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Chapter 1

Introduction

The content of these lecture notes covers the second part1 of the lectures of a graduate course in
Modern Mathematical Physics at the University of Trento. The course has two versions, one is
geometric and the other is analytic. These lecture notes only concern the geometric version of
the course. The analytic version regarding applications to linear functional analysis to quantum
and quantum relativistic theories is covered by my books [Morettia], [Morettib] and the chapter
[KhMo15].

The idea of this second part is to present into a concise but rigorous fashion some of the
most important notions of differential geometry and use them to formulate an introduction to
the General Theory of Relativity.

1The first part apperas in [Mor20].
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Chapter 2

Topological and smooth manifolds

This introductory chapter introduces the fundamental building block of these lectures, the notion
of smooth manifold. An un introduction is necessary regarding some topological structures.

2.1 Some topology

We start with a very quick recap on general topology and next we pass to the notion of topological
manifold.

2.1.1 Basic concepts and results of general topology

Let us summarize several basic definitions and results of general topology. The proofs of the
various statements can be found in every textbook of general topology or also in textbooks on
geometry [Seri90].

0. (Topological spaces) We remind the reader that a topological space is a pair (X,T)
where X is a set and T is a class of subsets of X, called topology, which satisfies the following
three properties.
(i) X,∅ ∈ T.
(ii) If {Xi}i∈I ⊂ T, then ∪i∈IXi ∈ T (also if I is uncountable).
(iii) If X1, . . . , Xn ∈ T, then ∩i=1,...,nXi ∈ T.
As an example, consider any set X endowed with the class P(X), i.e., the class of all the subsets
of X. That is a very simple topology which can be defined on each set, e.g. Rn.

1. (Open and closed sets) If (X,T) is a topological space, the elements of T are said to be
open sets. A subset K of X is said to be closed if X \ K is open. It is a trivial task to
show that the (also uncountable) intersection closed sets is a closed set. The closure U of a set
U ⊂ X is the intersection of all the closed sets K ⊂ X with U ⊂ K.

2. (Neighborhoods and relata) If (X,T) is a topological space and p ∈ X, a (open) neigh-
borhood of p is an open set U ⊂ X with p ∈ U . q ∈ X is an accumulation point of A ⊂ X if
for every neighborhood U 3 q, it holds U ∩A 6= ∅. It turns out that C ⊂ X is closed if and only
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if it contains its accumulation points. The union of the set of the accumulation points of A and
A coincides with A. The interior Int(A) of A ⊂ X is made of the points p ∈ A such that there
is a neighborhood U 3 p with U ⊂ A. The exterior Ext(A) of A ⊂ X is made of the points
p ∈ X such that there is a neighborhood U 3 p with U ⊂ X \ A. The boundary or fronteer
∂A of a set A ⊂ X is made of the points x ∈ X which are accumulation points for both Int(A)
and Ext(A). It turns out that C ⊂ X is closed if and only if ∂C ⊂ C. Finally A = A ∪ ∂A.

3. (Basis of a topology) If (X,T) is a topological space, a family B ⊂ T is a topological basis
if every A ∈ T is the union of elements of B.

4. (Support of a function) If X is a topological space and f : X → R is any function, the
support of f , suppf , is the closure of the set of the points x ∈ X with f(x) 6= 0.

5. (Continuous functions) If (X,T) and (Y,U) are topological spaces, a mapping f : X → Y
is said to be continuous if f−1(T ) is open for each T ∈ U. The composition of continuous
functions is a continuous function. An injective, surjective and continuous mapping f : X → Y ,
whose inverse mapping is also continuous, is called homeomorphism from X to Y . If there is
a homeomorphism from X to Y these topological spaces are said to be homeomorphic. There
are properties of topological spaces and their subsets which are preserved under the action of
homeomorphisms. These properties are called topological properties. As a simple example
notice that if the topological spaces X and Y are homeomorphic under the homeomorphism
h : X → Y , U ⊂ X is either open or closed if and only if h(U) ⊂ Y is such.

6. (Open and closed functions) If (X,T) and (Y,U) are topological spaces, a mapping f :
X → Y is said to be open if f(A) ∈ U for each A ∈ T. It is called closed if f(C) is a closed se
in Y for every closed set C ⊂ X.

7. (Second countability and Lindelöf ’s lemma) A topological space which admits a countable
basis of its topology is said to be second countable. Lindelöf ’s lemma proves that If (X,T) is
second countable, from any covering of X made of open sets it is possible to extract a countable
subcovering. It is clear that second countability is a topological property.

8. (Generated topology) It is a trivial task to show that, if {Ti}i∈T is a class of topologies on
the set X, ∩i∈ITi is a topology on X, too.
If A is a class of subsets of X 6= ∅ and CA is the class of topologies T on X with A ⊂ T,
TA := ∩T⊂CA

T is called the topology generated by A. Notice that CA 6= ∅ because the set
of parts of X, P(X), is a topology and includes A.
It is simply proved that if A = {Bi}i∈I is a class of subsets of X 6= ∅, A is a basis of the topology
on X generated by A itself if and only if Bi ∩Bj = ∪k∈KBk for every choice of i ∈ I, i′ ∈ I ′ and
a corresponding K ⊂ I.

9. (Induced topology) If A ⊂ X, where (X,T) is a topological space, the pair (A,TA) where,
TA := {U ∩ A | U ∈ T}, defines a topology on A which is called the topology induced on
A by X. The inclusion map, that is the map, i : A ↪→ X, which sends every a viewed as an
element of A into the same a viewed as an element of X, is continuous with respect to that
topology. Moreover, if f : X → Y is continuous, X,Y being topological spaces, f �A: A→ f(A)
is continuous with respect to the induced topologies on A and f(A) by X and Y respectively,
for every subset A ⊂ X.
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10. ((finite) Product topology) If (Xi,Ti), for i = 1, . . . , N (finite) are topological spaces,
×Ni=1Xi can be endowed with the topology generated by all possible sets ×Ni=1Ai with Ai ∈ Ti.
This toplogy is called the product topology and the products Ai ∈ Ti form a basis of that
topology. With this definition Ki ∈ Ti is compact (see below) if every Ki ⊂ Xi are compact.
Furthermore the surjective maps called canonical projections πk : ×Ni=1Xi 3 (x1, . . . , xN ) 7→
xk ∈ Xk are open functions.

11. (Continuity at a point) If X and Y are topological spaces and x ∈ X, f : X → Y is said
to be continuous in x, if for every neighborhood of f(x), V ⊂ Y , there is a neighborhood of
x, U ⊂ X, such that f(U) ⊂ V . It is simply proved that f : X → Y as above is continuous if
and only if it is continuous in every point of X.

12. (Connected spaces) A topological space (X,T) is said to be connected if there are no
open sets A,B 6= ∅ with A ∩ B = ∅ and A ∪ B = X. A subset C ⊂ X is connected if it is a
connected topological space when equipped with the topology induced by T. Finally, it turns
out that if f : X → Y is continuous and the topological space X is connected, then f(Y ) is a
connected topological space when equipped with the topology induced by the topological space
Y . In particular, connectedness is a topological property.

13. (Connected components) On a topological space (X,T), the following equivalence relation
can be defined: x ∼ x′ if and only if there is a connected subset of X including both x and
x′. In this way X turns out to be decomposed as the disjoint union of the equivalence classes
generated by ∼. Those maximal connected subsets are called the connected components of
X. Each connected component is always closed and it is also open when the class of connected
components is finite.

14. (Path connection) A topological space (X,T) is said to be connected by paths if, for
each pair p, q ∈ X there is a continuous path γ : [0, 1] → X such that γ(0) = p, γ(1) = q. The
definition can be extended to subset of X considered as topological spaces with respect to the
induced topology. It turns out that a topological space connected by paths is connected. A
connected topological space whose every point admits an open connected by path neighborhood
is, in turn, connected by path.
Connectedness by paths is a topological property.

15. (Compact sets 1) If Y is any set in a topological space X, a covering of Y is a class
{Xi}i∈I , Xi ⊂ X for all i ∈ I, such that Y ⊂ ∪i∈IXi. A topological space (X,T) is said to
be compact if from each covering of X made of open sets, {Xi}i∈I , it is possible to extract
a covering {Xj}j∈J⊂I of X with J finite. A subset K of a topological space X is said to be
compact if it is compact as a topological space when endowed with the topology induced by X
(this is equivalent to say that K ⊂ X is compact whenever every covering of K made of open
sets of the topology of X admits a finite subcovering).

16. (Compact sets 2) If (X,T) and (Y, S) are topological spaces, the former is compact
and φ : X → Y is continuous, then Y is compact. In particular compactness is a topological
property.
Each closed subset of a compact set is compact. Similarly, if K is a compact set in a Hausdorff
topological space (see below), K is closed. Each compact set K is sequentially compact,
i.e., each sequence S = {pk}k∈N ⊂ K admits some accumulation point s ∈ K, (i.e, each
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neighborhood of s contains some element of S different from s). If X is a topological metric
space (see below), sequentially compactness and compactness are equivalent.

17. (Hausdorff property) A topological space (X,T) is said to be Hausdorff if each pair
(p, q) ∈ X×X admits a pair of neighborhoods Up, Uq with p ∈ Up, q ∈ Uq and Up∩Uq = ∅. If X
is Hausdorff and x ∈ X is a limit of the sequence {xn}n∈N ⊂ X, this limit is unique. Hausdorff
property is a topological property.

18. (Metric spaces) A semi metric space is a set X endowed with a semidistance, that is
d : X ×X → [0,+∞), with d(x, y) = d(y, x) and d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X. If
d(x, y) = 0 implies x = y the semidistance is called distance and the semi metric space is called
metric space. Either in semi metric space or metric spaces, the open metric balls are defined
as Bs(y) := {z ∈ Rn | d(z, y) < s}. (X, d) admits a preferred topology called metric topology
which is defined by saying that the open sets are the union of metric balls. Any metric topology
is a Hausdorff topology. A set G ⊂ X is said to be bounded if Bs(y) ⊂ G for some y ∈ X
and s ∈ [0,+∞). A sequence {xn}n∈N ⊂ X converges to y ∈ X if limn→+∞ d(xn, y) = 0. A
sequence is convergent if it converges to some point of the metric space.
It is very simple to show that a mapping f : A → M2, where A ⊂ M1 and M1, M2 are
semimetric spaces endowed with the metric topology, is continuous with respect to the usual
”ε−δ” definition if and only f is continuous with respect to the general definition of given above,
considering A a topological space equipped with the metric topology induced by M1.

19. (Completeness of metric spaces) A sequence {xn}n∈N ⊂ X in a metric space (X, d) is
said to be Cauchy if for every ε > 0 there is Nε > 0 such that d(xn, xm) < ε if n, n > Nε. Every
convergent sequence is Cauchy. A metric space such that every Cauchy sequence is convergent
is said to be complete. Completeness is not a topological property.

20. (Normed spaces) If X is a vector space with field K = C or R, a semidistance and thus
a topology can be induced by a seminorm. A semi norm on X is a mapping p : X → [0,+∞)
such that p(av) = |a|p(v) for all a ∈ K, v ∈ X and p(u + v) ≤ p(u) + p(v) for all u, v ∈ X. If
p is a seminorm on V , d(u, v) := p(u − v) is the semidistance induced by p. A seminorm p
such that p(v) = 0 implies v = 0 is called norm. In this case the semidistance induced by p is
a distance.

21. (Completeness and topological equivalence of finite-dimensional normed spaces) It turns
out that if a normed space (X, p) (on R or C) has finite dimension, then it is complete as a metric
space with the distance d(x, y) := p(x− y) and all norms on X produce the same topology.

2.1.2 The topology of Rn

A few words about the usual topology of the real vector space Rn are in order [Seri90]. That
topology, also called the Euclidean topology, is a metric topology induced by the usual
distance

d(x, y) =

Ã
n∑
i=1

(xi − yi)2
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where x = (x1, . . . , xn) and y = (y1, . . . , yn) are points of Rn. That distance can be induced
by a norm ||x|| =

√∑n
i=1(xi)2. As a consequence, an open set with respect to that topology

is any set A ⊂ Rn such that either A = ∅ or each x ∈ A is contained in a open metric ball
Br(x) ⊂ A (if s > 0, y ∈ Rn, Bs(y) := {z ∈ Rn | ||z − y|| < s}). The open balls with arbitrary
center and radius are a basis of the Euclidean topology. A relevant property of the Euclidean
topology of Rn is that it admits a countable basis i.e., it is second countable. To prove that it
is sufficient to consider the open balls with rational radius and center with rational coordinates.
It turns out that any open set A of Rn (with the Euclidean topology) is connected by paths if
it is open and connected. It turns out that a set K of Rn endowed with the Euclidean topology
is compact if and only if K is closed and bounded. As a metric space Rn is complete since it is
finite dimensional and every norm on it produces the same topology.

Exercises 2.1.
1. Show that Rn endowed with the Euclidean topology is Hausdorff.
2. Show that the open balls in Rn with rational radius and center with rational coordinates

define a countable basis of the Euclidean topology.
(Hint. Show that the considered class of open balls is countable because there is a one-to-one

mapping from that class to Qn×Q. Then consider any open set U ∈ Rn. For each x ∈ U there is
an open ball Brx(x) ⊂ U . Since Q is dense in R, one may change the center x to x′ with rational
coordinates and the radius rr to r′x′ which is rational, in order to preserve x ∈ Cx := Br′x′ (x

′).
Then show that ∪xCx = U .)

3. Consider the subset of R2, C := {(x, sin 1
x) | x ∈ (0, 1]} ∪ {(x, y) | x = 0, y ∈ R}. Is C

path connected? Is C connected?
4. Show that the disk {(x, y) ∈ R2 | x2 + y2 < 1} is homeomorphic to R2. Generalize the

result to any open ball (with center and radius arbitrarily given) in Rn. (Hint. Consider the
mapping (x, y) 7→ (x/(1−

√
x2 + y2) , y/(1−

√
x2 + y2)). The generalization is straightforward).

5. Let f : M → N be a continuous bijective mapping and M , N topological spaces, show
that f is a homeomorphism if N is Hausdorff and M is compact.

(Hint. Start by showing that a mapping F : X → Y is continuous if and only if for every
closed set K ⊂ Y , F−1(K) is closed. Then prove that f−1 is continuous using the properties of
compact sets in Hausdorff spaces.)

6. Consider two topological spaces X,Y and their product X×Y equipped with the product
topology. Prove that, for every x ∈ X the map Y 3 y 7→ (x, y) ∈ Lx := {(x, z)|z ∈ Y } is an
homeomorphism if Lx is equipped with the topology induced from X × Y .

2.1.3 Topological manifolds

Definition 2.2. (Topological Manifold.) A topological space (X,T) is called topological
manifold of dimension n if X is Hausdorff, second countable and is locally homeomorphic to
Rn, that is, for every p ∈ X there is a neighborhood Up 3 p and a homeomorphism φ : Up → Vp
where Vp ⊂ Rn is an open set (equipped with the topology induced by Rn). �
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Remark 2.3.
(1) The homeomorphism φ may have co-domain given by Rn itself.
(2) We have assumed that n is fixed, anyway one may consider a Hausdorff connected topological
space X with a countable basis and such that, for each x ∈ X there is a homeomorphism defined
in a neighborhood of x which maps that neighborhood into Rn were n may depend on the
neighborhood and the point x. An important theorem due to Whitehead shows that, actually, n
must be a constant if X is connected. This result is usually stated by saying that the dimension
of a topological manifold is a topological invariant.
(3) The Hausdorff requirement could seem redundant since X is locally homeomorphic to Rn
which is Hausdorff. The following example shows that this is not the case. Consider the set
X := R ∪ {p0} where p0 6∈ R. Define a topology on X, T, given by all of the sets which are
union of elements of E ∪ Tp0 , where E is the usual Euclidean topology of R and U ∈ Tp0 iff
U = (V0 \ {0}) ∪ {p0}, V0 being any neighborhood of 0 in E. The reader should show that T

is a topology. It is obvious that (X,T) is not Hausdorff since there are no open sets U, V ∈ T

with U ∩ V = 0 and 0 ∈ U , p0 ∈ V . Nevertheless, each point x ∈ X admits a neighborhood
which is homeomorphic to R: R = {p0} ∪ (R \ {0}) is homeomorphic to R itself and is an open
neighborhood of p0. It is trivial to show that there are sequences in X which admit two different
limits.
(4) The simplest example of topological manifold is Rn itself. An apparently less trivial example
is an open ball (with finite radius) of Rn. However it is possible to show (see exercise 2.1.4)
that an open ball (with finite radius) of Rn is homeomorphic to Rn itself so this example is
rather trivial anyway. One might wonder if there are natural mathematical objects which are
topological manifolds with dimension n but are not Rn itself or homeomorphic to Rn itself. A
simple example is a sphere S2 ⊂ R3. S2 := {(x, y, x) ∈ R3 | x2 + y2 + z2 = 1}. S2 is a topological
space equipped with the topology induced by R3 itself. It is obvious that S2 is Hausdorff and
has a countable basis (the reader should show it). Notice that S2 is not homeomorphic to R2

because S2 is compact (being closed and bounded in R3) and R2 is not compact since it is
not bounded. S2 is a topological manifold of dimension 2 with local homeomorphisms defined
as follows. Consider p ∈ S2 and let Πp be the plane tangent at S2 in p equipped with the
topology induced by R3. With that topology Πp is homeomorphic to R2 (the reader should
prove it). Let φ be the orthogonal projection of S2 on Πp. It is quite simply proved that φ is
continuous with respect to the considered topologies and φ is bijective with continuous inverse
when restricted to the open semi-sphere which contains p as the south pole. Such a restriction
defines a homeomorphism from a neighborhood of p to an open disk of Πp (that is R2). The
same procedure can be used to define local homeomorphisms referred to neighborhoods of each
point of S2. �
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2.2 Differentiable manifolds

If f : Rn → Rn it is obvious the meaning of the statement ”f is differentiable”. However, in
mathematics and in physics there exist objects which look like Rn but are not Rn itself (e.g. the
sphere S2 considered above), and it is useful to consider real valued mappingsf defined on these
objects. What about the meaning of ”f is differentiable” in these cases? A simple example is
given, in mechanics, by the configuration space of a material point which is constrained to belong
to a circle S1. S1 is a topological manifold. There are functions defined on S1, for instance the
mechanical energy of the point, which are assumed to be ”differentiable functions”. What does
it mean? An answer can be given by a suitable definition of a differentiable manifold. To that
end we need some preliminary definitions.

2.2.1 Local charts and atlas

Definition 2.4. (k-compatible local charts.) Consider a topological manifold M with
dimension n. A local chart or local coordinate system on M is pair (V, φ) where V ⊂ M
is open, V 6= ∅, and φ : p 7→ (x1(p), . . . , xn(p)) is a homeomorphism from U to the open set
φ(U) ⊂ Rn. Moreover:

(a) local chart (V, φ) is called global chart if V = M ;

(b) two local charts (V, φ), (U,ψ) are said to be Ck-compatible, k ∈ (N\{0})∪{∞}, if either
U∩V = ∅ or, both φ◦ψ−1 : ψ(U∩V )→ Rn and ψ◦φ−1 : φ(U∩V )→ Rn are of class Ck. �

The given definition allow us to define a differentiable atlas of order k ∈ (N \ {0}) ∪ {∞}.

Definition 2.5. (Atlas on a manifold.) Consider a topological manifold M with dimension
n. A differentiable atlas of order k ∈ (N \ {0}) ∪ {∞} on M is a class of local charts
A = {(Ui, φi)}i∈I such that :

(a) A covers M , i.e., M = ∪i∈IUi,

(b) the charts of A are pairwise Ck-compatible. �

Remark 2.6. An atlas of order k ∈ N\{0} is an atlas of order k−1 too, provided k−1 ∈ N\{0}.
An atlas of order ∞ is an atlas of all orders. �

2.2.2 Differentiable structures

Finally, we give the definition of differentiable structure and differentiable manifold of order
k ∈ (N \ {0}) ∪ {∞}.

Definition 2.7. (Ck-differentiable structure.) Consider a topological manifold M with
dimension n, a differentiable structure of order k ∈ (N \ {0}) ∪ {∞} on M is an atlas M of
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Figure 2.1: Two local charts on the differentiable manifold M

order k which is maximal with respect to the Ck-compatibility requirement. In other words if
(U, φ) 6∈M is a local chart on M , (U, φ) is not Ck-compatible with some local chart of M. �

Definition 2.8. (Ck-differentiable manifold.) A topological manifold of dimension n
equipped with a differentiable structure of order k ∈ (N \ {0}) ∪ {∞} is said to be a differen-
tiable manifold of dimension n and order k. A smooth manifolds is differentiable manifolds
of order C∞. �

We henceforth denote the dimension of a manifold M with the symbol dim(M). We leave to
the reader the proof of the following proposition.

Proposition 2.9. Referring to definition 2.7, if the local charts (U, φ) and (V, ψ) are sepa-
rately Ck compatible with all the charts of a Ck atlas, then (U, φ) and (V, ψ) are Ck compatible.

This result implies that given a Ck atlas A on a topological manifold M , there is exactly one
Ck-differentiable structure MA such that A ⊂ MA. This is the differentiable structure which
is called generated by A. MA is nothing but the union of A with the class of all of the local
charts which are are compatible with every chart of A.

Remark 2.10. If M is a differentiable manifold with differentiable structure M and U ⊂M
is open, it is possible to define on U a differentiable structure M(U) induced by M of the same
order and dimension. This happens when equipping U with the topology induced by M and, for
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every local chart (V, φ) ∈M with V ∩U 6= ∅, defining a corresponding local chart (U ∩V, φ|U∩V )
on U . By definition, M(U) is the differentiable structure induced by the atlas constructed in
that way on U . �

Examples 2.11.
(1) Rn has a natural structure of smooth manifold which is connected and path connected. The
differentiable structure is that generated by the atlas containing the global chart given by the
canonical coordinate system, i.e., the components of each vector with respect to the canonical
basis.
(2) Consider a real n-dimensional affine space, An. This is a triple (An, V,~.) where An is a
set whose elements are called points, V is a real n-dimensional vector space and ~. : An×An → V
is a mapping such that the two following requirements are fulfilled.

(i) For each pair P ∈ An, v ∈ V there is a unique point Q ∈ An such that
−−→
PQ = v.

(ii)
−−→
PQ+

−−→
QR =

−→
PR for all P,Q,R ∈ An.

−−→
PQ is called vector with initial point P and final point Q. An affine space equipped with a
(pseudo) scalar product (defined on the vector space) is called (pseudo) Euclidean space.
Each affine space is a connected and path-connected topological manifold with a natural C∞

differential structure. These structures are built up by considering the class of natural global
coordinate systems, the Cartesian coordinate systems, obtained by fixing a point O ∈ An
and a vector basis for the vectors with initial point O. Varying P ∈ An, the components of each

vector
−−→
OP with respect to the chosen basis, define a bijective mapping f : An → Rn and the

Euclidean topology of Rn induces a topology on An by defining the open sets of An as the sets
B = f−1(D) where D ⊂ Rn is open. That topology does not depend on the choice of O and the
basis in V and makes the affine space a topological n-dimensional manifold. Notice also that
each mapping f defined above gives rise to a C∞ atlas. Moreover, if g : An → Rn is another
mapping defined as above with a different choice of O and the basis in V , f ◦ g−1 : Rn → Rn
and g ◦ f−1 : Rn → Rn are C∞ because they are linear non homogeneous transformations.
Therefore, there is a C∞ atlas containing all of the Cartesian coordinate systems defined by
different choices of origin O and basis in V . The C∞-differentiable structure generated by that
atlas naturally makes the affine space a n-dimensional C∞-differentiable manifold.
(3) The sphere S2 defined above gets a C∞-differentiable structure as follows. Considering all
of local homeomorphisms defined in remark (4) above, they turn out to be C∞ compatible and
define a C∞ atlas on S2. That atlas generates a C∞-differentiable structure on Sn. (Actually
it is possible to show that the obtained differentiable structure is the only one compatible with
the natural differentiable structure of R3, when one requires that S2 is an embedded submanifold
of R3.)
(4) A classical theorem by Whitney shows that if a topological manifold admits a C1-differentiable
structure, then it admits a C∞-differentiable structure which is contained in the former. More-
over a topological n-dimensional manifold may admit none or several different and not diffeo-
morphic (see below) C∞-differentiable structures. E.g., it happens for n = 4. �
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Few words about the notion of orientation are in order.

Definition 2.12. Let M be a Ck manifold with k ≥ 1.

(a) An atlas A = {(Ui, φi)}i∈I on M is called oriented if the determinant of the Jacobian
matrix of φi ◦ φ−1

j is everywhere positive for all i, j ∈ I.

(b) M is said to be orientable if it admits an oriented atlas.

(c) A maximal oriented atlas on M (supposed to be orientable) is called orientation and an
oriented manifold is an orientable manifold with the choice of a preferred orientation. �

Remark 2.13.
(1) It is easy to prove that an orientable manifold M admits orientations as a consequence of
the Zorn lemma. If M is also connected, then it admits exactly two orientations.
(2) An example of a manifold which is not orientable is the Möbius strip we shall introduce in
(1) Examples 3.30. �

To conclude, we introduce a useful technical notion. Given two differentiable manifolds M and
N of the same order k, we can construct a third one of the order k, on their Cartesian product
M ×N .

Definition 2.14. (Product manifold.) Let M and N be two differentiable manifolds of
order k. The product (differentiable) manifold M×N is the differentiable manifold of order
k and dimension dim(M) + dim(N) constructed on the Cartesian product M × N , equipped
with the product topology and whose differentiable structure is induced by the following atlas.

A(M ×N) := {(U × V, φ⊕ ψ) | (U, φ) ∈ A(M) , (U, φ) ∈ A(N)}

where A(M) and A(N) are the differentiable structures on M and N , respectively, and

φ⊕ ψ : M ×N 3 (p, q) 7→ (φ(p), ψ(q)) ∈ Rdim(M)+dim(N)

�

We develop the theory in the C∞ case only. However, several definitions and results may be
generalized to the Ck case with 1 ≤ k <∞.

Exercises 2.15.
1. Show that the group SO(3) is a three-dimensional smooth manifold.
2. Prove that the cylinder C := {(x, y, z) | z ∈ R , x2 + y2 = 1} equipped with the natural

C∞-differentiable structure constructed similarly to (3) Examples 2.11 can also be constructed
as the product manifold of R and a circle in R2 equipped with the natural smooth differentiable
structure constructed similarly to (3) Examples 2.11.
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2.2.3 Differentiable functions and diffeomorphisms

Equipped with the given definitions, we can state the definition of a differentiable function.

Definition 2.16. (Differentiable functions and curves.) Consider a continuous mapping
f : M → N , where M and N are smooth manifolds with dimension m and n.

(a) f is said to be C∞-differentiable or smooth at p ∈M if the function:

ψ ◦ f ◦ φ−1 : φ(U)→ Rn ,

is differentiable, for some local charts (V, ψ), (U, φ) on N and M respectively with p ∈ U ,
f(p) ∈ V and f(U) ⊂ V .

(b) f is said to be smooth if it is smooth at every point of M . In particular, if M = I ⊂ R
an open interval, then f above is said a smooth curve in N .

The class of all smooth functions from M to N is indicated by D(M |N) or D(M) for N = R.
Evidently, D(M) is a real vector space with the vector space structure induced by

(af + bg)(p) := af(p) + bg(p) for every p ∈M if a, b ∈ R and f, g ∈ D(M).

�

Definition 2.17. (Diffeomorphisms) Let M and N be smooth manifolds.

(a) if f ∈ D(M |N) is bijective and f−1 ∈ D(N |M), then f is called (smooth) diffeomor-
phism from M to N .

(b) If there is a diffeomorphism from the differentiable manifold M to the differentiable man-
ifold N , M and N are said to be diffeomorphic (through f).

