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Digital Image Tracing by Sequential
Multiple Watermarking

Giulia Boato, Member, IEEE, Francesco G. B. De Natale, Senior Member, IEEE, and Claudio Fontanari

Abstract—The possibility of adding several watermarks to the
same image would enable many interesting applications such
as multimedia document tracing, data usage monitoring, mul-
tiple property management. In this paper, we present a novel
watermarking scheme which allows to insert and reliably detect
multiple watermarks sequentially embedded into a digital image.
The proposed method, based on elementary linear algebra, is
asymmetric, secure under projection attack and robust against
distortion due to basic operations such as storage, transmission,
format conversion, etc.

Index Terms—Asymmetric watermarking, image tracing, linear
algebra, multiple watermarking.

1. INTRODUCTION

ECURITY of multimedia communications is regarded by

both academy and industry research as one of the most im-
portant and urgent problems of the last decades. Watermarking
is the art of imperceptibly embedding a message into a work.
More than 700 years ago in Fabriano (Italy), paper watermarks
appeared in handmade paper, in order to identify its provenance,
format, and quality. Since the early 1990s, digital watermarking
has applied similar concepts to multimedia contents (images,
video, music) as a technological support to digital right man-
agement. In this context, the watermark is a kind of invisible
signature that allows identifying the creator or the owner of a
document, and to detect possible copyright violations, and es-
pecially nonauthorized copying.

More recently, different watermarking techniques and strate-
gies have been proposed in order to solve a number of problems,
ranging from the detection of content manipulations, to infor-
mation hiding (steganography), to document usage tracing. In
particular, the insertion of multiple watermarks to trace a doc-
ument during its lifecycle is a very interesting and challenging
application. The main objective is to grant the possibility of di-
rectly detecting from the document who was the creator, who
had access to the data after its creation, how the property of the
document is shared among different users, allowing not only
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the document tracing (crucial for example in the management
of images connected to a legal prosecution), but also data usage
monitoring (useful in newspaper documents processing).

This kind of protection of confidential material, such as
design drawings or personal data, is crucial in several indus-
trial sectors (mechanical engineering, semiconductor industry,
as well as in the automotive and chemical/pharmaceutical
sectors—see [1]). Biomedical data handling provides another
significant field of application with specific and severe require-
ments. Indeed, the importance of watermarking in medical
imaging has already been pointed out in [2]. In [3] and [4],
the interested reader can find a detailed list of the medical
issues which can be addressed by the insertion of multiple
digital watermarks. The range of application is rather wide,
covering not only access control and identity verification, but
also captioning and indexing issues. We stress in particular the
relevance, due to the confidentiality and the diagnostic value of
medical data, of tracing the history of a medical document from
the patient through the various laboratories and physicians.

Notwithstanding the application potential of such methodolo-
gies, multiple-image watermarking is still an open problem. Al-
though some researchers focused on the viability of existing
watermarking approaches for the insertion of multiple signa-
tures (see [5] for a critical assessment about the use of some
of the most popular watermarking methods for tracing medical
images), the development of specific techniques can provide
much more effective results. The general problem of multiple
digital watermarking has been the object of several investiga-
tions since the pioneering contribution [6], where the possibility
of recovering different watermarks in the same image is first
shown. In [7], it is suggested that the insertion of multiple wa-
termarks can be exploited to convey multiple sets of informa-
tion, while [8] and [9] discuss specific extensions of single wa-
termarking algorithms to the case of multiple watermarks, by
introducing orthogonal watermarks. More recently, a multiple
watermark-embedding procedure was proposed ([10]), which
allows simultaneous insertions without requiring the key sets
to be orthogonal to each other. Specific applications such as the
already mentioned medical image management (see, in partic-
ular, [11] and [12]) may even require the insertion of two dif-
ferent types of watermark, namely, a robust one for authentica-
tion purposes, and a fragile one for data integrity control. This
paradigm is often referred to as multipurpose watermarking (see
for instance [13] and [14]).

In this paper, we introduce a new approach that allows the
tracing and property sharing of image documents thanks to the
possibility of sequentially embedding multiple watermarks into
the data. As in our former contribution [15], intended for the
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insertion of a single watermark, the present scheme is based
on elementary linear algebra and it is asymmetric, in the sense
that it involves a private key for embedding and a public key for
detection. The main property of the proposed method is that it
allows the insertion of multiple watermarks by different users,
who sequentially come into play one after the other and do not
need any extra information besides the public keys. This char-
acteristic makes the present approach more attractive than pre-
viously available solutions. In particular, it solves the problem
affecting other recent approaches (see for instance [16], based
on [10]), where each user needs to know the secret keys used
to embed all previous watermarks to successfully insert his sig-
nature. Moreover, the proposed scheme is proved to be secure
against the most dangerous attack against watermarking secu-
rity, namely, the closest point or projection attack, and its robust-
ness has also been successfully assessed by simulating a distor-
tion of the data at each stage of the process, through the addition
of a noise source or format conversion. It is to be pointed out
that the envisaged applications for our multiple watermarking
scheme are mainly based on the hypothesis of a collaborative
environment, in which malicious attacks are not a critical as-
pect, and it is worth mentioning that, in many cases, the only
relevant manipulation is just a light JPEG compression, as de-
scribed in [17].

