Evaluating the BCH formula

Serena Cicalò (joint work with Willem de Graaf)

We know that

$$
e^{x}=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\ldots
$$

If x and y are two noncommuting variables we have that $e^{x} e^{y}=e^{z}$, where z is a formal series in x and y with rational coefficients.

If u is such that

$$
e^{z}=1+z+\frac{1}{2!} z^{2}+\frac{1}{3!} z^{3}+\ldots=1+u
$$

we have that

$$
z=\ln (1+u)=u-\frac{u^{2}}{2}+\frac{u^{3}}{3}-\frac{u^{4}}{4}+\ldots
$$

Let $s_{m}(r)$ be the sum of all elements of degree r obtained by multiplication of m factors of the form $\frac{1}{k_{i}!h_{i}!} x^{k_{i}} y^{h_{i}}$ that appear in e^{z} and that we call blocks.

Now, let w be a word in x and y, that is $w=w_{1} \ldots w_{n}$ where $w_{i}=x^{k_{i}} y^{h_{i}}$ with $k_{i}, h_{i}>0$ all but $k_{1}, h_{n} \geq 0$. The main our purpose is to determine a formula to calculate the coefficient z_{w} of the word w in z.

For this, firstly, we determine the coefficient of $w_{i}=x^{k_{i}} y^{h_{i}}$ in $s_{m}\left(k_{i}+h_{i}\right)$. We denote this coefficient with $f_{m}\left(k_{i}, h_{i}\right)$ or $f_{m}\left(w_{i}\right)$.

Lemma 1. For all $m \leq h+k, f_{m}(k, h)$ is the coefficient of $x^{k} y^{h}$ in $s_{m}(k+h)$ and we have

$$
\begin{equation*}
f_{m-1}(k, h)=\frac{1}{k!h!} \sum_{j=0}^{m-2}(-1)^{j} \varphi_{m-j}(k, h)\binom{m}{j} \tag{1}
\end{equation*}
$$

where

$$
\varphi_{m}(k, h)=\sum_{p+q=m} p^{k} q^{h} .
$$

Remark 1. We can easily see that $f_{m}(k, h)=0$ for all $m>k+h$ because m counts the number of blocks in which we can divide $x^{k} y^{h}$ in $s_{m}(k+h)$. Then it not makes sense to divide $x^{k} y^{h}$ in a number of blocks greater than its degree, that is $k+h$.

We can now give the formula to calculate the coefficient z_{w} of a word w.
Theorem 1. Let $w=w_{1} \ldots w_{n}$ where $w_{i}=x^{k_{i}} y^{h_{i}}$ with $k_{i}, h_{i}>0$ all but $k_{1}, h_{n} \geq 0$ and let $N=\sum_{i=1}^{n}\left(k_{i}+h_{i}\right)$. Then the coefficient of w in z is

$$
\begin{equation*}
z_{w}=\sum_{m=n}^{N} \frac{(-1)^{m-1}}{m} F_{m}(w) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{m}(w)=\sum_{m_{1}+\ldots+m_{n}=m} f_{m_{1}}\left(w_{1}\right) \cdots f_{m_{n}}\left(w_{n}\right) . \tag{3}
\end{equation*}
$$

Now we present an equivalent formula for z_{w} using the Stirling numbers of the second kind denoted by $\left\{\begin{array}{l}n \\ m\end{array}\right\}$. We say that $\left\{\begin{array}{l}n \\ m\end{array}\right\}$ stands for the number of ways to partition a set of n things into m nonempty subsets.

