition
diam(Cn) → 0 is essential. Indeed, in R, take the sequence of closed nested sets Cn =
[n,+∞[ and note that

⋂
n[n,+∞[= ∅. In this case, however, the diameters are infinite.

If instead, the nested closed subsets (balls) have finite diameters but do not satisfy
diam(Cn) → 0, then we anyway conclude that the intersection is not empty (but in this
case it may contain more than one point).

Proposition 5.8 i) Let X be a metric space. If C ⊆ X is complete as metric space (with
the distance induced by X), then C is closed in X.

ii) Let X be a complete metric space and C ⊆ X be a subset. Then C is complete as
metric space (with the distance induced by X) if and only if it is closed in X.

Proof. i) Let xn be a sequence of points of C which converges to x in X. Then it is a
Cauchy sequence in X and hence in C too. Hence, being C complete, it must be x ∈ C.

ii) The necessity is the point i). For the sufficiency, let us suppose C closed and let
xn be a Cauchy sequence of points of C. Then it is also a Cauchy sequence in X which
is complete and so xn converges to x in X. But C is closed and hence x ∈ C. ut

From Proposition 5.8 we immediately get that, given B ⊆ R, the space

Cn([a, b], B) =
{
f : [a, b]→ B

∣∣∣n− times continuously derivable
}

endowed with the metrics as in Example 5.2 point 10), is complete if and only if B is
closed148.

148Indeed, it is closed if and only if B is closed. Anyway B must be not so bad, as set, for instance,
finite disjoint union of closed intervals.
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Definition 5.9 Let X and Y be two metric spaces with metrics dX and dY respectively.
A bijective function f : X → Y is said to be an isometry if it maintains the distances:

dX(x1, x2) = dY (f(x1), f(x2)) ∀ x1, x2 ∈ X.

In the case of existence of an isometry, the two spaces will be said isometric.

Let us note that if f : X → Y is a isometry, then also f−1 : Y → X is a isometry.

Definition 5.10 Let X be a metric space. A metric space X∗ is a completion of X if it
is complete and it contains a dense isometric copy of X.

Theorem 5.11 Every metric space X has a completion X∗ and such a completion is
unique in the sense that if X∗∗ is another completion, then there exists an isometry j :
X∗ → X∗∗ which maps the dense copy of X in X∗ onto the dense copy of X in X∗∗.

Proof. We do not report the proof. We only say that, as already said for a possible
completion of Q in R, X∗ is constructed taking the equivalence classes of Cauchy sequences
in X. ut

Remark 5.12 It is easy to prove that, if X and Y are isometric, then X is complete
if and only if Y is complete and, in any case, the completion X∗ is isometric to the
completion Y ∗.

It is rather evident that if F is an archimedean field, then it is also a metric space
endowed with the distance

d(x, y) = ϕ (|x− y|F ) ,

where | · |F is the absolute value in F (see (3.5)) and ϕ is the injective isomorphism from
F to R (see remark 3.24).

One may then ask whether completing F as ordered field and completing F as metric
space give the same completion, that is R. The answer is of course “yes, the completions
are the same”.

Moreover, we know that the completion of Q is R and the completion of Qn is Rn,
when all of them are endowed by the Euclidean distance. However, we also know that Q
is equivalent to Qn, that is there exists a bijection ϕ : Q → Qn. Hence we can equip Q
with the following distance:

d(p, q) = ‖ϕ(p)− ϕ(q)‖n,

where ‖ · ‖n is the Euclidean norm in Rn. It is obvious that ϕ : (Q, d) → (Qn, ‖ · ‖n)
is an isometry. Hence, the completion of Q with the distance d is isometric to (roughly
speaking: it is equal to) Rn. Hence, we deduce that the completion strictly depends on the
metric structure.
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Finally, the completion of the incomplete metric space R with metrics d(x, y) =
| arctanx−arctan y| is the metric space given by the set [−∞,+∞] and distance d∗ acting
as

d∗(x, y) = d(x, y) if x, y ∈ R, d∗(−∞, x) = arctan x+ π
2

if x ∈ R,
d∗(+∞, x) =

π

2
− arctanx if x ∈ R, d∗(−∞,+∞) = π.

The completeness of a metric space is important because of the existence of the limits of
the Cauchy sequences. Think for instance to problems of approximation or to problems of
iterative procedures where at every new step you construct a new quantity xn (a number,
a vector, a function, an algorithm...). If such quantities are embedded in a complete
metric space and they form a Cauchy sequence, then you are sure that you are converging
to somewhere.

Another very important framework (which is however somehow linked to the previous
situation) where the completeness of a metric space plays a crucial role is in the fixed
point theory, that is in the theory concerning the solvability of the equation

F (x) = x

where F : X → X is a given function on a given metric space. Here we report, without
the easy proof, the famous result149 which goes under several names such as “Contraction
Principle”, “Banach-Caccioppoli Theorem”, “Lipschitz-Picard Theorem”...

Theorem 5.13 Let X be a metric space and F : X → X be a function. We say that F
is a contraction if there exists a constant 0 ≤ L < 1 such that

d(F (x), F (y)) ≤ Ld(x, y) ∀ x, y ∈ X.

We say that x ∈ X is a fixed point of F if

F (x) = x

If X is complete and F is a contraction, then there exists one and only one fixed point
for F .

Note that if we only have the inequality d(F (x), F (y)) ≤ d(x, y), i. e. it holds with
L = 1 and it is not possible to take L < 1 uniformly for every pair (x, y), then we may
have existence of more than one fixed points (even infinitely many) or no existence of
fixed points at all. Just take, as examples, the metric space R with the usual metrics and
the functions F (x) = x (identity) and F (x) = x+ 1 (rigid translation).

149Certainly known to the reader.
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5.4 Compactness in metric spaces

Definition 5.14 Let X be a metric space and C ⊆ X be a subset. We say that C is
compact if for every sequence {xn} of points of C there exists a subsequence {xnk} and a
point x ∈ C such that

xnk → x as k → +∞.

We say that X is a compact metric space if X is compact (as subset of X itself).

Proposition 5.15 Let X be a metric space. i) If C ⊆ X is compact then C is closed
and, as metric space with the induced metrics, it is complete. ii) If X is compact and
C ⊆ X is closed, then C is compact. iii) If C ⊆ X is compact, then C is bounded.

Proof. i) If xn is a sequence of points of C converging to x ∈ X, then by compactness,
there is a subsequence converging to a point of C and such a point, by uniqueness of the
limit, must be x. If xn is Cauchy sequence of point of C, then by compactness it has a
convergent subsequence to x ∈ C; but if a Cauchy sequence has a convergent subsequence
to x ∈ C then the whole sequence converges to x. ii) Let xn be a sequence of points of C;
since X is compact, then there exists a subsequence xnk converging to a point x ∈ X; but
C is closed and xnk is contained in C and so x ∈ C. iii) By absurd, let us suppose that
C is not bounded; hence there exist two sequences of points of C, {xn}, {yn}, such that
d(xn, yn) → +∞ as n → +∞.; hence they respectively have a converging subsequence
xnk → x ∈ C, ynk → y ∈ C150, from which the contradiction

d(xnk , ynk) ≤ d(xnk , x) + d(x, y) + d(y, ynk) ≤ 1 + d(x, y) < +∞

for all k sufficiently large. ut

Remark 5.16 The reader certainly knows that a subset of Rn (with the Euclidean dis-
tance) is compact if and only if it is a closed and bounded subset. The necessity is stated
in Proposition 5.15, whereas the sufficiency comes from the Bolzano-Weierstrass Theorem
2.9151.

However, for a general metric space, the property of being closed and bounded is not
sufficient for being compact. Take for instance the metric space C0([−1, 1];R) with the
distance d(f, g) = ‖f − g‖∞, and consider the sequence of continuous functions as in
Example 2.41 point ii): all such functions belong to the closed unit ball B = {f : [−1, 1]→
R continuous|d(f, 0) = ‖f‖∞ ≤ 1} (which is closed and bounded) but no subsequence may
uniformly converge because the pointwise limit is discontinuous.

150We can suppose that they have the same subindex k because we can first extract a converging
subsequence xnj

from xn and hence a converging subsequence ynjk
from ynj

, and finally put nk = njk .
151Note that if C is closed and bounded in Rn then it is contained in a closed n-cube I1 × I2 × · · · × In

where Ii is closed and bounded interval of R, and hence, for getting the “n-dimensional version of the
Bolzano-Weierstrass Theorem” you just need to repeat n-times the “1-dimensional version” component
by component.
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As explained in Remark 5.16, the boundedness (together with closedness) is not suf-
ficient for compactness The right concept is the following one.

Definition 5.17 Let X be a metric space. We say that C ⊆ X is totally bounded if for
every ε > 0 there exists a finite collection of balls of radius ε, B(xi, ε) i = 1, . . . , n, whose
union covers C

C ⊆
n⋃
i=1

B(xi, ε)

It is easy to prove that the total boundedness implies the boundedness. The following
theorem is a first characterization of the compact metric spaces (and hence of the compact
subsets of a metric space.)

Theorem 5.18 A metric space X is compact if and only if it is complete and totally
bounded.

Proof. (Necessity) The necessity of the completeness is stated in Proposition 5.15.
Let us prove that X must be totally bounded. If not, then there exists ε > 0 such that
every finite collection of balls with radius ε > 0 does not cover X. Hence, take a point
x1 ∈ X, and note that X \ B(x1, ε) 6= ∅. Hence, take x2 ∈ X \ B(x1, ε), and note that
there must exists x3 ∈ X \ (B(x1, ε) ∪B(x2, ε)). Proceeding in this way we can construct
a sequence in X such that d(xn, xn+1) ≥ ε > 0. Hence no subsequence of {xn} may
converge: contradiction.

(Sufficiency) Let {xn} be a sequence in X. We are going to prove that the totally
boundedness implies the existence of a subsequence which is a Cauchy sequence, from
which, by completeness we conclude. For every k take a finite collection Bk of balls of
radius 1/2k covering X. For k = 1 take a ball B1 ∈ B1 which contains infinitely many
points of the sequence152 xn; for k = 2 take B2 ∈ B2 such that B1 ∩B2 contains infinitely
many points of the sequence xn; in general, take Bk ∈ Bk such that B1 ∩ B2 ∩ · · · ∩ Bk

contains infinitely many points of {xn}. Let n1 be the first n such that xn ∈ B1 and in
general nk be the first n > nk−1 such that xn ∈ B1 ∩ · · · ∩ Bk. The subsequence xnk is
then a Cauchy sequence because, for all k′, k′′,

xnk′ , xnk′′ ∈ Bmin{k′,k′′} =⇒ d(xnk′ , xnk′′ ) ≤
2

2min{k′,k′′} → 0 as k′, k′′ → +∞.

ut

Remark 5.19 By Remark 5.16 and Theorem 5.18 we deduce that the bounded subsets
of Rn are totally bounded. A direct proof of this fact is nothing else but the use of the
archimedean property of R: every bounded sets is contained in a hypercube I1 × · · · × In
which, for every ε > 0, is covered by a finite family of hypercubes J1 × · · · × Jn with
Ji interval of length ε. And, if you want to cover by balls, just note that any hypercube
contains a ball and any ball contains a hypercube.

152More precisely: it contains points of the sequence for infinitely many indices n.
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The possibility of covering a compact metric space with a finite family of balls with
fixed radius is also an important ingredient of the following other characterization of
the compact metric space. Given an index set I and a family of open balls of X (not
necessarily all of the same radius), F = {Bi|Bi ⊆ X open ball, i ∈ I}, a finite subfamily
of F is a family of open balls B = {Bi|i ∈ I} where I ⊆ I is a finite index subset.

Theorem 5.20 A metric space X is compact if and only if for every family F of open
balls covering X there exists a finite subfamily B still covering X.

