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Abstract

We give some new technical tools which simplify mixed volume compu-
tation for larger polynomial systems and allow the computation of mixed
volume bounds for polynomial systems of arbitrary dimension arising in
various applications as seen in [14].

1 Introduction

Let f1 = f2 = . . . = fn = 0 be a system of n polynomial equations in n variables.
We are interested in the set of common solutions to this system in the case of a
complete intersection. We denote by Si ⊂ Zn the support of fi, i.e.

fi(x1, . . . , xn) =
∑

α∈Si

cαxα

with cα 6= 0 ∈ C and where xα = xα1

1 . . . xαn
n .

In the following we want to use the support sets and purely combinatorial
constructions on them to provide important algebraic informations.

Usually the systems we are interested in come from concrete applications
and therefore have certain shape corresponding to the problem they model. It
is desirable to calculate the mixed volume of these systems in dependence of
the dimension of the problem. As an example the techniques of this paper are
applied to an embedding problem of Laman graphs in [14]. The aim of this work
is to present the new techniques from an abstract viewpoint without a certain
application in the background.

The main tool we use is Bernstein’s theorem which will be presented in
section 3. In section 2 we will give a short introduction to mixed volumes and
mixed subdivisions which will be used in section 5 to provide new results to
simplify the computation of mixed volumes. In section 4 we present an efficient
algorithm to compute the mixed volume.

2 Mixed Volumes and Mixed Subdivisions

We will give here a short introduction to the most important definitions and
properties. More detailed descriptions can be found in [4], [8] or [13].
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Let P1, . . . , Pn be n polytopes in Rn. For non-negative parameters λ1, . . . , λn,
the volume of the scaled Minkowski sum voln(λ1P1 + . . . + λnPn) is a homoge-
neous polynomial of degree n in λ1, . . . , λn with non-negative coefficients (see
[16]). The coefficient of the monomial λ1 · · ·λn is called the mixed volume of
P1, . . . , Pn and is denoted by MVn(P1, . . . , Pn).

The mixed volume is linear in each argument, i.e.

MVn(P1, . . . , αPi + βP ′
i , . . . , Pn) = (1)

α MVn(P1, . . . , Pi, . . . , Pn) + β MVn(P1, . . . , P
′
i , . . . , Pn)

and it generalizes the usual volume in the sense that

MVn(P, . . . , P ) = voln(P ) (2)

holds (see [13]).
We state here two explicit formulas for the mixed volume (see [15] and [8]):

MVn(P1, . . . , Pn)

= (−1)n
∑

(α1,...,αn)∈{0,1}n

(−1)
P

i
αi voln

(

∑

i

αiPi

)

(3)

=
∑

Q mixed cell of a
mixed subdivision

of (P1,...,Pn)

voln (Q) (4)

The first formula (3) is obtained by using inclusion and exclusion formulas
to compute the coefficient of λ1 · · ·λn in voln(λ1P1 + . . . + λnPn), see [13]. To
understand the second formula (4) and for further considerations we have to
introduce the reader to mixed subdivisions. For technical reasons we prefer
here to define mixed subdivisions on point sets rather then on polytopes. This
definition can then easily be extended to polytopes by considering their vertex
sets as point sets.

Let S = (S(1), . . . , S(m)) be a sequence of finite point sets in Rn that affinely
spans the full space. A sequence C = (C(1), . . . , C(m)) of subsets C(i) ⊆ S(i) is
called a cell of S. A subdivision of S is a collection Γ = (C1, . . . , Ck) of cells
such that

i) dim(conv(Ci)) = n for all cells Ci,

ii) conv(Ci) ∩ conv(Cj) is a face of both convex hulls and

iii)
⋃k

i=1 conv(Ci) = conv(S)

where conv(A) := conv(A(1) + . . . + A(m)) for a sequence of point sets A. A
subdivision is called mixed if additionally

iv)
∑m

i=1 dim(conv(C
(i)
j )) = n for all cells Cj in Γ

and it is called fine mixed if additionally

v)
∑m

i=1(|C
(i)
j | − 1)) = n for all cells Cj in Γ
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where |A| denotes the number of points in a finite set A ⊂ Rn. The type of a
cell is defined as

type(C) = (dim(conv(C(1))), . . . , dim(conv(C(m))))

and cells of type (1, 1, . . . , 1) will be called mixed cells. These definitions extend
naturally to sequences of polytopes by considering their vertices as the point sets
above. In this case every mixed subdivision will be a fine mixed subdivision. If
all cells of a subdivision are simplices we will call the subdivision a triangulation.

