ESERCIZI " ...direction home "

- 1) Dimostrare che la norma \mathcal{L}_1 e la norma euclidea sono equivalenti
- 2) Dimostrare che le sfere chiuse sono insiemi chiusi
- 3) Trovare la frontiera dell'insieme $A \subset \mathbb{R}^2$, $A = B_2(0,0) \setminus ([-1,1] \times \{0\}) \bigcup ([-1,1] \times \{3\})$
- 4) Siano $A = [0, 1] \times (0, 1)$, $B = B_1(0, 0) \setminus \{(0, 0)\}$. Determinare int A, int B, ∂A , ∂B , \overline{A} , \overline{B}
- 5) Studiare le derivate direzionali di f(x, y, z) = |x + y + z| in (x, y, z) = (1, -1, 0)
- 6) Sia $f(x,y) = \begin{cases} \frac{xy}{x^2+y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$. Dire per quali direzioni α esiste $\frac{\partial f}{\partial \alpha}(0,0)$; per tali α calcolarla.
- 7) Sia $f: \mathbb{R}^2 \to \mathbb{R}$ differenziabile in (x_0, y_0) . Mostrare che

$$\frac{\partial f}{\partial(\alpha+\beta)}(x_0,y_0) = \frac{\partial f}{\partial\alpha}(x_0,y_0) + \frac{\partial f}{\partial\beta}(x_0,y_0).$$
Posto $f(x,y) = \begin{cases} \frac{x|y|}{\sqrt{x^2+y^2}} & (x,y) \neq (0,0)\\ 0 & (x,y) = (0,0) \end{cases}$, mostrare che
$$\frac{\partial f}{\partial(1,1)}(0,0) \neq \frac{\partial f}{\partial(0,1)}(0,0) + \frac{\partial f}{\partial(1,0)}(0,0).$$

8) Sia $f(x,y) = \begin{cases} \frac{x^3}{x^2+y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$. Dimostrare che f è continua su \mathcal{R}^2 e che è derivabile in qualunque direzione, ma non è differenziabile (l'unico punto dubbio è (0,0)).