Proof. (Necessity) Let us assume X compact. Let F be a family of open balls covering
X. For every n let Bn be a finite family of open balls of radius 1/2n covering X, which
exists by Theorem 5.18. If we prove that there exists n such that for every B ∈ Bn there
exists S ∈ F such that B ⊆ S, then we are done. Indeed, at that point, it will be sufficient
to take the finite subfamily {S ∈ F|∃B ∈ Bn, B ⊆ S}. By contradiction, let us suppose
that for every n there exists a ball B ∈ Bn such that B 6⊆ S for all S ∈ F153. If {xn} is the
sequence of the centers of such balls B ∈ Bn, then, by compactness, there exists x ∈ X and
a subsequence xnk converging to x. Now, by covering, there exists B(y, r) = S ∈ F such
that x ∈ S. But then, taking r > 0 such that B(x, r) ⊆ B(y, r) = S154, for every k such
that min{1/2nk , d(xnk , x)} < r/2 we have B(xnk , 1/2

nk) ⊆ S which is a contradiction.
(Sufficiency) X is totally bounded because, for every ε > 0 we have the covering family

of open balls {B(x, ε)|x ∈ X} from which we can extract a finite covering subfamily. Let
us prove that X is complete and we conclude by Theorem 5.18. Let {xn} be a Cauchy
sequence and suppose that it does not converge. Since a non-converging Cauchy sequence
cannot have any converging subsequence (otherwise it is itself convergent), for every x ∈ X
there exist εx > 0 and nx ∈ N such that

xn 6∈ B(x, εx) ∀ n ≥ nx.

From the covering family {B(x, εx)|x ∈ X} we can extract a covering finite subfamily
B(xi, εxi) for i = 1, . . . , N for some N ∈ N. Taking n = max{nxi |i = 1, . . . , N} we get
the contradiction

xn 6∈
N⋃
i=1

B(xi, εxi) = X ∀ n ≥ n.

ut
The property of nested closed sets also holds in the case of compactness.

Proposition 5.21 Let X be a metric space, and {Cn} a collection of nested compact
subset of X such that diam(Cn) → 0. Then, the intersection

⋂
nCn is not empty (and

contains just one point).

Proof. Since C0 is compact, then it is also complete. Hence we only need to apply
Theorem 5.6 (see also Remark 5.7) to the complete metric space C0 with nested sequence
of closed subsets Cn. ut

153Note that B is certainly contained in the union of the balls S ∈ F but not necessarily contained in
a single specific ball S ∈ F .

154Which is possible because the balls are open.
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5.5 The importance of being compact

Similarly to completeness, the compactness (which is a stronger property, as we know)
is important for problems of approximation and of solving equations. For instance, if
F : X → Y is a function, y ∈ Y is fixed, and we want to find a solution of the equation

F (x) = y,

then, one possible way to attack the problem (also by a numerical point of view) is to try
to study a suitable approximating equation

Fn(x) = y

where, for every n ∈ N, Fn : X → Y is an approximating function. Let us suppose that
the approximating Fn have the property:

xn → x in X =⇒ Fn(xn)→ F (x) in R. (5.6)

Hence, if for every n, we can sufficiently easily calculate (or proving the existence of) a
solution xn ∈ X for Fn(x) = y, then whenever {xn} is contained in a compact subset of
X, we can extract a subsequence converging to a point x ∈ X and so obtain

xnk → x, Fnk(xnk) = y =⇒ F (x) = y =⇒ x is a solution.

A typical case where the property (5.6) is satisfied is when Fn uniformly converges to
F , that is

∀ ε > 0 ∃ n such that n ≥ n =⇒ dY (Fn(x), F (x)) ≤ ε ∀ x ∈ X.

One of the major field of applications of such a method is in the theory of differential
equations, as next example shows.

Example 5.22 As it is well-known, a solution of the Cauchy problem{
y′(t) = f(t, y(t))
y(t0) = x0,

is a solution of the equation F (y) = 0, where F : C0([t0− δ, t0 + δ],Rn)→ C0([t0− δ, t0 +
δ],Rn) acts as

v 7→ F (v) : t 7→ v(t)− x0 −
∫ t

t0

f(s, v(s))ds,

with a suitable δ > 0. We can approximate the equation by considering

Fn(v) : t 7→

 v(t)− x0 −
∫ t

t0

f

(
s, v

(
s− 1

n

))
ds if t ≥ t0 − δ + 1

n
,

0 otherwise
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The existence of a solution yn of the delayed approximating equation Fn(y) = 0 is
easily proven by an iterative argument. If one is able to prove that all such delayed
solutions belong to the same compact set of C0([t0 − δ, t0 + δ],Rn), then one can prove
the existence of a solution of the Cauchy problem. This is indeed one possible way for
proving the existence theorem of Peano, under continuity hypothesis for f .

Another very common setting where compactness plays an essential role is in the
problem of minimization and maximization of functions. We have the following result.

Proposition 5.23 A function f : X → R is said lower semicontinuous (respectively:
upper semicontinuous) if for every x ∈ X155:

f(x) ≤ lim inf
n→+∞

f(xn),

(
respectively: lim sup

n→+∞
f(xn) ≤ f(x)

)
∀ sequence xn → x in X.

If C ⊆ X is compact and f : X → R is lower semicontinuous (respectively, upper
semicontinuous, continuous) then f reaches its minimum (respectively its maximum, its
minimum and maximum) on C.

Proof. The proof is similar to the one of Theorem 2.21. ut
One way to use the previous result is in the so-called direct method of the calculus of

variations. We say that a function F : X → R is coercive, if the following holds156

A ⊆ X, A not compact =⇒ ∃{xn}n ⊆ A such that F (xn)→ +∞.

Proposition 5.24 Let X be a metric space and F : X → R be lower semicontinuous and
coercive. Then, F has a minimum on X, that is there exists x ∈ X such that

F (x) ≤ F (x) ∀ x ∈ X.

Proof. Let us define m = infx∈X F (x) ∈ [−∞,+∞[. By definition of infimum, there
exists a sequence of points xn ∈ X such that

F (xn)→ m as n→ +∞. (5.7)

By the coercivity, the closure {xn}n of the sequence {xn}n must be compact, otherwise
there is a subsequence {xnk}k with F (xnk) → +∞, which is a contradiction to (5.7).

Hence, by lower semicontinuity, F has a minimum on {xn}n, which means that there
exists x ∈ {xn}n such that

F (x) ≤ F (xn) ∀ n,
155Since the function f has R as codomain, the definitions of lim inf and lim sup are as the standard

ones given in Definition 2.13.
156In the simpler case of X = Rn, a typical situation is when F (xk)→ +∞ whenever ‖xk‖ → +∞.
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and so F (x) = m by (5.7) and definition of m.
ut

The typical setting of application of such a result is in the theory of minimization of
functionals defined on some suitable functions space and representing some energy to be
minimized. Such a theory is also extremely linked to the theory of partial differential
equations as it is shown in the following example.

Example 5.25 Let us consider the Dirichlet problem{
−∆u = f in Ω,
u = 0 on ∂Ω,

(5.8)

where Ω ⊂ Rn is an open regular set, u : Ω → R is the unknown function, ∆ =∑n
i=1(∂2u)/(∂x2

i ) is the Laplacian, and f : Ω→ R is a given function.
If u is a (classical) solution157, then, for every functions ϕ ∈ C1(Ω) with ϕ = 0 on ∂Ω

(a so-called test function), by the Green formulas we have

−∆u = f =⇒ −
∫

Ω

ϕ∆u =

∫
Ω

ϕf =⇒
∫

Ω

∇u · ∇ϕ =

∫
Ω

ϕf, (5.9)

where ∇u is the gradient ((∂u)/(∂x1), · · · , (∂u)(∂xn)). Also the opposite implication
holds: if a C2 function which vanishes on the boundary and satisfies the last inequality
of (5.9) for all test functions ϕ, then it also satisfies the Dirichlet problem (5.8).

On the other hand, let us consider the functional

J : C1(Ω)→ R, J(u) =

∫
Ω

(
‖∇u‖2 − 2fu

)
dx.

If u is a point of minimum of J , then u satisfies the first equation in (5.9) (the Laplace
equation) in the so-called “weak” sense, that is∫

Ω

∇u · ∇ϕ =

∫
Ω

ϕf ∀ test functions ϕ.

Indeed, let ε > 0 and ϕ (test function) be arbitrary, if u is a minimum then J(u) ≤
J(u+ εϕ) and so the function

ε 7→ J(u+ εϕ)

has a minimum in ε = 0. Hence158

d

dε
J(u+ εϕ)|ε=0 = 0 =⇒

∫
Ω

(∇u · ∇ϕ− fϕ) dx = 0,

and we conclude by the arbitrariness of the test function ϕ.
If then J is lower semicontinuous and coercive, we get the existence of a minimum for

J and consequently the existence of a weak solution of (5.8).

157i.e. u has the regularity C2 and satisfies the equation point by point.
158Deriving under the sign of integral.
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Remark 5.26 The reader has certainly noted that for being a solution of the Dirichlet
problem (5.8) it required to be of class C2, whereas for being a minimum of J it is required
to be of class C1. Indeed, the validity of the last inequality in (5.9) for all test functions,
can be taken as a weak definition of solution of (5.8), which only require to be C1. Hence
we may look for a weak solution as a C1 function which minimizes J , knowing that, if the
minimizer is also C2 then it classically solves (5.8).

The problem of proving the existence of a weak solution of (5.8) can be then viewed as
the problem of proving that J is lower semicontinuous and coercive. To this end, we can
also change the natural distance in the domain of J , and put a different distance which
makes J lower semicontinuous and coercive. For applying this procedure it is necessary
(among other things) to very well know which are the compact subsets of the domain with
the new distance, in order to be sure that J is coercive.

However, let us note that (as indeed it happens in the case of the Dirichlet problem),
it may be also necessary to enlarge the possible domain and to introduce on it a new kind
of convergence which may be not generated by a distance, in other words to change the
topology in a more general way than changing the distance. The concept of topology is
addressed in the next section.

5.6 Topological spaces

In the previous paragraph we have studied the properties of the concept of “distance”.
Such a concept is used for defining a criterium of “closeness” which is required for the
concept of “limit”. In this paragraph we study the other possible way of treat “closeness”:
via the concept of “aroundness” which, as we are going to see, generalizes the use of the
distance.

In a metric space, the intuitive concept of “aroundness” is certainly given by the
concept of “ball”: the points of a ball “stay around” the center of the ball itself. However
it is more natural to extend the concept of “aroundness” to every set which contains a
ball; in other words we say that a set U is a neighborhood of a point x if it contains an
open ball centered in x159. Here are the essential properties of neighborhoods in a metric
space, whose proofs is almost immediate. Denoting by160 F(x) ⊆ P(X) the family of
neighborhoods of x ∈ X, we have161

159Equivalently: if it contains a closed ball centered in x; note however that, by definition, a ball (closed
or open) always has a strictly positive radius.

160Recall that P(A) denotes the set of all the parts (subsets) of the set A.
161By words, such properties are: i) every point has a neighborhood; every neighborhood of x contains
x; ii) the intersection of two neighborhoods of x is still a neighborhood of x; iii) if a set contains a
neighborhood of x then it is itself a neighborhood of x; iv) every neighborhood U of x contains a
neighborhood V of x such that U is a neighborhood of every points of V , v) two different points have
two neighborhoods with non shared points.
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i) F(x) 6= ∅ ∀ x ∈ X; U ∈ F(x) =⇒ x ∈ U ;
ii) U, V ∈ F(x) =⇒ U ∩ V ∈ F(x);
iii) U ∈ F(x), U ⊆ V =⇒ V ∈ F(x);
iv) U ∈ F(x) =⇒ ∃ V ∈ F(x) such that U ∈ F(y) ∀ y ∈ V ;
v) x 6= y =⇒ ∃ U ∈ F(x), ∃ V ∈ F(y) such that U ∩ V = ∅.

