Calcolabilità 06 – 07

Esercizi – Settimana 12

- 1. Sia χ una funzione totale. Provare che \mathcal{R}^{χ} è numerabile.
- 2. Siano χ_1, \ldots, χ_n funzioni totali. Dare una definizione induttiva di $\mathcal{R}^{\chi_1, \ldots, \chi_n}$. Dire se $\mathcal{R}^{\chi_1, \ldots, \chi_n} = (\ldots ((\mathcal{R}^{\chi_1})^{\chi_2}) \ldots)^{\chi_n}$.
- 3. Dare un esempio di due funzioni totali χ_1 e χ_2 per cui le seguenti valgono simultaneamente: 1. $\chi_1 \neq \chi_2$; 2. \mathcal{R} è un sottoinsieme proprio di \mathcal{R}^{χ_1} ; 3. $\mathcal{R}^{\chi_1} = \mathcal{R}^{\chi_2}$.
- 4. Provare formalmente che, se χ è totale ricorsiva, allora $\mathcal{R}^{\chi}=\mathcal{R}.$
- 5. Sia $A \subseteq \mathbf{N}$. Provare che:
 - (a) per ogni insieme r.e $B \subseteq \mathbf{N}$ esiste un indice n tale che $B = W_n^A$;
 - (b) se A è ricorsivo, allora W_n^A è r.e. per ogni n;
 - (c) se A è ricorsivo, allora K^A è r.e. ma non ricorsivo.
- 6. Siano χ, ψ funzioni totali unarie. Sapendo che φ_n^χ è totale si può concludere che φ_n^ψ è totale?
- 7. Provare che ogni T–grado è unione di m–gradi.