For example, there seven ways to split a four-element set into two parts:

$$
\begin{array}{llll}
\{1,2,3\} \cup\{4\}, & \{1,2,4\} \cup\{3\}, & \{1,3,4\} \cup\{2\}, & \{2,3,4\} \cup\{1\}, \\
\{1,2\} \cup\{3,4\}, & \{1,3\} \cup\{2,4\}, & \{1,4\} \cup\{2,3\} .
\end{array}
$$

Thus $\left\{\begin{array}{l}4 \\ 2\end{array}\right\}=7$.
Let again $w=w_{1} \ldots w_{n}$, where $w_{i}=x^{k_{i}} y^{h_{i}}$ with $k_{i}, h_{i}>0$ all but $k_{1}, h_{n} \geq 0$. We put

$$
G_{m}(w)=\frac{1}{P} \sum_{\sum_{i=1}^{n}\left(s_{i}+t_{i}\right)=m} \prod_{i=1}^{n} s_{i}!t_{i}!\left\{\begin{array}{c}
k_{i} \tag{4}\\
s_{i}
\end{array}\right\}\left\{\begin{array}{c}
h_{i} \\
t_{i}
\end{array}\right\} .
$$

where $P=\prod_{i=1}^{n} k_{i}!h_{i}!$.
Remark 2. We can remark that $G_{m}(w)$ depends only by the exponents that appear really in w.
Example 1. Let $w=x^{3} y^{2} x^{4}$. We want to calculate $G_{5}(w)$.
We have $v=(3,2,4)$ and $P=3!2!4!=288$. Then

$$
\begin{aligned}
G_{5}(w) & =\frac{1}{288}\left[3!\left\{\begin{array}{l}
3 \\
3
\end{array}\right\} 1!\left\{\begin{array}{l}
2 \\
1
\end{array}\right\} 1!\left\{\begin{array}{l}
4 \\
1
\end{array}\right\}+2!\left\{\begin{array}{l}
3 \\
2
\end{array}\right\} 2!\left\{\begin{array}{l}
2 \\
2
\end{array}\right\} 1!\left\{\begin{array}{l}
4 \\
1
\end{array}\right\}+2!\left\{\begin{array}{l}
3 \\
2
\end{array}\right\} 1!\left\{\begin{array}{l}
2 \\
1
\end{array}\right\} 2!\left\{\begin{array}{l}
4 \\
2
\end{array}\right\}\right] \\
& +\frac{1}{288}\left[1!\left\{\begin{array}{l}
3 \\
1
\end{array}\right\} 2!\left\{\begin{array}{l}
2 \\
2
\end{array}\right\} 2!\left\{\begin{array}{l}
4 \\
2
\end{array}\right\}+1!\left\{\begin{array}{l}
3 \\
1
\end{array}\right\} 1!\left\{\begin{array}{l}
2 \\
1
\end{array}\right\} 3!\left\{\begin{array}{l}
4 \\
3
\end{array}\right\}\right] \\
& =\frac{1}{288}[6+12+84+28+36] \\
& =\frac{1}{288} \cdot 166
\end{aligned}
$$

Let now d defined as

$$
d= \begin{cases}n, & \text { if } k_{1}, h_{n} \neq 0 \\ n-1, & \text { if } k_{1}=0, h_{n} \neq 0 \text { (or vice versa) } \\ n-2, & \text { if } k_{1}=h_{n}=0\end{cases}
$$

We have showed that:
Theorem 2. Let $N=\sum_{i=1}^{n}\left(k_{i}+h_{i}\right)$, we have that

$$
\begin{equation*}
z_{w}=\frac{1}{d+1} \sum_{m=d+n}^{N}(-1)^{m-d-1} \frac{G_{m}(w)}{\binom{m}{d+1}} \tag{5}
\end{equation*}
$$

Example 2. Let $w=y^{4} x y^{2}$. We have $n=2, d=1$ and $N=7$ then

$$
z_{w}=\frac{1}{2} \sum_{m=3}^{7}(-1)^{m-2} \frac{G_{m}(w)}{\binom{m}{2}} .
$$

Also we have $P=4!1!2!=48$ then

m	$48 \cdot G_{m}(w)$
3	1
4	16
5	64
6	96
7	48

Hence

$$
z_{w}=\frac{1}{2} \cdot \frac{1}{48}\left[-\frac{1}{\binom{3}{2}}+\frac{16}{\binom{4}{2}}-\frac{64}{\binom{5}{2}}+\frac{96}{\binom{6}{2}}-\frac{48}{\binom{7}{2}}\right]=\frac{1}{2016}
$$