(5.10)

If we are concerning with a concept of “aroundness” the properties i), ii) and iii) are
almost obvious to be required; the property v) is obvious if we think to neighborhoods as
something containing a ball (by the fact that for every two different points there exist two
non intersecting balls centered on them); let us concentrate on iv). The meaning of it is,
roughly speaking, that if U stays around to x then it also stays around to all surrounding
points which are “sufficiently close” to x, the points of V indeed. Its importance will be
clarified next, when speaking of open sets. Inspired by what happens in a metric space,
we then give the following definition.

Definition 5.27 Let X be a nonempty set. A topological structure on X is a function162

X → P (P(X)) , x 7→ F(x)

such that, for every x ∈ X, F(x) satisfies the properties i), ii), iii), iv) of (5.10). In such
a case we say that X is a topological space and, for every x ∈ X, F(x) ⊆ P(x) is called
the neighborhoods filter of x, and the elements of F(x) the neighborhoods of x.

If moreover, F(x) also satisfies v) in (5.10), we say that X is a separated or Hausdorff
space.

The following proposition is obvious.

Proposition 5.28 Every metric space is a topological space with topological structure
(neighborhoods filter) given by

F(x) =
{
U ⊆ X

∣∣∣U contains an open ball centered in x
}
, ∀ x ∈ X.

Moreover, every metric space is a Hausdorff space.

Whence we have a topological structure, it is interesting to consider the sets which
are neighborhood of all their points.

Definition 5.29 Let X be a topological space. A non-empty set A ⊆ X is said to be open
if it is a neighborhood of all its points, that is

A ∈ F(x) ∀ x ∈ A.
162Here, P(P(X)) is the set of the parts of the parts of X; the set of the families of subsets of X.
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Of course the whole space X is open163, and, by definition, we can also assume ∅ open.
The following proposition shows that the open sets are indeed very “distributed”.

Proposition 5.30 Let X be a topological space, x ∈ X and U ∈ F(x). Then, U contains
a non-empty open neighborhood of x, that is

∃A ∈ F(x), A ⊆ U, A open.

Proof. We define the non-empty set (non-empty because it contains x)

A =
{
y ∈ X

∣∣∣U ∈ F(y)
}
,

and we conclude if we prove that A is open. Let y ∈ A, then U ∈ F(y) and hence, by
property iv) of (5.10) there exists V ∈ F(y) such that U ∈ F(z) for all z ∈ V . We then
deduce, by definition, that V ⊆ A and so A ∈ F(y). ut

Definition 5.31 Let X be a topological space and C ⊆ X be a subset. C is said to
be closed if its complementary, {C = X \ C, is open. A point x ∈ X is said to be an
adherent point for C if

U ∩ C 6= ∅ ∀ U ∈ F(x).

A point x ∈ X is said to be an accumulation point for C if

∀ U ∈ F(x) ∃y ∈ U ∩ C such that y 6= x.

A point x ∈ C is said to be isolated in C if there exists U ∈ F(x) such that U ∩C = {x}
The closure or the adherence of C, denoted by C or by cl(C), is the set of all adherent

points for C. The interior of C, denoted by
◦
C or by int(C) is the set of points x ∈ C

such that C ∈ F(x).

Proposition 5.32 a) The closure of a set is closed; the interior of a set is open. b) A set
C ⊆ X is closed (respectively, open) if and only if it coincides with its closure (respectively,
interior). c) In a metric space X a subset C is closed in the sense of Definition 5.31 if
and only if it is (sequentially) closed in the sense of Definition 5.3. Also the closures of
the set by the two definitions coincide. d) In a metric space X the open and closed balls
defined in (5.4) are open and closed in the sense of Definitions 5.29 and 5.31 respectively.
e) A point x ∈ X is isolated in X if and only if U = {x} is a neighborhood of x, that is
{x} ∈ F(x). f) X and ∅ are closed (and hence open, being the complementary to each
other).

163Because it is obviously a neighborhood of every point.
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Proof. We only prove a) for the interior and c) for closed sets. a) if
◦
A is empty, then it

is open by definition. Let x ∈
◦
A. Hence A ∈ F(x) and so there exists U ∈ F(x) such that

A ∈ F(y) for all y ∈ U . This implies U ⊆
◦
A and so

◦
A∈ F(x). c) Let C be sequentially

closed (i.e. as in Definition 5.3) and let x be an adherent point of C. Since any open ball
B(x, 1/n) belongs to F(x), then it must contain a point of C, let us say xn. But then
the sequence {xn} is convergent to x by construction and so x ∈ C. On the other hand,
let us suppose C closed as in Definition 5.31, and suppose that {xn} ⊆ C converges to
x ∈ X. Take any U ∈ F(x). By definition of neighborhoods in a metric space, there is a
ball B(x, r) ⊆ U . By convergence, there exists n such that xn ∈ B(x, r) ⊆ U , and so x is
an adherent point for C, so x ∈ C, and hence C turns out to be sequentially closed. ut

Proposition 5.33 The family T of all open subsets of a topological space X has the
following properties164:

i) X, ∅ ∈ T ;
ii) I index set (even non countable), and Ai ∈ T ∀i ∈ I =⇒

⋃
i∈I Ai ∈ T ;

iii) N ∈ N, Ai ∈ T ∀ i = 1, . . . , N =⇒
⋂N
i=1Ai ∈ T .

(5.11)

Proof. The proof is easy. Only note that the property ii) in (5.10) easily extend to
finite intersections of neighborhoods. ut

Note that, in general, the countable (or more than countable) intersection of open sets
is not open. For instance, in R with the usual metrics, the open intervals ]a, b[ are open,
but the countable intersection

⋂
n≥1] − (1/n), 1/n[ is equal to the singleton {0} which is

not open in R.

Definition 5.34 Let X be a set. A family of subsets of X, T ⊆ P(X), is called a topology
on X if it satisfies the three properties of (5.11).

Proposition 5.35 Let X be a nonempty set, and T be a topology on X. Hence, there
exists a unique topological structure x 7→ F(x) such that T is exactly the family of the
open subsets for it.

Proof. Given T topology on X we define, for every x ∈ X

F(x) =
{
U ⊆ X

∣∣∣∃A ∈ T such that x ∈ A ⊆ U
}
.

It is not hard to see that x 7→ F(x) is a topological structure on X. We define the family
of open subsets for such a topological structure

T ′ =
{
A ⊆ X

∣∣∣A ∈ F(x) ∀ x ∈ A
}
,

164By words, ii) means that every union of open sets is open, and iii) means that every finite intersection
of open sets is open.
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and we prove that T = T ′. Indeed, if A ∈ T and x ∈ A, then we have x ∈ A ⊆ A and
so A ∈ F(x) which implies, by the arbitrariness of x ∈ A, A ∈ T ′. On the other hand, if
A ∈ T ′, then, by definition, A ∈ F(x) for all x ∈ A, and so, for every x ∈ A there exists
Ax ∈ T such that x ∈ Ax ⊆ A. We then get

A =
⋃
x∈A

Ax ∈ T .

Now we prove uniqueness. Let us suppose that x 7→ F(x) and x 7→ F ′(x) are two
topological structures with the same family of open sets:

T =
{
A ⊆ X

∣∣∣A ∈ F(x) ∀x ∈ A
}

=
{
A ⊆ X

∣∣∣A ∈ F ′(x) ∀x ∈ A
}

= T ′.

Then, F(x) = F ′(x) for all x ∈ X. Indeed, if U ∈ F(x), by Proposition 5.30 there exists
A ∈ T such that x ∈ A ⊆ U . But A also belongs to T ′, and so we get U ∈ F ′(x) by
definition. Hence F(x) ⊆ F ′(x) and, being the opposite inclusion proven in the same way,
we conclude. ut

Remark 5.36 From Proposition 5.35 we deduce that to give a topology on a set (i.e. to
say which are the open sets) and to give a topological structure (i.e. to say which are
the neighborhoods for every point) are equivalent: given a topology there exists a unique
topological structure which generates that topology as family of open subsets; vice-versa,
if two topological structures generates the same family of open subsets, then they are the
same topological structure.

By the previous argumentation, a topological space is often denoted by the couple
(X, T ), where X is a nonempty set and T is a topology on it.

Of course, instead of giving a topology (i.e. giving the open subsets) we can equivalently

give the family of closed subsets C =
{
C ⊆ X

∣∣∣C is closed
}

, because, via complementation,

the family of closed subsets uniquely identifies the family of open subsets. A general family
C of subsets is the family of the closed subsets for a topology if and only if

i) X, ∅ ∈ C;
ii) I index set (even non countable), and Ci ∈ C ∀i ∈ I =⇒

⋂
i∈I Ci ∈ C;

iii) N ∈ N, Ci ∈ T ∀ i = 1, . . . , N =⇒
⋃N
i=1 Ci ∈ C.

(5.12)

To see it, just recall that the complement of the union (respectively, of the intersection) is
the intersection (respectively, the union) of the complements.

We end this paragraph with the following consideration: in a metric space X the open
balls are open subsets and neighborhoods of their centers. Moreover a subset U ⊆ X is
a neighborhood of x ∈ X if and only if it contains an open ball centered in x. We then
deduce that for study the topology T , as well as the topological structure x 7→ F(x), in
a metric space it is sufficient to consider the family B of all open balls of X, as well as
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the structure x 7→ B(x) where B(x) is the family of open balls centered in x. We say
that the family B ⊆ T of the open balls is a basis for the topology and that the family
B(x) ⊆ F(x) is a basis for the filter of neighborhoods of x. More generally we have the
following definition.

Definition 5.37 Let X be a topological space. A subset B ⊆ T is a basis for the topology T
if every element of T is the union of elements of B. Fixed x ∈ X, a subset B ⊆ F(x) is
a basis for the filter of neighborhoods F(x) if every element of F(x) contains an element
of B as subset.

Let X be a set. A family of subsets B ⊆ P(X) is a basis for a topology in X if there
exists a topology T such that B is a basis for T . A structure165 x 7→ B(x) ⊆ P(X) is a
basis for neighborhoods filters in X if there exists a topological structure x 7→ F(x) such
that B(x) is a basis for F(x) for all x ∈ X.

The following Proposition may be proven in similar way as the previous propositions.

Proposition 5.38 Let X be a nonempty set. A family of subsets B ⊆ P(X) is a basis
for a topology in X if and only if B contains the empty set, B covers X166 and every finite
intersection of elements of B is a union of elements of B.

If B is a basis for a topology in a set X, then there exists a unique topology T for
which B is a basis and it is

T =
{
A ⊆ X

∣∣∣A is a union of elements of B
}

A structure x 7→ B(x) is a basis for neighborhoods filters in X if and only if, for every
x ∈ X, B(x) is not empty, every element of B(x) contains x and the intersection of two
elements of B(x) contains an element of B(x) as subset.

If x 7→ B(x) is a basis for neighborhoods filters in X, then there exists a unique
topological structure x 7→ F(x) such that B(x) is a basis for F(x) for every x ∈ X, and
it is

F(x) =
{
U ⊆ X

∣∣∣∃B ∈ B(x) such that B ⊆ U
}

The family B ⊆ P(X) is a basis for a topology T in X if and only if the structure

x 7→ B(x) =
{
B ∈ B

∣∣∣x ∈ B}
is a basis for the corresponding neighborhoods filters structure x 7→ F(x).

Many of the usual definitions and results in the topological space theory can be given
just using a basis for the topology (respectively, for the neighborhoods filters) instead of

165Here and in the sequel, by “structure” we mean any function from X to P(P(X)).
166i.e. X is the union of elements of B.
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using the whole topology (respectively, the neighborhoods filters) as we are going to see
in the next paragraph.

As already said, in a metric space, a basis for the topology is the family of open balls167,
and a basis for the neighborhoods filter at x is the family of the open balls centered in x.
In the case of Rn, with the Euclidean distance, this are the usual Euclidean open balls of
Rn. However, note that also the family of open cubes Q =]a1, b1[× · · ·×]an, bn[ is a basis
for the topology168, as well as the family of open cylinders and so on.