The structure of the paper is as follows. In Section II,
we describe the proposed multiple watermarking scheme. In
Section III, we prove it to be effective, secure under projection
attack and robust against noise addition, JPEG compression,
and some other image manipulations. Finally, in Section IV,
we draw some concluding remarks.

II. WATERMARK EMBEDDING AND DETECTION

We are going to describe an asymmetric watermarking proce-
dure, where as usual the encoding and decoding algorithms as
well as the detection key are known, while the embedding key
is kept secret.

Let V be a feature space of dimension d (for instance, the
space R? corresponding to the entries in the top left corner of
the DCT of a digital image) and let {u1, ..., u,} be an ordered
set of users. Let us also introduce another integer £ > 1 cor-
responding to an additional parameter of the method (useful to
improve detection performances) and let us denote by M the
set of d x d real matrices D such that dim(KerD) =d—k —1,
where KerD = {v € R? : Dv = 0} is the kernel of D.

For each i = 1,...,n, the user u; with associated signature
s; € V has free access to public keys Dy,...,D; 1 € M,
receives a host signal ¢;_; € V and produces a watermarked
signal ¢; € V and a public key D; € M.

Since at the end of the procedure we wish to be able to detect
all embedded signatures, we fix an upper bound for the number
of users in terms of the parameters of the method. An effective
bound turns out to be

d+k

n< T (D

as will become clear from the embedding algorithm.
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Fig. 1. Description of the watermarks embedding procedure.

A. Watermark Embedding

Each user u; implements the following algorithm, summa-
rized in Fig. 1.

1) Watermark setting: u; sets the watermark w; = as; with
0 < a < 1 in order to meet the usual imperceptibility
requirement.

ii) Definition of a proper insertion frame: u; chooses a
d x d orthogonal matrix M; such that

DJ(ML’LUL) =0 (2)

forevery j < ¢ — 1 (if ¢ = 1 condition (2) is empty).
Notice that by (1) and Corollary 1 in the Appendix, there
exists at least one v € V' \ {0} such that D;(Av) = 0 for
every j < i—1 and forevery A € R. In order to construct
M;, let g1 = w;/||w;]|| (respectively, hy = v/||v]])
and complete g; (respectively, h1) to an orthonormal
basis (g1, g2, - - - , ga) (respectively, (hy, ha, ..., hq))
of R?: for instance, complete them to an arbitrary
basis and then apply the standard Gram-Schmidt
orthonormalization process; if G (respectively, H) is
the matrix with g} (respectively, hl') as the ¢-th column
(t =1,...,d), then the private key M; := HGT is such
that M;w; = ||w;l|/]|v]|v.

iii) Watermark insertion: if ¢;_1 = M,;v; (i.e., v; are the
coordinates of ¢;_; in the basis given by the columns of
M;) then u; watermarks ¢;_; by setting

¢i = M;(v; +w;). 3)

iv) Definition of an auxiliary matrix: u; chooses an arbitrary
vector subspace Z of dimension & orthogonal to v; + w;
and constructs a symmetric d X d matrix A; (i.e.,

AT = A;) such that

Ai(vi +w;) =v; + w; “4)
Aiz) =Kz V2€72 )
Al(’l}) =0 Wwe <vi+wi,Z)l (6)
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where K > 0 is a nonnegative integer. More operatively,
let by := (v; + w;/||v; + w;||) and complete it

to an orthonormal basis (b1, bo, . .., bg) of R%: for
instance, complete by to an arbitrary basis and then
apply the standard Gram-Schmidt orthonormalization
process; if N; is the matrix with th as the ¢th column
(t=1,...,d), then

1 0 ..
0O K 0 ...
— N, . : T
4i=N;| | oo NE. )
0 0

v) Public key releasing: u; releases to the public the
detection keys

Notice that, since A; is not invertible, the private
key M; cannot be reconstructed from D;. Since both
M; and N; are invertible, from (7) it follows that
dimKerD; =d —k — 1, hence D € M.

B. Watermark Detection

Let now ¢, be an extracted feature. The watermark detection
is accomplished by the decision function

. 1, if |sim(v; + w;, Dige)| > €
bi(¢e) = {07 otherwise ®
where 0 < & < 1 is a suitable threshold and
T
i i) Dige
sim(v; + wi, Digp,) = Vit Ws) Did (10)

i+ willll Dige [l

Definitions (9) and (10) for the detector are motivated by the
following fact.