(c) If M is orientable and N = M , a diffeomorphism f : M → M is said to be orientation-
preserving if, for every local chart (U, φ), the local chart (f(U), φ◦f−1) stays in the same
orientation of the former. �

Remark 2.18.
(1) It is clear that a smooth function (at a point p) is continuous (in p) by definition.
(2) It is simply proved that the definition of function smooth at a point p does not depend on
the choice of the local charts used in (1) of the definition above.
(3) Notice that D(M) is also a commutative ring with multiplicative and addictive unit el-
ements if endowed with the product rule f · g : p 7→ f(p)g(p) for all p ∈ M and sum rule
f + g : p 7→ f(p) + g(p) for all p ∈ M . The unit elements with respect to the product and sum
are respectively the constant function 1 and the constant function 0. However D(M) is not a
field, because there are elements f ∈ D(M) with f 6= 0 without (multiplicative) inverse element.
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Figure 2.2: Coordinate representation of f : M → N

It is sufficient to consider f ∈ D(M) with f(p) = 0 and f(q) 6= 0 for some p, q ∈M .
(4) Consider two smooth manifolds M and N such that they are defined on the same topo-
logical space but they can have different differentiable structures. Suppose also that they are
diffeomorphic. Can we conclude that M = N? In other words:
Is it true that the smooth smooth differentiable structure of M coincides with the differentiable
structure of N whenever M and N are defined on the same topological space and are diffeomor-
phic?
The following example shows that the answer can be negative. Consider M and N as one-
dimensional smooth manifolds whose associated topological space is R equipped with the usual
Euclidean topology. The differentiable structure of M is defined as the differentiable structure
generated by the atlas made of the global chart f : M → R with f : x 7→ x, whereas the
differentiable structure of N is given by the assignment of the global chart g : N → R with
g : x 7→ x3. Notice that the smooth differentiable structure of M differs from that of N because
f ◦ g−1 : R→ R is not differentiable in x = 0. On the other hand M and N are diffeomorphic!
Indeed a diffeomorphism is nothing but the map φ : M → N completely defined by requiring
that g ◦ φ ◦ f−1 : x 7→ x for every x ∈ R.
(5) A subsequent very intriguing question arises by the remark (4):
Is there a topological manifold with dimension n which admits smooth different differentiable
structures which are not diffeomorphic, differently from the example given above?
The answer is yes. More precisely, it is possible to show that 1 ≤ n < 4 the answer is nega-
tive, but for some other values of n, in particular n = 4, there are topological manifolds which
admit smooth differentiable structures that are not diffeomorphic. When the manifold is Rn
or a submanifold, with the usual topology and the usual differentiable structure, the remaining
non-diffeomorphic smooth differentiable structures are said to be exotic. The first example was
found by Whitney on the sphere S7. Later it was proved that the same space R4 admits exotic
structures. Finally, if n ≥ 4 once again, there are examples of topological manifolds which do
not admit a smooth differentiable structure (also up to homeomorphisms ).
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It is intriguing to remark that 4 is the dimension of the spacetime.
(6) Similarly to differentiable manifolds, it is possible to define analytic manifolds. In that case
all the involved functions used in changes of coordinate frames, f : U → Rn (U ⊂ Rn) must be
analytic (i.e. that must admit Taylor expansion in a neighborhood of any point p ∈ U). Analytic
manifolds are convenient spaces when dealing with Lie groups. (Actually the celebrated Gleason-
Montgomery-Zippin theorem, solving Hilbert’s fifith problem, shows that a C1-differentiable Lie
groups is also an analytic Lie group.) It is simply proved that an affine space admits a natural
analytic atlas and thus a natural analytic manifold structure obtained by restricting the natural
differentiable structure. �

2.3 Technicalities: smooth partitions of unity

In this section we present a few technical results which are very useful in several topics of differ-
ential geometry and tensor analysis. The first two lemmata concerns the existence of particular
smooth functions which have compact support containing a fixed point of the manifold. These
functions are very useful in several applications and basic constructions of differential geometry
(see next chapter).

Lemma 2.19. If x ∈ Rn and x ∈ Br(x) ⊂ Rn where Br(x) is any open ball centered in x
with radius r > 0, there is a neighborhood Gx of x with Gx ⊂ Br(x) and a smooth function
f : Rn → R such that:

(1) 0 ≤ f(y) ≤ 1 for all y ∈ Rn,

(2) f(y) = 1 if y ∈ Gx,

(3) f(y) = 0 if y 6∈ Br(x).

Proof. Define
α(t) := e

1
(t+r)(t+r/2)

for t ∈ [−r,−r/2] and α(r) = 0 outside [−r,−r/2]. α ∈ C∞(R) by construction. Then define:

β(t) :=

∫ t
−∞ α(s)ds∫ −r/2
−r α(s)ds

.

This C∞(R) function is non-negative, vanishes for t ≤ −r and takes the constant value 1 for
t ≥ −r/2. Finally define, for y ∈ Rn:

f(y) := β(−||x− y||) .

This function is C∞(Rn) and non-negative, it vanishes for ||x − y|| ≥ r and takes the constant
value 1 if ||x− y|| ≤ r/2 so that Gr = Br/2(x) 2.

Lemma 2.20. Let M be a smooth manifold. For every p ∈ M and every open neighborhood
of p, Up, there is a open neighborhood of p, Vp and a function h ∈ D(M) such that:
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(1) Vp ⊂ Up,

(2) 0 ≤ h(q) ≤ 1 for all q ∈M ,

(3) h(q) = 1 if q ∈ Vp,

(4) supp h ⊂ Up is compact.

h is called hat function centered on p with support contained in Up.

Proof. First of all we notice the following elementary result.
Let X be a topological Hausdorff space, Y ⊂ X is any open set, and Z ⊂ Y another open

set with respect to the topology on Y induced by X. If the closure Z
Y

of Z referred to Y is

compact then Z
Y

= Z
X

the closure of Z with respect to X. (Indeed, as Z
Y

is compact in Y it

is compact in X and thus closed since X is Hausdorff. Therefore Z
Y ⊃ Z

X
since the former is

a closed set in X that contains Z and the latter is the smallest closed set in X including Z. On

the other hand since Z
X

(⊂ Z
Y

) ⊂ Y is closed in X and Y is open, Z
X

has to be closed in Y

too because Y \ZX = Y ∩ (X \ZX) is open it being the intersection of two open sets. As Z
Y

is

the smallest closed set containing Z and Z
X ⊃ Z, also the converse inclusion Z

Y ⊂ Z
X

holds.

Thus Z
Y

= Z
X

.)
Let us start with our construction. Obviously we can always assume that Up is sufficiently small
around the point p. In particular we can assume that there exists a local chart (W,φ) with
p ∈ W and Up ⊂ W . In this case, define x := φ(p) and fix r > 0 such that Up ⊃ φ−1(Br(x)),
Br(x) being an open ball with finite radius r centered on x := φ(p). Finally, referring to

lemma 2.19, define Vp := φ−1(Gx) so that Vp
W

= φ−1(Gx) because φ : W → φ(W ) is a home-

omorphism. For the same reason, as Gx is compact, Vp
W

is compact as well and one has

Vp := Vp
M

= Vp
W

= φ−1(Gx) ⊂ φ−1(Br(x)) ⊂ Up and (1) holds true consequently. Finally
define h(q) := f(φ(q)) for q ∈W and h(q) := 0 if q 6∈W . The support of f in φ(W ) is compact
included in Br(x) and φ−1 maps the support of f to the support of h in W which results to
be compact as well. The support of h in W therefore coincides with the support of h in M .

In particular supph ⊂ φ−1(Br(x)) = φ−1(Br(x))
W

= φ−1(Br(x))
M ⊂ Up. By construction the

function h also satisfies all requirements (2)-(4) barring the smoothness property we go to prove.
To establish it, it is enough to prove that, for every q ∈ M there is a local chart (Uq, ψq) such
that h ◦ ψ−1

q is C∞(ψq(Uq)). If q ∈ W the local chart is (W,φ) itself. If q 6∈ W , there are two
possibilities. In the first case, there is an open set Uq including q and with Uq ∩W = ∅. Taking
Uq sufficiently small, we can assume that a local chart (Uq, ψq) exists. Therefore h ◦ ψ−1

q = 0
constantly so that it is C∞(ψq(Uq)). It remains to consider the case q ∈ ∂W , i.e. every open set
including q has non-empty intersection with W , although q 6∈ W . It would be enough to prove
that, if q ∈ ∂W , there is an open set Uq 3 q with Uq ∩ supph = ∅. (In this way, restricting
Uq if necessary, one has a local chart (Uq, ψq) with q ∈ Uq and h ◦ ψ−1

q = 0 so that h ◦ ψ−1
q is

smooth.) Let us prove the existence of such a Uq. Since q 6∈W we have q 6∈ supp h ⊂W . Since

M is Hausdorff, for every x ∈ supp h there are open neighborhoods Ox and O
(x)
q of x and q
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respectively with Ox ∩ O(x)
q = ∅; Since supp h is compact we can extract a finite covering of

supp h made of open sets Oxi , i = 1, 2, . . . , N and consider the open set Uq := ∩i=1,...,NO
(xi)
q .

By construction Uq ∩ supp h ⊂ Uq ∩i=1,...,N O
(xi)
q = ∅ as wanted. 2

Remark 2.21. Hausdorff property plays a central role in proving the smoothness of hat
functions defined in the whole manifold by the natural extension f(q) = 0 outside the initial
smaller domain W . Indeed, first of all it plays a crucial rôle in proving that the support of h in
W coincides with the support of h in M . This is not a trivial result. Using the non-Hausdorff,
second-countable, locally homeomorphic to R, topological space M = R∪{p0} defined in remark
(3) after definition 2.2, one simply finds a counterexample. Define the hat function h, as said
above, first in a neighborhood W of 0 ∈ R such that W is completely contained in the real axis
and h has support compact in W . Then extend it on the whole M by stating that h vanishes
outside W . The support of the extended function h in M differs from the support of h referred
to the topology of W : Indeed the point p0 belongs to the former support but it does not belong
to the latter. As an immediate consequence the extended function h is not continuous (and
not differentiable) in M because it is not continuous in p0. To see it, take the sequence of
the reals 1/n ∈ R with n = 1, 2, . . .. That sequence converges both to 0 and p0 and trivially
limn→+∞ h(1/n) = h(0) = 1 6= h(p0) = 0.

2.3.1 Paracompactness

Let us make contact with a very useful tool of differential geometry: the notion of paracompact-
ness. Some preliminary definitions are necessary.

If (X,T) is a topological space and C = {Ui}i∈I ⊂ T is a covering of X, the covering
C′ = {Vj}j∈J ⊂ T is said to be a refinement of C if every j ∈ J admits some i(j) ∈ I with
Vj ⊂ Ui(j).

A covering {Ui}i∈I of X is said to be locally finite if each x ∈ X admits an open neighbor-
hood Gx such that the subset Ix ⊂ I of the indices k ∈ Ix with Gx ∩ Uk 6= ∅ is finite.

Definition 2.22. (Paracompactness.) A topological space (X,T) is said to be paracom-
pact if every covering of X made of open sets admits a locally finite refinement. �

It is possible to prove [KoNo96] that if a topological space X is

(1) second-countable,

(2) Hausdorff,

(3) locally compact, i.e., for every x ∈ X the is Up 3 p open such that Up is compact,

then it is is paracompact.
As a consequence every topological (or Ck-differentiable) manifold is paracompact because it is
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Hausdorff, second countable and locally homeomorphic to Rn which, in turn, is locally compact.

Remark 2.23. It is possible to show (see [KoNo96]) that,
if X is a paracompact topological space which is also Hausdorff and locally homeomorphic to
Rn, then X is second countable (i.e., it is a topological manifold) if and only if its connected
components are countable.
Looking at our definition of topological manifold we see that a topological manifold could be
equivalently defined as a topological space which is

(1) paracompact,

(2) Hausdorff,

(3) locally homeomorphic to Rn,

if we exclude the case of a topological space whose connected components are uncountably many1.
Some textbooks adopt this alternative definition. �

2.3.2 Existence of a smooth partition of unity

The paracompactness of a smooth manifold has a important consequence, namely the existence
of a smooth partition of unity.

Definition 2.24. (Partition of Unity.) Given a locally finite covering of a smooth manifold
M , C = {Ui}i⊂I , where every Ui is open, a partition of unity subordinate to C is a collection
of functions {fj}j∈J ⊂ D(M) such that:

(1) suppfi ⊂ Ui for every i ∈ I,

(2) 0 ≤ fi(x) ≤ 1 for every i ∈ I and every x ∈M ,

(3)
∑

i∈I fi(x) = 1 for every x ∈M . �

Remark 2.25.
(1) Notice that, for every x ∈M , the sum in property (3) above is finite because of the locally
finiteness of the covering.
(2) It is worth stressing that there is no analogue for a partition of unity in the case of an
analytic manifold M . This is because if fi : M → R is analytic and suppfi ⊂ Ui where Ui is
sufficiently small (such that, more precisely, Ui is not a connected component of M and M \ Ui
contains a nonempty open set), fi must vanish everywhere in M . �

Using sufficiently small coordinate neighborhoods it is possible to get a covering of a smooth
manifold made of open sets whose closures are compact. Using paracompactness one finds a

1Case which is not very interesting for applications.
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subsequent locally finite covering which made of open sets whose closures are compact.

Theorem 2.26. (Existence of a smooth partition of unity.) Let M be a smooth mani-
fold and C = {Ui}i∈I a locally finite covering made of open sets such that Ui is compact. There
is a partition of unity subordinate to C.

Proof. See [KoNo96]. 2

Remark 2.27. Observe that we can always assume that C above is countable, because start-
ing from a covering of open sets we can always extract a countable subcovering due to Lindelöf
lemma since a manifold is second countable. This subcovering remains locally finite if the orig-
inal one was locally finite and it is made of relatively compact sets if the original covering was
made of such sets. �

Paracompactness has other important technical implications, one is stated in the following
result which is an immediate consequence of a result by Stone2 re-adapted to Hausdorff spaces.

Theorem 2.28. A Hausdorff topological space X is paracompact if and only if every covering
C of X made of open sets admits a ∗-refinement of open sets. That is another covering C∗ of
open sets such that, for every V ∈ C∗,⋃

{V ′ ∈ C∗ | V ′ ∩ V 6= ∅} ⊂ UV

for some UV ∈ C.

2A. H. Stone, Paracompactness and product spaces, Bull. Amer. Math. Soc. vol. 54 (1948) pp. 977-982 and
see also the review part in E. Michael Yet Another Note on Paracompact Spaces, Proceedings of the American
Mathematical Society , Apr., 1959, Vol. 10, No. 2 (Apr., 1959), pp. 309-314.
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Chapter 3

Tensor Fields on Manifolds and
Associated Geometric Structures

This chapter is devoted to introduce and discuss the notion of smooth vector field on a smooth
manifold and all related concepts. The chapter concludes with the introduction of the notion of
fiber bundle as direct generalization of the tangent and cotangent space manifolds.

3.1 Tangent and cotangent space at a point

In this section we construct the notion of tangent and cotangent space at a point of a mani-
fold. There are several equivalent approaches in the literature (at least three) we adopt here a
quite abstract, though very powerful, approach where tangent vectors are viewed as differential
operators [doC92, KoNo96, Seri90].

3.1.1 Tangent vectors as derivations

To interpret the vectors tangent at a point of a smooth manifold in terms of differential operators
we need two preliminary definitions.

Definition 3.1. (Derivations) Let M be a smooth manifold. A derivation in p ∈ M is a
R-linear map Dp : D(M)→ R, such that, for each pair f, g ∈ D(M):

Dpfg = f(p)Dpg + g(p)Dpf .

The R-vector space of the derivations at p is indicated by DpM . �

Remark 3.2. The above said linear structure in DpM is evidently defined as

(aDp + bDp)f := aDpf + bD′pf ∀a, b ∈ R ,∀f ∈ D(M)
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if Dp, D
′
p ∈ DpM , observing that D′′p := aDp + bDp still satisfies Definition 3.1. �

Derivations exist and, in fact, some of them can be built up as follows. Consider a local co-
ordinate system around p, (U, φ), with coordinates (x1, . . . , xn). If f ∈ D(M) is arbitrary,
operators

∂

∂xk
|p : f 7→ ∂f ◦ φ−1

∂xk
|φ(p) , (3.1)

are derivations. The subspace of DpM spanned by those derivations has the same dimension as
M and it is actually independent of the choice of the local chart around p.

Proposition 3.3. Let M be a smooth manifold of dimension n and p ∈ M . The following
facts are true.

(a) The subspace TpM of DpM spanned by the n derivations

∂

∂xk
|p ,

constructed out of a local chart φ : U 3 q 7→ (x1(q), . . . , xn(q)) ∈ Rn around p as in (3.1),
is independed of the choice of (U, φ).

(b) TpM has dimension n since the n derivations ∂
∂xk
|p are a basis of that subspace.

(c) If choosing another local chart around p, ψ : V 3 q 7→ (y1(q), . . . , yn(q)) ∈ Rn, the
identities hold

∂

∂yk
|p =

∂xr

∂yk
|ψ(p)

∂

∂xr
|p k = 1, 2, . . . , n . (3.2)

(we adopt above the convention of summation over the repeated index r) where the Jacobian
matrix of elements ∂xr

∂yk
|ψ(p) is non-singular.

Proof. Directly from (3.1), we have that

∂

∂yk
|p =

∂xr

∂yk
|ψ(p)

∂

∂xr
|p .

The matrix J of coefficients ∂xr

∂yk
|ψ(p) is not singular because we can compose the maps φ and ψ

as follows
idφ(U∩V ) = φ ◦ ψ−1 ◦ ψ ◦ φ−1 : φ(U ∩ V )→ φ(U ∩ V )

which in coordinates means

xr = xr(y1(x1, . . . , xn), . . . , yn(x1, . . . , xn))

so that, using the the rule of derivation of a composed function,

δrs =
∂xr

∂xs
=
∂xr

∂yk
∂yk

∂xs
,
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where everything is computed on the image of p in the respective chart. This means in particular
that the n× n Jacobian matrix of elements ∂xr

∂yk
|ψ(p) is invertible and thus it is not singular. As

a consequence, the subspaces spanned by the all the derivations ∂
∂yk
|p, k = 1, . . . , n, and the

one spanned by all derivations ∂
∂xk
|p, k = 1, . . . , n, coincide. To conclude the proof of all

statements it is now sufficient to prove that the derivations ∂xr

∂yk
|ψ(p), for k = 1, . . . , n are linearly

independent. Let us prove it. It is sufficient to use n functions f (j) ∈ D(M), j = 1, . . . , n, such
that f (j) ◦ φ(q) = xj(q) when q belongs to an open neighborhood of p contained in U . This
implies the linear independence of the considered derivations. In fact, if:

ck
∂

∂xk
|p = 0 ,

then

ck
∂f (j)

∂xk
|p = 0 ,

which is equivalent to ckδjk = 0 or :

cj = 0 for all j = 1, . . . , n .

The existence of the functions f (j) can be straightforwardly proved by using Lemma 2.20. The
mapping f (j) : M → R defined as
f (j)(q) = h(q)φj(q) if q ∈ U , where φj : q 7→ xj(q) for all q ∈ U ,
f (j)(q) = 0 if q ∈M \ U ,
turns out to be C∞ on the whole manifold M and satisfies (f (j) ◦ φ)(q) = xj(q) in a neighbor-
hood of p provided h is any hat function centered in p with support completely contained in U . 2

Remark 3.4. All the above construction leading to Definition 3.5 below is valid also if the
manifold has differentiability order k ≥ 1 but k 6=∞. �

We are now in a position to state the fundamental definition.

Definition 3.5. (Tangent space at a point.) Let M be a smooth manifold of dimension
n and p ∈M . The n dimensional subspace TpM of DpM spanned by the n derivations

∂

∂xk
|p ,

constructed out of a local chart φ : U 3 q 7→ (x1(q), . . . , xn(q)) ∈ Rn around p as in (3.1) and
indpendent of the choice of (U, φ), is called tangent space at p. �

Remark 3.6. With the given definition, it arises that any n-dimensional Affine space An
admits two different notions of vector applied to a point p. Indeed there are the vectors in the
space of translations V used in the definition of An itself. These vectors are also called free
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vectors. On the other hand, considering An as a smooth manifold as said in (2) Examples
2.11, one can think of those vectors as applied vectors to every point p of An. What is the
relation between these vectors and those of TpAn? Take a basis {ei}i∈I in the vector space V
and a origin O ∈ An, then define a Cartesian coordinate system centered on O associated with
the given basis, that is the global coordinate system:

φ : An → Rn : p 7→ (〈
−→
Op , e∗1〉, . . . , 〈

−→
Op , e∗n〉) =: (x1, . . . , xn) .

Now also consider the bases ∂
∂xi
|p of each TpAn induced by these Cartesian coordinates. It

results that there is a natural isomorphism χp : TpAn → V which identifies each ∂
∂xi
|p with the

corresponding ei

χp : vi
∂

∂xi
|p 7→ viei .

Indeed the map defined above is linear, injective and surjective by construction. Moreover using
different Cartesian coordinates y1, ..., yn associated with a basis f1, ..., fn in V and a new origin
O′ ∈ An, one has

yi = Ai jx
j + Ci

where
ek = Aj kfj and Ci = 〈

−−→
O′O, f∗i〉 .

Thus, it is immediately proved by direct inspection that, if χ′p is the isomorphism

χ′p : ui
∂

∂yi
|p 7→ uifi ,

it holds χp = χ′p. Indeed

χp : vi
∂

∂xi
|p 7→ viei

can be re-written, if [Bi
k] is the inverse transposed matrix of [Ap q]

Ai ju
jBi

k ∂

∂yk
|p 7→ Ai ju

jBi
kfk .

But Ai jBi
k = δkj and thus

χp : vi
∂

∂xi
|p 7→ viei

can equivalently be re-written

uj
∂

∂yj
|p 7→ ujfj ,

that is χp = χ′p. In other words the isomorphism χ : TpAn → V does not depend on the consid-
ered Cartesian coordinate frame: it is a natural isomorphism. �
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We have a final important definition.

Definition 3.7. Let M be a smooth manifold, I ⊂ R an open inteval and γ : I → M a
smooth curve. The tangent vector to γ for t = t0 ∈ I is

γ′(t0) :=
dxiγ
dt
|t=t0

∂

∂xi
|γ(t0) ,

where φ : U 3 p 7→ (x1(p), . . . , xn(p)) is a local chart defined in U 3 γ(t0), and xkγ(t) := φ(γ(t))
for t ∈ (φ ◦ γ)−1(U). �

Remark 3.8. It is immediately proved that he definition above is actually independent of
the chosen local chart (U, φ) as a straightforward consequence of (3.2). �

3.1.2 More on the linear space of derivations

Let us focus again on the full space of derivations to study its connection with the subspace
TpM . We have the following general properties, in particular items (2) and (3) below.

Lemma 3.9. Let M be a differential manifold. Take any p ∈M and any Dp ∈ DpM .

(1) If h ∈ D(M) vanishes in a open neighborhood of p, then

Dph = 0 .

(2) For every f, g ∈ D(M),
Dpf = Dpg ,

provided f(q) = g(q) in an open neighborhood of p.

(3) If h ∈ D(M) is constant in a neighborhood of p,

Dph = 0 .

Proof. By linearity, (1) entails (2). Let us prove (1). Let h ∈ D(M) a function which vanishes in
a small open neighborhood U of p. Shrinking U if necessary, by Lemma 1.2 we can find another
neighborhood V of p, with V ⊂ U , and a function g ∈ D(M) which vanishes outside U taking
the constant value 1 in V . As a consequence g′ := 1− g is a function in D(M) which vanishes
in V and take the constant value 1 outside U . If q ∈ U one has g′(q)h(q) = g′(q) · 0 = 0 = h(q),
if q 6∈ U one has g′(q)h(q) = 1 · h(q) = h(q) hence h(q) = g′(q)h(q) for every q ∈ M . As a
consequence

Dph = Dpg
′h = g′(p)Dph+ h(p)Dpg

′ = 0 ·Dph+ 0 ·Dpg
′ = 0 .
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The proof of (3) is straightforward. It is sufficient to show that the thesis holds true if h is
constant everywhere in M , then (2) implies the thesis in the general case. If h is constant, let
g ∈ D(M) a hat function with g(p) = 1. By linearity, since h is constant

Dp(hg) = hDpg .

On the other hand, since Dp is a derivation,

Dp(hg) = hDpg + g(p)Dph .

Comparing with the identity above, one gets

g(p)Dph = 0 .

Since g(p) = 1, one has Dph = 0. 2

Our final goal to describe the space of derivations is the proof of TpM = Dp(M). This remarkable
result will be established under the explicit hypothesis that the manifold is smooth (C∞) as we
always assume.

We remind the reader that an open set U ⊂ Rn is said to be a open starshaped neighbor-
hood of p ∈ Rn if U is a open neighborhood of p and the closed Rn segment pq is completely
contained in U whenever q ∈ U . Every open ball centered on a point p is an open starshaped
neighborhood of p. Therefore these sets form a local basis of the Euclidean topology around
every point p ∈ Rn.

Lemma 3.10. (Flander’s lemma.) If f : B → R is C∞(B) where B ⊂ Rn is an open
starshaped neighborhood of p0 = (x1

0, . . . , x
n
0 ), there are n smooth mappings gi : B → R such

that, if p = (x1, . . . , xn),

f(p) = f(p0) +
n∑
i=1

gi(p)(x
i − xi0) ,

with

gi(p0) =
∂f

∂xi
|p0

for all i = 1, . . . , n.

Proof. let p = (x1, . . . , xn) belong to B. The points of the segment p0p are given by

yi(t) = xi0 + t(xi − xi0)

for t ∈ [0, 1]. As a consequence, the following equation holds

f(p) = f(p0) +

∫ 1

0

d

dt
f(p0 + t(p− p0))dt = f(p0) +

n∑
i=1

Ç∫ 1

0

∂f

∂xi
|p0+t(p−p0)dt

å
(xi − xi0) .
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If

gi(p) :=

∫ 1

0

∂f

∂xi
|p0+t(p−p0)dt ,

so that

gi(p0) =

∫ 1

0

∂f

∂xi
|p0dt =

∂f

∂xi
|p0 ,

the equation above can be re-written:

f(x) = f(p0) +
n∑
i=1

gi(p)(x
i − xi0) .

By construction the functions gi are C∞(B) as a direct consequence of theorems concerning
derivation under the symbol of integration (based on Lebesgue’s dominate convergence theo-
rem). 2

Theorem 3.11. Let M be a smooth manifold and p ∈M . It holds

Dp(M) = TpM

since every derivation at p can uniquely be decomposed as a linear combination of derivations
{ ∂
∂xk
|p}k=1,...,n for each local chart φ : U 3 q 7→ (x1(q), . . . , xn(q)) with U 3 p.

Proof. Let us prove that, if Dp ∈ DpM and considering the local chart (U, φ) with coordinates
(x1, . . . , xn) around p, then there are n reals c1, . . . , cn such that

Dpf =
n∑
k=1

ck
∂f ◦ φ−1

∂xk
|φ(p) ,

for all f ∈ D(M). As these reals do not depend on f , we can write

Dp =
n∑
k=1

ck
∂

∂xk
|p

To prove it, we start from the expansion due to Lemma 3.9 and valid in a neighborhood Up ⊂ U
of φ(p) (which is the image according to φ−1 of a starshaped neighborhhod of φ(p) in Rn):

(f ◦ φ−1)(φ(q)) = (f ◦ φ−1)(φ(p)) +
n∑
i=1

gi(φ(q))(xi − xip) ,

where φ(q) = (x1, . . . , xn) and φ(p) = (x1
p, . . . , x

n
p ) and

gi(φ(p)) =
∂(f ◦ φ−1)

∂xi
|φ(p) .
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If h1, h2 are hat functions centered on p (see Lemma 2.20) with supports contained in Up define
h := h1 ·h2 and f ′ := h ·f . The multiplication of h and the right-hand side of the local expansion
for f written above gives rise to an expansion valid on the whole manifold:

f ′(q) = f(p)h(q) +
n∑
i=1

g′i(q)ri(q)

where the functions g′i, ri ∈ D(M) and

ri(q) = h2(q) · (xi − xip) = (xi − xip) in a neighborhood of p

while

g′i(p) = h1(p) · ∂(f ◦ φ−1)

∂xi
|φ(p) =

∂(f ◦ φ−1)

∂xi
|φ(p) .

Moreover, Lemma 3.9 assures that Dpf
′ = Dpf since f = f ′ in a neighborhood of p. As a

consequence

Dpf = Dpf
′ = Dp

(
f(p)h(q) +

n∑
i=1

g′i(q)ri(q)

)
.

Since q 7→ f(p)h(q) is constant in a neighborhood of p, Dpf(p)h(q) = 0 by Lemma 3.9. Moreover

Dp

(
n∑
i=1

g′i(q)ri(q)

)
=

n∑
i=1

(
g′i(p)Dpri + ri(p)Dpg

′
i

)
,

where ri(p) = (xip − xip) = 0. Finally we have found

Dpf =
n∑
i=1

cig′i(p) =
n∑
i=1

ck
∂f ◦ φ−1

∂xk
|φ(p) ,

where the coefficients
ci = Dpri

do not depend on f by construction. This is the thesis and the proof ends. 2

3.1.3 Cotangent space

As TpM is a vector space, one can define its dual space. This space plays an important role in
differential geometry.

