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(Extended Abstract)

In the last years, tropical geometry has received much interest as a field combin-
ing aspects of algebraic geometry, discrete geometry, and computer algebra (for
general background see, e.g., [5, 8, 9]). Given a field K with a real valuation
ord : K → R̄ = R ∪ {∞} (i.e. K = Q with the p-adic valuation or the field
K = C{{t}} of Puiseux series with the natural valuation) the valuation map
extends to an algebraic closure K̄ and to K̄n via

ord : K̄n → R̄n, (a1, . . . , an) 7→ (ord(a1), . . . , ord(an)) .

Then for any polynomial f =
∑

α cαx
α ∈ K[x1, . . . , xn] the tropicalization of f

is defined as

trop(f) =
⊕

α

ord(cα) ⊙ xα = min
α

{ord(cα) + α1x1 + · · · + αnxn}

and the tropical hypersurface of f is

T (f) = {w ∈ Rn : the minimum in trop(f) is attained at least twice in w} .

For an ideal I �K[x1, . . . , xn], the tropical variety of I is given by

T (I) =
⋂

f∈I

T (f)

or equivalently (if the valuation is nontrivial) by the topological closure T (I) =
ordV(I) where V(I) ⊂ (K̄∗)n is the variety of I.
From the viewpoint of computer algebra the natural way to handle an ideal is
by means of a basis, i.e., a finite set of generators. In the stronger notion of
a tropical basis it is additionally required that the set-theoretic intersection of
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the tropical hypersurfaces of the generators coincides with the tropical variety.
That is, a tropical basis of the ideal I is a finite generating set F of I, such that

T (I) =
⋂

f∈F

T (f) .

The systematic study of tropical bases has been initiated by [1], [10]. These
papers concentrate on the “constant coefficient case” (i.e., I � C[x1, . . . , xn])
and provide Gröbner-related techniques. As a lower bound, it is shown in [1]
that for 1 ≤ d ≤ n there is a d-dimensional linear ideal I in C[x1, . . . , xn] such
that any tropical basis of linear forms in I has size at least 1

n−d+1

(

n
d

)

.
By revisiting the regular projection technique of Bieri and Groves [2], Hept and
Theobald showed that every ideal has a short tropical basis [7].

Theorem 1 Let I�K[x1, . . . , xn] be a prime ideal generated by the polynomials
f1, . . . , fr. Then there exist g0, . . . , gn−dim I ∈ I with

T (I) =

n−dim I
⋂

i=0

T (gi)

and thus G := {f1, . . . , fr, g0, . . . , gn−dim I} is a tropical basis for I of cardinality
r + codim I + 1.

This theorem can be seen as a tropical analogue to the Eisenbud-Evans-Theorem
from classical algebraic geometry, which states that every algebraic set in n-
space is the intersection of n hypersurfaces [4].

In this talk we present the main concept of these bases and report about ongoing
work on understanding their structure.

Given an ideal I � K[x1, . . . , xn] generated by polynomials f1, . . . , fr, every
tropical hypersurface in the proof of Theorem 1 has the form π−1π(T (I)) for
some (rational) projection

π : Rn → Rdim(I)+1, x 7→ Ax

with a regular rational matrix A. The preimage π−1π(T (I)) is a tropical hyper-
surface which can be obtained in the following way. Let u(1), . . . , u(n−(m+1)) ∈
Qn be an (integer-valued) basis of the kernel of π. Denoting by J the ideal,

J :=
〈

g ∈ K[x1, . . . , xn, λ1, . . . , λl] :

g = f(x1

n−(m+1)
∏

j=1

λj
u
(j)
1 , . . . , xn

n−(m+1
∏

j=1

λj
u(j)

n ) for some f ∈ I
〉

,

we have

π−1(π(T (I))) = T (J ∩K[x1, . . . , xn]) . (1)
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So T (J ∩K[x1, . . . , xn]) is a tropical hypersurface if the projection is m-dimen-
sional. Hence, T (J ∩ K[x1, . . . , xn]) naturally comes with a dual subdivision,
and a first question is to characterize that subdivision (without computing the
elimination ideal).
In order to study the subdivision of (1), we can apply recent results of Sturmfels,
Yu, and Tevelev on tropical elimination and its relations to mixed fiber polytopes
[11, 12]. In these papers, it is shown that in various situations the Newton
polytope of the polynomial generating this hypersurface is affinely isomorphic
to a mixed fiber polytope.
Here, we extend and refine this global viewpoint on the Newton polytope by
studying as well the subdivision of the Newton polytope corresponding to the
dual subdivision of (1). To establish this characterization, we provide some
useful techniques to handle the affine isomorphisms connected with the mixed
fiber polytopes.
In order to illustrate these ideas, let us denote the projection onto the kernel
of π by ψ. Up to an affine isomorphism, the Newton polytope of π−1π(T (I))
is given by the mixed fiber polytope Σπ(New(f1), . . . ,New(fk)). If all Newton
polytopes coincide with some fixed Newton polytope ∆ then the mixed fiber
polytope can be written as

k! Σψ(∆) = k!

∫

ψ(C)

(ψ−1(x) ∩ ∆)dx .

However, computing the mixed fiber polytopes for the cells yields different affine
isomorphims. Locally, in some simple cases the translation of the mixed fiber
polytope is characterized by the following geometric result.

Theorem 2 Let F be an (n − 1)-polytope in Rn, ψ : Rn → R, v ∈ Rn \ aff F
and P = conv{F ∪ {v}}. Let w be an outer normal vector of the face F of P ,
i.e. facew(P ) = F .

(a) If ψ(v) ∈ ψ(F ) then Σψ(F ) is a face of Σψ(P ).

(b) If ψ(v) > maxx∈F ψ(x) then

Σψ(F ) +

ψ(v)−1
∑

maxx∈F ψ(x)

arg max
x∈P∩ψ−1(i+ 1

2 )
wTx = facew(Σψ(P )) . (2)

(c) If ψ(v) < minx∈F ψ(x) then

Σψ(F ) +

minx∈F ψ(x)−1
∑

ψ(v)

arg max
x∈P∩ψ−1(i+ 1

2 )
wTx = facew(Σψ(P )) . (3)

Based on this result we can successively construct the subdivision of the mixed
fiber polytope which is the dual subdivision of a tropical hypersurface of the
tropical basis.
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