For the particular case of R, a basis for the topology is the family of open bounded
intervals, and for the filter of neighborhoods in x, the family of open bounded intervals
centered in x.

5.7 Convergence and continuity in topological spaces

Looking back again to the metric space case, we have that a sequence {xn} ⊆ X converges
to a point x ∈ X if and only if one of the three following equivalent conditions is satisfied

a) d(xn, x)→ 0 as n→ +∞;
b) ∀ ε ∃ n such that n ≥ n =⇒ d(xn, x) ≤ ε;
c) ∀ open ball B centered in x ∃ n such that n ≥ n =⇒ xn ∈ B.

Similarly, if X and Y are two metric spaces with metrics dX and dY respectively,
f : X → Y is a function and x ∈ X is a point, we have that f is continuous at x if and
only if one of the following three equivalent conditions is satisfied

d) dY (f(xn), f(x))→ 0 ∀ sequence {xn} converging to x in X;
e) ∀ ε > 0 ∃ δ > 0 such that dX(x, x) ≤ δ =⇒ dY (f(x), f(x)) ≤ ε;
f) ∀ open ball B in Y centered in f(x) ∃ an open ball B′ in X centered in x

such that x ∈ B′ =⇒ f(x) ∈ B.

Hence, it is natural to give the following definition.

Definition 5.39 Let X and Y be two topological spaces with topological structures x 7→
FX(x) and y 7→ FY (y) respectively, let {xn} be a sequence in X, f : X → Y a function
and x ∈ X a point.

i) The sequence {xn} converges to x if

∀ U ∈ FX(x) ∃ n such that n ≥ n =⇒ xn ∈ U.

ii) The function f is continuous at x if

∀ U ∈ FY (f(x)) ∃ V ∈ FX(x) such that x ∈ V =⇒ f(x) ∈ U.

iii) The function f is said continuous if it is continuous at every point x ∈ X.

167If A is open, then, for every x ∈ A, it contains an open ball centered at x, and so A is the union of
such balls.

168This is true because every open ball contains an open cube and every open cube contains an open
ball.
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It is not hard to see that the previous points i) and ii) can be equivalently stated taking
U and V inside any basis for the filters of neighborhoods. For instance, for the continuity,
if BX(x) and BY (f(x)) are basis for the neighborhoods, we have that f is continuous at
x if and only if

iv) ∀ U ∈ BY (f(x)) ∃ V ∈ BX(x) such that x ∈ V =⇒ f(x) ∈ U.

Indeed we prove that ii) is equivalent to iv).

ii) =⇒ iv) U ∈ BY (f(x)) ⊆ FY (f(x)) =⇒ ∃V ′ ∈ FX(x), f(V ′) ⊆ f(U)
=⇒ ∃V ∈ BX(x), V ⊆ V ′, f(V ) ⊆ U ;

iv) =⇒ ii) U ∈ FY (f(x)) =⇒ ∃U ′ ∈ BY (f(x)), U ′ ⊆ U
=⇒ ∃V ∈ BX(x) ⊆ FX(x), f(V ) ⊆ U ′ ⊆ U.

Proposition 5.40 If X is a Hausdorff space and {xn} is a convergent sequence in X,
then the limit is unique. This means that there exists a unique point x such that xn → x.

Proof. By contradiction, let us suppose that there exist two different points x, x̃ which
are limit of the sequence. By definition of Hausdorff space, there exist two neighborhoods
U ∈ F(x), V ∈ F(x̃) such that U ∩ V = ∅. By definition of convergence, there exists n
such that xn ∈ U and xn ∈ V for all n ≥ n. This is a contradiction. ut

We now give an example of a non-separated space where a sequence has two different
limits. Let us consider the interval [−1, 1] with the following basis for a topological
structure: if x ∈]−1, 1[, B(x) is the usual family of open intervals centered in x; otherwise
B(−1) = B(1) is the family of sets of the form [−1,−1 + ε[∪]1 − ε, 1] with ε > 0. The
space is not separated because−1 and 1 do not have disjoint neighborhoods. The sequence
an = (−1)n has two different limits: x = −1 and x̃ = 1. Note that such a topology on
[−1, 1] corresponds to a sort of “circular topology”. Indeed, if we take a circumference
where, not surprising, neighborhoods are arches of circumference centered in the point,
and if we “cut” the circumference in a point obtaining a segment, then such a segment
has no topologically separated extremes.

We have already seen that in a metric space a subset is topologically closed if and only
if it is sequentially closed. Unfortunately, this is not more true in a generic topological
space. The topological closedness still implies the sequentially closedness (as it is easy to
prove), but the contrary is false as the following example shows.

Example 5.41 Let us consider the set X =
{
f : [0, 1]→ R

∣∣∣f is a function
}

and on it

we consider the following basis for a topological structure169: for every f ∈ X

B ∈ B(f)⇐⇒ ∃ε > 0, ∅ 6= Γ ⊂ [0, 1] finite, such that B =

{
g ∈ X

∣∣∣max
x∈Γ
|g(x)− f(x)| < ε

}
For convenience let us denote the generic element of the basis as BΓ,ε(f).

169It can be proved that it is so.
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By this topological structure, we have that a sequence fn converges to f in X if and
only if it pointwise converges to f on [0, 1]. Indeed, if it converges in X, then taking
ε > 0 and x ∈ [0, 1] we have that for n sufficiently large, fn ∈ B{x},ε(f), which, by the
arbitrariness of ε > 0 gives the convergence in x. On the other hand, if the sequence
pointwise converges, then for every finite set Γ ⊆ [0, 1] and for every ε > 0 we easily get
that fn ∈ BΓ,ε(f) for any sufficiently large n.

Now, let us consider the following subset of X:

C =
{
f ∈ X

∣∣∣f(x) 6= 0 for at most countable points x ∈ [0, 1]
}
.

C is not topologically closed. Indeed, the function g ≡ 1 does not belong to C, but for
every Γ ⊆ [0, 1] finite and for every ε > 0 the characteristic function of the set Γ170 belongs
to C ∩BΓ,ε(g), and so g is adherent to C but it does not belong to C. Nevertheless, C is
sequentially closed. Indeed if a sequence of elements of C, fn, converges to f ∈ X (and
so pointwise converges on [0, 1]), then the limit function f cannot be different from zero
outside the set

N =
⋃
n

{
x ∈ [0, 1]

∣∣∣fn(x) 6= 0
}
.

But N , being a countable union of at most countable sets, is itself at most countable,
which means f ∈ C.

Remark 5.42 In a metric space the sequential closedness is equivalent to the topologi-
cal closedness essentially because in a metric space every point has a countable basis of
neighborhoods171, and this fact is of course compatible with testing the closedness along
sequences only. A generic topological space has not a countable basis for the neighborhoods
filters, as indeed it happens for the space in Example 5.41. Hence, in a topological space
the informations brought by convergent sequences are too few.

In the same way, the continuity of a function in a generic topological spaces cannot
be testing along convergence sequences only, and the same thing happens for compactness,
as we are going to see in the next paragraph.

Theorem 5.43 Let (X, TX) and (Y, TY ) be two topological spaces. A function f : X → Y
is continuous if and only if

f−1(A) ∈ TX ∀ A ∈ TY ,

where f−1(A) = {x ∈ X|f(x) ∈ A} is the anti-image of A ⊆ Y via f . Roughly speaking,
f is continuous if and only if the anti-images of the open subsets are open.

Similarly, f is continuous if and only if the anti-images of the closed subsets are closed.

170χΓ(x) = 1 if x ∈ Γ and χΓ(x) = 0 otherwise.
171The family of balls B(x, 1/n).
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Proof. By the definition of continuity it is easy to see that f is continuous at x if and
only if f−1(U) ∈ FX(x) for all U ∈ FY (f(x)). From this the thesis easily comes.

The last sentence comes from the equality

{f−1(A) = f−1
(
{A
)
.

ut

Remark 5.44 The most trivial topologies in a set are T1 = {∅, X} and T2 = P(X).
In the first case, for every point x ∈ X the unique neighborhood is the whole space X,
whereas, in the second case, any subset containing X is a neighborhood of x, in particular
the singleton {x}. If X is endowed by the topology T1 and Y is a separated topological
space, then a function f : X → Y is continuous if and only if it is constant. On the
other hand, if X is endowed by the topology T2 and Y is any topological space, then every
function f : X → Y is continuous. Of course the interesting cases are the intermediate
ones, that is when the topology T is strictly contained between T1 and T2.

To the continuity of some suitable functions it is also linked the so-called product
topology. If (X1, T1) and (X1, T2) are two topological space, then we can naturally endow
the cartesian product X1 × X2 by the topology a basis of which is B = {A1 × A2|A1 ∈
T1, A2 ∈ T2}. Moreover, if B1 and B2 are two basis for T1 and T2 respectively, then
{B1×B2|B1 ∈ B, B2 ∈ B2} is also a basis for the product topology. Note that, in general,
B is not a topology in X1 ×X2. For instance, in R2 = R × R, when R has the standard
topology, the product topology is the usual Euclidean one and a basis of it is given by
the cartesian product of open sets of the real line. However, a subset of R2 can be open
without being the cartesian product of two subsets of R.

If X1×X2 is endowed by the product topology, then the projections π : X1×X2 → X1

(x1, x2) 7→ x1 and π2 : X1 ×X2 → X2 (x1, x2) 7→ x2 are continuous. In the general case
of product set of the form X = Πi∈IXi with I any index set (possibly infinite), if Xi is
a topological space for every i ∈ I, the product topology on it is defined as the smallest
topology such that all the projections πi : X → Xi are continuous172.

If C ⊆ X is a subset of a topological space (X, T ), then C can be also regarded
as a topological space, endowed with the induced topology TC = {A ∩ C|A ∈ T }, and
topological structure x 7→ FC(x) = {U ∩ C|U ∈ F(x)}. The induced topology is the
smallest topology on C such that the injection i : C → X x 7→ x is continuous173.

Definition 5.45 A bijective function f : X → Y between two topological spaces is said
to be a homeomorphism if f and the inverse f−1 are continuous. In such a case the two
spaces are said to be homemorphic.

172Smallest with respect to the inclusion. Such a topology must contain all the sets of the form π−1

i
(A) =

A×ΠI∈I,i6=i for all i ∈ I and A ∈ Ti. It can be proved that a smallest topology containing all these sets
exists.

173It must contain all the sets i−1(A) = A ∩ C such that A ∈ T , and in such a case, this family of
subsets of C exactly forms a topology.
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It is obvious that if X and Y are homeomorphic, then every possible property concern-
ing topological aspects holds for X if and only if it holds for Y . Moreover, by Theorem
5.43, a continuous bijective function f : X → Y is a homeomorphism if and only if f(A)
is open in Y for every A open in X (or equivalently, f(C) is closed for every C closed).
Moreover, a bijective continuous function is not necessary a homeomorphism, that is its
inverse may be non continuous. For instance, take (X, T ) = (R,P(R)) and R with the
usual topology. Hence the identity map i : X → R x 7→ x is bijective and continuous,
but its inverse, which is still i, is not continuous because, for instance, {0} (= i−1({0}))
is open for X but not for R.

5.8 Compactness in topological spaces and sequential compact-
ness

As reported in Remark 5.42, testing topological properties along convergent sequences is
not exhaustive in a generic topological space. This is certainly true also for the property
of compactness. In a topological space the sequential compactness174 is too poor as
property for being significative. Of course we also cannot speak of total boundedness and
of completeness, because if the space is not a metric space such concepts are meaningless.
Hence, inspired by Theorem 5.20, we give the following definition.

Definition 5.46 Let X be a topological space. A subset C ⊆ X is said to be compact if
every family of open subsets which covers C has a finite subfamily still covering C.

The space X is said to be a compact space if X is compact as subset of itself.