To construct mixed subdivisions we proceed as in [8]. Not every subdivision
can be constructed in this way but since we will only need one arbitrary mixed
subdivision we will use this simple construction. For each of the point sets S(i)

from S we choose a linear lifting function µi : Rn → R identified by an element
of Rn. By Â we denote the lifted point sets {(q, 〈µi, q〉) : q ∈ A} ∈ Rn+1.

The set of those facets of conv(Ŝ(1) + . . . + Ŝ(m)) which have an inward
pointing normal with a positive last coordinate is called the lower hull of the
Minkowski sum. If we project down this lower hull back to Rn by forgetting
the last coordinate we get a subdivision of (S(1), . . . , S(m)). We call such a
subdivision coherent and will say it is induced by µ1, . . . , µm.

For the subdivision induced by µ1, . . . , µm to be a fine mixed subdivision it
is sufficient that every vertex of the lower envelope can be expressed uniquely
as a Minkowski sum (see [4]). Such a set of liftings will be called (sufficiently)
generic.

3 Bernstein’s Theorem

The core theorem that gives a connection between solutions to systems of poly-
nomial equations and discrete geometry is the following.

Theorem 1 (Bernstein [1]) Given polynomials f1, . . . , fn over C with finitely
many common zeroes in (C∗)n, let Pi denote the Newton polytope (i.e. the
convex hull of the support set) of fi in Rn. Then the number of common zeroes
of the fi in (C∗)n is bounded above by the mixed volume MVn(P1, . . . , Pn).
Moreover for generic choices of the coefficients in the fi, the number of common
solutions is exactly MVn(P1, . . . , Pn).

Bernstein also gives an explicit condition when a choice of coefficients is generic.
A refinement of these conditions is due to Canny and Rojas (see [2]). It should
be mentioned that the theorem also holds for Laurent polynomials.

Various attempts have been made to generalize these results to count all
common roots in Cn (see for example [5], [9] and [11]). The easiest, but some-
times not the best bound is MVn(conv(P1∪0), . . . , conv(Pn∪0)) which is shown
in [11].

The bound on the number of solutions of a polynomial system arising from
Bernstein’s theorem is also often referred to as the BKK bound due to the work
of Bernstein, Khovanskii and Kushnirenko. The BKK bound generalizes the
Bezout bound (see [3] chapter 7) and for sparse polynomial systems it is often
significantly better. As an example consider the following eigenvalue problem.
We want to solve Av = λv where A ∈ Cn×n, λ ∈ C and v ∈ Cn of unit length.
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This gives rise to a system of n + 1 quadratic equations in n + 1 variables.

n
∑

j=1

aijvj − λvi = 0 for all i = 1, . . . , n

n
∑

i=1

v2
i = 1

Bezout’s theorem says that this system has at most 2n+1 solutions while the
mixed volume of the corresponding Newton polytopes can be computed to be
2n which is even a sharp bound since each eigenspace cuts the unit sphere in 2
points.

4 An Algorithm for Computing the Mixed Vol-

ume

In this section we want to give a sketch of a state of the art algorithm to compute
the mixed volume. A detailed description can be found in [4].

We assume that we already have a generic lifting µi for each polytope Pi

(i = 1, . . . , n) in the sense of section 2. Again, the lifted polytopes will be
denoted by P̂i and the Minkowski sum of the Pi is denoted by P .