Definition 3.12. (Cotangent space at a point.) Let M be a n-dimensional manifold. For
each p ∈M , the dual space T ∗pM is called the cotangent space at p and its elements are called
1-forms in p or, equivalently, covectors in p. If (x1, . . . , xn) are coordinates around p inducing
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the basis { ∂
∂xk
|p}k=1,...,n, the associated dual basis in T ∗pM is denoted by {dxk|p}k=1,...,n. �

Exercises 3.13. Show that, changing local coordinates,

dx′
k|p =

∂x′k

∂xi
|pdxi|p ,

and if ωp = ωpidx
i|p = ω′prdx

′r|p, then

ω′pr =
∂xi

∂x′r
|pωpi .

3.2 Vector and tensor fields

The introduced definitions allows one to introduce the tensor algebra AR(TpM) of the tensor
spaces obtained by tensor products of spaces R, TpM and T ∗pM [Mor20]. Using tensors defined
on each point p ∈M one may define tensor fields.

3.2.1 Tensor fields

Definition 3.14. (Differentiable Tensor Fields.) Let M be a n-dimensional smooth
manifold.

(a) A smooth tensor field t is an assignment

M 3 p 7→ tp ∈ AR(TpM)

where

(i) tp are of the same kind independently of p ∈M ;

(ii) varying p ∈M , the components of tp with respect to the canonical bases of AR(TpM)
given by tensor products of bases { ∂

∂xk
|p}k=1,...,n ⊂ TpM and {dxk|p}k=1,...,n ⊂ T ∗pM

are smooth in every local chart U 3 p 7→ (x1(p), . . . , xn(p)) ∈ Rn on M .

(b) A smooth vector field and a smooth 1-form (equivalently called covector field) are
assignments of tangent vectors and 1-forms respectively as stated in (a).

The vector space of smooth (i.e., smooth) vector fields on M with linear structure

(aX + bY )p := aXp + bYp for all a, b ∈ R and all vecotr fields X,Y

is denoted by X(M). �

For tensor fields the same terminology referred to tensors is used. For instance, a tensor field
t which is represented in local coordinates by tij(p)

∂
∂xi
|p ⊗ dxj |p is said to be of order (1, 1).
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The tensor fields of a given type form a vector space with respect to the point-by-point linear
combination.

Remark 3.15.
(1) It is clear that to assign on a smooth manifold M a smooth tensor field T (of any kind and
order) it is necessary and sufficient to assign a set of smooth functions

(x1, · · · , xn) 7→ T i1···im j1···jk(x1, · · · , xn)

in every local coordinate patch (of the whole differentiable structure of M or, more simply, of
an atlas of M) such that they satisfy the usual rule of transformation of components of tensors:
if (x1, · · · , xn) and (y1, · · · , yn) are the coordinates of the same point p ∈ M in two different
local charts,

T i1···im j1···jk , (x
1, · · · , xn) =

∂xi1

∂yk1
|p · · ·

∂xim

∂ykm
|p
∂yl1

∂xj1
|p · · ·

∂ylm

∂xjm
|pT ′k1···km

l1···lk(y1, · · · , yn) .

Then, in local coordinates,

T (p) = T i1···im j1···jk
∂

∂xi1
|p ⊗ · · · ⊗

∂

∂xim
|p ⊗ dxj1 |p ⊗ · · · ⊗ dxjk |p .

(2) It is obvious that the differentiability requirement of the components of a tensor field can be
checked using the bases induced by a single atlas of local charts. It is not necessary to consider
all the charts of the differentiable structure of the manifold.
(3) Every X ∈ X(M) defines a derivation at each point p ∈M . Indeed, if f ∈ D(M),

Xp(f) := Xi(p)
∂f

∂xi
|p ,

where x1, . . . , xn are coordinates defined around p. More generally, every X ∈ X(M) defines a
linear mapping from D(M) to D(M) given by

f 7→ X(f) for every f ∈ D(M) ,

where X(f) ∈ D(M) is defined as

X(f)(p) := Xp(f) for every p ∈M .

(4) For (contravariant) vector fields X on a smooth manifold M , a requirement equivalent to
the differentiability is the following: the function X(f) : p 7→ Xp(f) (where we used Xp as a
derivation) is smooth for all of f ∈ D(M). Indeed, if X is a smooth contravariant vector field
and if f ∈ D(M), one has that X(f) : M 3 p 7→ Xp(f) is a smooth function too as it having a
coordinate representation

X(f) ◦ φ−1 : φ(U) 3 (x1, · · · , xn) 7→ Xi(x1, · · · , xn)
∂f

∂xi
|(x1,··· ,xn)
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in every local coordinate chart (U, φ) and all the involved function being smooth. Conversely, if
p 7→ Xp(f) defines a function in D(M), X(f), for every f ∈ D(M), the components of p 7→ Xp

in every local chart (U, φ) must be smooth. This is because, in a neighborhood of q ∈ U

Xi(q) := Xq(f
(i))

where the function f (i) ∈ D(M) vanishes outside U and is defined as r 7→ xi(r) · h(r) in U ,
where xi is the i-th component of φ (the coordinate xi) and h a hat function centered on q with
support in U .
Similarly, the differentiability of a covariant vector field ω is equivalent to the differentiability
of each function p 7→ 〈Xp, ωp〉, for all smooth vector fields X.
(5) If f ∈ D(M), the differential of f at p, dfp is the 1-form defined by

dfp =
∂f

∂xi
|pdxi|p , (3.3)

in local coordinates around p. The definition does not depend on the chosen coordinates. As a
consequence of remark (1) above, varying the point p ∈M , p 7→ dfp defines a covariant smooth
vector field denoted by df and called the differential of f .
Notice that

Xp(f) = 〈Xp, dfp〉 , (3.4)

for every smooth vector filed X and f ∈ D(M) at each point p ∈M .
(6) As we know, X(M) is vector space with field given by R. Notice that if R is replaced by
D(M), the obtained algebraic structure is not a vector space because D(M) is a commutative
ring with multiplicative and addictive unit elements but fails to be a field as remarked above.
However, the incoming algebraic structure given by a ”vector space with the field replaced by a
commutative ring with multiplicative and addictive unit elements” is well known and it is called
module.

The following lemma is trivial but useful in applications.

Lemma 3.16. Let p be a point in a smooth manifold M . If t is any tensor in AR(TpM),
there is a differentiabile tensor field in M , Ξ such that Ξp = t.

Proof. Consider a local coordinate frame (U, φ) defined in an open neighborhood U of p. In
U a tensor field Ξ′ which have constant components with respect the bases associated with the
considered coordinates. We can fix these components such that Ξ′p = t. One can find (see remark
2 after definition3.12) a smooth function h : φ(U) → R such that h(φ(p)) = 1 and h vanishes
outside a small neighborhood of φ(p) whose closure is completely contained in φ(U). Ξ defined as
(h◦φ)(r)·Ξ′(r) if r ∈ U and Ξ(r) = 0 outside U is a smooth tensor fields on M such that Ξp = t.2

Remark 3.17. From now tensor (vector, covector, etc.) field means smooth tensor (vector,
covector, etc.) field. �
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3.2.2 Lie brackets of vector fields

Contravariant smooth vector fields can be seen as differential operators (derivations at each
point of the manifold) acting on smooth scalar fields. It is possible to obtain such an operator
by an appropriate composition of two vector fields. To this end, consider the application [X,Y ] :
D(M)→ D(M), where X,Y ∈ X(M), defined as follows

[X,Y ](f) := X (Y (f))− Y (X(f)) ,

for f ∈ D(M). It is clear that [X,Y ] is linear. Actually it turns out to be a derivation too.
Indeed, a direct computation shows that it holds

X(Y (fg)) = fX(Y (g)) + gY (X(f)) + (X(f))(Y (g)) + (X(g))(Y (f))

and
Y (X(fg)) = fY (X(g)) + gX(Y (f)) + (Y (f))(X(g)) + (Y (g))(X(f)) ,

so that
[X,Y ](fg) = f [X,Y ](g) + g[X,Y ](f) .

Using proposition 3.11, this fact shows that, for each point p of M , [X,Y ]p : f 7→ ([X,Y ](f))(p)
is a derivation. Hence it is represented by a contravariant vector of TpM (denoted by [X,Y ]p).
On the other hand, varying the point p one gets [X,Y ]p(f) is a smooth function if f ∈ D(M).
This is because (see remark 4 above), as X and Y are smooth vector fields, X(f) and Y (f) are
in D(M) if f ∈ D(M) and thus X(Y (f)) and Y (X(f)) are in D(M) too. Thus, using remark 4
above, one gets that, as we said, M 3 p 7→ [X,Y ]p is a (smooth) vector field on M .

Definition 3.18. (Lie Bracket.) Let X,Y ∈ X(M) for the smooth manifold M . The
Lie bracket of X and Y , [X,Y ], is the contravariant smooth vector field associated with the
differential operator

[X,Y ](f) := X (Y (f))− Y (X(f)) ,

for f ∈ D(M). �

By direct computation, in coordinates one easily sees that

[X,Y ]p =

Ç
Xi(p)

∂Y j

∂xi
|p − Y i(p)

∂Xj

∂xi
|p

å
∂

∂xj
|p , (3.5)

where φ : U 3 p 7→ (x1(p), . . . , xn(p)) ∈ Rn is any fixed local chart.

Exercises 3.19. Prove that the Lie brackets define a Lie algebra on the vector space X(M)
for every smooth manifold M . In other words

[ , ] : X(M)× X(M)→ X(M)

enjoys the following properties, where X,Y, Z are contravariant smooth vector fields,
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(a) antisymmetry, [X,Y ] = −[Y,X];

(b) R-linearity, [aX + βY, Z] = b[X,Z] + β[Y,Z] for all a, b ∈ R;

(c) Jacobi identity, [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 (0 being the null vector field).

3.2.3 Fields of k-forms and exterior derivative

Definition 3.20. Let M be a smooth manifold and Λk(T ∗pM) is the space of k-forms on T ∗pM
for k = 0, 1, . . . ,dim(M) [Mor20]. A smooth assignment

ω : M 3 p 7→ ωp ∈ Λk(T ∗pM)

is called a field of k-form or simply k-form on M , where as usual smoothness concerns the
components of the said tensor field. The vector space of k-forms on M will be denoted by
Ωk(M), for k = 0, 1, . . .dim(M), where Ω0(M) := D(M). �

The local expression of a k-form can be given in terms of the exterior product [Mor20] of the
elements of the basis of each T ∗pM associated with every local chart U 3 p 7→ (x1, . . . , xn) ∈ Rn

ωp =
∑

1≤i1<···<ik≤n
(ωp)i1...ikdx

i1 |p ∧ · · · ∧ dxik |p . (3.6)

A very useful machinery to deal with k-forms is the so-called exterior derivative. That is a
linear map dk : Ωk(M) → Ωk+1(M) where we assume Ωk(M) := {0} if k > n := dim(M). In
local coordinates, if (3.6) is true,

(dkω)p :=
∑

1≤i1<···<ik≤n

Ñ
n∑
j=1

∂ωi1...ik
∂xj

dxj |p

é
∧ dxi1 |p ∧ · · · ∧ dxik |p . (3.7)

Remark 3.21. As is usual dealing with the exterior derivation, we use the simplified notation
d in place of dk. �

It is not difficult to prove the following properties of the exterior derivative.

(1) d : Ωk(M)→ Ωk+1(M) is linear;

(2) dω = df if ω = f ∈ Ω0(M) = D(M), where df is the differnetial of f ;

(3) ddω = 0 if ω ∈ Ωk(M);

(4) d (ω ∧ η) = dω ∧ η + (−1)kω ∧ dη if ω ∈ Ωk(M) and η ∈ Ωh(M);
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A k-form ω is said to be closed if dω = 0 and it is exact if ω = dη for a (k−1)-form η. Evidently
exact forms are exact but the converse is false. However the celebrated Poincaré lemma is valid
[KoNo96]. To state that result, we recall the following technical definition.

Definition 3.22. Let M a smooth manifold. An open set U ⊂ M is said to be smoothly
contractible (with respect to a point p ∈ U) if, for some p ∈ U , a jointly smooth map exists
c(p) : (−ε, 1 + ε)× U → U , for some ε, such that

(i) c(p)(0, q) = q for all q ∈ U ;

(ii) c(p)(1, q) = p. �

Theorem 3.23. (Poincaré lemma.) Let U be a open set of a smooth manifold M that is
smoothly contractible (with respect to some p ∈ U) and ω ∈ Ωk(M). If dω|U = 0 – where U
is viewed as a smooth manifold with the structure induced from M – then ω|U = dη for some
η ∈ Ωk−1(U).

For instance, the image U := φ(B) of an open ball B ⊂ Rn through a local chart φ on M is
contractible. Therefore there is a local basis around every fixed point of a smooth manifold M
which is made of contractible open sets. As a consequence, the Poincaré lemma is always valid
in a sufficiently small neighborhood of every p ∈M .

Remark 3.24. If k = 1, the hypotheses on U can be relaxed to the requirement that it is
simply connected as is well known in elementary analysis. �

3.3 Elementary bundles

3.3.1 Tangent and cotangent bundle

If M is a smooth manifold and with dimension n, we can consider the set

TM := {(p, v) | p ∈M , v ∈ TpM} .

It is possible to endow TM with a structure of a smooth manifold with dimension 2n. That
structure is naturally induced by the analogous structure of M .
First of all let us define a suitable second-countable Hausdorff topology on TM . If M is a n-
dimensional smooth manifold with differentiable structure M, consider the class B of all (open)
sets U ⊂ M such that (U, φ) ∈ M for some φ : U → Rn. It is straightforwardly proved that B

is a basis of the topology of M . Then consider the class TB of all subsets V of TM defined as
follows.

(a) take (U, φ) ∈M with φ : p 7→ (x1(p), . . . , xn(p));

(b) take an open nonempty set B ⊂ Rn;
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(b) define
V := {(p, v) ∈ TM | p ∈ U , v ∈ φ̂pB} ,

where φ̂p : Rn → TpM is the linear isomorphism associated to φ:

φ̂p : (v1
p, . . . , v

n
p ) 7→ vip

∂

∂xi
|p (3.8)

Let TTB us finally denote the class of all sets which are unions of the above sets V adding also
the empty set to the class.
It is easy to prove that TTB is a topology and the sets V (varying the chart, the point p and the
set B) is a basis of that topology. TTB is also second-countable and Hausdorff:

(i) the Hausdorff property immediately arises from the analogous property of the topologies
on M and on Rn;

(ii) second countability is evident if observing that TTB admits a basis made of a countable
class of sets V constructing by

(a) choosing a countable basis of elements U (such that (U, φ) ∈ M for some φ) for the
topology of M (it existes since M is second countable),

(b) choosing the points p ∈ U of rational (with sign) φ-coordinates ,

(c) choosing the sets B ⊂ Rn as open balls of rational radius.

Finally, it turns out that TM , equipped with the topology TTB, is locally homeomorphic to
Rn × Rn. Indeed, if (U, φ) is a local chart of M with φ : U 3 p 7→ (x1(p), . . . , xn(p)) ∈ Rn, we
may define a local chart of TM , (TU,Φ), where

TU := {(p, v) | p ∈ U , v ∈ TpM}

by defining
Tφ : (p, v) 7→ (x1(p), . . . , xn(p), v1

p, . . . , v
n
p ) ,

where v = vip
∂
∂xi
|p. Notice that Tφ is injective and Tφ(TU) = φ(U) × Rn ⊂ R2n. As a conse-

quence of the definition of the topology TTB on TM , every Tφ defines a local homeomorphism
from TM to R2n. As the union of domains of every Tφ is TM itself⋃

TU = TM ,

TM is locally homeomorphic to R2n.
The next step consists of defining a smooth differentiable structure on TM . Consider two local
charts on TM , (TU, Tφ) and (TU ′, Tφ′) respectively induced by two local charts (U, φ) and
(U ′, φ′) of the differentiable structure of M . As a consequence of the given definitions, (TU, Tφ)
and (TU ′, Tφ′) are trivially compatible. Moreover, the class of charts (TU, Tφ) induced from
all the charts (U, φ) of the differentiable structure of M defines an atlas A(TM) on TM (in
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particular because, as said above,
⋃
TU = TM). The differentiable structure MA(TM) induced

by A(TM) makes TM a smooth manifold with dimension 2n.

An analogous procedure gives rise to a natural smooth differentiable structure for

T ∗M := {(p, ω) | p ∈M , ωp ∈ T ∗pM} .

Definition 3.25. (Tangent and Cotangent Bundles or Spaces.) Let M be a smooth
manifold with dimension n and differentiable structure M. If (U, φ) is any local chart of M with
φ : p 7→ (x1(p), . . . , xn(p)) define

TU := {(p, v) | p ∈ U , v ∈ TpM} , T ∗U := {(p, ω) | p ∈ U , ω ∈ T ∗pM}

and
V := {(p, v) | p ∈ U , v ∈ φ̂pB} , ∗V := {(p, ω) | p ∈ U , ω ∈∗ φ̂pB} ,

where B ⊂ Rn are open nonempty sets and φ̂p : Rn → TpM and ∗φ̂p : Rn → T ∗pM are the linear
isomorphisms naturally induced by φ as in (3.8). Finally define Tφ : TU → φ(U) × Rn ⊂ R2n

and T ∗φ : T ∗U → φ(U)× Rn ⊂ R2n such that

Tφ : (p, v) 7→ (x1(p), . . . , xn(p), v1
p, . . . , v

n
p ) ,

where v = vip
∂
∂xi
|p and

T ∗φ : (p, v) 7→ (x1(p), . . . , xn(p), ω1p, . . . , ωpn) ,

where ω = ωipdx
i|p.

(a) The tangent bundle associated with M is the smooth manifold obtained by equipping

TM := {(p, v) | p ∈M , v ∈ TpM}

with:
(1) the topology generated by the sets V above varying (U, φ) ∈M and B in the class of
open non-empty sets of Rn,
(2) the differentiable structure induced by the atlas

A(TM) := {(U, Tφ) | (U, φ) ∈M} .

The local charts (TU, Tφ) of A(TM) are said natural local charts on TM or also local
chart adapted to the fiber-bundle structure of TM .

(b) The cotangent bundle associated with M is the manifold obtained by equipping

T ∗M := {(p, ω) | p ∈M , ω ∈ T ∗pM}
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with:
(1) the topology generated by the sets ∗V above varying (U, φ) ∈M and B in the class of
open non-empty sets of Rn,
(2) the differentiable structure induced by the atlas

∗A(TM) := {(U, T ∗φ) | (U, φ) ∈M} .

The local charts (TU, T ∗φ) of ∗A(TM) are said natural local charts on T ∗M or also
local chart adapted to the fiber-bundle structure of T ∗M .

The tangent bundle and cotangent bundle are also called tangent space and cotangent space
respectively. �

From now on we denote the tangent space, including its differentiable structure, by the same
symbol used for the “pure set” TM . Similarly, the cotangent space, including its differentiable
structure, will be indicated by T ∗M .

For future reference, it is interesting to write down explicitly the relation between the coordinates
of two local charts Tφ : TU 3 (p, v) 7→ (x1, . . . , xn, v1, . . . , vn) ∈ R2n and Ψ : TV 3 (p, v) 7→
(x′1, . . . , x′n, v′1, . . . , v′n) ∈ R2n on TM induced from two local charts, respectively, (U, φ) and
(V, ψ) on M , when U ∩ V 6= ∅. By direct inspection one finds

x′a = x′a(x1, . . . , xn) (3.9)

v′a =
n∑
b=1

∂x′a

∂xb
|φ(p)v

b . (3.10)

We leave to the reader to write down the analog for T ∗M .

Remark 3.26. It should be clear that the atlas A(TM) (and the corresponding one for T ∗M)
is not maximal and thus the differential structure on TM (T ∗M) is larger than the definitory
atlas.
For instance suppose that dim(M) = 2, and let (U,M) be a local chart of the smooth differ-
entiable structure of M . Let the coordinates of the associated local chart on TM , (TU, Tφ) be
indicated by x1, x2, v1, v2 with xi ∈ R associated with φ and vi ∈ R components in the associated
bases in Tφ−1(x1,x2)M . One can define new local coordinates on TU :

y1 := x1 + v1 , y2 := x1 − v1 , y3 := x2 + v2 , y4 := x2 − v2 .

The corresponding local chart is admissible for the differential structure of TM but, in general,
it does not belong to the atlas A(TM) naturally induced by the differentiable structure of M .
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There are some definitions related with definition 3.25 and concerning canonical projections,
sections and lift of differentiable curves.

Definition 3.27. (Canonical projections, sections, lifts.) Let M be a smooth manifold.
The surjective open smooth mappings

Π : TM →M such that Π(p, v) 7→ p ,

and
∗Π : T ∗M →M such that ∗Π(p, ω) 7→ p ,

are called canonical projections onto TM and T ∗M respectively.
A section of TM (respectively T ∗M) is a smooth map σ : M → TM (respectively T ∗M), such
that Π(σ(p)) = p (respectively ∗Π(σ(p)) = p) for every p ∈M .
If γ : I 3 t 7→ γ(t) ∈ M , I being an interval of R, is a smooth curve, the lift of γ, Γ, is the
smooth curve in TM ,

Γ : I 3 t 7→ (γ(t), γ′(t)) ∈ TM .

�

3.3.2 Fiber bundles

The structure of thangent bundle can be generalized to the general notion of fiber bundle. This
ia a manifold E such that it can be locally viewed as the product manifold F ×M where F and
M are canonical manifolds.

Definition 3.28. (Fiber bundle.) We say that we have a Fiber bundle E with basis
M , canonical fiber F , and canonical projection π : E → M , – where E,M,F are smooth
manifolds and π a smooth function – if the following condition is satisfied.
Every point p ∈ M admits an open neighborhood Up ⊂ M such that the open set π−1(Up) is
diffeomorphic to F × Up through a diffeomorphism φ : F × Up → π−1(U) which satisfies

π(φ(x, y)) = y , ∀(x, y) ∈ F × Up .

Above π−1(Up) is equipped with the natural differentiable structure induced by E and Up is
equipped with the natural differentiable structure induced by M .
A local section of E is a smooth map f : V → E, where V ⊂M is open, such that π(f(p)) = p
for every p ∈ V . If V = M the local section is called global. The space of sections is denoted
by Γ(E). �

Remark 3.29.
(1) Due to the requirement π(φ(x, y)) = y for all (x, y) ∈ F × Up the map π : E → M is
necessarily surjective and it is also a submersion according to Definition 4.6 (we shall introduce
in the next chapter) since it coincides through a diffeomorphism with the canonical projection
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Figure 3.1: The Möbius strip

F ×Up 3 (x, y) 7→ y ∈ Up which is a submersion as it follows working in local coordinates of the
natural atlas of the product manifold.
(2) A fiber bundle E as in Definition 3.28 is said to be trivializable if the open neighborhood
Up coincides with the whole basis M . It turns out that if M is diffeomorphic to R, then E is
always trivializable. The spacetime of the classical physics, when the basis is the time axis, is
trivializable, but not in a canonical way, every reference frame defines a different trivialization
[Mor20b].
(3) It should be evident that TM is a fiber bundle with basis M , canonical fiber Rdim(M),
and canonical projection Π. A smooth manifold M is said to be parallelizable if TM ad-
mits m := dim(M) linearly independent sections. In other words, there must exist m smooth
vector fields such that they define a basis of TpM for every p ∈ M . This, in turn, is equiv-
alent to saying that TM is trivializable. Every affine space is parallelizable. the spheres S1,
S3, S7 are parallelizable, whereas all remaining sphere, S2 in particular, are not parallelizable. �

Examples 3.30.
(1) The natural issue is whether or not there exist fiber bundles which are not globally dif-
feomorphic to F × M . The famous so-called Möbius strip is a well known counterexample.
It is locally constructed as the product U × S1, where U = (−1, 1) and S1 is the unit circle
S1 := {(x, y) ∈ R2 | x2 + y2 = 1}, but it is not diffeomorphic to it, more weakly, U is its canoni-
cal fiber and S1 is its basis.
(2) It is not guaranteed that Γ(E) is non-trivial (this is the case for the fiber bundle over S1

with fiber F := R \ {0} obtained by taking the Möbius bundle and removing the zero section),
sometimes only local sections exists. However, in the special case of TM and T ∗M global sec-
tions exist. Since TM is a fiber bundle the smooth vector fields on M are sections of TM and
vice versa:

X(M) = Γ(TM) .
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An analogous fact is true for T ∗M :

Ω1(M) = Γ(T ∗M) .

�
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Chapter 4

Differential mapping, submanifolds,
Lie derivative

This chapter discusses the interplay of the notion of smooth transformation and that of smooth
manifold. This interplay passes through and link together fundamental mathematical concepts
as the various notions of submanifold, that of flow of a smooth vector field and Lie derivative.

4.1 Differenitial of mappings and its applications

A fundamental mathematical tool in differential geometry is the differential of a smooth function.
It gives rise to a variety of interesting and pervasive mathematical structures.

4.1.1 Push forward

Definition 4.1. (Differential of a mapping or push forward.) If f : N →M is a smooth
function from the smooth manifold N to the smooth manifold M , the differential of f at p or
push forward of f at p is the linear mapping

dfp : TpN 3 Xp 7→ dfXp ∈ Tf(p)M ,

defined by
dfXp(g) := Xp(g ◦ f) ,

for all vectors Xp ∈ TpN and all smooth functions g ∈ D(M). �

Remark 4.2.
(1) Notice that the definition above is an extension of (3.3) when M = R as it is even more
evident form the discussion below.
(2) With the meaning of df as in the definition above, df is often indicated by f∗. �
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Figure 4.1: Diagrams to compute the differential

Let us study the explicit form of the differential map in components. Take two local charts
(U, φ) in N and (V, ψ) in M around p and f(p) respectively and use the notation φ : U 3 q 7→
(x1(q), . . . , xn(q)) and ψ : V 3 r 7→ (y1(r), . . . , ym(r)). Then define

f̃ := ψ ◦ f ◦ φ−1 : φ(U)→ Rm and g̃ := g ◦ ψ−1 : ψ(V )→ R .

f̃ and g̃ represent f and g, respectively, in the fixed coordinate systems. By construction, it
holds

Xp(g ◦ f) = Xi
p

∂

∂xi
(
g ◦ f ◦ φ−1

)
= Xi

p

∂

∂xi
(
g ◦ ψ−1 ◦ ψ ◦ f ◦ φ−1

)
.

That is, with obvious notation

Xp(g ◦ f) = Xi
p

∂

∂xi

Ä
g̃ ◦ f̃

ä
= Xi

p

∂g̃

∂yk
|f
∂f̃k

∂xi
=

Ç
∂f̃k

∂xi
Xi
p

å
∂g̃

∂yk
|f .

In other words

((dfXp)g)k =

Ç
∂f̃k

∂xi
Xi
p

å
∂g̃

∂yk
|f .

This means that, with the said notations, the following very useful coordinate form of dfp can
be given

dfp : Xi
p

∂

∂xi
|p 7→ Xi

p

∂(ψ ◦ f ◦ φ−1)k

∂xi
|φ(p)

∂

∂yk
|f(p) . (4.1)

That formula is more often written

dfp : Xi
p

∂

∂xi
|p 7→ Xi

p

∂yk

∂xi
|(x1(p),...xn(p))

∂

∂yk
|f(p) , (4.2)

where it is understood that ψ ◦ f ◦ φ−1 : (x1, . . . , xn) 7→ (y1(x1, . . . , xn), . . . , ym(x1, . . . , xn)).
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4.1.2 Pull back

The dual application of the push forward, which transforms covariant vectors, is called pull back
since it proceeds in the opposite direction.

Definition 4.3. (Pull back.) If f : N →M is a smooth function from the smooth manifold
N to the smooth manifold M , the pull back at q = f(p)

f∗q : T ∗qM 3 ωq 7→ f∗ωq ∈ T ∗pN ,

defined by
〈Xp, f

∗ωq〉 = 〈dfXp, ωq〉

for all vector Xp ∈ TpM . �

A straightforward computations strictly analogous to the previous one proves that, in coordi-
nates,

f∗q : (ωq)idy
i|q 7→ (ωq)k

∂yk

∂xi
|(x1(p),...xn(p)) dx

i|p , (4.3)

where it is understood that ψ ◦ f ◦ φ−1 : (x1, . . . , xn) 7→ (y1(x1, . . . , xn), . . . , ym(x1, . . . , xn)).

4.2 Rank of a smooth map and related notions

The notion of differential allows one to define the rank of a map and associated definitions useful
in distinguishing among the various types of submanifolds of a given manifold.

4.2.1 Rank of a smooth map

Consider a smooth map between two smooth manifolds f : N → M . If (U, φ) and (V, ψ) are
local charts around p and f(p) respectively, the rank of the Jacobian matrix of the function
ψ ◦ f ◦ φ−1 : φ(U)→ Rm computed in φ(p) does not depend on the choice of those charts. This
is because any change of charts transforms the Jacobian matrix into a new matrix obtained by
means of left or right composition with nonsingular square matrices and this does not affect the
range.