Proposition 5.47 Let X be a topological space and C ⊆ X a subset. i) If X is compact
and C closed, then C is compact. ii) If X is separated and C compact, then C is closed.

Proof. i) Let R be an open covering of C. Since C is closed, R∪ {X \ C} is an open
covering of X. Since X is compact, there exists a finite subcovering of X, and hence a
finite subcovering of C.

ii) Let x be adherent to C and by contradiction suppose that x 6∈ C. Hence, because
X is separated, for every y ∈ C, being y 6= x, it exist a neighborhood Uy of y and a
neighborhood Vy of x such that Uy ∩ Vy = ∅. For every y let us take U ′y ⊆ Uy open
neighborhood of y. Hence the family of the open subsets U ′y covers C and, being C
compact, there exists a finite number of points y1, . . . , yN ∈ C such that the union of U ′yi
i = 1, . . . N covers C. Hence we put

V =
N⋂
i=1

Vyi ∈ F(x),

we have

174That is the property that from every sequence we can extract a convergent subsequence.
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C ∩ V ⊆
N⋃
I=1

Uyi ∩ V = ∅,

which is a contradiction, because C ∩ V must be non-empty, being x adherent to C. ut

Proposition 5.48 Let X and Y be two topological spaces and f : X → Y be a continuous
function. Then, if K ⊆ X is compact, f(K) = {y ∈ Y |∃x ∈ K, f(x) = y)} is also compact
in Y .

Proof. Let
⋃
i∈I Bi ⊇ f(K) be an open covering. Hence, by continuity and definition

of anti-image,
⋃
i∈I f

−1(Bi) is an open covering of K. The conclusion then easily follows.
ut

Remark 5.49 Proposition 5.48 says that the continuous functions map compact sets into
compact sets. Putting together Propositions 5.47 and 5.48, we get that if X is compact
and Y is Hausdorff, then every continuous functions is “closed”, that is it maps closed
subsets into closed subsets.

In the special case that f is also bijective, we immediately get that f is an homeomor-
phism, since the inverse function turns out to be continuous. Hence, bijective continuous
functions on a compact space are homeomorphism.

Moreover, if f : X → Y is continuous and bijective, Y is Hausdorff and X is possibly
not compact but it is such that every point x ∈ X has a compact neighborhood U such
that f(U) is a (necessarily compact) neighborhood of f(x) ∈ Y , then f is an homeomor-
phism175.

Note that not every topological space is such that every point has a compact neigh-
borhood. A favorable case where this happens is when X is locally compact, that is every
point has a neighborhoods basis given by compact sets. A first important example of locally
compact space is Rn (a basis of compact neighborhoods is given by the closed balls centered
at the point). However also note that the fact that X is locally compact is not sufficient
for f being a homeomorphism whenever it is bijective and continuous. The request that
a compact neighborhood is sent onto a neighborhood is essential. For instance the already
given example where X is R endowed with the trivial topology T = P(R), Y is R with the
usual topology and f = i the identity map, is a counterexample176.

Proposition 5.50 Let f : X → R be continuous. Then, for every compact subsets
K ⊆ X, f reaches its maximum and its minimum on K.

175Note that f restricted to U is a homemorphism between U and f(U) with the topologies induced
by X and Y respectively; it is sufficient to prove that, for very x ∈ X, f maps neighborhoods of x onto
neighborhoods of f(x); to this end it is sufficient to restrict ourselves to neighborhoods contained in U
(which exist because U is a neighborhood of x): if V ∈ FX(x) and V ⊆ U then V ∈ FU (x) and so
f(V ) ∈ Ff(U)(f(x)) which implies the existence of W ∈ FY (f(x)) such that W ∩ f(U) = f(V ) and we
conclude since f(U) ∈ FY (f(x) and so f(V ) ∈ FY (f(x)).

176X is locally compact: for every point x, {x} is a compact neighborhood. But i({x}) = {x} which is
not a neighborhood of x in Y .
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Proof. It is an immediate consequence of Proposition 5.48 which assures that f(K) is
compact in R and so closed and bounded. ut

It is evident that in Theorem 5.20 we can replace the family of open balls with a family
of generic open subset, and this because the open balls form a basis for the topology.
Hence, in a metric space, the sequential compactness of Definition 5.14 is equivalent to
the topological compactness in the sense of Definition 5.46.

One may ask for the possible relation between sequential compactness and topological
compactness. Unfortunately the answer is not satisfactory: for a generic topological
space there is absolutely no relation between the two concepts: a set can be topologically
compact without being sequentially compact and vice-versa sequentially compact without
being topologically compact. The next two examples shows these facts.

Example 5.51 (Topological compactness without sequential compactness.) Let us con-
sider the set

X =
{
f : [0, 1]→ [0, 1]

∣∣∣f function
}
,

endowed with the same topology as the space in the Example 5.41. The space X is
topologically compact. We do not give the proof of this fact. It comes from the following
reasoning: X is homeomorphic to the product space (endowed with product topology):

[0, 1][0,1] = Πx∈[0,1][0, 1],

that is the space of the continuum strings of points of [0, 1], in other words, the space
of the graphs of all functions f : [0, 1] → [0, 1], endowed with the product topology, i.e.
the minimal one that makes the projections (evaluations) πx : X → [0, 1], πx(f) = f(x),
continuous for every x ∈ X. This is a product space of compact spaces ([0, 1]), and
a famous result by Tychonoff assures that the product spaces endowed by the product
topology is compact if and only if the spaces are compact.

Let us prove that it is instead not sequentially compact. Let us consider the following
sequences in X (an(x) is the n-th digit of the decimal expansion of x ∈ [0, 1]):

fn(x) =

{
an(x)

9
if x has a unique decimal expansion,

0 otherwise.

The sequence fn cannot have any convergent subsequence in X. Indeed, we know that
the convergence of a sequence in X is equivalent to the pointwise convergence. Let {nk}
be any subsequence of indices, and take a point x ∈ [0, 1] which has a unique decimal
expansion satisfying

ank(x) = 0 if k is even, ank(x) = 1 otherwise.

Hence, the subsequence fnk does not converge in x and so it does not converge in X.
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Example 5.52 (Sequential compactness without topological compactness.) Let us con-
sider the same space as in Example 5.51, and also consider the subset

C =
{
f ∈ X

∣∣∣f(x) 6= 0 for at most countable x ∈ [0, 1]
}
.

Since the space X is an Hausdorff space177, then C is not topological compact because,
as we already know from Example 5.41 it is not closed. Nevertheless it is sequentially
compact. Indeed, if fn is a sequence in C, we define the set

N =
⋃
n∈N

{x ∈ [0, 1]
∣∣∣fn(x) 6= 0},

which is at most countable. Outside of N , all the functions fn are null and hence they
certainly pointwise converge to the null function in [0, 1] \ N . Now, by the compactness
of [0, 1], from every sequence of real numbers {fn(x)}n with x ∈ N , we can extract a
convergent subsequence. Recalling that N is at most countable, via a standard “diagonal
procedure” we can extract a subsequence fnk which pointwise converges on the countable
set N178. Hence, the subsequence pointwise converges on [0, 1], that is the subsequence
converges in X, and it is obvious that the limit function belongs to C because it is null
outside N .

Definition 5.53 A non-empty set A is said a direct (or filtering) set if there is an order
relation “≤” on it (not necessarily total) such that given any two elements α, β ∈ A there
exists an element γ ∈ A such that both α ≤ γ and β ≤ γ.

If A is a direct set and X is a topological space, a function r : A→ X is said to be a
net on X. If x ∈ X, we say that the net r converges to x if for all U ∈ F(x) there exists
α ∈ A such that r(α) ∈ U for every α ≥ α.

If B is another direct set, and if ϕ : B → A is a function such that it preserves the
order179, then the composed function r ◦ ϕ : B → X is said to be a subnet of the net
r : A→ X.

A first natural example of direct set is the set of natural numbers N. However, N is
a very special case of direct set because it is totally ordered. An interesting example of
non-totally ordered direct set is the filter of neighborhoods of a point x in a topological
space X, with the order given by the inverse inclusion. It is clear that the concept of
net is a generalization of the concept of sequence, as well as the concept of subnet is a

177If f 6= g ∈ X then there exists x0 ∈ [0, 1] such that f(x0) 6= g(x0). Hence, taking Γ = {x0} and
ε < |f(x0)− g(x0)|/2, we have BΓ,ε(f) ∩BΓ,ε(g) = ∅.

178Let us enumerate N : {x1, x2, x3, . . . , xn, . . .}. From the sequence of real numbers {fn(x1)}n ⊆ [0, 1]
we extract a converging subsequence {fn1

j
(x1)}j . From the sequence {fn1

j
(x2)}j ⊆ [0, 1] we extract a

convergent subsequence {fn1,2
j

(x2)}j . We proceed in this way step by step. The subsequence of functions

fn1,2,...,n
n

(diagonal procedure) is a pointwise converging subsequence in N .
179b1 ≤ b2 in B implies ϕ(b1) ≤ ϕ(b2) in A.
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generalization of the concept of subsequence180. However, the convergence of a net is a
very weaker properties than the convergence of a sequence. It is also clear that nets are
much more than sequences and hence, testing topological properties (such as continuity,
closedness, compactness and so on) may be sufficient and exhaustive. This is indeed what
happens. For instance, it can be proven that a subset C of a topological space X is
compact if and only if every net inside C has a convergent subnet to a point of C. In
particular note that, by this result, every sequence in a compact set has a convergent
subnet, which however may be not more a sequence (i.e. defined on N).

Facing a general topological space X, it may be then interesting to know whether,
in a compact set, from any sequence it is possible to extract a convergent subsequence,
even if the space is not a metric space (or a metrizable space181 ). This is indeed a very
important issue in the theory of the differential equation where one wants to work with
sequences of approximating solutions. In the theory of reflexive Banach spaces (which is
a very important framework in the modern theory of partial differential equations), when
the space is endowed with the so-called weak topology, this is fortunately true: from every
bounded sequence it is possible to extract a weak-convergent subsequence.

5.9 Fast excursion on density, separability, Ascoli-Arzelà, Baire
and Stone-Weierstrass

As for the case of metric spaces, if X is a topological space and A ⊆ X is a subset, we say
that A is dense in X if the closure of A, A, coincides with X, A = X. This means that
every point of X is adherent to A, that is, for every x ∈ X and for every U ∈ F(x) there
exists a ∈ U ∩ A. A very interesting case is when a topological space X, whose power as
set may be more than countable, contains a dense countable subset. In this case we say
that X is separable182. A first known example of separable space is Rn with Qn as dense
countable subset. Another interesting example of separable space is the space C0([a, b])
of the continuous real functions defined on the compact interval [a, b], with the uniform
convergence183. The space

X =
{
f : [a, b]→ R

∣∣∣∃M > 0 such that |f(x)| ≤M ∀ x ∈ [a, b]
}

of bounded real functions on the compact interval [a, b], endowed with the uniform topol-
ogy, is instead not separable. Indeed, for every x ∈ [a, b] and r > 0, consider the charac-
teristic function χx,r of the set [a, b]∩]x− r, x+ r[ and define the non-empty open set

Ox,r =

{
f ∈ X

∣∣∣‖f − χx,r‖∞ <
1

2

}
,

180A sequence is a particular net defined on the direct set N; a subsequence of a sequence is a particular
subnet of the sequence which is still defined on the direct set N.

181See one of the next paragraphs for the definition.
182Note the difference between the definitions of “separated” and “separable”: they are different and

moreover there is no a-priori link between them.
183This fact will be (partially) explained when the Stone-Weierstrass theorem will be stated.

106



which is a particular neighborhood of χx,r, and note that such neighborhoods are pairwise
disjoint: (x, r) 6= (y, s) =⇒ Ox,r ∩ Oy,s = ∅. Now, by absurd, let us suppose that X is
separable and let fn be a dense countable family of elements of X. Hence, for every χx,r
there exists fn(x,r) ∈ Ox,r. Hence, we have an injective184 function from the set of couples
(x, r) to the set of natural numbers N. This is a contradiction because the set of those
couples is uncountable.