The idea for the computation of MV(P1, . . . , Pn) is then the following. For
each combination of n edges ei from the given polytopes we test, whether their
lifted Minkowski sum lies on the lower envelope of P̂ . If so, we compute the
volume of the corresponding mixed cell and add it to the mixed volume. To
make this naive algorithm efficient we will make use of the following simple
Lemma (see [4]).

Lemma 2 If
∑

j∈J êj lies on the lower envelope of
∑

j∈J P̂j then
∑

t∈T êt lies

on the lower envelope of
∑

t∈T P̂t for every subset T ⊂ J .

So instead of performing a few expensive tests on the sum of n edges we do
many small tests to build up valid sums of edges step by step. Each test for a
k-tuple of edges e1, . . . , ek will be implemented as a linear program as follows.
Let m̂i ∈ Rn+1 denote the midpoint of the lifted edge êi of P̂i such that m̂ =
m̂1 + . . . + m̂k is an interior point of the Minkowski sum ê1 + . . . + êk. Consider
the following linear program.

maximize s ∈ R≥0 (5)

s.t. m̂ − (0, . . . , 0, s) ∈ P̂1 + . . . + P̂k

If we denote the vertices of Pi by v
(i)
1 , . . . , v

(i)
ri

this can be written as

maximize s ∈ R≥0

s.t. m̂ − (0, . . . , 0, s) =

n
∑

i=1

ri
∑

j=1

λ
(i)
j v̂

(i)
j

ri
∑

j=1

λ
(i)
j = 1 ∀ i = 1, ..., n

λ
(i)
j ≥ 0 ∀ i, j .
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s measures the distance of m̂ to the lower envelope of the Minkowski sum. Hence
m̂ lies on the lower envelope of P̂1 + . . . + P̂k if and only if the optimal value of
(5) is zero.

The worst case complexity of the algorithm arising from these ideas is in
rO(n) where r denotes the maximal number of vertices of the Pi. In general
it can be shown that mixed volume computation is #P-complete [12]. Since
computing the volume of the convex hull of a point set is #P-hard (see [10])
and since the mixed volume is a generalization of the volume (see (2)) this is
the best we could hope for.

5 Technical Tools to Simplify the Computation

Polynomial systems that arise from inductive structures often have a shape that
allows to separate the mixed volume computation in several parts. The following
Lemma is most often used in the special case when all polytopes involved have
integer vertices. In this case there is a much shorter proof using Bernstein’s
theorem. However we would like to state it here in the general case and give a
purely geometric proof for it.

Lemma 3 Let P1, . . . , Pk be polytopes in Rm+k and Q1, . . . , Qm be polytopes
in Rm ⊂ Rm+k . Then

MVm+k(Q1, ..., Qm, P1, ..., Pk) = MVm(Q1, ..., Qm) ∗ MVk(π(P1), ..., π(Pk))
(6)

where π : Rm+k → Rk denotes the projection on the last k coordinates.

Proof. Lemma 4.5 in [6] shows that

MVm+k(Q, . . . , Q, P, . . . , P ) = volm(Q) ∗ volk(π(P )) (7)

where Q is taken m times and P is taken k times. So this proves the case where
Q1 = . . . = Qm = Q and P1 = . . . = Pk = P .

Now we will show that both sides of the desired equation define a symmetric
multilinear function and then we will use combinatorial identities for symmetric
multilinear functions to show the full result.

Let Pm (resp. Pm+k) be the set of all m-dimensional (resp. m + k-
dimensional) polytopes and define two functions g1 and g2 on Pm × . . .×Pm ×
Pm+k × . . . × Pm+k via

g1(Q1, . . . , Qm, P1, . . . , Pk) := MVm+k(Q1, . . . , Qm, P1, . . . , Pk)

g2(Q1, . . . , Qm, P1, . . . , Pk) := MVm(Q1, ..., Qm) ∗ MVk(π(P1), ..., π(Pk)) .

It is easy to see that g1 and g2 are invariant under changing the order of the Qi

and also changing the order of the Pj . Furthermore it follows from (1) that both
functions are linear in each argument. Let f : A× . . .×A → B be a symmetric
multilinear function, where A and B are semigroups. By expanding the right
hand side it can be seen that

f(a1, ..., an) =
1

n!