Proposition 1: For every i = 1,...,n, we have sim(v; +
w;, D;;) = 1. Moreover, if ¢ is any feature vector not water-
marked by wu; and the integer K is big enough, then sim(v; +
w;, D;¢) is arbitrarily close to zero. In particular, sim(v; +
w;, Di;) is almost zero if j < i — 1.

Proof: By (8), (3) and (4) we have D;¢; = v; + w;, hence
the first part of the claim is a direct consequence of (10). Next,
if MT¢ = Y0, ¢,by is the expression of M ¢ in the basis
(b1,b2,...,ba) constructed in step 4) of the embedding algo-
rithm, then

d k+1
D¢ = Z ctAiby = c1by + KZ ciby
t=1 t=2

by (5) and (6) and we may compute
(vi +wi) " Dip = ca|vi + wll

k+1
c?+ K2 E 2.
t=2

1Dl =

Hence, we deduce limg o sim(v; + w;, D;¢p) = 0 and also
the second claim follows. [ |

(b)

Fig. 2. (a) Original. (b) Watermarked (PSNR = 35.53 dB). (c) Projected
Lena (PSNR = 16.10 dB).

The following result shows that detection still works even
after several watermark embeddings.

Proposition 2: Foreveryi = 1,...,n,if
Vi = ¢i + Z Mjw;
J>i

then sim(vi + w;, Dl’(/}z) =1.
Proof: By (3), we have

i = M; (v + w;) + ZMjw]‘-
j>i
It follows from (2) that D; M;w; = 0 for every j > 4 and since
by (8) and (4), we have

Divpi = vi +w; + Z DiMjw;

J>i

we deduce that D;1; = v; + w; and we conclude by (10). =

We stress that the private key is carefully defined in order to
avoid conflicts between different watermarks. In particular, n
arbitrary watermarks can be inserted and detected if (1) and (2)
are observed.

III. EFFECTIVENESS, SECURITY, AND ROBUSTNESS ANALYSIS

A. Effectiveness

In order to experimentally verify the effectiveness of the pro-
posed method, we test it on the standard 512 X 512 Lena and
Baboon images by choosing as a feature space the upper left
15x 15 coefficients of the discrete cosine transform (DCT) (ex-
cluding as it is customary the DC component) and by sequen-
tially embedding ten randomly generated watermarks. Hence,
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TABLE 1
DETECTION PERFORMANCES FOR THE LENA IMAGE

[feature [ PSNRw | PSNRp | w1 | wz | ws | wa | ws | we | wr | ws | wy | wio

b0 - - 0.10 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.02 | 0.02
¢1 45.52 16.10 1 0.11 | 0.07 | 0.06 | 0.05 | 0.05 | 0.04 | 0.04 | 0.04 | 0.04
P2 42.55 16.10 1 1 0.11 | 0.08 | 0.06 | 0.05 | 0.05 [ 0.05 | 0.04 | 0.04
3 40.77 16.10 1 1 1 0.10 | 0.07 | 0.06 | 0.06 | 0.05 | 0.05 | 0.04
lo¥) 39.51 16.10 1 1 1 1 0.10 | 0.08 | 0.06 | 0.05 | 0.05 | 0.05
o5 38.54 16.10 1 1 1 1 1 0.11 | 0.08 | 0.06 | 0.05 | 0.05
b6 37.75 16.10 1 1 1 1 1 1 0.11 | 0.08 | 0.06 | 0.06
¢7 37.08 16.10 1 1 1 1 1 1 1 0.10 | 0.08 | 0.06
fors 36.50 16.10 1 1 1 1 1 1 1 1 0.11 | 0.08
b9 35.98 16.10 1 1 1 1 1 1 1 1 1 0.11
¢10 35.53 16.10 1 1 1 1 1 1 1 1 1 1
TABLE I
DETECTION PERFORMANCES FOR THE BABOON IMAGE
[ feature | PSNRw [ PSNRp | w1 [ w2 [ w3 | wa | ws | we | wr | ws | wg [ wio |

b0 - - 0.09 [ 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02
b1 45.52 17.56 1 0.09 | 0.06 | 0.05 | 0.04 | 0.04 | 0.04 | 0.03 | 0.03 | 0.03
b2 42.60 17.56 1 1 0.09 | 0.06 | 0.05 | 0.05 [ 0.04 [ 0.04 | 0.04 | 0.03
b3 40.81 17.56 1 1 1 0.09 | 0.06 { 0.05 | 0.05 | 0.04 | 0.04 | 0.03
b4 39.55 17.56 1 1 1 1 0.09 | 0.06 | 0.05 | 0.05 | 0.04 | 0.04
5 38.57 17.56 1 1 1 1 1 0.09 | 0.06 | 0.05 | 0.05 | 0.04
b6 37.78 17.56 1 1 1 1 1 1 0.09 | 0.06 | 0.05 | 0.04
o7 37.10 17.56 1 1 1 1 1 1 1 0.09 | 0.06 | 0.05
s 36.52 17.56 1 1 1 1 1 1 1 1 0.09 | 0.06
b9 36.01 17.56 1 1 1 1 1 1 1 1 1 0.09
d10 35.55 17.56 1 1 1 1 1 1 1 1 1 1