Definition 4.4. If f : N → M is a smooth function from the smooth manifold N to the
smooth manifold N and p ∈ N .

(a) The rank of f at p is the rank of dfp (that is the rank of the Jacobian matrix of the
function ψ ◦ f ◦ φ−1 computed in φ(p) ∈ Rn, (U, φ) and (V, ψ) being a pair of local charts
around p and f(p) respectively);

(b) p is called a critical point or singular point of f if the rank of f at p is is not maximal.
Otherwise p is called regular point of f ;
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(c) If p is a critical point of f , f(p) is called critical value or singular value of f . A regular
value of f , q is a point of M such that every point in f−1(q) is a regular point of f . �

We have the following remarkable results concerning regular points.

Theorem 4.5. Let f : N → M be a smooth function with M and N smooth manifolds with
dimension m and n respectively and take p ∈ N .

(1) If n ≥ m and p is a regular point, i.e. dfp is surjective, then f looks like the canonical
projection of Rn onto Rm around p.
In other words, for any local chart (V, ψ) around f(p) there is a local chart (U, φ) around
p such that

ψ ◦ f ◦ φ−1(x1, . . . , xm, . . . , xn) = (x1, . . . , xm) if (x1, . . . , xm) ∈ φ(U) .

(2) If n ≤ m and p is a regular point, i.e. dfp is injective, then f looks like the canonical
injection of Rn into Rm around p.
In other words, for any local chart (U, φ) around p there is a local chart (V, ψ) around f(p)
such that

ψ ◦ f ◦ φ−1(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0) if (x1, . . . , xn) ∈ φ(U).

(3) If n = m, then the following statements are equivalent:

(a) p is a regular point, i.e., dfp : TpN → Tf(p)N is a linear isomorphism;

(b) f defines a local diffeomorphism around p. In other words, there is an open
neighborhood U of p and an open neighborhood V of f(p) such that f �U : U → V is a dif-
feomorphism form the smooth manifold U equipped with the natural differentiable structure
induced1 by N to the smooth manifold V equipped with the similar natural differentiable
structure induced by M .

Sketch of proof. Working in local coordinates in N and M and passing to work with the
Jacobian matrices of the involved functions (1) and (2) are direct consequences of Dini’s implicit
function theorem. Let us pass to consider (3). Suppose that g := f �U is a diffeomorphism
onto V . In that case g−1 : V → U is a diffeomorphism to and g ◦ f = idU . Working in
local coordinates around p and f(p) and computing the Jacobian matrix of g ◦ f in p one gets
J [g]f(p)J [f ]p = I. This means that both detJ [g]f(p) and detJ [f ]p cannot vanish. In particular
det J [f ]p 6= 0 is equivalent to the fact that dfp is a linear isomorphism. Conversely, assume that
dfp is a linear isomorphism. In that case both (1) and (2) above hold and there is a pair of open
neighborhoods U 3 p and V 3 f(p) equipped with coordinates such that

ψ ◦ f ◦ φ−1(x1, . . . , xm) = (x1, . . . , xm) ,

which means that ψ ◦ f ◦ φ−1(x1, . . . , xm) : φ(U)→ ψ(V ) is the (restriction of) identity map on
Rm. This fact immediately implies that f �U is a diffeomorphism onto V . 2

1According to Remark 2.10.
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4.2.2 Immersions, submersions, submanifolds

Let us pass to introduce the notion of submanifold.

Definition 4.6. If f : N → M is a smooth function from the smooth manifold N to the
smooth manifold M then,

(a) f is called submersion if dfp is surjective for every p ∈ N ;

(b) f is called immersion if dfp is injective for every p ∈ N ;

(c) An immersion f : N →M is called embedding if

(i) it is injective and

(ii) f : N → f(N) is a homeomorphism when f(N) is equipped with the topology induced
by M . �

Definition 4.7. Let f : N →M a smooth map between two smooth manifolds.

(a) If f is an injective immersion, then N is called immersed smooth submanifold of M
through f .

(a) If f is an embedding, then N is called embedded smooth submanifold of M (or simply
smooth submanifold of M) through f .

In the absence of further specification, if N ⊂ M as sets, the injective map f : N → M is
assumed to be the inclusion map i : N ↪→M , defined as i : N 3 x 7→ x ∈M (and however N
must be autonomously equipped with a smooth manifold structure). �

An equivalent definition of embedded submanifold for N ⊂M can be given by using the state-
ment in (b) of the following proposition.

Proposition 4.8. Let M be a smooth manifold with dimension m and let N ⊂M .

(a) If N is a smooth manifold with dimension n which is an embedded submanifold of M , the
following pair of conditions are satisfied:

(i) the topology of N is that induced by M ,

(ii) for every p ∈ N (and thus p ∈M) there is an open (in M) neighborhood of p, Up and a
local chart of M , (Up, φ), such that if we use the notation, φ : q 7→ (x1(q), . . . , xm(q)),
it holds

φ(N ∩ Up) = {(x1, ..., xm) ∈ φ(U) | xn+1 = 0, . . . , xm = 0} .
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(b) If (i) and (ii) hold for some fixed n ≤ m, N can be equipped with a differentiable structure
N so that it results to be a submanifold with dimension n of M with emebedding given
by the inclusion map. That differentiable structure is obtained as follows. The maps
N ∩ Up 3 q 7→ (x1(q), . . . , xn(q)) define a local chart around every point p ∈ N with
domain Vp = N ∩ Up. The set of these charts is an atlas whose generated differentiable
structure is N.

Sketch of proof. (a) if N ⊂ M is a smooth submanifold of M (the embedding being the
inclusion map), the topology of N must be that induced by M because the inclusion map is
a homeomorphism from the topological manifold N to the subset N ⊂ M equipped with the
topology induced by M . Using Theorem 4.5 (items (2) and (3)) where f is replaced by the
inclusion map one straightforwardly proves the validity of (ii).
(b) Under the given hypotheses equip N with the topology induced by M . As a consequence N
turns out to be Hausdorff and second countable. By direct computation, it result that, if the
conditions (i),(ii), are satisfied, the local charts with domains Vp defined in (b), varying p ∈ N ,
are: (1) local homeomorphisms from N to Rn (this is because the maps φ are local homeomor-
phisms from M to Rm), (2) pairwise compatible (this is because these charts are restrictions of
pairwise compatible charts). Since there is such a chart around every point of N , the set of the
considered charts is an atlas of N . Using such an atlas it is simply proved by direct inspection
that the inclusion map i : N ↪→M is an embedding. 2

Remark 4.9. If f : N → M is an injective immersion, according to (2) in Theorem 4.5,
for every p ∈ N we can always find two local charts (U, φ) around p in N , with φ(q) =
(x1(q), . . . , xn(q)), and (V, ψ) around f(p) in M , with ψ(r) = (y1(r), . . . , ym(r)), such that

(a) f(U) coincides with the set yn+1 = · · · = ym = 0 in ψ(V ) and

(b) (x1(r), . . . , xn(r)) = (y1(f(r)), . . . , yn(f(r))) for every r ∈ U

The fundamental difference with the corresponding result for (embedded) submanifolds is that
now f(N) ∩ V ( f(U) in general. Instead for embeddings we can always arrange the neighbor-
hoods in order that f(N) ∩ V = f(U) as a consequence of Proposition 4.8. �

Examples 4.10.
1. The map γ : R 3 t 7→ (sin t, cos t) ⊂ R2 is an immersion, since dγ 6= 0 (which is equivalent to
say that γ′ 6= 0) everywhere. Anyway that is not an embedding since γ is not injective. So R is
not an immersed manifold nor and embedded manifold through γ.
2. Changing perspective and looking at the only image C = γ(R) this set turns out to be an
embedded submanifold of R2 (through the inclusion map) if C is equipped with the topology
induced by R2 and the differentiable structure is that built up by using (b) of proposition 4.8.
In fact, take p ∈ C and notice that there is some t ∈ R with γ(t) = p and dγp 6= 0. Using (2) of
theorem 4.5, there is a local chart (U,ψ) of R2 around p referred to coordinates (x1, x2), such
that the portion of C which has intersection with U is represented by (x1, 0), x1 ∈ (a, b). For
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instance, such coordinates are polar coordinates (θ, r), θ ∈ (−π, π), r ∈ (0,+∞), centered in
(0, 0) ∈ R2 with polar axis (i.e., θ = 0) passing through p. These coordinates define a local chart
around p on C in the set U ∩ C with coordinate x1. All the charts obtained by varying p are
pairwise compatible and thus they give rise to a differentiable structure on C. By proposition
4.8 that structure makes C a submanifold of R2. On the other hand, the inclusion map, which
is always injective, is an immersion because it is locally represented by the trivial immersion
x1 7→ (x1, 0). As the topology on C is that induced by R, the inclusion map is a homeomor-
phism. So the inclusion map i : C ↪→ R2 is an embedding and this shows once again that C is
a submanifold of R2 using the definition itself.
3. Consider the set in R2, C := {(x, y) ∈ R2 | x2 = y2}. It is not possible to give a differentiable
structure to C in order to have a one-dimensional submanifold of R2. This is because C equipped
with the topology induced by R2 is not locally homeomorphic to R due to the point (0, 0).
4. Is it possible to endow C defined in 3 with a differentiable structure and make it a one-
dimensional smooth manifold? The answer is yes. C is connected but is the union of the
disjoint sets C1 := {(x, y) ∈ R2 | y = x}, C2 := {(x, y) ∈ R2 | y = −x , x > 0} and
C3 := {(x, y) ∈ R2 | y = −x , x < 0}. C1 is homeomorphic to R defining the topology on
C1 by saying that the open sets of C1 are all the sets f1(I) where I is an open set of R and
f1 : R 3 x 7→ (x, x). By the same way, C2 turns out to be homeomorphic to R by defining its
topology as above by using f2 : R 3 z 7→ (ez,−ez). C3 enjoys the same property by defining
f3 : R 3 z 7→ (−ez, ez). The maps f−1

1 , f−1
2 , f−1

3 also define a global coordinate system on
C1, C2, C3 respectively and separately, each function defines a local chart on C. The differen-
tiable structure generated by the atlas defined by those functions makes C a smooth manifold
with dimension 1 and cannot be considered a submanifold of R2. It is clear that C equipped
with the said differentiable structure is however an immersed submanifold of R2 through the
inclusion map.
5. Consider the set in R2, C = {(x, y) ∈ R2 | y = |x|}. This set cannot be equipped with a
suitable differentiable structure which makes it an embedded submanifold of R2 (through the
inclusion map). Actually, differently from above, here the problem concerns the smoothness of
the inclusion map at (0, 0) rather that the topology of C. In fact, C is naturally homeomorphic
to R when equipped with the topology induced by R2. Nevertheless there is no way to find a lo-
cal chart in R2 around the point (0, 0) such that the requirements of proposition 4.8 are fulfilled
sue to the corner in that point of the curve C. However, it is simply defined a differentiable
structure on C which make it a one-dimensional smooth manifold. It is sufficient to consider the
differentiable structure generated by the global chart given by the inverse of the homeomorphism
f : R 3 t 7→ (|t|, t). The inclusion map does not permit to view C as an immersed submanifold
of R2 due to smoothness problems with the corner.
6. Let us consider once again the cylinder C ⊂ E3 defined in the example 5.8.2. C is an
embedded submanifold of E3 (referring as usual to the inclusion map). Since the construction
of the differential structure made in the example 5.8.2 is that of proposition 4.8 starting from
cylindrical coordinates θ, r′ := r − 1, z.
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We finally quote a fundamental theorem2 due to Whitney concerning the fact that every smooth
manifold can be always seen as an embedded submanifold of a Rn space with n sufficiently large.

Theorem 4.11. (Whitney embedding theorem) If M is a smooth n-dimensional mani-
fold (Hausdorff and second countable), then there exists a smooth embedding f : M → R2n.

Remark 4.12. From now on, smooth submanifold means embedded smooth manifold. �.

4.2.3 Theorem of regular values

To conclude this concise discussion about submanifolds, we state (without proof) a very impor-
tant theorem with various application in mathematical physics.

Theorem 4.13. (Theorem of regular values.) Let f : N →M be a smooth function from
the smooth manifold N to the smooth manifold M with dimM < dimN .
If y ∈M is a regular value of f , P := f−1({y}) ⊂ N is a smooth submanifold of N .

Remark 4.14. A know theorem due to Sard, proves that the measure of the set of singular
values of any smooth function f : N → M must vanish. This means that, if S ⊂ M is the set
of singular values of f , for every local chart (U, φ) in M , the set φ(S ∩ U) ⊂ Rm has vanishing
Lebesgue measure in Rm where m = dimM . �

Examples 4.15. .
1. In analytical mechanics, consider a system of N material points with possible positions
Pk ∈ R3, k = 1, 2, . . . , N and c constraints given by assuming fi(P1, . . . , PN ) = 0 where the c
functions fi : R3N → R, i = 1, . . . , c are smooth. If the constraints are functionally independent,
i.e. the Jacobian matrix of elements ∂fi

∂xk
has rank c everywhere, x1, x2, . . . , x3N being the

coordinates of (P1, . . . , PN ) ∈ (R3)N , the configuration space is a submanifold of R3N with
dimension 3N − c. This result is nothing but a trivial application of theorem 4.13.
2. Consider (2) in Exercises 2.15 from another point of view. As a set the circumference
C = {(x, y) ∈ R2 |x2 + y2 = 1} is f−1(0) with f : R2 → R defined as f(x, y) := x2 + y2− 1. The
value 0 is a regular value of f because dfp = 2xdx + 2ydy 6= 0 if f(x, y) = 0 that is (x, y) ∈ C.
As a consequence of Theorem 4.13, C can be equipped with the structure of submanifold of R2.
This structure is that defined in (2) Example 4.10.
3. Consider a function z = g(x, y) in R3 where (x, y) ∈ U , U being any open set and suppose
that the function g is smooth. Since dzp 6= 0, the function f(x, y, z) := z − g(x, y) satisfies

dfp = dz|p+ ∂g
∂x |pdx|p+ ∂g

∂y |pdy|p 6= 0 for every point p ∈ U×R. In particular this fact happens for
the points such that f(p) = 0. As a consequence the map z = g(x, y) defines a two-dimensional
submanifold embedded in R3.

2M. Adachi, Embeddings and Immersions, translated by Hudson, Kiki, AMS (1993).
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4.3 Flow of a vector field, Lie derivative, Frobenius Theorem

This section is devoted to present some further applications of the Lie commutator of vector
fields. First of all, it is has the interpretation of Lie derivative, which is one of the two notions
of derivative of vector fields we consider in this book. Anther use of the Lie parenthesis concerns
the theory of integrable distributions and the celebrated Frobenius Theorem. To introduce the
notion of Lie derivative we need a preparatory discussion about the concept of flow of a vector
field.

4.3.1 Almost all about the flow of a vector field

We start by introducing the notion of local flow of X ∈ X(M) for a smooth manifold M . Let us
consider the problem of finding a smooth curve

Jp 3 t 7→ γp(t) , (4.4)

where Jp 3 0 is any open interval of R, that solves the following Cauchy problem

γ′p = Xγp(t) satisfying γp(0) = p ∈M . (4.5)

It is known (see, e.g. [Lee03]) that, for every p ∈M , there exists and is unique a solution that is
not the restriction of a solution of the same problem defined on a larger domain. This solution
is called the maximal solution of the Cauchy problem (4.5). It will be henceforth denoted by

Ip 3 t 7→ γp(t) . (4.6)

It turns out that every other solution of the same Cauchy problem is a restriction of it. The
following elementary but crucial result is valid.

Proposition 4.16. Referring to the maximal solutions (4.6) of the Cauchy problem (4.5),

A := ∪p∈MIp × {p}

is an open set in R×M including {0} ×M and the map Φ(X) : A→M defined as

Φ
(X)
t (p) := γp(t) (4.7)

called (local) flow of X ∈ X(M), is jointly smooth in its variables.

Proof. See [Lee03]. 2

Definition 4.17. A smooth vector field X on the smooth manifold M is said to be com-
plete if all the maximal solutions of (4.5) are complete, i.e., defined in all (−∞,+∞). �

53



We can now state and prove a proposition regarding the basic local properties of Φ(X).

Proposition 4.18. Let M be a smooth manifold and X ∈ X(M). The following facts are
valid.

(1) For every p ∈M there are an open neighborhood Up 3 p and an open interval Lp 3 0 such
that,

(a) if t ∈ Lp, then Φ
(X)
t (Up) is open and Φ

(X)
t |Up : Up → Φ

(X)
t (Up) is a diffeomorphism;

(b) if q ∈ Up and s, t, s+ t ∈ Lp, then

Φ
(X)
0 (q) = q and Φ

(X)
t ◦ Φ(X)

s (q) = Φ(X)
s ◦ Φ

(X)
t (q) = Φ

(X)
t+s(q) . (4.8)

(2) If X is complete, then {Φ(X)
t }t∈R is one-parameter group of diffeomorphisms of M :

Φ
(X)
0 = idM and Φ

(X)
t ◦ Φ(X)

s = Φ
(X)
t+s ∀s, t ∈ R (4.9)

In particular,

Φ
(X)
−t = (Φ

(X)
t )−1 ∀t ∈ R . (4.10)

Proof. We start the proof by observing that, from the uniqueness theorem for the maximal
solutions of the Cauchy problem (4.5) with a generic initial time t0 in place of 0, it easily follows
that

Φ
(X)
0 (q) = q and Φ

(X)
t ◦ Φ(X)

s (q) = Φ
(X)
t+s(q) (4.11)

for every fixed p ∈ M and, regarding the latter identity, every corresponding pair (s, t) such
that (s, q) ∈ A and (s+ t, q) ∈ A.
(2) If X is complete then A = R ×M and thus these conditions are always satisfied for all
t, s ∈ R and all q ∈M , proving the last assertion in the thesis.
(1) Since A is open in view of the Proposition 4.16, and Φ(X) is continuous and defined around
the points (0, p), the preimage of an open neighborhood of (0, p) ∈ A is an open set which we
can always choose of the form (−δ, δ)×Up, where Up is a suitably small open neighborhood of p
and δ > 0 is small enough. Defining Lp := (−δ/2, δ/2), we have that t, s ∈ Lp and q ∈ Up entail
(t, q), (s, q), (t+s, q) ∈ (−δ, δ)×Up ⊂ A and (4.11) are satisfied in view of the initial observation.
More strongly we also have

Φ
(X)
t ◦ Φ(X)

s (q) = Φ
(X)
t+s(q) = Φ

(X)
s+t(q) = Φ(X)

s ◦ Φ
(X)
t (q) ,

completing the proof of (4.8). Notice that the second identity in (4.11) implies that

Φ
(X)
−t ◦ Φ

(X)
t (q) = q (4.12)
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is valid for q ∈ U and t ∈ I. Since both composed maps are differentiable, it immediately implies

that dΦ
(X)
t is bijective on TpM so that (Theorem 4.5)

Φ
(X)
t |Up : Up → Φ

(X)
t (Up)

is a local diffeomorphism around each point of its domain. In particular, it is an open map.

Therefore the set Φ
(X)
t (Up) must be open because Up is open. Since Φ

(X)
t |Up is also injective for

(4.12), it defines a (global) diffeomorphism onto its image. 2

The following useful proposition extends a well known fact from Rn to smooth manifolds.

Proposition 4.19. Let M be a smooth manifold and X ∈ X(M). Assume that for a max-
imal solution γp : Ip → M of (4.5) there is a compact set K ⊂ M such that γ(t) ∈ K for all
Ip ∩ [0,+∞), then sup Ip = +∞. Similary, if γ(t) ∈ K for all Ip ∩ (−∞, 0], then inf Ip = −∞.

Proof. See [Lee03]. 2

Remark 4.20. As a consequence of Proposition 4.19, if X has compact support – this is the
case when M itself is compact in particular – then X is complete and the flow of X is global as
in (2) of Proposition 4.18. �

A finer result that completes Proposition 4.18 is the following one.

Proposition 4.21. Let M be a smooth manifold and X ∈ X(M). Referring to (4.6) and
(4.5) define

Dt := {p ∈M | Ip 3 t} ∀t ∈ R .

Φ(X) and the sets Dt enjoy the following properties.

(1) Dt is open (possibly Dt = ∅).

(2)
⋃
t>0Dt = M and

⋃
t<0Dt = M .

(3) Φ
(X)
t : Dt → D−t is a diffeomorphism with inverse Φ

(X)
−t for every t ∈ R.

(4) If s, t ∈ R and p ∈M are such that Φ
(X)
s ◦ Φ

(X)
t (p) is well defined, then p ∈ Dt+s and

Φ(X)
s ◦ Φ

(X)
t (p) = Φ

(X)
s+t(p) .

(5) If s, t ∈ R have the same sign, then Φ
(X)
s ◦ Φ

(X)
t is well defined on Dt+s and the identity

above is valid for every p ∈ Ds+t.

Proof. See [War83]. 2.

Remark 4.22. Evidently, if either 0 ≤ t < s or if s < t ≤ 0, then Ds ⊂ Dt. 2
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4.3.2 Lie derivative of vector fields

We aim now to define the notion of derivative of a vector field X with respect to another vector
field Y on a generic manifold M . The major obstruction one faces in trying to extend to
manifolds the standard definition in Rn,

∇YX = lim
h→0

1

h

(
Xp+hYp −Xp

)
,

is the absence of a common affine structure independent of the chosen coordinate system: here
Xp+hYp ∈ Tp+hYpM , whatever meaning we give to p+hYp, whereas Xp ∈ TpM and the difference
of vectors of two different tangent spaces is not defined. That difference can be defined in the
Rn of a local coordinate system, but the arising definition would depend on the choice of that
local chart. There are at least two ideas in differential geometry to circumvent the problem.
One exploits the notion of flow of Y defined above and its push forward and it leads to the
notion of Lie derivative. The other one relies upon the notion of affine connection and will be
discussed in the next chapter.

Definition 4.23. If X,Y ∈ X(M) for the smooth manifold M and p ∈M , the Lie derivative
at p ∈M of X with respect to Y is the vector of TpM

(LYX)p := lim
t→0

1

t

(
dΦ

(Y )
−t XΦ

(Y )
t (p)

−Xp

)
(4.13)

�

Remark 4.24. We stress that

dΦ
(Y )
−t Xq ∈ TΦ

(Y )
−t (q)

M

by definition of differential, so that

dΦ
(Y )
−t XΦ

(Y )
t (p)

∈ T
Φ

(Y )
−t ◦Φ

(Y )
t (p)

M = TpM

where we have exploited (4.8) assuming that t is sufficiently close to p. As a consequence, (4.13)
is well defined as the difference of two vectors in TpM appears in the right-hand side circum-
venting the problem illustrated above the definition. This apparently cumbersome procedure
defines an intrinsic notion of derivative of a vector field with respect to another vector field in a
fixed point of a manifold. This notion of derivative is physically useful and it enters for instance
the theorems relating dynamically conserved quantities and symmetries of a physical system
through the various versions of Noether theorem. �

Let us explicitly compute the above Lie derivative. Since

dΦ
(Y )
−t XΦ

(Y )
0 (p)

= Xp
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due to the definition of the differential ad the former in (4.8), another way to write (4.13) is

(LYX)p =
d

dt

∣∣∣∣
t=0

dΦ
(Y )
−t XΦ

(Y )
t (p)

In other words, in components of a local chart around p with coordinates x1, . . . , xn

(LYX)kp =
d

dt

∣∣∣∣
t=0

Ñ
∂xk−t
∂xj

∣∣∣∣∣
(x1
t ,...,x

n
t )

Xj(x1
t , . . . , x

n
t )

é
,

where (x1
s, . . . , x

n
s ) are the coordinates of Φ

(Y )
s (p) when p has coordinates (x1, . . . , xn) so that,

in particular, (x1
0, . . . , x

n
0 ) = (x1, . . . , xn). Computing the derivative – using Schwarz’ theorem

in the first addend – we have

(LYX)kp =

ñ
∂

∂xj
∂xk−t
∂t

∣∣∣∣∣
t=0

+
∂xl−t
∂t

∣∣∣∣∣
t=0

∂

∂xl
∂xk

∂xj

ô
Xj(x1, . . . , xn) +

∂xk

∂xj
∂X l

∂xl
∂xlt
∂t

∣∣∣∣∣
t=0

,

where all functions are evaluated at (x1, . . . , xn). Since

∂xa

∂xb
= δab and

∂xkt
∂t

∣∣∣∣∣
t=0

= −
∂xk−t
∂t

∣∣∣∣∣
t=0

= Y k ,

the final result is

(LYX)kp = Y j
p

∂Xk

∂xj
|φ(p) −

∂Y k

∂xj
|φ(p)X

j
p . (4.14)

Comparing with (3.5), we conclude that the Lie derivative of vector fields and the Lie bracket
are the same mathematical object:

LYX = [Y,X] = −[X,Y ] = −LXY . (4.15)

In particular, as already suggested by the notation above, the Lie derivative (LYX)p defines a
smooth vector field LYX ∈ X(M) out of X,Y ∈ X(M) when varying the point p ∈M .

An immediate and useful consequence of (4.15), of the antisymmetry of the Lie bracket, and the
Jacobi identity (see Exercise 3.19) is the identity

L[X,Y ] = LXLY − LY LX . (4.16)

Remark 4.25. If comparing the notion of Lie derivative LYX written in coordinates as
in (4.14) with the notion of directional derivative ∇YX in Rn, we see that the difference just
amounts to the last term subtracted in the right-hand side of (4.14). As this term contains the
derivative of the components of Y , we conclude that

(LfYX)p = f(p)(LYX)p −Xp(f)Yp 6= f(p)(LYX)p
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in general, differently from
(∇fYX)p = f(p)(∇YX)p

where f ∈ D(M). It is possible to repair this feature (which however accounts for the different
definition of this type of derivative with respect the standard one in Rn) introducing another
notion of derivative of vector fields on manifolds, the covariant one, as we shall see in the next
chapter. �

4.3.3 Lie derivative of tensor fields

It is possible to extend the action of the Lie derivative LY on tensor fields on a smooth manifold
M . This is done by imposing the following requirements.

(a) If T is a smooth tensor field on M , then LY T is a smooth tensor field of the same type as
T – thus it belongs to the same vector space of T – and the map T 7→ LY T is linear;

(b) LY f := Y (f) for every f ∈ D(M);

(c) LY acts as a derivation with respect to the point-by-point contraction:

LY 〈X,ω〉 = 〈LYX,ω〉+ 〈X,LY ω〉

for every smooth vector field X and covariant vector field ω;

(d) LY acts as a derivation with respect to the point-by-point tensor product:

LY (T ⊗ T ′) = (LY T )⊗ T ′ + T ⊗ (LY T
′)

where T and T ′ are smooth tensor fields.

Let us illustrate, for instance, how to compute the Lie derivative of a covariant vector field ω.
Fixing a local chart U 3 p 7→ (x1, . . . , xn) ∈ R on M we have

ωp =

≠
∂

∂xk
|p, ωp

∑
dxk|p = (ωp)kdx

k|p .

Now fix p ∈ U ad take a hat function h centered on p and supported in U and define

∂

∂xk

′
|q := h(q)

∂

∂xk
|q .

assuming that the left-hand side vanishes outside U . The left-hand side is a smooth vector field
on M whose components coincide with those of ∂

∂xk
|q in a neighborhood of p. Taking advantage

of (b) and (c), we have in a sufficiently small neighborhood of p,

Y j ∂ωk
∂xj

= LY

≠
∂

∂xk

′
, ω

∑
=

≠
LY

∂

∂xk

′
, ω

∑
+

≠
∂

∂xk

′
,LY ω

∑
.
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Since from (4.15), Å
LY

∂

∂xk

′ã
q

= −∂Y
h

∂xk
|φ(q)

∂

∂xh
|q

we finally find for q = p,

Y j
p

∂ωk
∂xj
|φ(p) +

∂Y h

∂xk
|φ(p)(ωp)h =

≠
∂

∂xk
|p, (LY ω)p

∑
.

(LY ω)p is a covariant vector due to (a) and therefore the right-hand side is the k-th component
in the cosidered reference frame. In summary

(LY ω)p =

ñ
Y j
p

∂ωk
∂xj
|φ(p) +

∂Y j

∂xk
|φ(p)(ωp)j

ô
dxk|p .

At this point it is easy, using (d), to prove the general form of the action of LY on a tensor field
of order (r, s) (both sides are evaluated at a point p in the domain of the used local chart)

(LY T )i1···ir j1···js = Y k ∂T
i1···ir

j1···js
∂xk

− T k···ir j1···js
∂Y i1

∂xk
+ · · · − T i1···ir−1ik

j1···js
∂Y in

∂xk

+ T i1···irk···js
∂Y k

∂xj1
+ · · ·+ T i1···ik j1···js−1k

∂Y k

∂xjs
. (4.17)

The case of a mixed tensor is analogous.