∑

1≤i1<...<iq≤n

(−1)n−qf(ai1 + ... + aiq
, ..., ai1 + ... + aiq

) . (8)
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The functions

g̃i(Q1, . . . , Qm) := gi(Q1, . . . , Qm, P1, . . . , Pk) and

ḡ
(Q)
i (P1, . . . , Pk) := gi(Q, . . . , Q, P1, . . . , Pk) for i = 1, 2

satisfy these conditions. Hence we have for i = 1, 2 that

gi(Q1, . . . , Qm, P1, . . . , Pk)

= g̃i(Q1, . . . , Qm)

=
1

m!

∑

1≤i1<...<iq≤m

(−1)m−q g̃i(Qi1 + ... + Qiq
, ..., Qi1 + ... + Qiq

)

=
1

m!

∑

1≤i1<...<iq≤m

(−1)m−q ḡ
(Qi1

+...+Qiq )

i (P1, . . . , Pk) .

Since we can expand ḡ
(Qi1

+...+Qiq )

i (P1, . . . , Pk) by using (8) as well we see that
both functions g1 and g2 are fully determined by their images of tuples of poly-
topes where Q1 = . . . = Qm = Q and P1 = . . . = Pk = P . This proves the
Lemma. �

Since the mixed volume does not change if all arguments are mapped by the
same volume preserving function (see [3]) we have the following corollary.

Corollary 4 Let P1, . . . , Pn be polytopes in Rn such that the first m of them
lie in an m-dimensional subspace V of Rn. Then

MVn(P1, ..., Pn) = MVm(πV (P1), ..., πV (Pm))∗MVn−m(πV ∗(Pm+1), ..., πV ∗(Pn))

where πV and πV ∗ denote the projection to V and to the orthogonal complement
V ∗ of V respectively.

Another technical tool which can be useful is the following Lemma which
gives explicit conditions for lifting vectors to induce a certain cell as a mixed
cell.

Lemma 5 Given polytopes P1, . . . , Pn ⊂ Rn and lifting vectors µ1, . . . , µn ∈

Rn
≥0. Denote the vertices of Pi by v

(i)
1 , . . . , v

(i)
ri

and choose one edge ei =

[v
(i)
ki

, v
(i)
li

] from each Pi. Then C := (e1, . . . , en) is a mixed cell of the mixed
subdivision induced by the liftings µi if and only if

i) The edge matrix E := Va−Vb is non-singular (where Va := (v
(1)
k1

, . . . , v
(n)
kn

)

and Vb := (v
(1)
l1

, . . . , v
(n)
ln

)) and

ii) For all polytopes Pi and all vertices v
(i)
s of Pi which are not in ei we have:

(

diag
(

µT E
)T

E−1 − µT
i

)

·
(

v
(i)
li

− v(i)
s

)

≥ 0 (9)

where µ := (µ1, . . . , µn) and where diag(V ) denotes the vector of the
diagonal entries of V .
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Before we start with the proof we have to give a short introduction to linear
programming and how it is applied here. (For details on linear programming see
[7].) In section 4 we have seen that the test, if a cell lies on the lower envelope
of the lifted Minkowski sum can be formulated as a linear program (see (5)).
We will speak of a linear program in standard form if it is stated as follows

maximize ct.x

s.t. A.x = b

xi ≥ 0 ∀i = 1, . . . , n

where c, x ∈ Rn, b ∈ Rm and A ∈ Rn×m. Given a feasible point x̄ ≥ 0 satisfying
A.x̄ = b we want to check whether x̄ is an optimal solution. If x̄ is a vertex
of the polyhedron defined by the constraints and is not degenerate in the sense
defined below, we can use linear programming duality to test for optimality. To
x̄ corresponds a choice B (sometimes more than one) of columns of A such that
the submatrix consisting of these columns AB satisfies A−1