The separability of a topological space is somehow linked to the property of having a
countable basis for the topology. In particular, the following result holds.

Theorem 5.54 If a topological space X has a countable basis for the topology, that is a
basis formed by a countable quantity of subsets, then it is separable.

Proof. Let B = {B1, B2, B3, . . .} be the countable basis, and consider the set

M = {x1, x2, x3, . . .} ⊆ X,

such that xn ∈ Bn for all n ∈ N \ {0}. By absurd, let us suppose that M is not dense in
X. Then X \M is open and not empty, hence it must be the union of elements of B and
hence it must contain some point of M . Contradiction. ut

In general, the opposite of the statement in Theorem 5.54 is not true, that is there
exist separable topological spaces which do not have a countable basis. As usual, for the
case of metric spaces, the situation is more favorable, as the following Theorem asserts.

Theorem 5.55 A metric space X is separable if and only if it has a countable basis.

Proof. The sufficiency is stated in Theorem 5.54. Let M = {x1, x2, x3, . . .} ⊆ X be
the countable dense set. Let us consider the family of balls

B =

{
B

(
xn,

1

m

) ∣∣∣n,m ∈ N \ {0}
}
⊆ P(X).

The family B is then countable and it is a basis for the topology. Indeed, for every open
subsets A ⊆ X and for every x ∈ A we can find n,m ∈ N \ {0} such that

xm ∈ B
(
x,

1

3n

)
⊆ B

(
x,

1

n

)
⊆ A,

from which the conclusion, because:

x ∈ B
(
xm,

1

2n

)
⊆ A,

and so A is the union of elements of B.
ut.

184By the pairwise-disjointness of the sets Ox,r.
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Definition 5.56 A topological space X is said to satisfy the first axiom of countability
if every point x ∈ X has a countable neighborhoods basis. It is said to satisfy the
second axiom of countability if it has a countable basis for the topology.

It is evident that every metric space satisfies the first axiom of countability185. But
in general it does not satisfy the second axiom: this happens if and only if the metric
space is separable186. About the power of a topological space, it can be proved that
every separable Hausdorff space satisfying the first axiom of countability (in particular, a
separable metric space) has at most the power of the continuum, m(R). More generally,
a separable Hausdorff space has at most the power of P(R).

It is also evident that if a space X satisfies the first (respectively, second) axiom of
countability, then every subset C ⊆ X, when regarded as a topological space with the
induced topology, satisfies the first (respectively, second) axiom of countability too.

Proposition 5.57 If X is a topological space satisfying the second axiom of countability,
then from every open covering it is possible to extract an at most countable subcovering.

Proof. Let O be an open covering of X, and B a countable basis for the topology.
For every x ∈ X we choose Ox ∈ O such that x ∈ Ox. Since B is a basis for the
topology, we then may choose Bx ∈ B such that x ∈ Bx ⊆ Ox. Being the topology B
countable, the subfamily {Bx}x is also countable187. Let us enumerate such a subfamily
{B1, B2, B3, . . . , Bn, . . .}, and, for every n take On ∈ O such that Bn ⊆ On. Hence, the
family {On}n is an at most countable subcovering. ut

For the special case of the real line R, we have the following more precise result.

Theorem 5.58 Every open set A ⊆ R is the union of an at most countable family of
pairwise disjoint open intervals.

Proof. Since R is a separable metric space, then it satisfies the second axiom of
countability. If we prove that every open set is the union of a family of pairwise disjoint
open intervals, then we are done by Proposition 5.57.

For every x ∈ A, the family Ix of open intervals containing x and contained in A is
not empty, because A is open. We then define

Ix =
⋃
I∈Ix

I.

We recall the following easily proven fact: every union of intervals all containing the same
point x is still an interval. From this, it is not difficult to see that , for every x ∈ A, Ix
is an open interval and that, for every x 6= y points of A, either Ix = Iy or Ix ∩ Iy = ∅.
Hence, we can easily conclude. ut

We now consider the relation between continuous function on dense subsets.
185For every point x the countable family of open balls B(x, 1/n) is a neighborhoods basis.
186And we have just seen that there exists non separable metric spaces, as the space of bounded real

functions on [a, b].
187Note that the points x may be not countable, and so there are different points x 6= y such that
Bx = By.
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Proposition 5.59 Let X and Y be two topological spaces, with Y separated. If f, g :
X → Y are two continuous function which coincide on a dense subset A ⊆ X, then they
coincide on the whole space X.

Proof. By absurd, let us suppose that there exists x ∈ X \ A such that f(x) 6= g(x).
By separation of Y , take two neighborhoods U ∈ FY (f(x)), V ∈ FY (g(x)) such that
U ∩ V = ∅. By continuity, f−1(U), g−1(V ) ∈ FX(x), and so f−1(U)∩ g−1(V ) ∈ F(x). By
density, there exists x ∈ A, such that x ∈ f−1(U) ∩ g−1(V ) and so f(x) = g(x) ∈ U ∩ V .
Contradiction. ut

For the special case of metric spaces, Proposition 5.59 has a form of inversion, that is,
under suitable hypotheses, a continuous function defined on a dense set can be uniquely
extended to the whole space.

Definition 5.60 If A ⊆ X is a subset of a metric space X, a function f : A→ Y , where
Y is another metric space, is said to be uniformly continuous on A if

∀ ε > 0 ∃ δ > 0 such that x, y ∈ A, dX(x, y) ≤ δ =⇒ dY (f(x), f(y)) ≤ ε.

Proposition 5.61 Let X, Y be metric spaces and A ⊆ X. If f : A → Y is uniformly
continuous, then it is also continuous. If {xn} is a Cauchy sequence in A, then {f(xn)}
is a Cauchy sequence in Y .

If Y is Hausdorff and complete and f uniformly continuous, then there exists a unique
uniformly continuous extension of f to A. That is there exists a unique uniformly con-
tinuous function f : A→ Y such that f(x) = f(x) for all x ∈ A.

If K ⊆ X is compact and f : K → Y is continuous, then f is uniformly continuous.

Proof. We only give hints for the extension and for the uniform continuity on the
compact set.

Extension. If x ∈ A, then there exists a sequence of points xn ∈ A which converges
to x. Hence it is a Cauchy sequence in X, and so is {f(xn)} in Y . By completeness, the
latter sequence converges to y in Y . Define f(x) = y and show that it is a good definition
(independent from the sequence xn converging to x) and that it has all the requested
properties.

Uniform continuity on a compact. By absurd, if f is not uniformly continuous,
there exist ε > 0 and two sequences {xn}, {yn} in K such that dX(xn, yn) ≤ 1/n and
dY (xn, yn) ≥ ε. Hence, you may extract convergent subsequences and obtain a contradic-
tion. ut

The importance of the previous result is mainly in the case when Y = R (or Rn).
Linked to the concept of uniform continuity is also the concept of equicontinuity, which is
the essential ingredient of the following theorem whose proof, which is based on a diagonal
procedure, we do not report.

Theorem 5.62 (Ascoli-Arzelà) Let [a, b] be a compact interval, and H ⊆ C0([a, b]) be a
bounded and equicontinuous subset. That is
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i) (boundedness) ∃M > 0 such that ‖f‖∞ ≤M for all f ∈ H;
ii) (equicontinuity) ∀ε > 0 there exists δ > 0 such that

x, y ∈ [a, b], |x− y| ≤ δ =⇒ |f(x)− f(y)| ≤ ε ∀ f ∈ H.

Then, the closure of H is compact (of course, sequentially compact, because C0([a, b]) is
a metric space).

Still in the special case of metric spaces, we have the following important result, known
as the Baire (category) Lemma.

Theorem 5.63 Let X be a complete metric space. Then X cannot be the countable union
of “nowhere dense” subsets188.

Proof. By absurd, let us suppose X =
⋃
n∈NAn with An nowhere dense. Take a closed

ball B of radius 1. Since A0 is not dense in B, then there exists a closed ball B0 ⊆ B of
radius less than 1/2 such that A0∩B0 = ∅. Since A1 is not dense in B0, then there exists a
closed ball B1 ⊆ B0 of radius less that 1/3 such that A1∩B1 = ∅. In this way we construct
a sequence of nested closed balls, with radii converging to zero, which, by completeness,
must all contain a point x ∈ X (=

⋃
nAn). By construction, such an element x cannot

belong to any set An. Contradiction. ut

Remark 5.64 There are several equivalent versions of Baire’s Lemma. Some of them
are: i) in a complete metric space the union of any sequence of closed subsets with empty
interior is still a subset with empty interior; ii) if a complete metric space is the union of a
sequence of closed subsets, then at least one of those subsets must have nonempty interior;
iii) in a complete metric space any sequence of dense open subsets has the intersection
which is still a dense subset.

An immediate corollary of the Baire’s Lemma is the following: a complete metric space
without isolated points is uncountable (all the sets {x} are nowhere dense).

Here we give an application of the Baire’s Lemma to the proof of existence of con-
tinuous functions which are nowhere derivable. In the next paragraph we will give an
explicitly example of such a function.

Proposition 5.65 Let [a, b] ⊆ R be a compact interval. There exists a function f ∈
C0([a, b]) which, for every x ∈ [a, b], is not derivable in x.

Proof. The idea of the proof is to prove that the subset C of C0([a, b]) of contin-
uous functions which are derivable at least in one point is contained in the union of a
countable quantities of closed subsets with empty interior. Hence, by the completeness
of C0([a, b]), and by Baire’s Lemma (see remark 5.64), we conclude that C cannot be the
whole C0([a, b]).

188A subset is “nowhere dense” if it is not dense in any open ball.
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For every n ∈ N \ {0}, we define the set

En =

{
f ∈ C0([a, b])

∣∣∣∃x0 ∈ [a, b] with

∣∣∣∣f(x)− f(x0)

x− x0

∣∣∣∣ ≤ n ∀x ∈ [a, b], 0 < |x− x0| <
1

n

}
.

We prove that En is closed. Let {fk} ⊆ En be a sequence of continuous functions
uniformly converging on [a, b] to a continuous function f . Moreover, for every k let
xk ∈ [a, b] be a point for fk as in the definition of En. By possibly extracting a subsequence
(which we continue to denote by xk) we have the convergence of xk to a point x ∈ [a, b].
By the uniform convergence, we have

fk(xk)→ f(x) as k → +∞.

Hence, taken x ∈ [a, b] with 0 < |x − x| < 1/n, for every sufficiently large k (in such a
way that 0 < |x− xk| < 1/n) we have

n ≥
∣∣∣∣fk(x)− fk(xk)

x− xk

∣∣∣∣→ ∣∣∣∣f(x)− f(x)

x− x

∣∣∣∣ ,
from which f ∈ En, and En is closed.

Let us prove that En has empty interior189. We take ε > 0 and f ∈ En and we show
that there exists a continuous function g 6∈ En such that ‖f − g‖∞ ≤ 4ε, which implies
that En contains no balls and so its interior is empty. Let us construct such a continuous
function g. Since f is uniformly continuous in [a, b] (being continuous on a compact),
there exists δ′ > 0 such that

x, y ∈ [a, b], |x− y| ≤ δ′ =⇒ |f(x)− f(y)| ≤ ε.

Let us take δ < min{δ′, ε/n}, and consider the partition of [a, b] in subintervals of length
δ:

x0 = a, x1 = a+ δ, x2 = a+ 2δ, . . . , xm−1 = a+ (m− 1)δ, xm = b,

where m is the maximum integer not larger that (b − a)/δ. On [x0, x1] define g (better:
its graph) as the segment in R2 between the points (x0, f(x0) − ε) and (x1, f(x1) + ε).
Similarly, on [x1, x2] as the segment between (x1, f(x1)+ε) and (x2, f(x2)−ε), and proceed
in this way190. To simplify notations let us suppose that a = 0 and f(0) = ε, and we
prove that |g(x)− f(x)| ≤ 4ε for all 0 ≤ x ≤ δ; the extension to the general case and to
the other subintervals is then easy. By our assumption for x ∈ [0, δ],

g(x) =
f(δ) + ε

δ
x, and 0 ≤ f(δ) ≤ 2ε

and so, for x ∈ [0, δ]

189Often, a set with empty interior is also called “meager” or “first category set”.
190g is the piecewise affine function with nodes (xi, f(xi)− ε) if i is even, and (xi, f(xi) + ε) otherwise.

