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SHAPE MATCHING AND MODULI SPACES

CLAUDIO FONTANARI

Abstract. Shape matching represents a challenging problem in both
information engineering and computer science, exhibiting not only a
wide spectrum of multimedia applications, but also a deep relation with
conformal geometry. After reviewing the theoretical foundations and
the practical issues involved in this fashinating subject, we focus on two
state-of-the-art approaches relying respectively on local features (land-
mark points) and on global properties (conformal parameterizations).
Finally, we introduce the Teichmüller space Tg,n of n-pointed Riemann
surfaces of genus g into the realm of multimedia, showing that its beauti-
ful geometry provides a natural unified framework for three-dimensional
shape matching.

Admittedly, the purpose of the present contribution is not to prove any
new mathematical result, but rather to suggest an intriguing connection be-
tween the area of three-dimensional shape matching and Teichmüller spaces
of pointed Riemann surfaces. In order to address such an interdisciplinary
topic in a hopefully transparent way, first of all we offer to the non-specialist
reader a gentle introduction as well as an updated list of references to the
technical literature on shape matching.

As incisively summarized in the survey paper [1], shape matching deals
with transforming a shape and measuring the resemblance with another one
via some similarity measure, thus providing an essential ingredient in shape
retrieval and registration. By the way, there seems to be no universal and
standard definition of what a shape is (see [1] and [2]): [1] goes even back
to Plato’s Meno, where Socrates claims in ”terms employed in geometrical
problems” that ”figure is limit of solid” ([3]), while [2] relies on Kendall’s
definition of shape as ”all the geometrical information that remains when
location, scale, and rotational effects (Euclidean transformations) are filtered
out from an object” ([4]).

The authors of [2] also emphasize the progressive shift of interest in the
last decade from 2D (where shapes are just silhouettes) to 3D (where shapes
are embedded surfaces), motivated by spectacular advances in the field of
three-dimensional computer graphics. Unluckily, as remarked in [5], most
2D methods do not generalize directly to 3D model matching, thus inducing
a flurry of recent research to focus on the specific problem of 3D shape
retrieval. It is worth stressing that, unlike text documents, 3D models do
not allow the simplest form of searching by keyword and it is now a rather
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common belief (see for instance [6]) that an efficient 3D shape retrieval
system should take into account the principles of the human visual system
as disclosed by cognitive neurosciences.

Before turning to the description of a couple of current approaches moving
along these lines, we wish to mention at least another challenging application
of three-dimensional shape matching. The so-called computational anatomy
arises in medical imaging, in particular neuroimaging, and according to [7]
it involves comparison of the shape of anatomic structures between two
individuals, and development of a statistical theory which allows shape to
be studied across populations.

A main component in this analysis, after obtaining the individual model
representations for the subjects being studied, is the establishment of corre-
spondence of anatomically homologous substructures between the subjects.
For example, if we are interested in comparing shape differences between
faces of two individuals in images, we would like to ensure that the coor-
dinates of the left eye in one image correspond to the left eye in the other
image. On a finer scale, we would like to ensure that the left corner of the
left eye corresponds appropriately ([7]). More generally, following [8], we
will define the landmarks of an object as the points of interest of the object
that have important shape attributes. Examples of landmarks are corners,
holes, protrusions, and high curvature points.

Landmark-based shape recognition is motivated by such a concept of dom-
inant points. It uses landmarks as shape features to recognize objects in a
scene or to establish correspondences between objects, by extending in an
optimal way over the entire structure the correspondence at a finite sub-
set. This last process is called landmark matching ([7]) and originates from
the viewpoint of the human visual system, which suggests that some dom-
inant points along an object contour are rich in information content and
are sufficient to characterize the shape of the object (see [8] and the ref-
erences therein). In particular, the paper [7] presents a methodology and
algorithm for generating diffeomorphisms of the sphere onto itself, given the
displacement of a finite set of template landmarks.