(©)

Fig. 3. (a) Original. (b) Watermarked (PSNR = 35.55 dB). (c) Projected
Baboon (PSNR = 17.56 dB).

we have d = 224 and n = 10; we also set K = 103 and k = 20,
so that condition (1) is satisfied. We report in Figs. 2(a) and 3(a)
the original images corresponding to ¢g and in Figs. 2(b) and
3(b) the final images corresponding to ¢1¢ and carrying ten wa-
termarks: it should be apparent that the watermarked image is
perceptually undegraded (PSNR equal to 35.53 and 35.55 dB,

respectively). Notice that the method is suitable also for de-
manding applications with high PSNR requirements (such as
medical or legal documents processing), since all inserted water-
marks can be removed by exploiting the knowledge of the corre-
sponding private keys. The obtained detection performances are
summarized in Tables I and II, where the entry corresponding
to (¢i,w;) is the value of sim(v; + w;, D;¢;) averaged over
100 experiments. As predicted by Proposition 1 and Proposi-
tion 2, we see that sim = 1 whenever ;7 > 4 (hence w; has
been embedded into ¢;) and it is close to zero otherwise. There-
fore, the watermark can be detected only by using the correct
detection key. The threshold e, which defines the decision func-
tion of the detection, can be chosen in a wide range of values,
namely, ¢ € [0.12,1] is valid for both the Lena and Baboon
images. Moreover, we provide the PSNR value at every stage
for both the watermarked image (PSNRw) and the image after
projection attack (PSNRp). In particular, in Fig. 4 we report the
average PSNR of the watermarked Lena and Baboon images as
a function of the number of watermarks sequentially embedded,
considering feature spaces of different size (d = 168, d = 224
and d = 288, respectively) and n < 8, n < 11 and n < 14,
respectively, in such a way that condition (1) holds (k is fixed
equal to 20).

B. Security

Although our method is mainly thought for data tracing in
collaborative environment, we aim at demonstrating that it
achieves also a good security level. In particular, we apply to
the images with increasing number of watermarks embedded
the most dangerous attack against asymmetric watermarking
security, namely, the closest point or projection attack. Recall
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Fig. 4. Average PSNR of the watermarked (a) Lena and (b) Baboon images versus number of watermarks sequentially embedded for different sizes of the feature
space (d = 168,d = 224 and d = 288) and k = 20.

TABLE III
DETECTION PERFORMANCES FOR THE LENA IMAGE IN THE CASE OF RANDOM WGN ADDITION

[feature | wi [ we [ w3z [ we [ ws | we [ wr [ ws [ wo [ wio

b0 0.10 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02
b1 0.87 | 0.11 | 0.08 | 0.06 | 0.06 | 0.05 | 0.04 | 0.04 | 0.04 | 0.04
P2 0.77 | 0.87 | 0.10 | 0.08 | 0.06 | 0.05 | 0.05 | 0.04 | 0.04 | 0.04
3 0.69 | 0.77 | 0.87 | 0.10 | 0.08 | 0.06 | 0.05 | 0.05 | 0.04 | 0.04
b4 0.65 | 0.71 | 0.79 | 0.88 | 0.11 | 0.08 | 0.06 | 0.05 | 0.05 | 0.04
b5 0.61 | 0.66 | 0.72 | 0.80 | 0.87 | 0.10 | 0.08 | 0.06 | 0.05 | 0.05
b6 0.57 | 0.62 | 0.66 | 0.73 | 0.77 | 0.87 | 0.10 | 0.08 | 0.06 | 0.05
o7 0.54 | 0.59 | 062 | 0.68 | 0.69 | 0.77 | 0.87 | 0.11 | 0.07 | 0.06
s 0.51 | 0.56 | 0.58 | 0.62 | 0.64 | 0.69 | 0.76 | 0.85 | 0.10 | 0.07
b9 049 | 0.53 | 0.55 | 0.59 | 0.60 | 0.64 | 0.70 | 0.77 | 0.88 | 0.11
$10 0.47 | 0.50 | 0.53 | 0.56 | 0.57 | 0.60 | 0.64 | 0.71 | 0.78 | 0.86
TABLE IV