111



|g(x)− f(x)| =
∣∣∣∣f(δ) + ε

δ
x− f(x)

∣∣∣∣ ≤ 1

δ
|xf(δ)− δf(x) + εx|

≤ 1

δ
(|xf(δ)− δf(δ)|+ |δf(δ)− δf(x)|+ εx) =

1

δ
(|f(δ)||x− δ|+ δ|f(x)− f(δ)|+ εx)

≤ 1

δ
(2εδ + δε+ εδ) = 4ε.

Now, with the same assumption, we prove that |g′(x)| > n for all x ∈ [0, δ], which will
shows that g 6∈ En:

|g′(x)| = f(δ) + ε

δ
≥ ε

δ
> n.

Hence, by the Baire’s Lemma, the subset

E =
+∞⋃
n=1

En ⊆ C0([a, b]),

has empty interior and so it is strictly contained in C0([a, b]). Now if f is a continuous
function derivable191 in x0 ∈ [a, b], then f ∈ En for some n. Indeed, if not we have, for
every n, the existence of a point xn ∈ [a, b] with 0 < |xn − x0| ≤ 1/n such that∣∣∣∣f(xn)− f(x0)

xn − x0

∣∣∣∣ > n,

but then, because f is derivable in x0, we have

|f ′(x0)| = lim
n→+∞

∣∣∣∣f(xn)− f(x0)

xn − x0

∣∣∣∣ = +∞

which is a contradiction. Hence, the set of continuous function which are derivable at least
in one point is contained in E and so it is not the whole space C0([a, b]). The continuous
functions which do no belong to E are nowhere derivable. ut

Remark 5.66 The proof of Proposition 5.65 not only shows the existence of continuous
functions which are nowhere derivable, but also shows that such functions are “widely
distributed”, dense, in C0([a, b]). That happens because their complementary set is meager,
it has empty interior.

However, as the Stone-Weierstrass Theorem shows, the derivable function are also
dense in C0([a, b]), but it can be proved that they are “much less” than the nowhere deriv-
able functions, in the same way as the rational numbers are dense in the real line but they
are “much less” than the irrational ones.

191If x0 = a or x0 = b we mean the existence of the right and left derivative respectively.
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Definition 5.67 Let A ⊆ C0([a, b]) with [a, b] compact. We say that A is an algebra if
it is a vectorial subspace192 of C0([a, b]) and moreover if it is closed with respect to the
multiplication of functions

f, g ∈ A =⇒ fg ∈ A.

We say that A separates points if for every x, y ∈ [a, b] there exists f ∈ A such that
f(x) 6= f(y).

Theorem 5.68 (Stone-Weierstrass Theorem). Let [a, b] be a compact interval and A ⊆
C0([a, b]) an algebra which separates points and contains all the constant functions. Then
A is dense in C0([a, b]).

Corollary 5.69 Let [a, b] be a compact interval. Then the set of polynomials is dense in
C0([a, b]): every continuous function can be uniformly approximated by a polynomial.

Proof. It is evident that the set of polynomials on the variable x ∈ [a, b] is an algebra
(it is certainly a vectorial subspace and the product of polynomials is still a polynomial),
it obviously contains the constant functions (polynomials of degree zero) and separates
points (just take the polynomial y(x) = x). ut

Remark 5.70 1) Two immediate consequences of Corollary 5.69: i) the derivable func-
tions are dense in C0([a, b]), ii) C0([a, b]) is separable, because the polynomials with ra-
tional coefficients are obviously dense in the set of polynomials with real coefficients, and
the polynomials with rational coefficients are countable.

2) We already known a result of approximation of functions with polynomials: the
Taylor Theorem 2.53, which says that a C∞ function whose derivatives satisfy a suitable
property is uniformly approximable by a sequence of polynomials: the Taylor series. Which
is the difference between Corollary 5.69 and Theorem 2.53? It is in the fact that the partial
summation of the Taylor series is a very particular sequence of polynomials: every element
of the sequence differs from the preceding one only for the term of maximum degree:

pn(x) = a0 + a1x+ · · ·+ an−1x
n−1 + anx

n, pn−1(x) = a0 + a1x+ · · ·+ an−1x
n−1. (5.13)

This is the reason why only a subclass of continuous function can be represented by a
power series, the class that we have called the analytical functions.

The uniform approximation stated by corollary 5.69 is instead given by sequences of
polynomials which do not necessarily satisfy (5.13). Indeed, any term of the sequence may
be very different from the preceding, in the coefficients and in the degree:

pn(x) = a0 + a1x+ · · ·+ arn−1x
rn−1 + arnx

rn , pn−1(x) = b0 + b1x+ · · ·+ bsn−1x
sn−1 .

This is why in that case we can approximate every continuous functions.
Obviously, the approximation via power series is much more “powerful”.

192With respect to the sum of functions f + g and to the multiplication of a function with a scalar cf .
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The Stone-Weierstrass Theorem also holds for continuous complex valued functions
f : [a, b] → C, provided that the algebra A is also closed by complex conjugation. A
typical example of such an algebra is the one generated by the functions of the form
t 7→ eikt with k ∈ Z over the interval [0, 2π] whose elements have the form

t 7→
m∑

k=−m

zke
ikt, (5.14)

with zk ∈ C. Hence, every continuous function f : [0, 2π] → C such that f(0) = f(2π)
can be uniformly approximated by complex trigonometric polynomials of the form (5.14).
Passing to the real parts, we get the uniform approximation of real continuous functions
periodic of period 2π by real trigonometric polynomials of the form

a0

2
+

m∑
k=1

(ak cos(kt) + bk sin(kt)),

with real coefficients ai, bi. Also in this case, we have to say that we do not get the Fourier
series, which is a particular series of trigonometric polynomials: a similar argumentation
as for Taylor series in Remark 5.70 holds (also compare with Theorem 2.57).

5.10 Topological equivalence and metrizability

As we have seen in the previous paragraphs, being a metric space is the best thing that
may happen to a general topological space. Hence, a natural question arises: when the
topology of a given topological space is induced by a metrics? in other words, given
a topological space X with topology T , when there exists a metric d on X such that
the corresponding topology Td (i.e. the topology generated by the open balls as basis)
coincides with the topology T ?

Before answering to such a question, let us concentrate to another (somehow related)
question. We start with a definition.

Definition 5.71 Let X be a non empty set and d1, d2 two metrics on it. These metrics
are said to be topologically equivalent if they generate the same topology Td1 = Td2.

Hence we have this question: given a non empty set X and two metrics on it when
such two metrics are topologically equivalent? A first obvious answer is: when the identity
map i : (X, d1)→ (X, d2), x 7→ x is a homemorphism. Indeed, in such a case every open
set for (X, d1) is also open for (X, d2) and vice-versa. A slightly different way to approach
the question is to look to the convergence: every convergent sequence in (X, d1) must also
converge in (X, d2) and vice-versa. This point of view leads to consider the neighborhoods
of the points and to conclude that the metrics are equivalent if and only if every balls
centered at x for the metrics d1 contains a ball centered at the same x for the metrics d2

and vice-versa. A sufficient conditions for that is the following one:

∀ x ∈ X ∃r > 0, ∃ α = α(x, r) > 0, ∃ β = β(x, r) > 0 such that
αd1(y, z) ≤ d2(y, z) ≤ βd1(y, z) ∀ y, z ∈ Bd1(x, r) ∩Bd2(x, r).

(5.15)
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Example 5.72 Let us consider R endowed with the usual metrics d1(x, y) = |x− y| and
with the metrics d2(x, y) = | arctan(x)− arctan(y)|. Then the two metrics are topological
equivalent. Indeed, we have

| arctanx− arctan y| ≤ |x− y| ∀ x, y ∈ R,

and so we can always take β = 1. On the other hand, for any bounded set C ⊆ R if we
define193

α = inf
x∈C

1

1 + x2
,

then we have

α|x− y| ≤ | arctan(x)− arctan(y)| ∀ x, y ∈ C.

Note that in this case α cannot be taken uniformly on R as instead it happens for β.
This is the reason for introducing the local formulation (5.15).

Remark 5.73 We have already seen that R with the usual metrics is complete whereas
with the arctangent metric is not complete. Hence the topological equivalence do not
implies a “metric equivalence” that is (X, d1) and (X, d2) may be not isometric even if
they are topologically equivalent. If we look to Cauchy sequences, the reason for that is
the following: if they are topologically equivalent they have the same convergent sequences,
but they may have different Cauchy sequences, because being a Cauchy sequence depends
only on metric and not on topological properties.

Now, let us come back to the initial question about a topology given by a metrics. If the
topology is induced by a metrics, then the topological space must have the characteristic
properties of a metric space. First of all it must be a Hausdorff space, and it must satisfies
the first axiom of countability. There is another important property which is satisfied by
a metric space: the fact that it is normal.

Definition 5.74 A topological space X is said to be normal if every singleton {x} is
closed194, and every pair of disjoint closed subsets are separable, that is

C1, C2 ⊆ X closed, C1∩C2 = ∅ =⇒ ∃A1, A2 ∈ T such that C1 ⊆ A1, C2 ⊆ A2, A1∩A2 = ∅.

It is evident that every normal space is Hausdorff, being points closed. The converse
is not true: there are Hausdorff spaces which are not normal. For instance consider the
interval [0, 1] where every x > 0 has the usual neighborhoods, whereas 0 has a basis of
neighborhoods given by sets of the form

193Recall the derivative of the arctangent...
194Roughly speaking: the points are closed
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[0, ε[\
{

1

n

∣∣∣n ∈ N \ {0}
}
, with ε > 0.

Such a space is a Hausdorff space but it is not normal. Indeed, the two sets

{0},
{

1

n

∣∣∣n ∈ N \ {0}
}

are both closed, disjoint, but not separable195.

Proposition 5.75 Every metric space is normal.

Proof. Every metric space is Hausdorff and so the points are closed. Let C1, C2 be two
closed disjoint subsets. Then, for every x ∈ C1 there exists ρx > 0 and for every y ∈ C2

there exists ρy > 0 such that

d(x, y) ≥ ρx ∀y ∈ C2, d(x, y) ≥ ρy ∀x ∈ C1

Indeed, if not, looking to the first inequality, for every n there exists yn ∈ C2 such that
d(x, yn) ≤ 1/n, which implies yn → x and so x ∈ C2 which is a contradiction.

The following open sets are the requested ones

A1 =
⋃
x∈C1

B
(
x,
ρx
2

)
, A2 =

⋃
y∈C2

B
(
x,
ρy
2

)
.

ut

Definition 5.76 A topological space X is said to be metrizable if there exists a metrics
on it which generates the same topology.

Taking also account of Proposition 5.75, we have the following statement.

Proposition 5.77 If a topological space is metrizable, then it satisfies the first axiom of
countability and it is normal.

Unfortunately, the opposite of Proposition 5.77 is false: there exist topological spaces
which satisfy the first axiom of countability and which are normal but nevertheless are
not metrizable. A sort of opposite of Proposition 5.77 holds in the case of second axiom
of countability.

Theorem 5.78 (Urysohn’s metrization theorem). If a topological space satisfies the sec-
ond axiom of countability then it is metrizable if and only if it is normal.

