ESERCIZI "SUPERFICIALI"

- 1) Calcolare l'integrale superficiale $\int_S \frac{1}{\rho^2} d\sigma$, dove $\rho = \rho(x,y,z)$ indica la distanza tra il punto (x,y,z) e (0,0,0), ed S è la parte del cilindro $\left\{(x,y,z)\in\mathcal{R}^3\ :\ x^2+y^2=64\right\}$ compresa tra i piani z=0 e z=1
- 2) Calcolare l'integrale superficiale $\int_{\Sigma} (x+y+z)\ d\sigma$, dove Σ è la parte della sfera unitaria contenuta in $\{x>0\ ,\ y>0\ ,\ z>0\}$
- 3) Usare la formula di Gauss-Green per calcolare $\int_{\gamma} 3y^3dx + xdy$, dove γ è la frontiera del quadrato di vertici (0,0), (2,0), (2,2), (0,2), percorsa in senso antiorario
- 4) Calcolare $\int_{\partial B_1(0,0,0)} (x^4 + y^4 + z^4) d\sigma$
- 5) Calcolare $\int_{\partial B_1(0,0,0)} (x+y+z) \ d\sigma$ (calcolo diretto ed calcolo con l'uso del teorema della divergenza)
- 6) Calcolare il flusso di

$$V(x, y, z) = (0, 0, f(x, y))$$

attraverso la superficie $\Sigma=\left\{(x,y,z)\in\mathcal{R}^3\ :\ x^2+y^2+z^2=1\ ,\ z\geq 0\right\}$, quando

- a) $f(x,y) = \frac{1}{r^{\alpha}}$, $\alpha < 2$, $r = \sqrt{x^2 + y^2}$
- $b) f(x,y) = \arcsin(x^2 + y^2)$
- c) $f(x,y) = \sqrt{x^2 + y^2} e^{\sqrt{x^2 + y^2}}$
- d) $f(x,y) = \sin^2(x^2 + y^2)$

7) Calcolare il flusso di

$$V(x, y, z) = (xz^2, x^2y - z^3, 2xy + y^2z)$$

attraverso la superficie $\Sigma = \partial D$, dove

$$D = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1, z \ge 0\}$$

8) Sia $G = \left\{ (x,y,z) \in \mathcal{R}^3 \ : \ 1 \leq x^2 + y^2 + z^2 \leq 4 \right\}$.

Calcolare il flusso di

$$V(x,y,z) = \frac{(x,y,z)}{(x^2+y^2+z^2)^{\frac{1}{2}}}$$

attraverso la superficie ∂G (provare anche con un conto diretto)

RISPOSTE

- 1) $2\pi \arctan \frac{1}{8}$ 2) $\frac{3}{4}\pi$ 3) -44 4) $\frac{12}{5}\pi$ 5) 0

6) a)
$$\frac{2\pi}{2-\alpha}$$
, b) $\frac{\pi^2}{2}-\pi$, c) $2\pi(e-2)$, d) $\frac{\pi}{2}-\frac{\pi}{4}\sin 2$ 7) $\frac{2}{5}\pi$ 8) 12π