DETECTION PERFORMANCES FOR THE BABOON IMAGE IN THE CASE OF RANDOM WGN ADDITION

| feature I w1 | w2 | w3 | w4 | ws | we | wy | ws | w9 | w10 |
b0 0.09 | 0.03 [ 0.02 [ 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02
b1 0.84 | 0.09 [ 0.06 | 0.05 | 0.05 | 0.04 | 0.04 | 0.04 | 0.03 | 0.03
b2 0.74 | 0.84 [ 0.09 [ 0.06 | 0.05 | 0.05 | 0.04 | 0.04 | 0.03 | 0.03
@3 0.65 | 0.74 | 0.83 | 0.09 | 0.06 | 0.05 | 0.05 | 0.04 | 0.04 | 0.03
ba 0.59 | 0.66 [ 0.72 | 0.83 | 0.09 | 0.06 | 0.05 | 0.05 | 0.04 | 0.04
*5 0.53 | 0.59 | 0.64 | 0.73 | 0.83 | 0.09 | 0.06 | 0.05 | 0.05 | 0.04
b6 0.50 | 0.55 | 0.58 | 0.65 | 0.72 | 0.83 | 0.09 | 0.07 | 0.05 | 0.04
b7 0.47 | 0.51 | 0.53 | 0.58 | 0.64 | 0.71 | 0.83 | 0.09 | 0.06 | 0.05
o 044 | 047 | 048 | 0.52 | 0.58 | 0.62 | 0.70 | 0.82 | 0.09 | 0.06
b9 042 | 045 | 046 | 049 | 054 | 0.57 | 0.62 | 0.71 0.83 | 0.09
10 040 | 043 | 044 | 047 | 050 | 0.53 | 0.57 | 0.64 | 0.72 | 0.84

that a projection attack replaces the feature vector ¢; associated
to the watermarked signal with a feature vector ¢; satisfying

llfi — ¢ill = min ||¢p — ;]| (11)
under the constraint
8(¢p) = sim(v; + w;, D;p) = 0. (12)

Hence, ql is the non-watermarked feature vector closest to ¢;.
By definition (10), condition (12) says that (v; +w;)T D;¢; = 0,
i.e., ¢; has to lie on the hyperplane through the origin of the

feature space having normal vector a; = D?(vi + w;). As a
consequence, the feature vector ¢; satisfying condition (11) is
the projection of ¢; onto this hyperplane, which is given by

7 aj ¢i

=0 e

The following result suggests that the signal reconstructed
from <;~Si will be dramatically distorted, hence our scheme turns
out to be definitively secure under projection attack.

Proposition 3: Forevery: = 1,...,n, we have (Z>7 =0.

Proof: By (8), (4), and (3), we have

a; = l);T(’UZ + wl) = MZAZT(’Uz + wi) = Mz(’Uz + wl) = ¢;
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TABLE V
DETECTION PERFORMANCES FOR THE LENA IMAGE WITH THE ADDITION OF WGN OF 15 DB
[feature | w1 | we [ w3 | wy | ws [ we | wr | ws [ wg [ wio |

b0 0.10 | 0.03 | 0.03 [ 0.03 | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02
P1 0.64 | 0.10 | 0.07 | 0.06 | 0.05 | 0.05 | 0.04 | 0.04 | 0.04 | 0.04
b2 0.53 | 0.65 | 0.11 0.08 | 0.06 | 0.05 | 0.05 | 0.05 | 0.04 | 0.04
b3 045 | 052 | 0.65 | 0.10 | 0.07 | 0.06 | 0.05 | 0.05 | 0.04 | 0.04
b4 040 | 044 | 0.52 | 0.65 | 0.10 | 0.08 | 0.06 | 0.05 | 0.05 | 0.04
b5 036 | 039 | 045 | 052 | 0.64 | 0.11 0.07 | 0.06 | 0.06 | 0.05
b6 033 | 036 | 039 | 045 | 0.53 | 0.66 | 0.10 | 0.08 | 0.06 | 0.05
b7 0.31 0.33 | 0.36 | 0.41 045 | 0.52 | 0.65 | 0.11 | 0.08 | 0.06
b8 029 | 031 | 033 | 0.37 | 0.40 | 044 | 0.52 | 0.65 | 0.11 | 0.08
o 0.28 | 0.29 | 0.31 0.34 | 0.36 | 040 | 045 | 0.52 | 0.66 | 0.11
10 0.26 | 0.27 | 0.29 | 0.31 0.33 | 0.36 | 0.40 | 0.45 | 0.52 | 0.65