Exercises 4.26.
1. Prove that, with the definition above, if f ∈ D(M),

(LY f)p := lim
t→0

1

t

Ä
f(Φ

(Y )
t (p))− f(p)

ä
. (4.18)

2. Prove that, with the definition above, if ω is a covariant vector field,

(LY ω)p := lim
t→0

1

t

(
Φ

(Y )∗
t ω

Φ
(Y )
t (p)

− ωp
)
. (4.19)

3. Extend (4.13), (4.18), (4.19) to the case of a generic tensor field S of type (r, s),

(LY S)p := lim
t→0

1

t

Ö
dΦ

(Y )
−t ⊗ · · · ⊗ dΦ

(Y )
−t︸ ︷︷ ︸

r times

⊗Φ
(Y )∗
t ⊗ · · · ⊗ Φ

(Y )∗
t︸ ︷︷ ︸

s times

S
Φ

(Y )
t (p)

− Sp

è
. (4.20)

where ⊗ is the point-by-point tensor product of operators.
4. Proves that (4.16) extends to the action of the Lie derivative on every tensor field.
(Hint. Prove the thesis according to the following steps. (1) Use the axioms (1)-(d) observing

that the identity is trivial when the Lie derivative acts on f ∈ D(M), then (2) it extends it to
1-forms using (c) and finally (3) use (d) to extend the results to all tensor fields).
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5. Prove that, as a consequence of (4.20), if Y ∈ X(M), then

ω ∈ Ωk(M) entails LY ω ∈ Ωk(M) .

5. Prove the Cartan magic formula, also known as Cartan homotopy formula,

LXω = iXdω + diXω , (4.21)

where

(a) ω ∈ Ωk(M),

(b) d is the exterior derivative introduced in Section 3.2.3,

(c) iX : Ωk(M)→ Ωk−1(M) is the point-by-point interior product (see [Mor20] where it is
denoted by Xy ) for a given X ∈ X(M), which can be equivalently defined as

(iXpωp)(Xp 1, . . . , Xp k−1) := ω(Xp, Xp 1, . . . , Xp k−1)

for every ω ∈ Ωk(M) and X,X1, . . . , Xk−1 ∈ X(M).

4.3.4 Commuting vector fields and associated commuting flows

Let us consider X,Y ∈ X(M) for a smooth manifold M , our aim is to investigate the interplay
of the commutativity of the vectors at p:

[X,Y ]p = 0

and the commutativity of the corresponding flows:

(Φ
(X)
t ◦ Φ(Y )

u )(p) = (Φ
(Y )
t ◦ Φ(X)

u )(p) .

We have the following two important results.

Proposition 4.27. Let M be a smooth manifold and X,Y ∈ X(M). Suppose that, for a fixed
p ∈M and for a pair of open intervals I,I’⊂ R containig 0, it holds

(Φ
(X)
t ◦ Φ(Y )

u )(p) = (Φ
(Y )
t ◦ Φ(X)

u )(p) if (t, u) ∈ I × I ′.

Then
[X,Y ]p = 0 ,

that is tantamont to saying
(LYX)p = (LXY )p = 0 .
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Proof. If we compute the u−partial derivative at u = 0 of both sides in a local chart around p,
and next the t−partial derivative at t = 0, we get

n∑
k=1

∂Xi

∂xk
Y k
p =

n∑
k=1

∂2(Φ
(Y )
u )i

∂u∂xk

∣∣∣∣∣
u=0

Xk
p .

Schwarz’ theorem implies that we can interchange the derivatives in the right-hand side produc-
ing

n∑
k=1

∂Xi

∂xk
Y k
p =

n∑
k=1

∂Y i

∂xk
Xk
p ,

that mens
[X,Y ]p = 0 .

The last statement is an obvious consequence of (4.15). 2.

The converse fact also holds also if it is a bit more dufficult to prove.

Theorem 4.28. Let M be a smooth manifold and X,Y ∈ X(M) such that

[X,Y ] = 0 .

Suppose that, for p ∈ M and for a pair of open intervals I, I ′ ⊂ R containing 0, the function

(Φ
(Y )
u ◦ Φ

(X)
t )(p) is well defined when (t, u) ∈ I × I ′, then also (Φ

(X)
t ◦ Φ

(Y )
u )(p) is well defined

for (t, u) ∈ I × I ′ and it holds

(Φ(Y )
u ◦ Φ

(X)
t )(p) = (Φ

(X)
t ◦ Φ(Y )

u )(p) .

Proof. For a fixed t ∈ I, let us consider the function taking values in TM (notice that p ∈ M
is fixed)

I ′ 3 u 7→ ψt,p(u) :=
∂

∂t
(Φ(Y )

u ◦ Φ
(X)
t )(p)−X

(Φ
(Y )
u ◦Φ(X)

t )(p)
∈ T

(Φ
(Y )
u ◦Φ(X)

t )(p)
M .

We want to prove that this function is constant. Computing the u-derivative at u = u0 (with-
out writing this specification explicitly) and taking Schwarz’ theorem into account, in a local

coordinate chart defined around (Φ
(Y )
u0 ◦ Φ

(X)
t )(p) ∈M we have

dψt,p
du

=
∂2

∂t∂u
(Φ(Y )

u ◦ Φ
(X)
t )(p)− ∂

∂u
X

(Φ
(Y )
u ◦Φ(X)

t )(p)

=
∂

∂t
Y i

Φ
(X)
t (p)

∂

∂xi
− ∂Xi

∂xk
Y k

Φ
(X)
t (p)

∂

∂xi
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=
∂Y i

∂xk
Xk

Φ
(X)
t (p)

∂

∂xi
− ∂Xi

∂xk
Y k

Φ
(X)
t (p)

∂

∂xi
= [X,Y ]i

Φ
(X)
t (p)

∂

∂xi
= 0 .

We conclude that

ψt,p(u) = ψt,p(0) =
∂

∂t
Φ

(X)
t (p)−X

φ
(X)
t (p)

=
d

dt
Φ

(X)
t (p)−X

φ
(X)
t (p)

= 0 .

According to the definition of ψt,p, we have established that

∂

∂t
(Φ(Y )

u ◦ Φ
(X)
t )(p) = X

(φ
(Y)
u ◦φ(X)

t )(p)
.

The found identity implies that, keeping u ∈ I ′ fixed

I 3 t 7→ γu,p(t) := (Φ(Y )
u ◦ Φ

(X)
t )(p)

satisfies the differential equation

d

dt
γu,p(t) = Xγu,p(t) with initial condition γu,p(0) = Φ(Y )

u (p) .

The uniqueness theorem implies

γu,p(t) = Φ
(X)
t

Ä
Φ(Y )
u (p)

ä
.

Comparing it with the defintion of γu,p, we conclude that

(Φ(Y )
u ◦ Φ

(X)
t )(p) = (Φ

(X)
t ◦ Φ(Y )

u )(p)

ending the proof. 2

Remark 4.29. Many physical systems are described on differential manifolds and their
temporal evolution is represented by the curves tangent to a certain vector field Z called the
dynamical vector. This is the case both in Lagrangian and in Hamiltonian mechanics where,
respectively, M is the spacetime of kinetic states or the spacetime of phases. Locally, or also

globally if the field is complete, the evolution is therefore represented by the flow Φ
(H)
t .

Another vector field X defines a continuous dynamical symmetry of the system if, by
definition, [X,Z] = 0 everywhere. As a consequence of the proved theorem, this implies that
where both sides are defines

Φ
(Z)
t ◦ Φ(X)

u (p) = Φ(X)
u ◦ Φ

(Z)
t (p) .

The identity above says that, if transforming at each instant the evolution (where Ip is a suitable
open interval contaioning 0)

Ip 3 t 7→ Φ
(Z)
t (p) ∈M
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of the initial state p ∈M with the transformation Φ
(X)
u , the resulting curve

Ip 3 t 7→ Φ(X)
u ◦ Φ

(Z)
t (p) ∈M

is still a possible evolution (with different initial state), since it equals

Ip 3 t 7→ Φ
(Z)
t ◦ Φ(X)

u (p) ∈M .

This is the most elementary notion of dynamical symmetry. We stress that it only relies only
on the equations of the dynamics and not on more sophisticated notions as the Lagrangian or
Hamiltonian function. �

4.3.5 Frobenius theorem

Lie bracket are of relevance also dealing with the problem of the integrability of smooth distri-
butions as we briefly discuss here. Let us start by introducing the notion of smooth distribution.

Definition 4.30. (Smooth distribution.) If M is a smooth manifold of dimension n, a
smooth distribution of rank k ≤ n in M is an assignment of k-dimensional subspaces

W : M 3 p 7→Wp ⊂ TpM

which is smooth in the following sense. For every fixed p ∈ M , there are k vector fields
X(1), . . . , X(k) ∈ X(M) such that, in an open set U 3 p, they define a basis of Wq when evaluated
at q ∈ U . �

The simplest case of a smooth distribution defined in the domain U of a local chart φ : U 3 q 7→
(x1, . . . , xn) ∈ Rn on M viewed as a smooth manifold in its own right, is provided by

Wq := Span

Å
∂

∂x1
, . . . ,

∂

∂xk

ã
, q ∈ U .

It is evident that, in this case, U is foliated by the k-dimensional embedded submanifolds
Σxk+1,...,xn at constant xk+1, . . . , xn. U is the union of these disjoint surfaces so that, every
p ∈ U is contained in one of them. The interesting fact is that

TqΣxk+1,...,xn = Wq if q ∈ Σxk+1,...,xn ,

so that these surfaces are also everywhere tangent to the smooth distribution.
We would like to extend these properties to more general smooth distributions. In general, it

is impossible to find embedded submanifolds tangent to a smooth distribution as above, at least
when considering maximal integral manifolds (see Example 4.34 and Remark 4.35). However
if we stick to immersed submanifolds, a crucial result due to Frobenius provides necessary and
sufficient conditions.
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To go on, observe that in the example above [ ∂
∂xj

, ∂
∂xk

] = 0 and, more generally, if two smooth
vector fields X,Y are tangent to an embedded (or simply immersed) submanifold Σ at p ∈ Σ,
by direct inspection exploiting a suitable coordinate system around p and adapted to Σ (as in
(b) of 4.5) one sees that [X,Y ]p ∈ TpΣ. This condition which seems relevant (and it is) deserves
a definition.

Definition 4.31. (Involutive smooth distribution.) A smooth distribution W of rank
k ≤ dim(M) in the smooth manifold M is said to be involutive if

[X,Y ]p ∈Wp ∀p ∈M ,

if X,Y ∈ X(M) are such that
Xp, Yp ∈Wp ∀q ∈M .

�

To state the theorem we need the crucial definition.

Definition 4.32. (Integrable smooth distribution.) A smooth distribution W of rank
k ≤ dim(M) in the smooth manifold M is said to be integrable if, for every p ∈M , there exist
an immersed submanifold N (p) ⊂M such that

diqN
(p) = Wq for every q ∈ N (p),

where i : N →M is the inclusion map. N (p) is called integral manifold through p. �

We are in a position to state the theorem by Frobenius in both local and global version.

Theorem 4.33. (Frobenius Theorem.) Let M be a smooth manifold of dimension n and
W a smooth distribution of rank k ≤ n therein. The following facts are valid.

(a) W is integrable if and only if it is involutive.

(b) If W is involutive and p ∈ M , then there is a local chart φ : U 3 q 7→ (x1, . . . , xn) with
φ(U) = (−δ, δ)n for some δ > 0 and φ(p) = (0, . . . , 0), such that

(1) the slices
Σxk+1,...,xn := {φ(x1, . . . , xn) | xk+1, . . . , xnconstant}

with the smooth structure induced from M are integral manifolds so that, in particular,

Span

Å
∂

∂x1
|q, . . . ,

∂

∂xk
|q
ã

= Wq if q ∈ U ,

(2) if N (p) ⊂ U is a connected integral manifold through p, then N (p) coincides (as smooth
manifold) with one of those slices.
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Proof See [War83]. 2

Examples 4.34. Let T2 be the torus obtained by identifying 0 and 1 along both the x axis
and the y axis of R2. Consider the smooth vector fields in T2 × Rz giving rise to a smooth
distribution of rank 2.

X(1) :=
√

2
∂

∂x
+

∂

∂y
, X(2) =

∂

∂z

(the former smoothly extended on the identification lines). Evidently they satisfy the hypotheses
of Frobenius theorem since they commute. However, their maximal integral manifolds are only
immersed. Notice in fact that the maximal integral lines of X are dense in T2, this fact prevent
for having the topology induced from T2 ×Rz on the integral manifolds which therefore cannot
be embedded submanifolds. For every p ∈ T2 × Rz we can however cut the maximal integral
manifold around p, in the unique local slice passing through p, to obtain an integral manifold
through p which is also an embedded submanifold.

Remark 4.35. The result in the example above is general. According to (b) in Theorem 4.33
we can always select a local slice passing through p. Considered alone, this slice is an embedded
submanifold (see Proposition 4.8) tangent to the distribution.
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Chapter 5

(Pseudo) Riemannian manifolds and
related metric tools

This chapter is devoted to introduce some basic notions of the theory of (pseudo) Riemannian
manifolds. The overall goal – which drives the choice of the treated subjects – is exploiting
those notions in discussing relativistic theories. We use in the text the term pseudo Riemannian
manifold. These manifolds are also known in the literature as semi Riemannian manifolds
[O’Ne83, BEE96, ?].

5.1 (Pseudo) Riemannian manifolds

We start by discussing the notion of (pseudo) Riemannian manifold and its basic features.

5.1.1 Types of manifolds equipped with metrics

Definition 5.1. ((pseudo) Riemannian Manifolds.) Let M be a connected smooth
manifold of dimension n equipped with a symmetric (0, 2) smooth tensor field g which defines
a non-degenerate quadratic form gp( , ) : TpM × TpM → R with constant signature (r, s).

(a) (M,g) is called Riemannian manifold if the signature of g is (n, 0) – the canonical form
of the metric therefore reading (1,+1, · · · ,+1) – and thus gp is a scalar product. In this
case g is called metric tensor of M .

(b) (M,g) is called pseudo Rimennian manifold if the signature of g is (r, s) with rs 6= 0
– the canonical form of the metric therefore reading (−1, · · · ,−1︸ ︷︷ ︸

r times

,+1, · · · ,+1︸ ︷︷ ︸
s times

) – and thus

gp is a pseudo scalar product. In this case g is called pseudo metric tensor of M .

(c) (M,g) is called Lorentzian manifold if the signature of g is (1, n − 1) – the canonical
form of the metric therefore reading (−1,+1, · · · ,+1) – and thus gp is a Lorentzian pseudo
scalar product the canonical form of the metric reads. In this case g is called Lorentzian
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pseudo metric tensor of M . �

Remark 5.2. In the rest of the paper we shall often omit the term pseudo and Lorentzian
when the meaning of the used terms is clear from the context. The (pseudo, Lorentzian) metric
tensor will be often called simply the “metric”.

5.1.2 Length of curves

We start by extending the notion of smooth curve in M (Definition 2.16).

Definition 5.3. (Piecewise smooth curve.) Let M be a smooth manifold. A piecewise
smooth curve in M is a continuous map γ : I →M defined on the interval I, possibly including
one or both endpoints, such that

(a) γ is smooth in I except for a finite number of points (possibly including one or both
endpoints);

(b) the limits of the derivatives of every order towards those singular points exist and are
finite, but they can be different depending on the side of the considered point. �

Proposition 5.4. A connected smooth manifold M is connected by piecewise smooth curves.
In other words, if p, q ∈ M there is a (continuous!) piecewise smooth curve γ : [a, b]→ M with
γ(a) = p and γ(b) = q.

Proof. Let A ⊂M the set of points which are connected to a given p ∈M with some piecewise
smooth path. It is easy to prove that A is open, because if q ∈ A and γ connects p and q, dealing
with a local coordinate chart around q, every point q′ in an open coordinate ball centered on q
can be connected to p by adding a smooth path form q to q′. With this procedure one has a
piecewise smooth path from p to q′. With an analogous argument, the set B ⊂M which are not
connected by piecewise smooth paths to p is proved to be open as well. In summary, M = A∪B
where A and B are open disjoint sets. Since M is connected, it must be either M = A and
B = ∅ or M = B and A = ∅. The second possibility is not allowed as p ∈ A, hence M = A. 2

Definition 5.5. (Length of a curve.) Let γ : I 3 t 7→ γ(t) ∈ M be a piecewise smooth
curve in a (pseudo) Riemannian manifold (M,g), where I ⊂ R is a bounded interval. The
lenght of γ is, using the notation g(γ′(t), γ′(t)) := gγ(t)(γ

′(t), γ′(t)),

Lg(γ) =

∫
I

»
|g(γ′(t), γ′(t))|dt , (5.1)

where the tangent vector γ′(t) in the integrand is defined as the limit towards its discontinuity
points where γ is not smooth. �
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Remark 5.6.
(1) It is easy to prove that the Lg(γ) is re-parametrization invariant: if u = u(t) is a smooth
function with du

dt > 0 on I, then Lg(γ1) = Lg(γ) where γ1(u) = γ(t(u)) defined on u(I).
(2) Let (M,g) be explicitly Riemannian.

dg(p, q) := inf {Lg(γ) | γ : [a, b]→M ,γ piecewise smooth , γ(a) = p , γ(b) = q} (5.2)

is a distance function in M so that (M,dg) is a metric space. The proof is quite elementary.
What it is not trivial is the fact that [KoNo96] the associated metric topology coincides with
the topology initially given on M . �

5.1.3 Local and global flatness

A physically relevant property of a (pseudo) Riemannian manifold concerns its flatness.

Definition 5.7. (Flatness.) A n-dimensional (pseudo) Riemannian manifold (M,g) with
generic signature (r, s) is said to be locally flat if, for every p ∈ M , there is a local chart
U 3 q 7→ (x1(q), . . . , xn(q)) ∈ Rn with p ∈ U , where g takes its canonical form in components:

gq = (gq)ijdx
i|q ⊗ dxj |q where (gq)ij = diag(−1, · · · ,−1︸ ︷︷ ︸

r times

,+1, · · · ,+1︸ ︷︷ ︸
s times

) , q ∈ U .

In other words all the bases { ∂
∂xk
|q}k=1,...,n, q ∈ U , are canonical (pseudo) orthonormal

bases with respect to the pseudo metric tensor.
(M,g) is said to be globally flat if there is a global chart as above. �

In other words, a (pseudo) Riemannian manifold is locally flat if admits an atlas made of canon-
ical local charts which are, by definition, charts where the components of the metric take the
diag(−1, · · · ,−1︸ ︷︷ ︸

r times

,+1, · · · ,+1︸ ︷︷ ︸
s times

) constantly. If that atlas can be reduced to a single chart, the

manifold is globally flat.

Examples 5.8.
1. Any n-dimensional (pseudo) Euclidean space En with signature (m, p), i.e, a n-
dimensional affine space An whose vector space V is equipped with a (pseudo) scalar product
( | ) with signature (m, p) is a (pseudo) Riemannian manifold which is globally flat. As special
cases we have

(a) Rn equipped with the standard metric,

(b) the Minkowski spacetime of dimension n, denote by Mn which correspond to the
Lorentzian choice (m, p) = (1, n− 1).
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To illustrate how the (pseudo) Riemannian manifold structure is constructed, first of all we
notice that the presence of a (pseudo) scalar product in V singles out a class of Cartesian
coordinates systems called (pseudo) orthonormal Cartesian coordinates systems called
Minkowskian coordinates in Mn. These are the Cartesian coordinate systems built up by
starting from any origin O ∈ An and any (pseudo) orthonormal basis in V . Then consider the
isomorphism χp : V → TpM defined in the remark after proposition 3.11 above. The (pseudo)
scalar product (|) on V can be exported in each TpAn by defining gp(u, v) := (χ−1

p u|χ−1
p u) for

all u, v ∈ TpAn. By this way the bases { ∂
∂xi
|p}i=1,...,n associated with (pseudo) orthonormal

Cartesian coordinates turn out to be (pseudo) orthonormal. Hence the (pseudo) Euclidean
space En, i.e., An equipped with a (pseudo) scalar product as above, is a globally flat (pseudo)
Riemannian manifold.
2. Consider the cylinder C in E3. Referring to an orthonormal Cartesian coordinate system
x, y, z in E3, we further assume that C is the set corresponding to triples or reals {(x, y, z) ∈
R3 | x2 + y2 = 1}. That set is a smooth manifold when equipped with the natural differentiable
structure induced by E3 as follows. First of all define the topology on C as the topology induced
by that of E3. C turns out to be a topological manifold of dimension 2. Let us pass to equip C
with a suitable differential structure induced by that of E3. If p ∈ C, consider a local coordinate
system on C, (θ, z) with θ ∈]0, π[, z ∈ R obtained by restriction of usual cylindric coordinates
in E3 (r, θ, z) to the set r = 1. This coordinate system has to be chosen (by rotating the origin
of the angular coordinate) in such a way that p ≡ (r = 1, θ = π/2, z = zp). There is such a
coordinate system on C for any fixed point p ∈ C. Notice that it is not possible to extend one
of these coordinate frame to cover the whole manifold C (why?). Nevertheless the class of these
coordinate system gives rise to an atlas of C and, in turn, it provided a differentiable structure
for C. As we shall see shortly in the general case, but this is clear from a synthetic geometrical
point of view, each vector tangent at C in a point p can be seen as a vector in E3 and thus the
scalar product of vectors u, v ∈ TpC makes sense. By consequence there is a natural metric on C
induced by the metric on E3. The Riemannian manifold C endowed with that metric is locally
flat because in coordinates (θ, z), the metric is diagonal everywhere with unique eigenvalue 1.
It is possible to show that there is no global canonical coordinates on C. The cylinder is locally
flat but not globally flat.
3. In Einstein’s General Theory of Relativity, the spacetime is a four-dimensional Lorentzian
manifold M4. Hence it is equipped with a pseudo-metric g = gijdx

i ⊗ dxj with hyperbolic
signature (1, 3), i.e. the canonical form of the metric reads (−1,+1,+1,+1) (this holds true if
one uses units to measure length such that the speed of the light is c = 1). The points of the
manifolds are called events. If the spacetime is globally flat and it is an affine four dimensional
space, it is called Minkowski Spacetime, M4 defined in (1) above. That is the spacetime of Special
Relativity Theory (see [Mor20]).

5.1.4 Existence of Riemannian and Lorentzian metrics

Every smooth manifold can be equipped with a Riemannian metric. The result is not gener-
ally valid if considering different signatures. This result is a straightforward consequence of the
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existence of a smooth partition of unity (see Section 2.3.2). Thus, in particular, it cannot be
extended to the analytic case.

Theorem 5.9. If M is a (connected) smooth manifold, it is possible to define a Riemannian
metric g on M .

Proof. Consider a covering of M , {Ui}i∈I , made of (open by definition) coordinate domains
whose closures are compact. Then, using paracompactness, refine the covering to a locally fi-
nite covering C = {Vj}j∈J . The closures of the sets Vj are compact since they are closed sets
included in compact sets Ui(j). By construction each Vj admits local coordinates φj : Vj → Rn.
For every j ∈ J define, in the bases associated with the coordinates, a Riemannian metric gj
whose components are constants in the considered chart, e.g., (gj)hk = δhk. If {hj}j∈J is a
partition of unity subordinate to C (see Theorem 2.26), gp :=

∑
j∈J hj(p)(gj)p is a well-defined

symmetric form at each point which is also smooth when varying p (the sum is finite in a
neighborhood of p so we can compute the derivatives at every order). To conclude observe that
gp(v, v) =

∑
j∈J hj(p)(gj)p(v, v) ≥ 0 because the right hand side is the sum of non-negative

reals. Eventually, gp(v, v) = 0 implies v = 0 because, as
∑

j∈J hj(p) = 1, and hj(p) ≥ 0, there
must be some j0 ∈ J with hj0(p) > 0. As a consequence, 0 = gp(v, v) :=

∑
j∈J hj(p)(gj)p(v, v)

implies (gj0)p(v, v) = 0 which, in turn, yields v = 0. 2

A sufficient condition for the existence of a Lorentzian metric on a smooth manifolds is the
following one.

Theorem 5.10. Let M a (connected) smooth manifold, it is possible to define a Riemannian
metric g on M . If there is V ∈ X(M) with Vp 6= 0 for every p ∈M , then it is possible to define
a Lorentzian metric on M .

Proof. Fix a Riemannian metric g(E) of M according to Theorem 5.9 and define the smooth

unit vector field M 3 p 7→ Ep := (g
(E)
p (Vp, Vp))

−1/2Vp ∈ TpM . Denoting by TpM 3 vp 7→ v[p :=

g(E)(vp, ) ∈ T ∗pM the standard isomorphism between T ∗pM and TpM induced by the metric, the
(0, 2) smooth tensor field defined point-by point by

gp := g(E)
p − 2E[p ⊗ E[p

is immediately proved to be a Lorentzian metric just completing Ep to an orthonormal basis of

g
(E)
p and observing that in this basis gp is represented by the matrix diag(−1,+1, . . . ,+1). 2

Remark 5.11. Notice that E above is a non-vanishing timelike vector. The condition
in the hypothesis of the stated theorem actually assures the existence of a Lorentzian metric
admitting a time orientation as we shall discuss later. Vice versa, if a Lorentzian metric admits
a time orientation then a non vanishing smooth vector necessarily exists since it defines the time
orientation. 2
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5.2 Induced metrics and related notions

This section is devoted to describe how the metric of a (pseudo) Riemannian manifold M induces
(possibly degenerated) metrics on other smooth manifolds which are related to M through a a
smooth immersion.

5.2.1 Metric induction machinery

LetM be a (pseudo) Riemannian manifold with metric tensor g. IfN is another smooth manifold
– possibly with the same dimension as M – end we are given a smooth (not necessarily injective)
immersion i : N →M . Then it is possible to induce on N a covariant symmetric smooth tensor
field g(N) associated to g. Indeed, taking advantage of the differential dip : TpN → TpM , we
can define the bilinear symmetric form in g(N) : TpN × TpN → R,

g(N)(x, y) := g(dipx, dipy) .

Varying p ∈ N and assuming that x = Xp, y = Yp where U and V are smooth vector fields in N ,
one sees that the map N 3 p 7→ g(N)p(Xp, Yp) must be differentiable because it is composition of

differentiable functions. We conclude that N 3 p 7→ g
(N)
p define a covariant symmetric smooth

tensor field on N .

Remark 5.12.
(1) If N is connected and (M,g) is properly Riemannian, then (N,g(N)) is necessarily a Riaman-
nian manifold as well. In fact, g(N)(u, v) = g(dipu, dipv) ≥ 0 and 0 = g(N)(u, u) = g(dipu, dipu)
implies dipu = 0, so that u = 0 since dip is injective.
(2) Evidently, if i∗q : T ∗qN → T ∗pM with q = i(p) is the pull back operator, then

g(N)
p = i∗ ⊗ i∗ gq .

This formula is more often written
g(N)
p = i∗ gq .

intepreting i∗q as the pull back of covariant (0, 2) tensors. �

5.2.2 Induced metric on submanifolds

We specialize the previous definition to the case where the immersion is a smooth embedding
i : N ↪→M provided by the canonical inclusion.

Definition 5.13. Let M be a (pseudo) Riemannian manifold with metric tensor g and
i : N → M an embedding. The covariant symmetric differentiable tensor field on N , g(N),
defined by

g(N)(x, y) := g(dipx, dipy) for all p ∈ N and x, y ∈ TpN
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is called the metric induced on N from M , even if it is not a (pseudo) metric in general (!).
If N ⊂ M is connected, i : N ↪→ M is the canonical inclusion and g(N) is not degenerate
with constant signature, then the (pseudo) Riemannian manifold (N,g(N)) is called (pseudo)
Riemannian submanifold of M . �

Remark 5.14. We stress that, in general, g(N) is not a (pseudo) metric on N because
there are no guarantee for it being nowhere non-degenerate and also its signature could change.
Nevertheless, according to (1) in Remark 5.12, if (M,g) is properly Riemannian, then g(N) is
necessarily positive definite by construction. In that case, when N ⊂M , (N,g(N)) is a Rieman-
nian submanifold of M , assuming that N is connected. �

What is the coordinate form of g(N)? Let us assume in general that i : N ↪→M is the inclusion
map which furthermore defines a smooth embedding. Fix p ∈ N , a local chart in N , (U, φ)
with p ∈ U and another local chart in M , (V, ψ) with p ∈ V once again. Use the notation
φ : q 7→ (y1(q), . . . , yn(q)) and ψ : r 7→ (x1(r), . . . , xm(r)). We have therein

ĩ := ψ ◦ i ◦ φ−1 : (y1, . . . , yn) 7→ (x1(y1, . . . , yn), . . . , xm(y1, . . . , yn))

and
g = gijdx

i ⊗ dxj and g(N) = g(N)kldy
k ⊗ dyl .