The restriction to a spherical domain is quite natural from the point of
view of brain imaging, where a basic assumption is that the topology of the
brain surface is the same as that of a crumpled sheet and, in particular, does
not have any holes or self intersections ([9]). It then follows by Riemann
Uniformization (see for instance [10], Theorem 4.4.1 (iii)) that there exists a
conformal diffeomorphism of such a surface of genus zero onto a shere. More
generally, every orientable compact embedded surface can be made into a
Riemann surface with conformal structure (see for instance [11], Theorem
IV.1.1).

As pointed out in [12] (see also references therein), the visual field is
represented in the brain by mappings which are, at least approximately,
conformal. Thus, to simulate the imaging properties of the human visual
system conformal image mapping is a necessary technique. Moreover, beside
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its theoretical soundness, the application of conformal geometry to the 3D
shape classification problem presents several practical advantages: according
to [13], the conformal structures are independent of triangulation, insensitive
to resolution, and robust to noises.

As far as the genus zero case is concerned, explicit conformal flattenings
can be obtained by numerically solving the Laplace-Beltrami equation (the
heart of this procedure consists in a finite element reduction to a system
of linear equations, see [9] and [14]) or by deforming a homeomorphism in
order to minimize the harmonic energy (both convergence of the algorithm
and uniqueness of the solution are ensured by imposing further constraints,
see [15] and [16]).

A natural generalization involves quasi-conformal mappings, which do not
distort angles arbitrarily (as it is well-known, conformal mappings are angle-
preserving): in particular, the least-squares conformal mappings (introduced
in [17] via a least-squares approximation of the Cauchy-Riemann equations
and in [16] through a discrete version of the harmonic energy minimization
method) provide a natural solution to 3D nonrigid surface alignment and
stitching ([16]), at least in genus zero.

In higher genus, a parameterization method based on Riemann surface
structure has been recently developed in a series of papers by Shing-Tung
Yau and collaborators (see in particular [18]). The idea is to segment the
surface according to its conformal structure, parameterize the patching using
a holomorphic one form, and finally glue them together via harmonic maps
([19]). The resulting surface subdivision and the parameterizations of the
components turn out to be intrinsic and stable, and an explicit method for
finding optimal global conformal parameterizations of arbitrary surfaces is
described in [20].

As far as we know, this is by now the end of the story; however, we cannot
resist to underline that our (perhaps tendentious) survey of the subject has
presented three-dimensional shape matching as a classification problem for
Riemann surfaces carrying (land)marked points: from our point of view,
time has finally come to introduce moduli spaces into the picture!

Indeed, as remarked in [2], most shape representation schemes convert
a shape into a feature vector, which is represented as a point of a feature
space in a database. However, as stressed in [21] with David Mumford as
a coauthor, there is no natural linear structure on the set of shapes, and
therefore it is undesirable to simply map this set to a linear feature space.

In the same paper, entirely devoted to the 2D case, the infinite dimen-
sional space of shapes (rigorously defined as simple closed curves in the
plane up to translations and scaling) is equipped with the Weil-Petersson
norm via Teichmüller theory. In particular, by taking the integral of the
Weil-Petersson norm along a path as the lenght of this path, a geodesic is
defined as the shortest path connecting the two shapes and its lenght yields
a global metric on the space of shapes. Moreover, the shapes along that
path represent a natural morphing of one into the other. By the way, this
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sounds as a wonderful but delicate fact: since the Weil-Petersson norm has
negative curvature, it appears very likely to be true that there is a unique
geodesic joining any two shapes, but (as the authors admit in footnote 9 of
the journal version [22]) because the space is infinite dimensional this claim
requires proof and this aspect of the metric does not seem to have been
discussed in the literature.

What is really amazing is that in the harder 3D case this embarassing
point magically disappears! Indeed, following [23], let us fix nonnegative
integers g and n such that 2g−2+n > 0, a compact connected oriented ref-
erence surface Sg of genus g and a sequence of n distinct points (x1, . . . , xn)
on Sg. By definition, the Teichmüller space Tg,n is the space of conformal
structures on Sg up to isotopies that fix {x1, . . . , xn} pointwise. It is, in a
natural way, a complex manifold of dimension 3g − 3 + n.