TABLE VI

DETECTION PERFORMANCES FOR THE BABOON IMAGE WITH THE ADDITION OF WGN OF 15 DB

[feature | wy [ we [ w3 [ wa [ ws [ we | wr [ wsg [ wg [ wio |
bo 0.09 { 0.03 [ 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02
b1 0.59 | 0.09 | 0.06 | 0.05 | 0.04 | 0.04 | 0.04 | 0.03 | 0.03 | 0.03
b2 0.45 | 0.59 | 0.09 | 0.06 | 0.05 | 0.05 [ 0.04 | 0.04 | 0.04 | 0.03
b3 038 | 046 | 0.58 | 0.09 | 0.06 | 0.05 | 0.05 | 0.04 | 0.04 | 0.04
b4 034 | 039 | 046 | 0.58 | 0.09 | 0.06 | 0.05 | 0.05 | 0.04 | 0.04
b5 031 | 034 | 039 | 045 | 058 | 0.09 | 0.06 | 0.05 | 0.05 | 0.04
b6 028 | 0.30 | 0.35 | 0.39 | 0.46 | 0.60 | 0.09 | 0.06 | 0.05 | 0.05
b7 026 | 028 | 0.31 | 0.34 | 039 | 0.46 | 0.59 | 0.09 | 0.06 | 0.05
bs 025 | 026 | 0.28 | 0.31 | 0.35 | 0.39 | 046 | 0.58 | 0.09 | 0.07
b9 024 | 025 | 0.26 | 0.28 | 032 | 034 | 0.39 | 0.46 | 0.58 | 0.09
$10 023 | 024 | 0.25 | 0.26 | 0.29 | 0.31 | 0.34 | 0.39 | 0.46 | 0.59

TABLE VII
DETECTION PERFORMANCES FOR THE LENA IMAGE IN CASE OF RANDOM JPEG COMPRESSION
[feature [ PSNR | w1 | w2 | w3 | wy | ws | we | wr | ws [ wo [ wio |

bo - 0.10 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02

b1 41.38 | 0.65 | 0.11 | 0.07 | 0.06 | 0.06 | 0.05 | 0.04 | 0.04 | 0.04 | 0.04

b2 40.27 | 0.64 | 094 | 0.11 | 0.08 | 0.06 | 0.05 | 0.05 | 0.05 | 0.04 | 0.04

b3 39.03 | 0.63 | 0.90 | 0.95 | 0.10 | 0.08 | 0.06 | 0.06 | 0.05 | 0.04 | 0.04

b4 38.17 | 0.62 | 0.87 | 0.92 | 0.96 | 0.11 | 0.08 | 0.06 | 0.06 | 0.05 | 0.05

b5 37.47 0.61 0.85 | 0.89 [ 093 [ 097 | 0.11 0.08 | 0.06 | 0.05 | 0.05

b6 36.83 | 0.60 | 0.83 | 0.86 | 0.90 [ 0.94 | 0.97 | 0.11 | 0.08 | 0.06 | 0.05

b7 36.25 | 0.60 | 0.80 | 0.84 | 0.87 | 091 [ 0.93 | 0.97 | 0.11 | 0.08 | 0.06

b8 3579 | 0.59 | 0.78 | 0.82 | 0.85 | 0.88 | 0.91 | 0.94 | 0.97 | 0.11 | 0.08

b9 3527 | 0.58 | 0.76 | 0.80 | 0.82 [ 0.86 | 0.88 | 0.90 | 0.93 | 0.96 | 0.11

$10 3493 | 0.57 | 0.75 | 0.78 | 0.81 | 0.84 | 0.86 | 0.88 | 0.91 | 0.94 | 0.97

TABLE VIII

DETECTION PERFORMANCES FOR THE BABOON IMAGE IN THE CASE OF RANDOM JPEG COMPRESSION

[feature [ PSNR | w1 | wp | w3 | ws [ ws | we | wy | wsg | wg | wio |

% -

61 | 36.13
b2 | 3571
b3 | 3497
ba | 3415
b5 | 3412
b6 | 33.85
b7 | 33.48
b8 33.33
b9 | 3265
10 32.88

0.09
0.59
0.58
0.56
0.54
0.52
0.50
0.47
0.44
0.41
0.39

0.02
0.09
0.91
0.84
0.77
0.70
0.65
0.59
0.54
0.50
0.46

0.02
0.06
0.09
0.93
0.85
0.78
0.71
0.65
0.59
0.54
0.49

0.02
0.05
0.06
0.09
0.93
0.85
0.78
0.71
0.64
0.59
0.53

0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02
0.04 | 0.04 | 0.04 | 0.04 | 0.03 | 0.03
0.05 | 0.05 | 0.04 | 0.04 | 0.03 | 0.03
0.06 | 0.05 | 0.04 | 0.04 | 0.04 | 0.04
0.09 | 0.06 | 0.05 [ 0.05 | 0.04 | 0.04
0.93 | 0.09 | 0.06 | 0.05 | 0.04 | 0.04
0.85 | 0.93 | 0.09 | 0.06 | 0.05 | 0.05
0.77 | 0.85 | 093 | 0.09 | 0.06 | 0.05
0.69 | 0.76 | 0.84 | 0.93 | 0.09 | 0.06
0.62 | 0.68 | 0.75 | 0.84 | 0.93 | 0.09
0.56 | 0.61 | 0.67 | 0.75 | 0.84 | 0.94

since M; is orthogonal and A; is symmetric. Hence, from (13)

we deduce

e
9= g

and the proof is over.