With the given notation, if u ∈ TpN , then

(dipu)i =
∂xi

∂yk
|φ(p)u

k .

As a consequence, with g(N) as in Definition 5.13, one finds

g
(N)
kl ukvl = g(N)(u, v) = gij

∂xi

∂yk
uk
∂xj

∂yl
vl =

Ç
∂xi

∂yk
∂xj

∂yl
gij

å
ukvl .

Thus Ç
g

(N)
kl −

∂xi

∂yk
∂xj

∂yl
gij

å
ukvl = 0 .

Since the values of the coefficients ur and vs are arbitrary, each term in the matrix of the
coefficients inside the parentheses must vanish. We have found that the relation between the
tensor g and the tensor g(N) evaluated at the same point p with coordinates (y1, . . . , yn) = φ(q)
in N and (x1(y1, . . . , yn), . . . , xm(y1, . . . , yn)) in M reads

(g(N)
p )kl =

∂xi

∂yk
|φ(p)

∂xj

∂yl
|φ(p) (gp)ij . (5.3)

Examples 5.15.
1. Let us consider the submanifold given by the cylinder C ⊂ E3 defined in the example 5.8.2.
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It is possible to induce a metric on C from the natural metric of E3. To this end, referring to
the formulae above, the metric on the cylinder reads

g
(C)
kl =

∂xi

∂yk
∂xj

∂yl
gij .

where x1, x2, x3 are local coordinates in E3 defined around a point q ∈ C and y1, y2 are analogous
coordinates on C defined around the same point q. We are free to take cylindrical coordinates
adapted to the cylinder itself, that is x1 = θ, x2 = r, x3 = z with θ = (−π, π), r ∈ (0,+∞),
z ∈ R. Then the coordinates y1, y2 can be chosen as y1 = θ and y2 = z with the same
domain. These coordinates cover the cylinder without the line passing for the limit points at
θ = π ≡ −π. However there is such a coordinate system around every point of C, it is sufficient
to rotate (around the axis z = u3) the orthonormal Cartesian frame u1, u2, u3 used to define the
initially given cylindrical coordinates. In global orthonormal coordinates u1, u2, u3, the metric
of E3 reads

g = du1 ⊗ du1 + du2 ⊗ du2 + du3 ⊗ du3 ,

that is g = δijdu
i ⊗ duj . As u1 = r cos θ, u2 = r sin θ, u3 = z, the metric g in local cylindrical

coordinates of E3 has components

grr =
∂xi

∂r

∂xj

∂r
δij = 1

gθθ =
∂xi

∂θ

∂xj

∂θ
δij = r2

gzz =
∂xi

∂z

∂xj

∂z
δij = 1

All the mixed components vanish. Thus, in local coordinates x1 = θ, x2 = r, x3 = z the metric
of E3 takes the form

g = dr ⊗ dr + r2dθ ⊗ dθ + dz ⊗ dz

The induced metric on C, in coordinates y1 = θ and y2 = z has the form

g(C) =
∂xi

∂yk
∂xj

∂yl
gijdy

j ⊗ dyl = r|2Cdθ ⊗ dθ + dz ⊗ dz = dθ ⊗ dθ + dz ⊗ dz .

That is
g(C) = dθ ⊗ dθ + dz ⊗ dz .

In other words, the local coordinate system y1, y2 is canonical with respect to the metric on C
induced by that of E3. Since there is such a coordinate system around every point of C, we
conclude that C is a locally flat Riemannian manifold. C is not globally flat because there is no
global coordinate frame which is canonical and cover the whole manifold.
2. Let us illustrate a case where the induced metric is degenerate. Consider Minkowski spacetime
M4 (see (1) Examples 5.8 and [Mor20]), that is the affine four-dimensional space A4 equipped
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with the scalar product – defined in the vector space of translations V associated with A4 and
thus induced on the manifold – with signature (1, 3). In other words, M4 admits a (actually an
infinite class) Cartesian coordinate system with coordinates x0, x1, x2, x3 where the metric reads

g = gijdx
i ⊗ dxj = −dx0 ⊗ dx0 +

3∑
i=1

dxi ⊗ dxi .

Now consider the submanifold

Σ = {p ∈M4 | (x0(p), x1(p), x2(p), x3(p)) = (u, u, v, w) , u, v, w ∈ R}

We leave to the reader the proof of the fact that Σ is actually a submanifold of M4 with dimension
3. A global coordinate system on Σ is given by coordinates (y1, y2, y3) = (u, v, w) ∈ R3 defined
above. What is the induced metric on Σ? It can be obtained, in components, by the relation

g(Σ) = g(Σ)
pq dy

p ⊗ dyq = gij
∂xi

∂yp
∂xj

∂yq
dyp ⊗ dyq .

Using x0 = y1, x1 = y1, x2 = y2, x3 = y3, one finds g(Σ)33 = 1, g(Σ)3k = g(Σ)k3 = 0 for k = 1, 2
and finally, g(Σ)11 = g(Σ)22 = 0 while g(Σ)12 = g(Σ)21 = 1. By direct inspection one finds that
the determinant of the matrix of coefficients g(Σ)pq vanishes and thus the induced metric is
degenerate, that is it is not a metric. Such submanifolds with degenerate induced metric are
called “null submanifolds” or “light-like manifolds”. �

5.2.3 Isometries

Another intersting case is when the manifolds connected by the immersion i : N →M are both
(pseudo) Riemannian and i is a diffeomorphism or a smooth embedding. In that case we have
two metrics on N to be compared.

Definition 5.16. (Isometry.) Let (M,g) and (N,g′) be two (pseudo) Riemannian mani-
folds. A diffeomorphism φ : N → M is called isometry, and (M,g) and (N,g′) are said to be
isometric, if it results g(N) = g′ or, equivalently, g′(M) = g.

With the help of this new notion, we can equivalently state the definition of locally flat (pseudo)
Riemannian manifold as follows.

Definition 5.17. (Flatness.) A n-dimensional (pseudo) Riemannian manifold (M,g) is said
to be locally flat if it admits a covering {Ui}i∈I made of open subsets, such that every (pseudo)
Riemannian submanifold (Ui,g

(Ui)) is isometric to an open set of a (pseudo) Euclidean space
with constant signature (m, p) constructed out an affine space Am+p. �
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A weaker version of isometry is an isometric embedding, where it is not required that the two
manifolds have the same dimension.

Definition 5.18. (Isometric embedding.) Let (M,g) and (N,g′) be two (pseudo) Rieman-
nian manifolds. A smooth embedding i : N →M is called isometric embedding if g(N) = g′

is valid in N . �

A natural question is whether or not a Riemannian/Lorentzian n-dimensional manifold can be
isometrically embedded in a Rd space viewed as a Riemannian manifold with the standard flat
metric or, respectively, in a Minkowski spacetime Md (see (1) Examples 5.8) with sufficiently
large d. The answer to the former case was provided by Nash with his famous isometric embed-
ding theorem exploiting another achievement by Nash1: a generalization of the implicit function
theorem valid for a certain types of Fréchet spaces, nowadays known as the Nash-Moser theorem.

Theorem 5.19. (Nash’s Riemannian isometric embedding theorem.) If (M,g) is a
Riemannian compact manifold, then there is a smooth isometric embedding f : M → Rd for a
sufficiently large d with respect to dim(M).

In 2011 an analogous theorem was obtained by O. Müller and M. Sánchez for Lorentzian mani-
folds2 which are globally hyperbolic [O’Ne83, BEE96, Min19].

Theorem 5.20. (Müller-Sánchez’ Lorentzian isometric embedding theorem.) If
(M,g) is a globally hyperbolic Lorentzian manifold, then there is a smooth isometric embedding
f : M → Md for a sufficiently large d with respect to dim(M), where Md is the d-dimensional
Minkowski spacetime ((1) Examples 5.8).

Actually the quoted theorem proves more facts about that embedding, but to properly describe
them we should add some further material.

5.2.4 Killing fields

Let us pass to discuss another facet of the notion of isometry. Consider a smooth vector field K
on the (pseudo) Riemann manifold (M, g). Its flow Φ(K) has an action on the metric through

the pull back, producing a new metric (g
(K)
t )p for every p ∈M :

(g
(K)
t )p = Φ

(K)∗
t ⊗ Φ

(K)∗
t g

Φ
(K)
t (p)

. (5.4)

If (g
(K)
t )p = gp, i.e.,

Φ
(K)∗
t ⊗ Φ

(K)∗
t g

Φ
(K)
t (p)

= gp , (5.5)

1J. Nash, The imbedding problem for Riemannian manifolds, Annals of Mathematics, 63 (1): 20–63, (1956)
2O. Müller and M. Sánchez, Lorentzian manifolds isometrically embeddable in LN , Trans. Amer. Math. Soc.

363 (2011), 5367-5379

75



for every p ∈ M and for all t ∈ R where the left-hand side is defined for the corresponding p,
then K is called Killing (vector) field of (M,g). In practice, Φ(K) defines a smooth local one-
parameter group of isometries of (M,g). If K is complete for instance when M is compact, then

{Φ(K)
t }t∈R is a properly smooth local one-parameter group of isometries. Taking the derivative

at t = 0 of both sides of (5.5) we have the infinitesimal version of it in terms of Lie derivative of
tensor fields:

LKgp = 0 for all p ∈M . (5.6)

It is not difficult, taking advantage of the group structure of Φ(K), to prove that (5.5) is actually
equivalent to (5.6). Al that leads to the following definition.

Definition 5.21. Let (M,g) be a (pseudo) Riemannian manifold. A smooth vector field
K ∈ X(M) is said to be a Killing field for the metric g if it satisfies the so-called Killing
equation (5.6). �

According to (4.17), the Killing equation takest he following form in coordinates (where we do
not explicitly indicate the poinr p ∈M)

Kc∂gab
∂xc

+ gac
∂Kc

∂xb
+ gcb

∂Kc

∂xa
= 0 . (5.7)

After having introduced the notion of covariant derivative associated to the Levi-Civita connec-
tion, we shall restate this equation into a more popular version (especially for physicists).
Making use of (4) in Exercises 4.26, we have the following relevant fact.

Proposition 5.22. The Killing vector fields of a (pseudo) Riemannian manifold (M,g) form
a Lie algebra with respect to the Lie bracket. In other words, if K,H are Killing fields of (M,g),
then

(a) aK + bH is a Killing field of (M, g) for every a, b ∈ R,

(b) [K,H] is a Killing field of (M, g).

Proof. (a) is a trivial consequence of the Killing equation and of LaK+bH = aLK + bLH .
Regarding (b), observe that from (4) in Exercises 4.26,

L[K,H]g = LKLHg − LHLKg = 0

ending the proof. 2

Remark 5.23. It is possible to prove (Proposition 9.12) that the dimension of the vector

space of Killing fields cannot exceed n(n+1)
2 on a smooth (pseudo) Riemannian manifold with

dimension n. When that dimension is reached, as for Minkowski spacetime or deSitter spacetime,
the manifold is called maximally symmetric and it manifests remarkable properties. �

Exercises 5.24.
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1. Let (M,g) and (M ′,g′) be two (pseudo) Riemannian manifolds. If f : M → M ′ is an
isometry, prove that Lg′(f ◦ γ) = Lg(γ) for every piecewise smooth curve I 3 t 7→ γ(t) ∈M .

2. Let N ⊂M be a (connected) embedded submanifold of the (pseudo) Riemanian manifold
M and I 3 t 7→ γ(t) ∈ N a piecewise smooth curve. Prove that Lg(N)(γ) = Lg(γ) where this

identity holds also when g(N) is somewhere degenerated and changes the signature provided the
definition (5.1) is extended to this case.

3. Prove that (5.6) implies (5.5).

(Hint. Compute the t derivative of Φ
(K)∗
t ⊗Φ

(K)∗
t g

Φ
(K)
t (p)

observing that Φ
(K)
t+h(p) = Φ

(K)
h Φ

(K)
t (p)

so that Φ
(K)∗
t+h ⊗ Φ

(K)∗
t+h g

Φ
(K)
t+h(p)

= Φ
(K)∗
h ⊗ Φ

(K)∗
h g

Φ
(K)
h (q)

where q = Φ
(K)
t (p).)

4. Consider a (pseudo) Euclidean space En, i.e., an affine space equipped with a (pseudo)
scalar product in the space of translations V . Prove that each vector K ∈ V defines a complete
Killing field (when viweved as vector field with constant components in every Cartesian coordi-
nate system). In other words, translations are global smooth one-parameter groups of isometries
in (pseudo) Euclidean spaces. This result applies in particular to every Euclidean space and to
Minkowski spacetime ((1) Examples 5.8).

5.2.5 Normal and co-normal bundle to an embedded submanifold

Let us consider an embedded submanifold S ⊂ M of a (pseudo) Riemannian manifold (M,g).
Let us denote by s and m the dimensions of S and M respectively. If p ∈ S the tangent space
TpS coincides (through the differential of the canonical inclusion map) with a subspace of TpM
of dimension s, therefore we can complete TpS as TpM = TpS ⊕ Vp, where Vp ⊂ TpM is a
subspace with dimension m− s. We prove now that Vp can be chosen orthogonal to TpN with

respect to gp when g
(S)
p is non-degenerate.

Proposition 5.25. Let S ⊂ M be an embedded s-dimensional smooth submanifold of a
(pseudo) Riemannian manifold (M,g) of dimension m. If g(S) is non-degenerate at p ∈ S, it is
possible to decompose

TpM = TpS ⊕NpS

where ⊕ denotes the direct decomposition of vector spaces and

(a) NpS is subspace of TpM with dimension m− s,

(b) gp(n, t) = 0 if n ∈ NpS and t ∈ TpN .

When defined, NpS is called the normal space to S at p.

Proof. According to Proposition 4.8, we can find a local chart (U, φ) of M around p ∈M with
coordinates φ : U 3 q 7→ (x1(q), . . . , xs(q), y1(q), . . . , ym−s(q)) ∈ Rn, such that (y1, . . . , ym−s)
are the coordinates of a chart (V, ψ) on S with V := U ∩ S where

φ(V ) = {(x1, . . . , xs, 0, . . . , 0) | (x1, . . . , xs, 0, . . . , 0) ∈ ψ(V )} .
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With this choice, TpS is the span in TpM of the vectors ∂
∂xk
|p for k = 1, . . . , s. Consider the

covectors dy1|p, . . . , dym−s|p ∈ T ∗pM . By definition, they are linearly independent and they
satisfy ≠

∂

∂xk
|p, dyr|p

∑
= 0 .

If we define the m − s linearly independent vectors Npr := g(dyr|p, ) ∈ TpM , the identities
above read

gp

Å
∂

∂xk
|p, Npr

ã
= 0 , k = 1, . . . , s, r = 1, . . . ,m− s .

To conclude, it is sufficient to prove thatß
∂

∂xk
|p
™
k=1,...,s

∪ {Npr}r=1,...,m−s

is a set of m linearly independent vectors when g
(S)
p is non-degenerate. To this end consider a

zero linear combination

0 =
s∑

k=1

ck
∂

∂xk
|p +

n−s∑
r=1

drNpr . (5.8)

We want to prove that this is only possible if ck = dr = 0 for all values of k and r. If g
(S)
p is

non-degenerated, we can pass from the basis of the ∂
∂xk
|p of TpS to a canonical basis e1, . . . , es

sich that g(S)(ei, ej) = ±δij and the identity above reads

0 =
s∑

k=1

c′kek +
n−s∑
r=1

drNpr , (5.9)

where ck =
∑l

h=1A
k
lc
′l for some nonsingular matrix [Akl]k,l=1,...,l. Taking the scalar product of

both sides of (5.9) with el, since gp(Npr, el) = 0 by construction, we have

c′l = 0 , l = 1, 2, . . . , s so that ck = 0 k = 1, 2, . . . , s .

Inserting the result in (5.9) we have,

0 =
n−s∑
r=1

drNpr ,

which implies dr = 0 for r = 1, 2, . . . ,m − s, since the Npr are linearly independent. All
coefficients of the combination (5.8) vanish and thus the setß

∂

∂xk
|p
™
k=1,...,s

∪ {Npr}r=1,...,m−s

is made of linearly independent vecotrs concluding the proof. 2

78



If g(S) is degenerate, we cannot decompose TpS as before, however we can characterize TpS
using the cotangent space as follows.

Proposition 5.26. Let S ⊂ M be an embedded s-dimensional smooth submanifold of a
(pseudo) Riemannian manifold (M,g) of dimension m. For p ∈ S, consider the subspace of
T ∗pM

N∗pS := {ω ∈ T ∗pM | ω(v) = 0 if v ∈ TpS} .
The following facts are true.

(a) dim(N∗pS) = m− s,

(b) If g
(S)
p is nondegenerate, then NpS is isomorphic to N∗pS through the canonical isomor-

phism TpM 3 v 7→ v[ := g(v, ) ∈ T ∗pM .

N∗pS is called the co-normal space to S at p.

Proof. Using the same coordinate system as in the the proof of Proposition 5.25, we can expand
ω ∈ T ∗pM as

ω =
s∑

k=1

ckdx
k|p +

m−s∑
r=1

drdy
r|p .

Imposing the condition that defines N∗pS is equivalent to requiring that the action of ω is zero

when acting on every vector ∂
∂xk
|p for k = 1, . . . , s. This means that ck = 0 for k = 1, 2, . . . , s.

In other words N∗pS is exactly made of all possible covectors of the form

ω =
m−s∑
r=1

drdy
r|p dr ∈ R r = 1, . . . ,m− s .

This result proves (a). Regarding (b), as we have seen in the proof of Proposition 5.25, the
isomorphism TpM 3 v 7→ g(v, ) ∈ T ∗pM transforms the found basis {dyr|p}r=1,...,m−s of N∗pS to

a basis of NpS when g
(S)
p is non degenerate (otherwise NpS is not defined). 2

Definition 5.27. If S is a smooth embedded submanifold of the (pseudo) Riemannian man-
ifold (M,g) then

NS :=
⋃
p∈S

NpS and N∗S :=
⋃
p∈S

N∗pS

(the former defined when g
(S)
p is non degenerate for every p ∈ S), equipped with the natural

fiber bundle structure induced by TM and T ∗M respectively, are said the normal bundle and
the co-normal bundle to S. �

Examples 5.28.
1. If (M,g) is a Lorentzian manifold the following classification of vectors and covectors exists.
If Xp ∈ TpM \ {0},
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(i) If Xp is timelike if gp(Xp, Xp) < 0 ,

(ii) if Xp is spacelike if gp(Xp, Xp) > 0 ,

(iii) if Xp is lightlike if gp(Xp, Xp) < 0 .

Covectors np ∈ T ∗M are classificated similarly using the contravariant representation n] ∈ TpM
where gp(n

]
p, ) = np.

2. Let us consider an embedded submanifold S of co-dimension 1 (i.e., of dimension dim(M)−1)
in a Lorentzian manifold (M,g). In this case, dim(N∗pS) = 1 and this leads to the following
popular classification of S at p.
Take np ∈ N∗pS \ {0} so that all elements of N∗pS are of the form anp for a ∈ R. (See [Mor20]
for the standard terminology on vectors in Lorentzian manifolds adopted below.)

(i) If np is timelike, then Sp is said to be spacelike at p ,

(ii) if np is spacelike, then Sp is said to be timelike at p ,

(iii) if np is lightlike, then Sp is said to be lightlike at p .

S is said to be spacelike, timelike, lightlike if it is respectively spacelike, timelike, lightlike
at each p ∈ S.
Let us assume that m := dim(M) and focus on the three cases.

(i) The tangent space of S at p is made of m− 1 orthogonal spacelike vectors. This is evident
if referring to a canonical orthonormal basis {ek}k=1,...,m of TpM with e∗1 = an for some
a 6= 0. The vectors annihilated by n are the span of e2, . . . , em which are spacelike. Hence

g
(S)
p is a proper scalar product and (S,g(S)) (if S is connected) is a proper Riemannian

manifold of co-dimension 1.

(ii) Assuming m ≥ 3, the tangent space of S at p is spanned by a set of m − 2 spacelike
vectors and one timelike vector mutually orthogonal. This is evident if referring to a
canonical orthonormal basis {ek}k=1,...,m of TpM with e∗2 = an for some a 6= 0. The
vectors annihilated by n are the span of e1 and e3, . . . , em. The first one is timelike and

the remaining m− 2 are spacelike. Hence g
(S)
p is a Lorentzian scalar product and (S,g(S))

(if S is connected) is a Lorentzian manifold of co-dimension 1.

(iii) Assuming m ≥ 3, the tangent space of S at p is spanned by a set of m−2 spacelike vectors
and one timelike vector mutually orthogonal. This is evident if referring to a canonical
orthonormal basis {ek}k=1,...,m of TpM with = n = c(e∗1 + e∗2) for some c 6= 0. The vectors
annihilated by n are the span of e1 − e2 and e3, . . . , em. The first one is lightlike and

the remaining m − 2 are spacelike. Hence g
(S)
p is degenerated since e1 − e2 6= 0, but

g(S)(e1 − e2, u) = 0 for every v ∈ TpS.
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3. In the case (iii) above it is interesting to study the contravariant form n] of the co-normal
vector n. Using the said basis where n = c(e∗1 + e∗2), we have n] = c(e1 − e2). We stress that
n] ∈ TpS as a consequence, instead of being a vector “normal” to TpS as it happens when g(S)

is non-degenerate. The point is that, with Lorentzian metric, lightlike vectors are normal to
themselves. �

Exercises 5.29. Consider a lightlike embedded submanifold Σ in the Lorentzian manifold
(M,g) where dim(M) = 4 (but the result extends to a generic dim(M) ≥ 2 with the same
proof). Proves that, if p ∈ Σ, then there is an open neighborhood U of p in M equipped
with local coordinates (u, v, r, s), another open neighborhood S ⊂ Σ, of p such that v, r, s are
coordinates on S – corresponding to u = 0 – and furthermore ∂

∂v is lightlike and ∂
∂r ,

∂
∂s are

spacelike.
Solution. There is a local coordinate system (u, x, y, z) in M with domain an open neigh-

borhood of p such that a neighborhood S ⊂ Σ of p is represented by u = 0. Since Σ is lightlike,
g(du], du]) = 0. The vectors ∂

∂x ,
∂
∂y ,

∂
∂z are therefore tangent to Σ in S and x, y, z are coordinates

in S (viewed as an embedded submanifold). Now observe that

0 = g(du], du]) = 〈du], du〉 ,

so that du]q ∈ TqS as well. This smooth vector field can be integrated in S since the conditions
of Frobenius theorem are trivially satisfied. This means that we can change coordinates x, y, z
in S, passing to a new local coordinate system u, v, r, s around p such that ∂

∂v = du]. Let us

study the nature of the remaining coordinates r, s. By construction, ∂
∂v is lightlike. Therefore

for every q ∈ S we can arrange an orthonormal basis of TqM where, for some constant k 6= 0,

∂

∂v
≡ k(1, 0, 0, 1)t .

Just in view of the definition of dual basis, we have that≠
∂

∂r
, du

∑
= 0 ,

which means

g

Å
∂

∂r
,
∂

∂v

ã
= 0 .

Using the said basis and assuming
∂

∂r
≡ (a, b, c, d)t ,

the orthogonality condition implies

∂r ≡ (a, b, c, a)t .

Hence,

g

Å
∂

∂r
,
∂

∂r

ã
= b2 + c2 ≥ 0 .
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However, if b = c = 0, we would have that ∂
∂r is linearly dependent from ∂

∂v which is not possible
by construction. We conclude that

g

Å
∂

∂r
,
∂

∂r

ã
= b2 + c2 > 0

Therefore ∂
∂r is spacelike. The same argument proves that ∂

∂r is spacelike as well.

5.3 Borel measure induced by a metric

This section is devoted to prove that every (pseudo) Riemannian manifold has a canonical
Borel measure which admits Radon-Nikodym derivative with respect to the Lebesgue measure
(restricted to the Borel σ-algebra) associated to the coordinates of every local chart. This
smooth density is constructed out of the components of the metric in those coordinates.

5.3.1 Invariant measure in coordinates

If (M,g) is a (pseudo) Riemannian manifold, for every local chart φ : U 3 p 7→ (x1(p), . . . , xn(p))
we can define a preferred positive Borel measure [Coh80, Rud87]:

µ
(g)
φ (E) :=

∫
φ(U)

1φ(E)(φ(p))
»
|det gφ(p)|dx1 · · · dxn . (5.10)

Above E is every Borel set in U and gφ(p) is the matrix of coefficients of g in the coordinates of
(U, φ) evaluated at p ∈ U and dx1 · · · dxn denotes the standard Lebesgue measure of Rn, finally
1A(x) := 1 if x ∈ A and 1A(x) := 0 otherwise. The crucial property of µφ is its invariance under
change of coordinates.

Lemma 5.30. If φ : U 3 p 7→ (x1(p), . . . , xn(p)) and ψ : V 3 p 7→ (y1(p), . . . , yn(p)) are local
charts on the (pseudo) Riemannian manifold (M,g) and E ⊂ U ∩ V is a Borel set, then

µ
(g)
φ (E) = µ

(g)
ψ (E) . (5.11)

Proof. In coordinates
gφ(p) = J |φ(p)gψ(p)J |tφ(p) ,

where

Jp =

ñ
∂yk

∂xh
|φ(p)

ô
h,k=1,...,n

.

Hence »
| det gφ(p)| = | det Jφ(p)|

»
| det gψ(p)| ,
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so that

µgφ(E) =

∫
φ(E)

»
| det gφ(p)|dx1 · · · dxn =

∫
φ(E)

| det Jφ(p)|
»
|det gψ(p)|dx1 · · · dxn

=

∫
ψ(E)

»
| det gψ(p)|dy1 · · · dyn = µ

(g)
ψ (E) ,

which is the thesis. 2

5.3.2 Borel measure on the whole manifold

To go on, observe that, as a consequence of Fubini-Tonelli theorem applied to the counting
measure over N, we have that, if {sij}i,j∈N are non-negative reals, then∑

i∈N

∑
j∈N

sij =
∑
j∈N

∑
i∈N

sij =
∑

(i,j)∈N×N

sij

if one of the three series converges. If one of the three series diverges (necessarily to +∞) the
remaining two do the same.
Furthermore, observe that since a domain U of a local chart on M is open, the Borel sets in U
are exactly the intersections E ∩ U where E is any Borel in M .

Remark 5.31. We recall that a positive measure µ : B(X) → [0,+∞], where B(X) is the
Borel σ-algebra on the topological Hausdorff locally-compact space X is said to be regular if
both the following properties are true.

(a) (External regularity) µ(A) = inf{µ(B) |B ⊃ A, B open set in X} if A ∈ B(X).

(b) (Internal regularity) µ(A) = sup{µ(K) |K ⊂ A, K compact in X} if A ∈ B(X).

Every topological manifold is Hausdorff and locally-compact so that this definition applies and
it applies to smooth manifolds a fortiori. �

Theorem 5.32. Let (M, g) be a (pseudo) Riemannian manifold. There exist a unique positive
Borel measure µ(g) on M such that

µ(g)(E) = µ
(g)
φ (E) , (5.12)

for every local chart U 3 p 7→ (x1(p), . . . , xn(p)) and for every Borel set E ⊂ U , where µ
(g)
φ is

defined as in (5.10).
The Borel measure µ(g) is regular.

Proof.
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Existence of µ(g). For every point p ∈ M , take a local chart (V, φ) with V 3 p, next shrink
the domain V around p to another open set U such that U is compact and U ⊂ V . Finally,
exploiting paracompactness, refine the final covering to a locally finite covering {(Ui, φi)}i∈I
which can be always assumed to be countable since M is second countable (see Remark 2.27).
Notice that Ui and its compact closure are by construction covered by a coordinate patch. To
conclude the construction, taking advantage of Theorem 2.26, define a partition of unity {χi}i∈I
subordinate to {(Ui, φi)}i∈I and

µ(g)(E) :=
∑
i∈I

∫
M

1E(p)χi(p) dµ
(g)
φi

(p) ∈ [0,+∞] , (5.13)

for every Borel set E ⊂ M . Notice that χi is supported in Ui so that the integration on M is
actually restricted to Ui and the right-hand side is well-defined. Using the remark about the
Fubini-Tonelli theorem for the counting measure, it is easy to prove that µ(g) is σ-additive on
the Borel algebra of M and, it being a non-negative function, it defines a positive Borel measure
on M . Let us pass to prove (5.12). If E ⊂ U , where (U, φ) is a coordinate patch, we have

1E = 1E1U

so that, using Lemma 5.30,

µ(g)(E) :=
∑
i∈I

∫
M

1E(p)1U (p)χi(p)dµ
(g)
φi

(p) =
∑
i∈I

∫
U

1E(p)χi(p)dµ
(g)
φi

(p) =
∑
i∈I

∫
U

1E(p)χi(p)dµ
(g)
φ (p)

=

∫
U

χE(p)
∑
i∈I

χi(p) dµ
(g)
φ (p) =

∫
U

χE(p) dµ
(g)
φ (p) = µ

(g)
φ (E) ,

where we have interchanged the sum with the integral using the monotone convergence theorem,
and eventually we have used the fact that

∑
i∈I χi(p) = 1 for a partition of unity.