B .b = x̄. (x̄ is non-
degenerate if the inverse of AB exists.) Let AN be the submatrix of A consisting
of the remaining columns and define cB and cN in the same way. Then x̄ is a
feasible point of the dual program and therefore optimal if and only if

ct
N − ct

B.A−1
B .AN ≤ 0 (componentwise) . (10)

Our linear program (5) can be written in standard form using the following
notation.

ct = (0t
r1+...+rn

, 1) ∈ R
r1+...+rn+1

xt = (λ
(1)
1 , . . . , λ(1)

r1
, . . . . . . , λ

(n)
1 , . . . , λ(n)

rn
, s) ∈ R

r1+...+rn+1

bt = (m̂,1t
n) ∈ R

2n+1

A =



















v
(1)
1 . . . v

(1)
r1

. . . . . . v
(n)
1 . . . v

(n)
rn

0n

〈µ1, v
(1)
1 〉 . . . 〈µ1, v

(1)
r1

〉 . . . . . . 〈µn, v
(n)
1 〉 . . . 〈µn, v

(n)
rn 〉 1

1t
r1

0t
r2

. . . 0t
rn

0
0t

r1
1t

r2
. . . 0t

rn
0

...
. . .

...
...

0t
r1

0t
r2

. . . 1t
rn

0



















Here we denote by 0n and 1n the column vectors consisting only of 0’s and 1’s
respectively.

We also know that the point x̄ that corresponds to m̂ in (5) must be a vertex
of the feasible region since all matrix inequalities are satisfied with equality. The

coordinates (λ
(1)
1 , . . . . . . , λ

(n)
rn

, s) of this point are s = 0 and λ
(i)
j = 1

2 if the edge

êi contains the vertex v̂
(i)
j and λ

(i)
j = 0 otherwise. If the edges were chosen such

that their Minkowski sum is full-dimensional we will see later that we can also
guarantee that this x̄ is non-degenerate. We can use now the condition (10)
on this description to obtain explicit conditions on the lifting vectors µi that
induce a mixed subdivision that contains our chosen cell as a mixed cell.

Proof. (of Lemma 5) Note that C is full-dimensional and hence has a non-zero
volume if and only if E is non-singular. In the following we will only consider
this case. To simplify the notation we write µ(V ) for diag (µt.V )

t
.
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We know from section 4 that C is a mixed cell if and only if the following x̄

is the optimal solution to the linear program defined above.

x̄ = (λ1,1, . . . , λn,rn
, s)

where s = 0 and

λi,j =

{

1
2 , j = ki or li

0 , else

The submatrix of A corresponding to x̄ is

AB =





Va Vb 0n

µ(Va) µ(Vb) 1
Idn Idn 0n





and its inverse is

A−1
B =





(E)−1 0n −(E)−1.Vb

−(E)−1 0n (E)−1.Va

−µ(E).(E)−1 1 µ(E).(E)−1.Vb − µ(Vb)



 .

AN consists of the columns of A which are not in AB, hence

AN =







v
(i)
s

µr.v
(i)
s

ξi







1≤i≤n
1≤s≤ri

s6=ki,li

where ξr denotes the ith unit vector. Since cN = (0, . . . , 0) the simplex criterion
tells us that x̄ is optimal if

(0, . . . , 0, 1).A−1
B .AN ≥ 0 componentwise .

But a single entry of the vector on the left can be explicitly computed as

−
(

µ(E).(E)−1
)

.v(i)
s + µr.v

(i)
s +

(

µ(E).(E)−1.Vb − µ(Vb)
)

.ξi

which equals
(

diag
(

µt.(E)
)t

.(E)−1 − µt
i

)

.
(

v
(i)
li

− v(i)
s

)

.

�

Note that (9) is linear in the µj . Hence given a choice of edges we can explicitly

calculate
∑n

i=1 ri normal vectors defining a cone in Rn2

. The interior of this
cone consists of all liftings (µt

1, . . . , µ
t
n) which induce a mixed subdivision that

contains our chosen cell as a mixed cell.
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