¢ =0

As theoretically predicted by Proposition 3, the image recon-
structed from a projected feature ¢; turns out to be heavily cor-

rupted: this is evident from Figs. 2(c) and 3(c), which corre-
sponds to ¢1¢.

C. Robustness

In order to prove that our method is also robust against some
non malicious attacks (e.g., distortion due to basic operations
such as storage, transmission, format conversion), we provide
further experimental results. First, we repeat the previous wa-
termarking procedure by adding at each stage a white Gaussian
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TABLE IX
DETECTION PERFORMANCES FOR THE LENA IMAGE IN THE CASE OF JPEG80 COMPRESSION
[feature [ PSNR [ wi [ w2 [ w3 | wa [ ws [ we | wr | ws | wo [ wio |
%o - 0.11 0.03 | 0.03 [ 0.03 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02
b1 39.60 | 0.65 | 0.11 0.07 | 0.06 | 0.05 | 0.05 | 0.04 | 0.04 | 0.04 | 0.04
b2 38.78 0.62 | 090 | 0.10 | 0.08 | 0.06 | 0.05 | 0.05 | 0.04 | 0.04 | 0.04
@3 37.94 0.60 | 0.84 | 0.91 0.11 0.08 | 0.06 | 0.05 | 0.05 | 0.04 | 0.04
P4 37.25 0.58 | 0.80 | 0.87 | 0.93 | 0.10 | 0.07 | 0.06 | 0.05 | 0.05 | 0.04
@5 36.64 0.57 | 0.76 | 0.81 0.87 | 093 | 0.10 | 0.08 | 0.06 | 0.05 | 0.05
(ol 36.11 0.55 ] 072 | 0.77 | 0.82 | 0.87 | 0.93 | 0.11 0.08 | 0.06 | 0.05
b7 35.64 0.54 | 0.69 | 0.74 | 0.78 | 0.82 | 0.87 | 0.93 | 0.11 0.08 | 0.06
P8 35.21 053 | 0.67 | 0.71 | 0.75 | 0.78 | 0.83 | 0.87 | 0.93 | 0.11 | 0.07
o) 34.83 0.51 0.65 | 0.68 | 0.72 | 0.74 | 0.79 | 0.83 | 0.87 | 0.93 | 0.10
$10 3445 | 0.50 | 0.62 | 0.66 | 0.68 | 0.72 | 0.75 | 0.78 | 0.82 | 0.88 | 0.93
TABLE X

DETECTION PERFORMANCES FOR THE BABOON IMAGE IN THE CASE OF JPEG80 COMPRESSION

[ feature | PSNR | w1 | we | w3 [ ws

[ ws [ we [ wr | ws | wo | wio ]

Po - 0.09 | 0.02 | 0.02 | 0.02
¢1 30.64 | 0.58 | 0.09 | 0.06 | 0.05
b2 30.53 | 0.55 | 0.86 | 0.09 | 0.06
b3 30.40 | 0.52 | 0.76 | 0.88 | 0.09
Pa 30.27 | 0.49 | 0.68 | 0.77 | 0.89
b5 30.14 | 0.46 | 0.61 | 0.68 | 0.78
Pe 30.02 | 043 | 055 | 0.61 | 0.69
fold 29.90 | 0.40 | 0.50 | 0.55 | 0.61
Ps 29.78 | 0.38 | 046 | 0.50 | 0.54
b9 29.67 | 035 | 0.41 | 0.46 | 0.49
$10 29.56 | 0.33 | 0.38 | 0.42 | 0.44

0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02
0.05 | 0.04 | 0.04 | 0.03 | 0.03 | 0.03
0.05 | 0.05 | 0.04 | 0.04 | 0.03 | 0.03
0.06 | 0.05 | 0.05 | 0.04 | 0.04 | 0.04
0.09 | 0.06 | 0.05 | 0.05 | 0.04 | 0.04
0.88 | 0.09 | 0.06 | 0.05 | 0.05 | 0.04
0.78 | 0.89 | 0.09 | 0.06 | 0.05 | 0.05
0.68 | 0.77 | 0.88 | 0.09 | 0.06 | 0.05
0.60 | 0.68 | 0.77 | 0.89 | 0.09 | 0.06
0.53 | 0.60 | 0.68 | 0.78 | 0.88 | 0.09
0.48 | 0.53 | 0.59 | 0.68 | 0.77 | 0.88
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Fig. 5. Detection performance for (a) Lena and (b) Baboon carrying ten watermarks in the case of WGN addition with power ranging from 0 to 30 dB.