Uniqueness of µ(g). Referring to the same locally finite countable open covering {Ui}i∈I
and the associated partition of the unity {χi}i∈I used in the existence part of the proof, every
positive Borel measure ν on M satisfies

ν(E) =
∑
i∈I

∫
M

1E(p)χi(p) dν(p)

for every Borel set E ⊂ M , because 1E(p) =
∑

i∈I
∫
M 1E(p)χi(p) and taking advantage of the

monotone convergence theorem. If furthermore ν(F ) = µ
(g)
φ (F ) when F ⊂ U is Borel, we also

have ν(F ) = µ
(g)
φi

(F ) when F ⊂ Ui in particular. Hence,

ν(E) =
∑
i∈I

∫
M

1E(p)χi(p) dν(p) =
∑
i∈I

∫
Ui

1E(p)χi(p) dν(p)
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=
∑
i∈I

∫
Ui

1E(p)χi(p) dµ
(g)
φi

(p) =
∑
i∈I

∫
M

1E(p)χi(p) dµ
(g)
φi

(p) = µ(g)(E)

due to (5.13).
Regularity of µ(g). To conclude, µ(g) is regular because it is a positive Borel measure on a

Hausdorff locally-compact space with a countable topological basis and such that every com-
pact set has finite measure (Proposition 7.2.3 in [Coh80]). Indeed M has a countable topological
basis by definition. Furthermore, if K ⊂ M is compact, we can cover it with a finite number
N of open sets Ui such that Ui is compact and Ui ⊂ Vi for a suitable local chart (Vi, φi)
(for instance Ui can be the image of a coordinate ball with finite radius). Next observe that

µ(g)(Ui) = µ
(g)
φi

(Ui) < +∞ because (a) compact sets have finite Lebesgue measure in Rn and

furthermore (b) the factor
√
| det gφi(p)| in (5.10) is continuous and thus bounded for p ∈ Ui.

Finally µ(g)(K) ≤
∑N

i=1 µ
(g)(Ui) < +∞. 2

Definition 5.33. (Measure induced from the metric.) The measure µ(g) constructed in
Theorem 5.32 is called measure induced from (or associated to) the metric g on M . �

Remark 5.34.
(1) It is evident that the measure µ(g) coincides with the standard Lebesgue measure in ev-
ery orthonormal Cartesian coordinate chart of an Euclidean space. However the same result is
valid also in Minkowski spacetime ((1) Examples 5.8) referring to Minkowskian coordinates (i.e.
pseudo orthonormal Cartesian coordinates see [Mor20]).
(2) If S is an embedded submanifold of a (pseudo) Riemannian manifold (M,g), a measure

µ(g(S)) can be analogously defined for the metric induced to S from (M,g). We know that this
metric may be degenerate. This happens in particular on (everywhere) lightlike submanifolds of

co-dimension 1 (see Example 5.28). In this case, det g
(S)
φ (p) = 0. As a consequence, the induced

measure is the trivial one. �

Exercises 5.35. Let (M,g) and (M ′,g′) be a pair of (pseudo) Riemannian manifolds. If
f : M →M ′ is an isometry, prove that µ(g′)(f(E)) = µ(g)(E).

(Hint. Prove that µ(g′) ◦ f coincides with µ(g) on the domains of a suitable atlas associated
with a partition of unity, then exploit (5.10).)
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Chapter 6

Affine connections and related
geometric tools

The notion of affine connection has a number of applications in physics from Classical Mechanics
to General Relativity. This chapter presents a general overview on the general notion of covariant
derivative of tensor fields on a smooth manifold also for non-metric manifolds, concluding with
the notion of affine (and metric) geodesic.

6.1 Affine connections and covariant derivatives

Our goal is to give some precise meaning to the derivative ∇XY of a smooth vector field Y with
respect to another smooth vectro field X on a generic smooth manifold M .

6.1.1 The problem of the absence of an affine-space structure

Suppose for the moment that M = An, a n-dimensional affine space. The global coordinate
systems obtained by fixing an origin O ∈ An, a basis {ei}i=1,...,n in V , the vector space of the
translations in An and defining

φ : An → Rn : p 7→ (〈
−→
Op , e∗1〉, . . . , 〈

−→
Op , e∗n〉)

are called Cartesian coordinate systems. These are not (pseudo) orthonormal Cartesian co-
ordinates because there is no given metric. As is well known, different Cartesian coordinate
systems φ : An 3 p 7→ (x1(p), . . . , xn(p)) and ψ : An 3 p 7→ (x′1(p), . . . , x′n(p)) are related by
non-homogeneous linear transformations determined by real constants Aij , B

i,

x′i = Aijx
j +Bi ,

where the matrix of coefficients Aij is non-singular. As a consequence if X = Xi ∂
∂xi

is a vector
field decompose with respect to the first Cartesian coordinate system, its components transform
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as
X ′

i
= AijX

j ,

when passing to the second one. If Y is another vector field, we may try to define the derivative
of X with respect to Y , as the contravariant vector which is represented in a Cartesian coordinate
system by

(∇XY )p := Xj
p

∂Y i

∂xj
|p
∂

∂xi
|p . (6.1)

The question is: “The form of (∇XY )i is preserved under change of coordinates?” If we give the
definition using an initial Cartesian coordinate system and we next pass to another Cartesian
coordinate system we trivially get:

(∇XY )′
i
p = Aij(∇XY )jp , (6.2)

since the coefficients Aij do not depend on p. Hence, definition (6.1) does not depend on the
used particular Cartesian coordinate system and gives rise to a (1, 0) tensor which, in Cartesian
coordinates, has components given by the usual Rn directional derivatives of the vector field
Y with respect to X. The given definition can be re-written into a more intrinsic form which
makes clear a very important point. Roughly speaking, to compute the derivative in p of a
vector field Y with respect to X, one has to subtract the value of Y at p to the value of Y at
a point q = p + hXp, where the notation means nothing but that −→pq = hχpYp, χp : TpAn → V
being the natural isomorphism between TpAn and the vector space V of the affine structure of
An (see Remark 3.6). This difference has to be divided by h and the limit h → 0 defines the
wanted derivatives. It is clear that, as it stands, that procedure makes no sense. Indeed Yq and
Yp belong to different tangent spaces and thus the difference Yq−Yp is not defined. However the
affine structure gives a meaning to that difference. In fact, one can use the natural isomorphisms
χp : TpAn → V and χq : TqAn → V . As a consequence A[q, p] := χ−1

p ◦ χq : TqAn → TpAn is a
well-defined vector space isomorphism. The very definition of (∇XY )p can be given as

(∇XY )p := lim
h→0

A[p+ hXp, p]Yp+hXp − Yp
h

. (6.3)

Passing to Cartesian coordinates, it is simply proved that the definition above coincides with
that given at the beginning. On the other hand, it is obvious that the affine structure plays
a central rôle in the definition of (∇XY )p. In a generic manifold, in the absence of the affine
structure, it is not so simple to define the notion of derivative of a vector field with respect to
another vector field. Sticking to an affine space An, but using arbitrary coordinate systems, one
can check by direct inspection that the components of the tensor ∇XY are not the Rn usual
directional derivatives of the vector field Y with respect to X. This is because when passing from
Cartesian coordinates to generic coordinates, the constant coefficients Aij have to be replaced

by ∂x′i

∂xj
|p which depend on p and (6.1) cannot achieved.

In summary, two issues pop out here.

(a) What is the form of ∇XY in a generic coordinate system of an affine space?

87



(b) What about the definition of ∇XY in a general smooth manifold?

The rest of the section is devoted to answer both questions.

6.1.2 Affine connections and covariant derivative operator and vector

The key-idea to give a general answer to the second question is to axiomatically adopt in a
generic manifold M the properties of the operator ∇X grasped when M = An.

Definition 6.1. (Affine Connection and Covariant Derivative.) Let M be a smooth
manifold. An affine connection or covariant derivative operator ∇, is a map

∇ : X(M)× X(M) 3 (X,Y ) 7→ ∇XY ∈ X(M) ,

which obeys the following requirements for every point p ∈M :

(1) (∇fY+gZX)p = f(p)(∇YX)p + g(p)(∇ZX)p, for all f, g ∈ D(M) and X,Y, Z ∈ X(M);

(2) (∇Y fX)p = Yp(f)Xp + f(p)(∇YX)p for all X,Y ∈ X(M) and f ∈ D(M);

(3) (∇X(aY + bZ))p = a(∇XY )p + b(∇XZ)p for all a, b ∈ R and X,Y, Z ∈ X(M).

The contravariant vector field ∇YX is called the covariant derivative vector of X with
respect to Y (and the affine connection ∇). �

Remark 6.2.
(1) It is very important that the three relations written in the definition are understood point-
wise also if, very often, they are written without referring to a point of the manifold. For
instance, (1) could be re-written ∇fY+gZX = f∇YX + g∇ZX.
(2) The identity (1) implies that, if Xp = X ′p then

(∇XZ)p = (∇X′Z)p ,

in other words: (∇XZ)p depends on the value Xp attained at p by X, but not on the other values
of X. This property defines a severe distinction between ∇XZ and the analogous Lie derivative
LXZ.
In particular this means that, it make sense to define the derivative in p, ∇XpY , where Xp ∈ TpM
is a simple vector and not a vector field. Indeed one can always extend Xp to a vector field in
M using lemma 3.16, and the derivative does not depend on the choice of such an extension.
As a consequence, the following alternative notations are also used for (∇XZ)p:

(∇XZ)p = (∇XpZ)p = ∇XpZ .

To show that (∇XZ)p = (∇X′Z)p if Xp = X ′p, by linearity, it is sufficient to show that (∇XZ)p =
0 if Xp = 0. Let us prove this fact. First suppose that X vanishes in a neighborhood Up of p.
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Let h ∈ D(M) be a function such that h(p) = 0 and h(q) = 1 in M \Up (such a function can by
constructed as the difference of the constant function 1 and a suitable hat function centered in
p). By definition X = hX and thus (∇XZ)p = h(p)(∇XZ)p = 0(∇XZ)p = 0.
Then suppose that Xp = 0 but, in general Xq 6= 0 if q 6= p. If g is a hat function centered on
p compactly supported in the domain of the local chart (U, φ) with coordinates x1, . . . , xn, we
can write

X = gXig
∂

∂xi
+X ′ .

By construction, X ′ vanishes in a neighborhood of p where

X = gXig
∂

∂xi
,

since g = 1 thereon. Putting all together and using the condition (1), one gets, where every
scalar function gXi is well-defined on the whole manifold,

(∇XZ)p = g(p)Xi(p)(∇g ∂
∂xi
Z)p + (∇X′Z)p .

The first term in the right-hand side vanishes because Xi(p) = 0 by hypotheses, the second
vanishes too because X ′ vanishes in a neighborhood of p. Hence (∇XZ)p = 0 if Xp = 0.
(3) The requirement (2) entails that, if Y = Y ′ in a neighborhood of p then

(∇XY )p = (∇XY ′)p .

In other words: (∇XY )p depends on the behaviour of Y in a (arbitrarily small) neighborhood of
p.
To show it, it is sufficient to prove that (∇XY )p = 0 if Y vanishes in a neighborhood U of p.
To prove it, notice that, under the given hypotheses: Y = hY where h ∈ D(M) is a function
which vanishes in a neighborhood of p, V ⊂ U and takes the constant value 1 outside U . As a
consequence

(∇XY )p = (∇XhY )p = h(p)(∇XY )p +Xp(h)Yp = 0 +Xp(h)Yp .

Since Xp is a derivation at p and h vanishes in a neighborhood of p, Xp(h) = 0 (cf Lemma 3.9).
This proves that (∇XY )p = 0.
(4) It is clear that the affine structure of An provided automatically an affine connection ∇
simply defining it as the standard derivative in every fixed Cartesian coordinate system. (We
know that this definition does not depend on the choice of the Cartesian global chart.) The
converse is not true: an affine connection does not determine any affine structure on a manifold.
(5) An important question concerns the existence of an affine connection for a given differentiable
manifold. It is possible to successfully tackle that issue after the formalism is developed further.
(1) and (4) in Exercises 6.14 below provide an appropriate answer.
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6.1.3 Connection coefficients

Let us come back to the general Definition 6.1, in components referred to a local coordinate
system φ : U 3 q 7→ (x1(q), . . . , xn(q)) ∈ Rn defined in a neighborhood U of p ∈ M , we can
compute (∇XY )p. To this end we decompose X and Y along the local bases made of vectors
∂/∂xi|q defined for q ∈ U . Actually these vectors and the components Y p are not defined in
the whole manifold as required if one wants to use Definition 6.1. Nevertheless one can define
these fields on the whole manifold by multiplying them with suitable hat functions which equal 1
constantly in a neighborhood of p and vanishes outside the domain of the considered coordinate
map. The fields so obtained will be indicated with a prime ′. It holds (using notations introduced
in (2) Remark 6.2 above):

(∇XY )p = ∇Xi(p) ∂
∂xi
|p

Å
Y j ′ ∂

∂xj

′
+ Z

ã
where the vector field Z vanishes in a neighborhood of p since, there, Y j ′ ∂

∂xj
′

= Y . As a
consequence, the field Z does not give contribution to the computation of the covariant derivative
in p by (3) in Remark 6.2. Hence

(∇XY )p = ∇Xi(p) ∂
∂xi
|pY

j ′ ∂

∂xj

′
= Xi(p)Y j ′(p)∇ ∂

∂xi
|p
∂

∂xj

′
+Xi(p)

∂Y j

∂xi

′
|p

∂

∂xj

′
|p .

In other words, in our hypotheses:

(∇XY )p = Xi(p)Y j(p)∇ ∂
∂xi
|p
∂

∂xj

′
+Xi(p)

∂Y j

∂xi
|p

∂

∂xj
|p .

Notice that, if i, j are fixed, the coefficients ∇ ∂
∂xi
|p

∂
∂xj
′
define a (1, 0) tensor field in p which is the

derivative of ∂
∂xj
′

with respect to ∂
∂xi
|p. This derivative does not depend on the used extension

of the field ∂
∂xj

since ∂
∂xj
′

= ∂
∂xj

in a neighborhood of p. For this reason we shall henceforth

write ∇ ∂
∂xi
|p

∂
∂xj

instead of ∇ ∂
∂xi
|p

∂
∂xj
′
. It holds

∇ ∂
∂xi
|p
∂

∂xj
=

≠
∇ ∂

∂xi
|p
∂

∂xj
, dxk|p

∑
∂

∂xk
|p := Γkij(p)

∂

∂xk
|p .

The coefficients Γkij = Γkij(p) are smooth functions of the considered coordinates and are called
connection coefficients.
Using these coefficients and the above expansion, in components, the covariant derivative of Y
with respect to X at p can be written down as:

(∇XpY )ip = Xj
p

Ç
∂Y i

∂xj
|φ(p) + Γijk(p)Y

k
p

å
.
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6.1.4 Covariant derivative tensor

Fix X ∈ X(M) and p ∈ M . The linear map Yp 7→ (∇YpX)p and Lemma 3.16 defines a tensor,
(∇X)p of type (1, 1) in T ∗pM ⊗ TpM such that the (only possible) contraction of Yp and (∇X)p
is (∇YpX)p. Varying p ∈ M , p 7→ (∇X)p defines a smooth (1, 1) tensor field ∇X because in
local coordinates its components are differentiable they being

∂Xi

∂xj
+ ΓijkX

k .

∇X is called covariant derivative tensor of X (with respect to the affine connection ∇).

Notation 6.3. The following notation is often used in textbooks

∇jXi := Xi
,j :=

∂Xi

∂xj
+ ΓijkX

k . (6.4)

Notice the different positions of the corresponding indices passing from the first to the second
notation. �

Using the introduced notation, the relation between the covariant derivative tensor and the
covariant derivative vector is stated in components as

(∇YX)i = Y jXi
,j .

6.1.5 Transformation rule of the connection coefficients.

We are now interested in the transformation rule of the connection coefficients under change of
coordinates. We pass from local coordinates φ : U 3 q 7→ (x1, . . . , xn) ∈ Rn to local coordinates
ψ : V 3 q 7→ (x′1, . . . , x′n) ∈ Rn such that p ∈ U ∩ V and the connection coefficients evaluated
at p change from Γkij(p) to Γ′hpq(p). We do not write p explicitly in the following for shortness.

Γkij = 〈∇ ∂
∂xi

∂

∂xj
, dxk〉 = 〈∇ ∂x′p

∂xi
∂

∂x′p
(
∂x′q

∂xj
∂

∂x′q
) ,
∂xk

∂x′h
dx′

h〉 =
∂xk

∂x′h
∂x′p

∂xi
〈∇ ∂

∂x′p
(
∂x′q

∂xj
∂

∂x′q
) , dx′

h〉 .

Expanding the last term we get

∂xk

∂x′h
∂x′p

∂xi
∇ ∂

∂x′p
(
∂x′q

∂xj
) 〈 ∂

∂x′q
, dx′

h〉+
∂xk

∂x′h
∂x′p

∂xi
∂x′q

∂xj
〈∇ ∂

∂x′p

∂

∂x′q
, dx′

h〉 ,

which can be re-written as

∂xk

∂x′h
∂x′p

∂xi
∂2x′h

∂x′p∂xj
+
∂xk

∂x′h
∂x′p

∂xi
∂x′q

∂xj
Γ′
h
pq .

In summary,

Γkij(p) =
∂xk

∂x′h
|ψ(p)

∂2x′h

∂xi∂xj
|φ(p) +

∂xk

∂x′h
|ψ(p)

∂x′p

∂xi
|φ(p)

∂x′q

∂xj
|φ(p)Γ

′h
pq(p) .
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The obtained result shows that the connection coefficients do not define a tensor field because
of the presence of a non-homogeneous first term in the right-hand side above.

Remark 6.4.
If ∇ is the affine connection naturally associated with the affine structure of an affine space An,
it is clear that Γkil = 0 in every Cartesian coordinate system. As a consequence, in a generic
coordinate system, it must hold

Γkij =
∂xk

∂x′h
∂2x′h

∂xi∂xj

where the primed coordinates are Cartesian coordinates and the left-hand side does not depend
on the choice of these Cartesian coordinates. This result gives the answer of the question ”What
is the form of ∇XY in generic coordinate systems (of an affine space)?” raised at the end of
Section 6.1.1. The answer is

(∇XY )i = Xj

Ç
∂Y i

∂xj
+ ΓijkY

k

å
,

where the coefficients Γijk are defined as

Γkij =
∂xk

∂x′h
∂2x′h

∂xi∂xj
,

the primed coordinates being Cartesian coordinates.

6.1.6 Assignment of a connection.

All the procedure used to define an affine connection can be reversed obtaining the following
result. We leave the straightforward proof of the proposition below to the reader.

Notation 6.5. Now and henceforth occasionally we write |p in place of |φ(p)or |ψ(p) for the
sake of shortness. �

Proposition 6.6. The assignment of an affine connection on a differentiable manifold M
is completely equivalent to the assignment of coefficients Γkij(p) in each local coordinate system,
which smoothly depend on the point p and transform as

Γkij(p) =
∂xk

∂x′h
|p
∂2x′h

∂xi∂xj
|p +

∂xk

∂x′h
|p
∂x′p

∂xi
|p
∂x′q

∂xj
|pΓ′hpq(p) , (6.5)

under change of local coordinates. More precisely,

(a) if an affine connection ∇ is given, coefficients Γiij associated with ∇ which satisfy (6.5)
are defined by

Γkij(p) := 〈∇ ∂
∂xi
|p
∂

∂xj
|p , dxk|p〉 ,
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(b) if coefficients Γkij(p) are assigned for every point p ∈M and every coordinate system of an
atlas of M , such that (6.5) hold, an affine connection associated with this assignment is
given by

(∇XY )ip = Xj
p(
∂Y i

∂xj
|p + Γijk(p)Y

k
p ) .

in every coordinate patch of the atlas, for all vector fields X,Y and every point p ∈M ;

(c) if ∇ and ∇′ are two affine connections on M such that the coefficients Γkij(p) and Γ′kij(p)
respectively associated to the connections as in (a) coincide for every point p ∈ M and
every coordinate system around p in a given atlas on M , then ∇ = ∇′. �

6.1.7 Covariant derivative of tensor fields.

If M is a smooth manifold equipped with an affine connection ∇, it is possible to extend the
action of the covariant derivatives to all smooth tensor fields. In other words, if X ∈ X(M)
and u is a smooth tensor field, it is possible to define a new tensor field ∇Xu interpreted as
the covariant derivative of u with respect to X. It is done by assuming the following
further requirements on the action of ∇X in addition to the four requirements in Definition 6.1,
which are supposed to hold point-by-point (we omit p everywhere for the shake of notational
simplicity).

(4) ∇Xu is of the same type as u,

(5) ∇X(au+ bv) = a∇Xu+ b∇Xv for all a, b ∈ R, smooth tensor fields u, v of the same kind .

(6) ∇Xf := X(f) for all f ∈ D(M).

(7) ∇X(t⊗ u) := (∇Xt)⊗ u+ t⊗∇Xu for all smooth tensor fields u, t,

(8) ∇X〈Y, η〉 = 〈∇XY, η〉+ 〈Y,∇Xη〉 for all Y ∈ X(M) and η ∈ Ω1(M).

In particular, the action of ∇X on covariant vector fields turns out to be defined by the require-
ments above as follows.

∇X η = 〈 ∂
∂xk

,∇Xη〉 dxk =

Å
∇X〈

∂

∂xk
, η〉
ã
dxk − 〈∇X

∂

∂xk
, η〉 dxk ,

where

∇X〈
∂

∂xk
, η〉 = ∇Xηk = X(ηk) = Xi∂ηk

∂xi
,

and

〈∇X
∂

∂xk
, η〉 = Xiηr〈∇ ∂

∂xi

∂

∂xk
, dxr〉 = XiηrΓ

r
ik .

Putting all together we have:

(∇X η)kdx
k = Xi(

∂ηk
∂xi
− Γrikηr) dx

k .
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We can define

(∇η)ki = ηk,i :=
∂ηk
∂xi
− Γrikηr ,

as covariant derivative (tensor) of the covariant vector field η. ∇η it is the unique tensor
field of type (0, 2) such that the contraction of Xp and (∇η)p is (∇Xpη)p.

It is simply proved that, given an affine connection ∇, there is exactly one map which trans-
forms smooth tensor fields to smooth tensor fields (preserving their type) and satisfies all the
requirements above.

(a) Uniqueness is straightforward. Indeed, as shown above, the action on covariant tensor
fields is uniquely fixed, the action on scalar fields in defined in (6), finally (7) determines
the action on generic tensor fields.

(a) The proof of existence is constructive: in components the uniquely-determined action
of the connection on tensor fields is the following. First of all introduce the covariant
derivative of the tensor field t, ∇t, which has to be interpreted as the unique tensor field
of tensors in T ∗pM ⊗ SpM (SpM being the space of the tensors in p which contains tp)
such that the contraction of Xp and (∇t)p (with respect to the space corresponding to the
index r) is (∇Xpt)p:

(∇t)i1...il j1...jkr(p) :=
∂ti1...il j1...jk

∂xr
|p + Γi1sr(p)t

s...il
j1...jk(p) + . . .+ Γilsr(p)t

i1...s
j1...jk(p)

− Γsrj1(p)ti1...il s...jk(p)− . . .− Γsrjk(p)ti1...il j1...s(p) . (6.6)

The reader can easily check the validity of requirements (4)-(8) for the map

∇ : (X, t) 7→ ∇Xt

defined in that way.

Notation 6.7. The following notation is used in the literature,

ti1...il j1...jk,r := (∇t)i1...il j1...jkr = ∇rti1...il j1...jk .

Again, pay attention to the different position of the index r. �

6.2 The Levi-Civita connection on (pseudo) Riemannian mani-
folds

We pass to discuss an important affine connection which is always present in (pseudo) Rieman-
nian manifolds. This connection enjoys a general property related to the notion of torsion. So
we start by introducing that concept.
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6.2.1 Torsion tensor field

By Schwarz’ theorem, the inhomogeneous term in

Γkij =
∂xk

∂x′h
∂2x′h

∂xi∂xj
+
∂xk

∂x′h
∂x′p

∂xi
∂x′q

∂xj
Γ′
h
pq ,

drops out when considering the transformation rules of coefficients:

T ijk := Γijk − Γikj .

Hence, these coefficients define the components of a tensor field which, in local coordinates, is
represented by:

T = (Γijk − Γikj)
∂

∂xi
⊗ dxj ⊗ dkk .

This tensor field is symmetric in the covariant indices and is called torsion tensor field of
the connection. It is straightforwardly proved that for any pair of differentiable vector fields
X and Y

((∇XY )p − (∇YX)p − [X,Y ]p)
k = T kp ijX

i
pY

j
p ,

for every point p ∈ M . That identity provided an intrinsic definition of torsion tensor field
associated with an affine connection. In other words, the torsion tensor at p can be defined as
a bilinear mapping which associates pairs of smooth vector fields X,Y to a smooth vector field
Tp(∇)(Xp, Yp) according with the rule

Tp(Xp, Yp) = ∇XpY −∇YpX − [X,Y ]p . (6.7)

Remark 6.8. It is worthwhile stressing that the difference of ∇XpY −∇YpX and [X,Y ]p does
not depend on the behaviour of the fields X and Y around p, but only on the values attained by
them exactly at the point p. Notice that this fact is false if considering separately ∇XpY −∇YpX
and [X,Y ]p. �

There is a nice interplay between the absence of torsion of an affine connection and Lie brackets.
In fact, using (6.7), we end up with the following useful result.

Proposition 6.9. Let ∇ be an affine connection on a differentiable manifold M . If ∇ is
torsion free, i.e., the torsion tensor field T vanishes on M ,

[X,Y ] = ∇XY −∇YX , (6.8)

for every X,Y ∈ X(M).
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6.2.2 The Levi-Civita connection.

Let us show that, if M is (pseudo) Riemannian, there is a preferred affine connection which is
torsion free and completely determined by the metric. This is the celebrated f Levi-Civita affine
connection.

Theorem 6.10. Let (M,g) be a (pseudo) Riemannian manifold with metric locally repre-
sented by

g = gijdx
i ⊗ dxj .

There is exactly one affine connection ∇ such that

(1) it is metric, i.e., ∇g = 0,

(2) it is torsion free, i.e., T = 0.

That is the Levi-Civita connection which is defined by the connection coefficients, called
Christoffel’s coefficients,:

Γijk = { ijk} :=
1

2
gis
Å
∂gks
∂xj

+
∂gsj
∂xk

−
∂gjk
∂xs

ã
. (6.9)

Proof. Assume that a connection with the required properties exits. Expanding (1) and rear-
ranging the result, we have:

−∂gij
∂xk

= −Γskigsj − Γskjgis ,

twice cyclically permuting indices and changing the overall sign we get also:

∂gki
∂xj

= Γsjkgsi + Γsjigks ,

and
∂gjk
∂xi

= Γsijgsk + Γsikgjs .

Summing side-by-side the obtained results, taking the symmetry of the lower indices of connec-
tion coefficients, i.e. (2), into account as well as the symmetry of the (pseudo) metric tensor, it
results:

∂gki
∂xj

+
∂gjk
∂xi

− ∂gij
∂xk

= 2Γsijgsk .