The idea of classifying 3D shapes according to their conformal structure
goes back to [13], where the general principle is stated that in nature it is
highly unlikely for different shapes to share the same conformal structure.
Of course by Riemann Uniformization this fails in genus g = 0, but the
choice of a suitable number n >> 0 of landmark points allows to address
in a uniform way also such an exceptional case. Indeed, we believe that
the moduli space Tg,n can provide a solid mathematical framework to three-
dimensional shape matching, by supporting a unified geometric theory of
landmark matching and conformal parameterizations.

Furthermore, the nice properties of the Weil-Petersson metric on this
space allow a fully satisfactory solution to the problem raised above in 2D:
as proved by Scott Wolpert in [24], every pair of points is joined by a unique
geodesic. More precisely, geodesics are uniquely lenght minimizing and thus
the Weil-Petersson distance between points is measured along the unique
geodesic connecting them ([24], Corollary 5.9).

All the above undoubtedly points towards a potentially fruitful inter-
action between two such apparently unrelated fields as moduli spaces and
information technologies. We hope to see deeper into this in the next future.

References

[1] R. C. Veltkamp: Shape matching: similarity measures and algorithms. SMI 2001
International Conference on Shape Modeling and Applications, 7–11 May 2001, 188–
197.

[2] N. Iyer, S. Jayanti, K. Lou, Y. Kalyanaraman, K. Ramani: Three-dimensional shape
searching: state-of-the art review and future trends. Elsevier Computer-Aided Design
37 (2005), 509–530.

[3] Plato: Meno. W. Lamb (ed.): Plato in Twelve Volumes. Vol. 3, Harvard University
Press, 1967.

[4] D. G. Kendall: The diffusion of shape. Adv. Appl. Prob. 9 (1977), 428–430.
[5] J.W.H. Tangelder and R.C. Veltkamp: A survey of content based 3D shape retrieval

methods. Shape Modeling Applications, 2004, 145–156.
[6] H.Y. Sean Lin, J. C. Lin, H.-Y. Mark Liao: 3D shape retrieval using cognitive

psychology-based principles. Seventh IEEE International Symposium on Multimedia,
12–14 Dec. 2005, 8 pp.



SHAPE MATCHING AND MODULI SPACES 5

[7] J. Glaunès, M. Vaillant, M. I. Miller: Landmark matching via large deformation dif-
feomorphisms on the sphere. Journal of Mathematical Imaging and Vision 20 (2004),
179–200.

[8] N. Ansari and E.J. Delp: Partial shape recognition: a landmark-based approach.
IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 12, Issue
5, May 1990, 470–483.

[9] S. Angenent, S. Haker, A. Tannenbaum, R. Kikinis: On the Laplace-Beltrami opera-
tor and brain surface flattening. IEEE Transactions on Medical Imaging, Volume 18,
Issue 8, Aug. 1999, 700–711.

[10] J. Jost: Compact Riemann surfaces. An introduction to contemporary mathematics.
Translated from the German manuscript by R. R. Simha. Universitext. Springer-
Verlag, Berlin, 1997. xiv+291 pp.

[11] O. Lehto: Univalent functions and Teichmüller spaces. Graduate Texts in Mathemat-
ics, 109. Springer-Verlag, New York, 1987. xii+257 pp.

[12] C. Frederick and E. L. Schwartz: Conformal image warping. IEEE Computer Graph-
ics and Applications, Volume 10, Issue 2, March 1990, 54–61.

[13] X. Gu and S.-T. Yau: Surface classification using conformal structures. Ninth IEEE
International Conference on Computer Vision, 2003, 701–708 (Vol.1)

[14] S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro, M. Halle: Conformal
surface parameterization for texture mapping. IEEE Transactions on Visualization
and Computer Graphics, Volume 6, Issue 2, April-June 2000, 181–189.

[15] X. Gu and S.-T. Yau: Computing conformal structures of surfaces. Communications
in Information and Systems 2 (2002), 121–146.

[16] X. Gu, Y. Wang, T. F. Chan, P.M. Thompson, S.-T. Yau: Genus zero surface con-
formal mapping and its application to brain surface mapping. IEEE Transactions on
Medical Imaging, Volume 23, Issue 8, Aug. 2004, 949–958.
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