noise with a random power ranging between 0 and 15 dB, simu-
lating a generic source of distortion that affects the image during
its lifecycle. Indeed, in a scenario where a medical document
passes through various laboratories and physicians, it is realistic
to allow a different behavior of each user within a given toler-
ance. The corresponding sim values are reported in Tables III
and IV for Lena and Baboon, respectively, showing that our
method is able to distinguish watermarked from unwatermarked
features in all cases, even in the presence of a considerable
amount of noise (also after these distortions, the threshold & can
be chosen in a wide subrange of values: [0.12,0.40] C [0.12,1]).
Moreover, we address the worst case, corresponding to white
Gaussian noise addition with the same power 15 dB at each
stage, and we report the results for Lena and Baboon in Tables V

and VI, respectively. Secondly, we test the robustness of the
method against JPEG compression. Tables VII and VIII show
the detection performances by converting the image at each
stage with a random JPEG quality factor ranging between 80
and 100, while Tables IX and X show the results if the quality
factor is fixed to 80 (worst case). Notice that the JPEG com-
pression affects in particular the first watermark insertion, due
to the quantization. Thirdly, we provide some results testing the
final images carrying ten watermarks. We compute the sim value
(minimum, mean, and maximum among all watermarks aver-
aged over 100 experiments) in the presence of different image
degradation operators, in order to measure the robustness of the
method. In Fig. 5, the relevant data are plotted for the Lena
and Baboon images as a function of the WGN addition power
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Fig. 6. Detection performance for (a) Lena and (b) Baboon carrying ten watermarks in the case of uniform noise addition with power ranging from 0 to 30 dB.
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Fig. 7. Detection performance for (a) Lena and (b) Baboon carrying ten watermarks in the case of JPEG compression with quality factor ranging from 100 down

to 10.

ranging from 0 to 30 dB. Analogously, we report in Fig. 6 the
sim values in the case of uniform noise addition with power
ranging from O to 30 dB. In both cases, it is possible to see that
the detection still works in presence of powerful noise. Fig. 7
presents the experimental results corresponding to the Lena and
Baboon images JPEG compressed with quality factor ranging
from 100 down to 10: we stress that in all cases each watermark
can be correctly detected. Some differences can be noticed in
case of resizing. In Fig. 8, sim values are plotted as a function
of the scaling factor where images are resized using bicubic in-
terpolation. We observe that, due to its high frequencies spec-
trum, the Baboon image suffers under this manipulation and the
detection does not work for scaling factors smaller than 0.6. Fi-
nally, we measure the robustness of the detection after 5 x 5
Gaussian lowpass filtering with standard deviation ranging from
0.1 to 1.1: results for the Lena and Baboon images are reported
in Fig. 9.

IV. CONCLUSIONS

We have presented here a novel watermarking scheme, which
allows to insert and reliably detect multiple watermarks sequen-
tially embedded into a digital image, as it is required by chal-
lenging Digital Right Management applications such as confi-
dential data tracing and shared property handling.

The proposed method, based on elementary linear algebra,
is asymmetric, involving a private key for embedding and a
public key for detection. Its robustness against standard image
degradation operations (e.g., AWGN addition, JPEG compres-
sion, resizing, etc.) has been extensively tested and its security
under projection attack has also been proven even though the
envisaged applications refers to a collaborative environment, in
which malicious attacks are not a critical aspect.

Future work will be devoted to the design of a non-collab-
orative version of the proposed method, addressing non trivial
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Fig. 8. Detection performance for (a) Lena and (b) Baboon carrying ten watermarks in the case of scaling with a factor ranging from 1 down to 0.2.
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Fig. 9. Detection performance for (a) Lena and (b) Baboon carrying ten watermarks in the case of 5 X 5 Gaussian low-pass filtering with standard deviation
ranging from 0.1 to 1.1.

related problems such as the collusion attack and a security eval- need to prove that it holds also for m. By applying (14), we

uation from an information-theoretic point of view. obtain
m m—1
dim Vi | = dim VinV,
APPENDIX 101 Q
m—1
Theorem 1: Let V be a vector space of dimension 7 and for > dim ﬂ Vi | +dim(V,,) =7
1 =1,...,mlet V; be a vector subspace of V. We have i=1
m—1
m m > ZdimVi—(m—Q)r—{—dim(Vm)—T
dim ﬂV,; ZZdimVi—(m—l)r. i=1
1=1 =1 m
=Y dimV; = (m—1)r
Proof: By induction on m. For m = 2, we have to check i=1
that so the proof is over. [ |
Corollary 1: If dimV = dand dim V; = d— k — 1 for every
dim(V; N V3) > dim(Vy) + dim(Vs) — 7 (14) 1 <i<n-—1then
n—1
which is a direct consequence of the well-known Grassmann dim ﬂ Vil >d-(k+1)(n-1)
formula. Assume now that the claim holds for m — 1 and we ie1 N
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In particular, if (1) holds then

7 n—1
dim [ (Vi | >dim [ (Vi) 21
i=1 i=1
for every 7 < mn — 1.
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