195The fact that the second one is closed comes from the fact that, apart from the elements 1/n, any
other possible adherent point should be 0, but 0 is not adherent because it has neighborhoods which do
not intersect the set.
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5.11 Historical notes

In the next chapter, we are going to give an explicitly example of a continuous function
which is nowhere derivable. The first example of that kind was given in the year 1872 by
Weierstrass, and was the function.

f(x) =
+∞∑
n=0

bn cos(anπx),

with a and odd integer and 0 < b < 1.
Before the XIX century, mathematicians strongly believed that any functions have

derivatives, except for few isolated points. After the year 1861 Riemann was convinced
that the continuous function

f(x) =
+∞∑
n=1

sin(n2x)

n2

is not derivable for infinitely many values of x. Indeed, this is true, as proved by G.H.
Hardy in 1916. However, in 1970 it was demonstrated that there are also infinitely many
values of x at which the derivative really exists. Hence, the example of Riemann only
shows that continuous functions may be non-derivable in a set more than finite, but does
not show that they may be nowhere derivable.

The example of Weierstrass was certainly a surprise for many mathematicians, but
nevertheless it was closing an important question. However, another question was imme-
diately arising: are there some “nice” properties which may guarantee the existence of
derivative “at most all points”? It was rather clear that such a property is monotonic-
ity. Many mathematicians searched for a proof that any continuous monotone function
is derivable everywhere. But Weierstrass exhibited and example of a monotone function
which is not derivable at any rational number. Weierstrass was moreover convinced that
such a continuous monotone function is not derivable at any point. But that was wrong.
In the year 1903 the French mathematician Henri Lebesgue (1875-1941) proved that a
continuous and monotone function must be derivable at “almost every” point, that is the
set where it is not derivable has measure zero.

As we already pointed out, the XX century was characterized by a search of abstraction
in mathematics. After the works of Cantor, the interested was put not only on real
numbers and related questions, but on general sets with general elements. The object
of the study was the relation between the elements of a same set (ordering, operations,
...) and between different sets (functions), without being interested on the nature of
the elements themselves: many of the historical questions were now seen as particular
case of a more general setting and point of view. Such a level of abstraction rapidly
showed its power and become one of the fundamental bricks of the modern mathematics.
In particular, one of these new abstract fields is the now called “topology theory” and
it has become probably the most important and widely present theory in all modern
mathematics.
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There are several theories about the born of topology. The father may be Cantor, or
Poincaré or Brouwer or Fréchet and Hilbert. But probably everyone agrees to consider the
german mathematicians Felix Hausdorff (1868-1942) the man who mainly contributed to
the development of topology. With his work published in the year 1914, Hausdorff gave
a systematic exposition of the aspects of the set theory where the nature of elements
was not important and, in the second part of the same work, he gave precise formulation
of what we now call “Hausdorff spaces” with an axiomatic definition of the filter of the
neighborhoods of a point.

It is interesting to note that all was started with the so-called “arithmetization of
analysis”: initially in the XIX centuries mathematicians were interested in the foundations
of the mathematical analysis: the concept of number, the construction of real numbers,
ordering of numbers, the concept of function of real numbers, convergence, sequences,
series and limits. All was around the notion of “number”. At the end of the process, the
concept of number was almost passed in a secondary level and replaced by a very more
general point of view. Moreover, even if topology speaks about “points”, such points have
very few in common with the points of classical geometry.
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6 Construction of some special functions

In this section we give a direct construction of two considerable examples of functions in
Rn.

6.1 A continuous nowhere derivable function

Let us take the function ϕ : [−1, 1] → R defined by ϕ(x) = |x|, and extend it to the
whole real line by periodicity196 with period 2. Let us call ϕ0 such extended function.
By construction, we have that ϕ0 is bounded and Lipschitz continuous with Lipschitz
constant 1:

0 ≤ ϕ(x) ≤ 1, |ϕ0(x)− ϕ0(y)| ≤ |x− y| ∀ x, y ∈ R.

We now define the following function

f : R→ R, f(x) =
+∞∑
n=0

(
3

4

)n
ϕ0(4nx).

The function f is our candidate to be continuous but nowhere derivable. Note that f is
constructed by a series of a sort of “compressed” copies of ϕ0 and so of functions which
have a density of cusps bigger and bigger197 For all n ∈ N, let us define the n-th term of
the series as ϕn.

We first have to prove that f is well defined (that is the series converges for all x ∈ R)
and that it is continuous. By construction, we have that, for every n, ϕn is bounded and
Lipschitz continuous with Lipschitz constant 3n:

|ϕn(x)| ≤ 3n

4n
, |ϕn(x)− ϕn(y)| ≤ 3n

4n
|4nx− 4ny| = 3n|x− y| ∀ x, y ∈ R. (6.1)

By the first estimate of (6.1) and by the Weierstrass criterium Proposition 2.47, we im-
mediately get the uniform convergence of the series on the whole real line and so the
existence and continuity of f .

Let us prove that f is nowhere derivable. Take x ∈ R. We are going to construct a
suitable sequence of points convergent to x, such that the absolute value of the incremental
ratio computed along the sequence diverges to +∞. This will shows that the derivative
of f at x does not exist. The arbitrariness of x will conclude the argument. For every
m ∈ N we take

196That is you replicate infinitely many times the graph of ϕ, getting then a saw-tooth function, with
period 2.

197In a interval of length 1, ϕ0 has at most two cusps, whereas the n-th term of the series has at least
4n cusps.
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xm = x+
1

2 · 4m
if ]4mx, 4mxm[ does not contain integer numbers,

xm = x− 1

2 · 4m
otherwise.

(6.2)

Note that, since 4m/(2 · 4m) = 1/2, then the definition of xm (6.2) implies that there is
never an integer number between x and xm. Let us define the increment as

εm = ± 1

2 · 4m
,

with the sign taken accordingly to (6.2). For n > m we have, by the periodicity with
period 2 of ϕ0,

ϕn(xm) =
3n

4n
ϕ0(4nxm) =

3n

4n
ϕ0 (4n (x+ εm)) =

3n

4n
ϕ0(4nx+ 4nεm) =

3n

4n
ϕ0(4nx) = ϕn(x).

Hence we have, also using the uniform convergence which guarantees the possibility of
adding term by term,∣∣∣∣f(x+ εm)− f(x)

εm

∣∣∣∣ =

∣∣∣∣∣
+∞∑
n=0

3n

4n
ϕ0(4n(x+ εm))− ϕ0(4nx)

εm

∣∣∣∣∣
=

∣∣∣∣∣
m−1∑
n=0

3n

4n
ϕ0(4n(x+ εm))− ϕ0(4nx)

εm
+

3m

4m
ϕ0(4m(x+ εm))− ϕ0(x)

εm

∣∣∣∣∣
(6.3)

By our construction of the sequence xm, 4m(x + εm) = 4mx± 1/2 and between 4mx and
4mxm there are no integers. This implies198

|ϕ0(4mxm)− ϕ0(4mx)| = |4mxm − 4mx| = 1

2
.

Hence, the absolute value of the second addendum of the last term of (6.3) is exactly
equal to 3m, whereas, by (6.1), the absolute value of every term of the sum in (6.3) is less
than or equal to 3n. Hence, continuing with the inequalities, we have∣∣∣∣f(x+ εm)− f(x)

εm

∣∣∣∣ ≥ 3m −
m−1∑
n=0

3n = 3m − 1− 3m

1− 3
=

3m + 1

2
→ +∞ as m→ +∞,

and the argument is concluded.
Figure 4 shows the graphs over the interval [−1, 1] of the first four partial summations

of f , corresponding to n = 0, 1, 2, 3.

198Because, being there no integers, between 4mxm and 4mx, ϕ0 acts just as the absolute value.
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Figure 4: Approximation of a continuous nowhere derivable function

6.2 Abundance of smooth functions in Rn

We have seen, in the last chapter, that a metric space X is a normal space, that is, for
every pair of disjoint closed subsets C1, C2, there exist two open disjoint sets A1, A2 such
that C1 ⊆ A1, C2 ⊆ A2. It is easy to see that such a property is implied by the following
one: for every pair of disjoint closed subsets, C1, C2, there exists a continuous function
f : X → [0, 1] such that f(x) = 0 if and only if x ∈ C1 and f(x) = 1 if and only if
x ∈ C2

199. Actually, it can be proved that such a property is also equivalent to the one
of being normal (whenever the points are closed).

In the particular case of X = Rn, we get even more, that is the continuous function
f : Rn → [0, 1] separating the closed sets, may be also taken of class C∞, that is derivable
at any order with continuous derivatives.

Proposition 6.1 (Abundance of smooth functions). Given a closed set C ⊆ Rn, there
exists a C∞ function f : Rn → R which vanishes exactly on C200, that is

f(x) = 0 if and only if x ∈ C.

Proof. Let us consider the following function:

u0 : R→ R u(t) =

{
e−1/t if t > 0
0 if t ≤ 0.

199If such a property holds, then A1 = f−1([0, 1/2[) and A2 = f−1(]1/2, 1]) are two requested open sets.
200Note that such a result holds for every closed set, that is also for closed sets very irregular, very bad,

with many cusps on their boundaries; nevertheless, the requested function may be found of class C∞.
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It is not hard to see that u0 is of class C∞ on R.
Let x ∈ Rn and r > 0. Hence, there exists a C∞ function ϕx,r : Rn → R such that

ϕx0,r(y) > 0 if and only if y belongs to the open ball B(x, r). Indeed, it is sufficient to
take

ϕx,r(y) = u0

(
1−

∣∣∣∣y − xr
∣∣∣∣2
)
.

Now, let C ⊆ Rn be a closed subset. Then Rn \C is open, and so, being Rn separable,
it is the union of an at most countable family of open balls (see Proposition 5.57). Let
{B(xk, rk)}k be such a family and consider the family of C∞ functions ϕxk,rk as constructed
before. Note that, every mixed partial derivative of any order of ϕxk,rk is still a C∞

function which vanishes outside the corresponding open ball B(xk, rk), in particular it is
bounded on Rn. Hence, for very k, we define201

Mk = max

{
max
x∈Rn
|∂αϕxk,rk(x)|

∣∣∣α multi-index, |α| ≤ k

}
> 0.

We then define

f : Rn → R f(x) =
+∞∑
n=0

ϕxk,rk(x)

2kMk

.

By definition of Mk, the series totally converge in Rn (the norm of every term is less
than or equal to 2−k), and so, by the Weierstrass criterium, Proposition 2.47, applied to
the convergence in Rn, the series uniformly converges to a the well-defined continuous
function f . Moreover, the series of the derivatives also uniformly converge on Rn because,
still by the definition of Mk, fixed a multi-index α, very term with index k > |α| is in
norm less than or equal to 2−k. Hence, by a result of derivation by series (see Remark
2.49), we conclude that f is well-defined and of class C∞.

Finally, it is evident that f(x) = 0 whenever x ∈ C (because, by construction, all the
function ϕxk,rk vanish on x), and that f(x) > 0 whenever x 6∈ C (because at least one of
the functions ϕxk,rk does not vanish on x and also by the fact that all such functions are
nonnegative). ut

Corollary 6.2 Given two disjoint closed sets C1, C2 in Rn, then there exists a C∞ func-
tion f : Rn → R such that f(x) = 0 if and only if x ∈ C1, f(x) = 1 if and only if x ∈ C2,
and that f(x) ∈ [0, 1] for all x ∈ Rn.

201Here, by a multi-index α we mean an ordered string of n natural numbers (α1, α2, . . . , αn), the length
of α is |α| = α1 +α2 + · · ·+αn, and ∂αϕ stays for the mixed partial derivative of ϕ corresponding to α1

partial derivatives with respect to x1, α2 partial derivatives with respect to x2,. . ., αn partial derivatives
with respect to xn.

122



Proof. Let us take the functions f1, f2 respectively corresponding to the closed sets C1

and C2 as in Proposition 6.1. Recall that such functions are, by construction, nonnegative.
By the hypothesis of disjointness, the function

f : Rn → R f(x) =
f1(x)

f1(x) + f2(x)

satisfies all the requests. ut
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