Evaluating the BCH formula

Serena Cicalò (joint work with Willem de Graaf)

We know that

$$e^x = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \dots$$

If x and y are two noncommuting variables we have that $e^x e^y = e^z$, where z is a formal series in x and y with rational coefficients.

If u is such that

$$e^{z} = 1 + z + \frac{1}{2!}z^{2} + \frac{1}{3!}z^{3} + \ldots = 1 + u$$

we have that

$$z = \ln(1+u) = u - \frac{u^2}{2} + \frac{u^3}{3} - \frac{u^4}{4} + \dots$$

Let $s_m(r)$ be the sum of all elements of degree r obtained by multiplication of m factors of the form $\frac{1}{k_i!h_i!}x^{k_i}y^{h_i}$ that appear in e^z and that we call blocks.

Now, let w be a word in x and y, that is $w = w_1 \dots w_n$ where $w_i = x^{k_i} y^{h_i}$ with $k_i, h_i > 0$ all but $k_1, h_n \ge 0$. The main our purpose is to determine a formula to calculate the coefficient z_w of the word w in z.

For this, firstly, we determine the coefficient of $w_i = x^{k_i}y^{h_i}$ in $s_m(k_i + h_i)$. We denote this coefficient with $f_m(k_i, h_i)$ or $f_m(w_i)$.

Lemma 1. For all $m \leq h + k$, $f_m(k,h)$ is the coefficient of $x^k y^h$ in $s_m(k+h)$ and we have

$$f_{m-1}(k,h) = \frac{1}{k!h!} \sum_{j=0}^{m-2} (-1)^j \varphi_{m-j}(k,h) \binom{m}{j}$$
(1)

where

$$\varphi_m(k,h) = \sum_{p+q=m} p^k q^h.$$

Remark 1. We can easily see that $f_m(k,h) = 0$ for all m > k + h because m counts the number of blocks in which we can divide $x^k y^h$ in $s_m(k+h)$. Then it not makes sense to divide $x^k y^h$ in a number of blocks greater than its degree, that is k + h.

We can now give the formula to calculate the coefficient z_w of a word w.

Theorem 1. Let $w = w_1 \dots w_n$ where $w_i = x^{k_i} y^{h_i}$ with $k_i, h_i > 0$ all but $k_1, h_n \ge 0$ and let $N = \sum_{i=1}^n (k_i + h_i)$. Then the coefficient of w in z is

$$z_w = \sum_{m=n}^{N} \frac{(-1)^{m-1}}{m} F_m(w)$$
(2)

where

$$F_m(w) = \sum_{m_1 + \dots + m_n = m} f_{m_1}(w_1) \cdots f_{m_n}(w_n).$$
(3)

Now we present an equivalent formula for z_w using the *Stirling numbers of the second kind* denoted by $\binom{n}{m}$. We say that $\binom{n}{m}$ stands for the number of ways to partition a set of n things into m nonempty subsets.

For example, there seven ways to split a four-element set into two parts:

$$\begin{array}{ll} \{1,2,3\}\cup\{4\}, & \{1,2,4\}\cup\{3\}, & \{1,3,4\}\cup\{2\}, & \{2,3,4\}\cup\{1\}, \\ \{1,2\}\cup\{3,4\}, & \{1,3\}\cup\{2,4\}, & \{1,4\}\cup\{2,3\}. \end{array}$$

Thus $\begin{cases} 4\\ 2 \end{cases} = 7.$

Let again $w = w_1 \dots w_n$, where $w_i = x^{k_i} y^{h_i}$ with $k_i, h_i > 0$ all but $k_1, h_n \ge 0$. We put

$$G_m(w) = \frac{1}{P} \sum_{\sum_{i=1}^n (s_i + t_i) = m} \prod_{i=1}^n s_i! t_i! \begin{Bmatrix} k_i \\ s_i \end{Bmatrix} \begin{Bmatrix} h_i \\ t_i \end{Bmatrix}.$$
(4)

where $P = \prod_{i=1}^{n} k_i!h_i!$.

Remark 2. We can remark that $G_m(w)$ depends only by the exponents that appear really in w.

Example 1. Let $w = x^3y^2x^4$. We want to calculate $G_5(w)$. We have v = (3, 2, 4) and P = 3!2!4! = 288. Then

$$G_{5}(w) = \frac{1}{288} \left[3! \left\{ \begin{matrix} 3\\3 \end{matrix}\right\} 1! \left\{ \begin{matrix} 2\\1 \end{matrix}\right\} 1! \left\{ \begin{matrix} 4\\1 \end{matrix}\right\} + 2! \left\{ \begin{matrix} 3\\2 \end{matrix}\right\} 2! \left\{ \begin{matrix} 2\\2 \end{matrix}\right\} 1! \left\{ \begin{matrix} 4\\1 \end{matrix}\right\} + 2! \left\{ \begin{matrix} 3\\2 \end{matrix}\right\} 1! \left\{ \begin{matrix} 2\\1 \end{matrix}\right\} 2! \left\{ \begin{matrix} 2\\2 \end{matrix}\right\} 2! \left\{ \begin{matrix} 4\\2 \end{matrix}\right\} + 1! \left\{ \begin{matrix} 3\\1 \end{matrix}\right\} 1! \left\{ \begin{matrix} 2\\1 \end{matrix}\right\} 3! \left\{ \begin{matrix} 4\\3 \end{matrix}\right\} \right]$$
$$= \frac{1}{288} [6 + 12 + 84 + 28 + 36]$$
$$= \frac{1}{288} \cdot 166.$$

Let now d defined as

$$d = \begin{cases} n, & \text{if } k_1, h_n \neq 0; \\ n-1, & \text{if } k_1 = 0, h_n \neq 0 \text{ (or vice versa)}; \\ n-2, & \text{if } k_1 = h_n = 0. \end{cases}$$

We have showed that:

Theorem 2. Let $N = \sum_{i=1}^{n} (k_i + h_i)$, we have that

$$z_w = \frac{1}{d+1} \sum_{m=d+n}^{N} (-1)^{m-d-1} \frac{G_m(w)}{\binom{m}{d+1}}.$$
(5)

Example 2. Let $w = y^4 x y^2$. We have n = 2, d = 1 and N = 7 then

$$z_w = \frac{1}{2} \sum_{m=3}^{7} (-1)^{m-2} \frac{G_m(w)}{\binom{m}{2}}$$

Also we have P = 4!1!2! = 48 then

$$\begin{array}{c|cccc}
\underline{m} & 48 \cdot G_m(w) \\
\hline
3 & 1 \\
4 & 16 \\
5 & 64 \\
6 & 96 \\
7 & 48 \\
\end{array}$$

Hence

$$z_w = \frac{1}{2} \cdot \frac{1}{48} \left[-\frac{1}{\binom{3}{2}} + \frac{16}{\binom{4}{2}} - \frac{64}{\binom{5}{2}} + \frac{96}{\binom{6}{2}} - \frac{48}{\binom{7}{2}} \right] = \frac{1}{2016}$$