Contracting both sides with 1
2g
kr and using gskg

kr = δrs we get:

Γrij =
1

2
grk
Å
∂gki
∂xj

+
∂gjk
∂xi

− ∂gij
∂xk

ã
=

1

2
grk
Å
∂gjk
∂xi

+
∂gki
∂xj

− ∂gij
∂xk

ã
= { rij} .
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We have proved that, if a connection satisfying (1) and (2) exists, its connection coefficients
have the form of has the form of Christoffel’s coefficients. This fact also implies that, if such a
connection exists, it must be unique. The coefficients

{ ijk}(p) :=
1

2
gis(p)

Å
∂gks
∂xj
|p +

∂gsj
∂xk
|p −

∂gjk
∂xs
|p
ã
,

define an affine connection because they transform as:

{kij}(p) =
∂xk

∂x′h
|p
∂2x′h

∂xi∂xj
|p +

∂xk

∂x′h
|p
∂x′p

∂xi
|p
∂x′q

∂xj
|p { hpq}′(p) ,

as one can directly verify with a lengthy computation. This concludes the proof. 2

Exercises 6.11. Prove that ∇ is metric if and only if

Xpg(Y,Z) = g(∇XpY, Zp) + g(Yp,∇XpZ) for every p ∈M and X,Y, Z ∈ X(M). (6.10)

(Hint. Prove the thesis in coordinates and use the arbitrariness of X,Y, Z.)

Remark 6.12.
(1) The practical meaning of the requirement (1) is the following. One expects that, in the
simplest case, the operation of computing the covariant derivative commutes with the procedure
of raising and lowering indices. That is, for instance,

gki∇ltij r = ∇l
(
gkit

ij
r

)
.

The requirement (1) is, in fact, equivalent to the commutativity of the procedure of raising and
lowering indices and that of taking the covariant derivative as it can trivially be proved noticing
that, in components, requirement (1) read:

∇lgij = 0 .

(2) This remark is very important for applications. Consider a (pseudo) Euclidean space En.
In any (pseudo) orthonormal Cartesian coordinate system (and more generally in any Cartesian
coordinate system) the affine connection naturally associated with the affine structure has van-
ishing connection coefficients. As a consequence, that connection is torsion free. In the same
coordinates, the metric takes constant components and thus the covariant derivative of the met-
ric vanishes too. Those results prove that the affine connection naturally associated with the
affine structure is the Levi-Civita connection. In particular, this implies that the connection ∇
used in elementary analysis is nothing but the Levi-Civita connection associated to the metric of
Rn. The exercises below show how such a result can be profitably used in several applications.
(3) A point must be stressed in application of the formalism: using non-Cartesian coordinates
in Rn or En, as for instance polar spherical coordinates r, θ, φ in R3, one usually introduces
a local basis of TpR3, p ≡ (r, θ, φ) made of normalized-to-1 vectors er, eθ, eφ tangent to the
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curves obtained by varying the corresponding coordinate. These vectors do not coincide with
the vector of the natural basis ∂

∂r |p,
∂
∂θ |p,

∂
∂φ |p because of the different normalization. In fact, if

g = δijdx
i ⊗ dxj is the standard metric of R3 where x1, x2, x3 are usual orthonormal Cartesian

coordinates, the same metric has coefficients different from δij in polar coordinates. By con-
struction grr = g( ∂∂r ,

∂
∂r ) = 1, but gθθ = g( ∂∂θ ,

∂
∂θ ) 6= 1 and gφφ = g( ∂

∂φ ,
∂
∂φ) 6= 1. So ∂

∂r = er but
∂
∂θ =

√
gθθeθ and ∂

∂φ =
√
gφφeφ.

6.2.3 Killing fields again

The Levi-Civita connection ∇ permits us to recast the Killing equation (5.7) for the Killing field
K into a more popular form.

∇aKb +∇bKa = 0 . (6.11)

Let us prove it in a proposition.

Proposition 6.13. A smooth vector field K ∈ X(M) satisfies the Killing equation (5.7)

LXg = 0

with respect to the metric g of a (pseudo) Riemannian manifold if and only if it satisfies (6.11).

Proof. If LXg = 0 is equivalent to (LXg)(Y, Z) = 0 for every X,X ∈ X(M).

0 = (LXg)(Y,Z) = LXg(Y, Z)− g(LXY, Z)− g(Y,LXZ)

= Xg(Y, Z)− g([X,Y ], Z)− g(Y, [X,Z])

= g(∇XY, Z) + g(Y,∇XZ)− g([X,Y ], Z)− g(Y, [X,Z])

= g(∇YX,Z) + g(Y,∇ZX),

In the first line we used the fact that the Lie derivative satisfies the Leibnitz rule with respect
to contractions. In the third line we exploited the fact that the Levi-Civita connection is metric
(see (6.10)) and in the fourth we used that it is also torsion free (see (6.8)). Finally

0 = g(∇YX,Z) + g(Y,∇ZX) = Y aZb(∇aXb) + Y aZb(∇bXa)

is equivalent to (6.11) for the arbitrariness of Y and Z. 2

Exercises 6.14.
1. Show that, if ∇k are affine connections on a manifold M , then ∇ =

∑
k fk∇k is an affine

connection on M if {fk}k∈K is a smooth partition of unity. (At each point
∑

k fk∇k is a finite
convex linear combination of connections).

2. Show that a differentiable manifold M (1) always admits an affine connection, (2) it is
possible to fix that affine connection in order that it does not coincide with any Levi-Civita
connection for whatever metric defined in M .
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Solution. (1) By theorem 5.9, there is a Riemannian metric g defined on M . As a con-
sequence M admits the Levi-Civita connection associated with g. (2) Let ω, η be a pair of
co-vector fields defined in M and X a vector field in M . Suppose that they are somewhere
non-vanishing and ω 6= η (these fields exist due to Lemma 3.16 and using g to pass to co-vector
fields from vector fields). Let Ξ be the tensor field with Ξp := Xp ⊗ ωp ⊗ ηp for every p ∈M . If
Γijk are the Levi-Civita connection coefficients associated with g in any local chart on M , define
Γ′i jk := Γi jk +Ξi jk in the same coordinate patch. By construction these coefficients transforms
as connection coefficients under a change of coordinate frame. As a consequence of proposition
6.6 they define a new affine connection in M . By construction the found affine connection is not
torsion free and thus it cannot be a Levi-Civita connection.

3. Show that the coefficients of the Levi-Civita connection on a manifold M with dimension
n satisfy

Γiij(p) =
∂ ln

√
| det gφ(p)|
∂xj

|φ(p) .

where gφ(p) = [gij(p)] in every local chart φ : U 3 q 7→ (x1(q), . . . , xn(q)) ∈ Rn.
Solution. Notice that the sign of det gφ is fixed it depending on the signature of the metric.

It holds
∂ ln

√
| det g|

∂xj
=

1

2 det g

∂ det g

∂xj
.

Using the formula for expanding derivatives of determinants and expanding the relevant deter-
minants in the expansion by rows, one sees that

∂ det g

∂xj
=
∑
k

(−1)1+kcof1k
∂g1k

∂xj
+
∑
k

(−1)2+kcof2k
∂g2k

∂xj
+ . . .+

∑
k

(−1)n+kcofnk
∂gnk
∂xj

.

That is
∂ det g

∂xj
=
∑
i,k

(−1)i+kcofik
∂gik
∂xj

,

On the other hand, Cramer’s formula for the inverse matrix of [gik], [gpq], says that

gik =
(−1)i+k

g
cofik

and so,
∂ det g

∂xj
= (det g)gik

∂gik
∂xj

,

hence
1

2 det g

∂ det g

∂xj
=

1

2
gik

∂gik
∂xj

.

But direct inspection proves that

Γiij(p) =
1

2
gik

∂gik
∂xj

.
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Putting all together one gets the thesis.)
4. Prove, without using the existence of a Riemannian metric for any differentiable manifold,

that every differentiable manifold admits an affine connection.
(Hint. Use a proof similar to that as for the existence of a Riemannian metric: Consider an

atlas and define the trivial connection (i.e, the usual derivative in components) in each coordinate
patch. Then, making use of a suitable partition of unity, glue all the connections together paying
attention to the fact that a convex linear combinations of connections is a connection.)

5. Show that the divergence of a vector field divX := ∇iXi with respect to the Levi-Civita
connection can be computed in coordinates as

(divV )(p) =
1√

|det gφ(p)|
∂
√
|det gφ|V i

∂xi
|φ(p) .

6. Use the formula above to compute the divergence of a vector field V represented in polar
spherical coordinates in R3, using the components of V either in the natural basis ∂

∂r ,
∂
∂θ ,

∂
∂φ and

in the normalized one er, eθ, eφ (see (2) in Remark Rem16.).
7. Solve exercise (6) for a vector field in R2 in polar coordinates and a vector field in R3 is

cylindrical coordinates.
8. The Laplace-Beltrami operator (also called Laplacian) on differentiable functions is

locally defined by:
∆f := gij∇j∇if ,

where ∇ is the Levi-Civita connection. Show that, in coordinates:

(∆f)(p) =
1√

| det gφ(p)|

Å
∂

∂xi

»
|det gφ|gij

∂

∂xj

ã
|φ(p)f .

9. Consider cylindrical coordinates in R3, (r, θ, z). Show that:

∆f =
∂2f

∂r2
+

1

r

∂f

∂r
+

1

r2

∂2f

∂θ2
+
∂2f

∂z2
.

10. Consider spherical polar coordinates in R3, (r, θ, φ). Show that:

∆f =
1

r2

∂

∂r

Å
r2∂f

∂r

ã
+

1

r2 sin θ

∂

∂θ

Å
sin θ

∂f

∂θ

ã
+

1

r2 sin2 θ

∂2f

∂φ2
.

6.2.4 The divergence theorem

The Levi-Civita covariant derivative permits to extend the validity of the classic divergence the-
orem. Actually there are many versions of that theorem which is a subcase of Stokes-Poincaré
theorem for k-forms [KoNo96].

Theorem 6.15. (Divergence theorem in covariant form.) Let (M,g) be a (pseudo)
Riemannian manifold and Ω ⊂M an open relatively compact set whose boundary ∂Ω is piecewise
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M

Ω

∂Ω

Figure 6.1: An example of domain for the divergence theorem

smooth and it is made of the union of a finite number of co-dimension 1 submanifolds – each
with non degenerate induced metric if g is semi Riemannian – which meet in a finite number
co-dimension 2 submanifolds.
If X is a smooth field defined on Ω, and ∂Ω is orientable in the sense that we can define a
continuous and piecewise smooth normal co-vector n outward oriented, then∫

Ω

∇ ·Xdµ(g) =

∫
∂Ω

〈X,n〉dµ(g(∂Ω)) . (6.12)

Above n is normalized to 1 on the co-dimension 1 submanifolds and ∇ · X is the divergence
computed with respect to the Levi-Civita connection, in local coordinates

∇ ·X = ∇aXa .

This theorem has a big impact to the formulation of conservation laws in relativistic theories.

6.3 Parallel transport

Let us focus on a manifold M equipped with an affine connection ∇. It is possible to generalize
the concept of straight line or affine segment by introducing the concept of geodesic. To do it,
we have to introduce some mathematical technology regarding derivatives along a given smooth
curve.
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6.3.1 Covariant derivatives of a vector field along a curve

Let us start with a very natural definition.

Definition 6.16. If M is a smooth manifold with an affine connection ∇ and γ : (a, b)→M
a smooth curve, a smooth vector field X on γ is a map

(a, b) 3 t 7→ X(t) ∈ Tγ(t)M ,

whose components are smooth functions in every local chart around γ(t) for every t ∈ (a, b).
X(γ) denotes the space of smooth vector field X on γ. �

Remark 6.17. Notice that we have not requested than γ is injective, so that we may have
γ(t1) = γ(t2) but X(t1) 6= X(t2). �

A special case is when X(t) = Y |γ(t) for some Y ∈ X(M). In this case we can define the
derivative of X respect to γ′ at t = t0 trivially as

∇γ′(t0)X := ∇γ′(t)Y ,

where the right-hand side is the standard covariant derivative of a vector field with respect to a
vector at a point of M . In a local chart (U, φ) around γ(t0), where φ(γ(t)) = (x1(t), . . . , xn(t))),

(
∇γ′(t0)X

)b
=
dxa

dt
|t0
∂Y b

∂xa
|φ(γ(t0)) + Γbac(γ(t0))

dxa

dt
|t0Y c(γ(t0))

=
dY b(γ(t))

dt
|t=t0 + Γbac(γ(t0))

dxa

dt
|t0Y c(γ(t0))

=
dXb(t)

dt
|t=t0 + Γbac(γ(t0))

dxa

dt
|t0Xc(t0) .

In the last line only the restriction of Y to γ is used. The final result can be used to give the
wanted definition of the covariant derivative of a smooth vector field on γ defined as in Definition
6.16.

Proposition 6.18. Let M be a smooth manifold with an affine connection ∇, γ : (a, b)→M
a smooth curve. Then there is a unique map associating a smooth field X on γ to another
smooth field X ′ on γ satisfying the following requirements.

(a) (aX + bY )′(t) := aX ′(t) + bY ′(t) if a, b ∈ R, X,Y ∈ X(γ), and t ∈ (a, b);

(b) (fX)′(t) := df
dtX(t) + f(t)X ′(t) if f ∈ D((a, b)), X ∈ X(γ), and t ∈ (a, b);

(c) X ′(t) = ∇γ(t)Y if X(t) = Y |γ(t) for some Y ∈ X(M).
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If t0 ∈ (a, b), X ′(t0) is called (covariant) derivative of X on γ at t0 and it is denoted by
∇γ′(t0)X.
In a local chart (U, φ) around γ(t0) where φ(γ(t)) = (x1(t), . . . , xn(t))), it holds

(
∇γ′(t0)X

)b
=
dXa(t)

dt
|t=t0 + Γbac(γ(t0))

dxa

dt
|t0Xc(t0) . (6.13)

for every X ∈ X(γ).

Proof. Using (a), (b), and (c) and dealing with a local chart (U, φ), one finds (6.13). On the
other hand, by direct inspection one immediately sees that the right-hand side of (6.13) does
not depend on the local chart. 2

6.3.2 Parallel transport of vectors and geodesics

The introduced results and definitions permit us to introduce two crucial notions with funda-
mental impact in the formulation of General Relativity.

Definition 6.19. (Parallel transport and geodesic curves.) Let M be a smooth manifold
equipped with an affine connection ∇ and consider a smooth curve γ : (a, b)→M .

(a) A vector field X ∈ X(γ) is said to be parallely transported along γ (and with respect
to ∇) if

∇γ′(t)X = 0 for all t ∈ (a, b) ,

(b) γ is a geodesic curve if it transports its tangent vector parallely to itself:

∇γ′(t)γ′(t) ≡ 0 for all t ∈ (a, b).

This equation is called geodesic equation. �

Remark 6.20. If M = An equipped with the natural affine connection whose connection
coefficients vanish in every Cartesian coordinate system, the geodesic equation reads in one of
these global charts

d2xa

dt2
= 0 .

We conclude that I 3 t 7→ γ(t) ∈ An is a geodesic curve if and only if it is (a restriction of) an
affine straight line

γ(t) = p+ tv t ∈ R ,

for some p ∈ An and some v ∈ V . This result is obviously valid for the Levi-Civita connection
of every (pseudo) Euclidean space. �
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In the (pseudo) Riemannian case we have an important result which, in particular holds true
for Levi-Civita connections.

Proposition 6.21. Let M be a smooth manifold equipped with

(a) a (pseudo) metric g,

(b) an affine connection ∇.

If the connection is metric, i.e, ∇g = 0 in M , then the parallel transport preserves the scalar
product: if X,Y ∈ X(γ) are parallely transported along the smooth curve γ : (a, b) 3 t → M ,
then

gγ(t1)(X(t1), Y (t1)) = gγ(t2)(X(t2), Y (t2))

for every t1, t2 ∈ (a, b)

Proof. Assume that there is a single local chart containing γ(t1) and γ(t2). In local coordinates

d

dt
g(X(t), Y (t)) =

d

dt

[
gij(γ(t))Xi(t)Y j(t)

]
= γ′k

∂gij
∂xk

Xi(t)Y j(t) + gij(t)
dXi(t)

dt
Y j(t) + gij(γ)Xi(t)

dY j(t)

dt
. (6.14)

Now the condition ∇g = 0 can be re-written:

∂gij
∂xk

= Γskigsj + Γskjgis

that, taking (6.13) into account, inserted in (6.14) produces:

d

dt
g(X(t), Y (t)) = g(∇γ′X,Y ) + g(∇γ′Y,X) = 0 ,

since ∇γ′X = ∇γ′Y = 0 by hypothesis.
If a local chart including the whole γ(a, b) does not exist, the thesis is however valid in some inter-
val [t0, t1] with t0, t1 ∈ (a, b). Let S be the set of the reals u ∈ (t0, b) such that gγ(t)(X(t), Y (t))
is constant in [t0, u] and let T := supS ≤ b. Assume T < b. There is a local chart containing
γ(T ) and thus, using the argument above in that local chart, since gγ(t)(X(t), Y (t)) is constant
in a left neighborhood of T , we conclude that gγ(t)(X(t), Y (t)) takes the same constant value
also in a right neighborhood of T . This is impossible for definition of T , so that T = b which
means that gγ(t)(X(t), Y (t)) is constant in [t0, b). An a analogous procedure applies to the left
endpoint a proving that gγ(t)(X(t), Y (t)) is constant in (a, t1] concluding the proof. 2

Remark 6.22. If γ : (a, b)→M is a fixed smooth curve, the parallel transport condition

∇γ′(t)V (t) ≡ 0 for all t ∈ (a, b) .
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can be used as a differential equation. Expanding the left-hand side in a local chart φ : U 3 p 7→
(x1, . . . , xn) ∈ Rn one finds a first-order differential equation for the components of V referred
to the bases of elements ∂

∂xk
|γ(t):

dV i

dt
= −Γijk(γ(t))γ′j(t)V k(t) .

As the equation is linear, in normal form with smooth known functions in the right-hand side,
the initial vector V (γ(0)), assuming 0 ∈ (a, b) and γ(0) ∈ U , determines V = V (γ(t)) uniquely
the maximal sub interval (a′, b′) ⊂ (a, b) such that 0 ∈ (a′, b′) and γ(a′, b′) ⊂ U . Using an
argument similar to the one exploited in the proof of Proposition 6.21, one finally proves that
V = V (t) is uniquely defined in the whole interval (a, b).
In a certain sense, one may view the solution (a, b) 3 t 7→ V (t) as the “transport” and “evolu-
tion” of the initial condition V (0), where we assume 0 ∈ (a, b), along γ.
If u, v ∈ (a, b) with u < v, the notion of parallel transport along γ produces an vector space iso-
morphism Pγ [u, v] : Tγ(u) → Tγ(v) which associates V ∈ Tγ(u) with that vector in Tγ(u) obtained
by parallely transporting V in Tγ(u).
If ∇ is metric, Proposition 6.21 implies that Pγ [u, v] also preserves the scalar product: it is an
isometric isomorphism. �

Exercises 6.23.
1. Prove that, if ∇ is an affine connection on M with torsion tensor T , then the functions

Γ′abc := Γabc − T abc define another (torsion-free) connection ∇′ and that ∇ and ∇′ share the same
geodesics.

2. Prove that if γ : I → M is a geodesic curve with respect to the Levi-Civita connection
and K is a Killing field, then the conservation equation holds

d

dt
g(Kγ(t), γ

′(t)) = 0 .

Solution. We work in local coordinates. Expanding the left-hand side,

d

dt
Kaγ

′a = γ′b∇b(Kaγ
′a) = γ′bγ′a∇bKa + γ′bKa∇bγ′a = γ′bγ′a∇bKa + 0 .

Finally

γ′bγ′a∇bKa =
1

2
γ′bγ′a∇bKa +

1

2
γ′aγ′b∇aKb =

1

2
γ′bγ′a (∇bKa +∇aKb) = 0 .

3. Let I ⊂ R be a bounded interval. Prove that a smooth curve I 3 u 7→ γ(u) satisfying
∇γ′γ′ = f(u)γ′ and γ′ 6= 0, for some known smooth function f : I → R, can be always
re-parmetrized to a geodesic segment changing the parameter from u to t = t(u) where the
function is smooth and dt/du > 0.
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Solution. Changing parametrization form u to t = t(u), one sees that the geodesic equation
is satisfied with respect to the parameter t if and only if d

du( dtdu)−1 = f(u). As a cosequence, for
t0 ∈ R and u0 ∈ I fixed arbitrarily,

t(u) = t0 +

∫ u

u0

dη

C +
∫ η
η0
f(ξ)dξ

where we can always choose C ∈ R such that C +
∫ η
η0
f(ξ)dξ > 0 if ξ ∈ I, so that dt

du > 0 and
the re-parametrization is permitted.

6.4 Affine and metric geodesics

This last section is devoted to discuss some general technical property of affine and metric
geodesics.

6.4.1 First order formulation of the geodesic equation

Let M be a smooth manifold equipped with an affine connection ∇. The geodesic equation
∇γ′γ′(t) = 0 for a smooth curve γ : I →M can be seen as an equation for a curve in TM written
in natural local coordinates (x1, . . . , xn, v1, . . . , vn) adapted to the fiber bundle structure of TM
as

dva

dt
= −Γabc(x

1(t), . . . , xn(t))vb(t)vc(t) , (6.15)

dxa

dt
= va(t) . (6.16)

If we change the local chart, remaining in the atlas of natural local charts on TM , we have the
analogous equations

dvd

dt
= −Γ

d
hk(x

1(t), . . . , xn(t))vh(t)vk(t) , (6.17)

dxd

dt
= vd(t) , (6.18)

where Γabc and Γ
d
hk are connected by the relations (6.5). The crucial fact is the following one. If,

in every natural local chart, we define the components at each (p, v) ∈ TM

Γa|p,v := va , Γ̇a|p,v := −Γabc(p)v
bvc ,

it results that these components define a smooth vector filed of T (TM), locally represented as

Γp,v := Γa|p,v
∂

∂xa
|p + Γ̇a|p,v

∂

∂va
|p,v .
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In other words, when changing local natural coordinates, relations (6.5) imply

Γ
a
(p,v) =

∂xa

∂xb
Γa(p,v) , Γ̇

a

(p,v) =
∂2xa

∂xb∂xc
vcΓa(p,v) +

∂xa

∂xb
Γ̇a(p,v) ,

which are the correct transformation rules of components of a vector of T(p,v)TM arising form
(3.9) and (3.10). Since all the involved functions are smooth, according to (1) in Remark 3.15,
this is sufficient to define a smooth vector field on TM viewed as a smooth manifold in its own
right. In summary the geodesic equation can be rephrased as

Λ′(t) = Γ(Λ(t)) , (6.19)

for an unknown smooth curve I 3 t 7→ Λ(t) ∈ TM .

With this information, using Proposition 4.16, we have the following result.

Theorem 6.24. Let M be a smooth manifold equipped with an affine connection ∇. The
following facts are true.

(a) For every p ∈ M and v ∈ TpM there exists a unique maximal solution of the geodesic
equation γp,v : Ip,v → M , – Ip,u ⊂ R being the maximal open interval of definition – such
that

(i) γp,v(0) = p,

(ii) γ′p,v(0) = v.

(b)
⋃

(p,v)∈TM Ip,v × {(p, v)} is an open set of R× TM which includes the trivial section

{(p, 0) | p ∈M} ≡M .

Remark 6.25.
(1) A geodesic curve is always a restriction of maximal solution of the geodesic equation.
(2) A straightforward consequence of the uniqueness part of the theorem above is that the tan-
gent vector of a non constant geodesic segment γ : I →M cannot vanish in any point. �

Definition 6.26. If the smooth manifold M is equipped with the affine connection ∇,

(a) a geodesic is a maximal solution of the geodesic equation, i.e., a maximal geodesic curve;

(b) a geodesic segment η := γ|J is the restriction of a geodesic γ : I → M to an interval J
possibly including one or both its endpoints. �

Definition 6.27. A manifold M equipped with an affine connection ∇ is said to be geodesi-
cally complete, or simply complete, if the maximal geodesics refereed to ∇ are complete (i.e.,
the domain of every maximal geodesic is the whole real axis). �
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6.4.2 Affine parameters and length coordinate

If one changes the parameter of a non constant geodesic segment I 3 t 7→ γ(t) to u = u(t) where
that mapping is smooth and du/dt 6= 0 for all t ∈ I, the new differentiable curve γ1 : J 3 u 7→
γ(t(u)) does not satisfy the geodesic equation in general. However, one easily finds

∇γ′1(u)γ
′
1(u) = −

Å
du

dt

ã3 d2t

du2
γ′(t) .

Indeed, γ′1(u) = dt
duγ
′(t), where t = t(u) is the inverse function of the re-parametrization, and

thus

∇γ′1(u)γ
′
1(u) = ∇ dt

du
γ′(t)

dt

du
γ′(t) =

dt

du
∇γ(t)

dt

du
γ′(t) =

Å
dt

du

ã2

∇γ′(t)γ′(t) +
dt

du

Å
∇γ′(t)

dt

du

ã
γ′(t) .

That is

∇γ′1(u)γ
′
1(u) = 0+

dt

du

Å
d

dt

dt

du

ã
γ′(t) =

dt

du

Ç
d

dt

Å
du

dt

ã−1
å
γ(t) = − dt

du

d2u
dt2(
du
dt

)2γ′(t) = −
Å
du

dt

ã3 d2t

du2
γ′.

Since both γ′(t) 6= 0 and du
dt 6= 0, we see that γ1 satisfies the geodesic equation too, if and only if

d2t
du2 = 0. This is equivalent to say that t = ku+k′ for some constants k, k′ ∈ R with k = dt

du 6= 0.
Equivalently u = cu+ c′ for some constants c, c′′ ∈ R with c 6= 0.
These transformations of the parameter of geodesics which preserve the geodesic equations are
called affine transformations (of the parameter) and the new parameters connected to the
initial one are said affine parameters of the geodesic.

Let us pass to treat a specific case after a general definition.

Definition 6.28. If γ : I → M is a piecewise smooth curve in the (pseudo) Riemannian
manifold (M,g) with γ′ 6= 0 everywhere, the function

s(t) :=

∫ t

t0

»
|g(γ′(t′), γ′(t′))| dt′

is called length coordinate, referred to the fixed point t0 ∈ I, or length parameter on γ. �

Notice that s = s(t) is a strictly increasing C1(I) function which is also piecewise smooth. It is
more strongly smooth if γ is smooth. That function admits an inverse t = t(s) with the same
regularity as s which can be used to re-parametrize γ.
If γ : I →M is a geodesic segment with respect to the Levi-Civita connection, due to Proposition
6.21, we know that g(γ′(t′), γ′(t′)) is constant along the curve. If g(γ′(t′), γ′(t′)) 6= 0 – which
is always true for non-constant geodesics in Riemannian manifolds or for spacelike or timelike
geodesics in Lorentzian manifolds (see below) – the length coordinate referred to t0 ∈ I,

s(t) :=

∫ t

t0

»
|g(γ′(t′), γ′(t′))| dt′ ,
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therefore defines a linear function s = kt + k′ with k =
√

g(γ′, γ′) 6= 0 and thus s is always an
affine parameter of the considered geodesic.

Examples 6.29. As we said, in Einstein’s General Theory of Relativity, the spacetime is
a four-dimensional Lorentzian manifold M . Hence it is equipped with a pseudo-metric g =
gijdx

i ⊗ dxj with hyperbolic canonic form (−1,+1,+1,+1) (this holds true if one uses units to
measure length such that the speed of the light is c = 1). The points of the manifolds are called
events. If V ∈ TpM , V 6= 0, for some event p ∈ M , V is called timelike, lightlike (or null),
spacelike if, respectively g(V, V ) < 0, g(V, V ) = 0, g(V, V ) > 0. A smooth curve γ : R → M
is classified similarly referring to its tangent vector γ′ provided γ′ preserves the sign of g(γ′, γ′)
along the curve itself. The evolution of a particle is represented by a world line, i.e., a timelike
differentiable curve γ : I 3 u 7→ γ(u) and the length parameter (length coordinate) along the
curve

t(u) :=

∫ u

a

»
|g(γ′(u′), γ′(u′))| du′ ,

(notice the absolute value) represents the proper time of the particle, i.e., the time measured
by a clock which co-moves with the particle. If γ(t) is an event reached by a a world line, the
tangent space Tγ(t)M is naturally decomposed as Tγ(t)M = L(γ′(t)) ⊕ Σγ(t), where L(γ′(t)) is
the linear space spanned by γ′(t) and Σγ(t) is the orthogonal space to L(γ′(t)). It is simple to
prove that the metric gγ(t) induces a Riemannian (i.e., positive) metric in Σγ(t). Σγ(t) represents
the local rest space of the particle at time t.
Lightlike curves describe the evolution of particles with vanishing mass. It is not possible to
define proper time and local rest space in that case.
As a consequence of the remark (3) above, if a geodesic γ has a timelike, lightlike, spacelike
initial tangent vector, any other tangent vector along γ is respectively timelike, lightlike, space-
like. Therefore it always make sense to define timelike, lightlike, spacelike geodesics. Timelike
geodesics represent the evolutions of points due to the gravitational interaction only. That
interaction is represented by the metric of the spacetime. �

6.5 Metric geodesics: the variational approach in coordinates

There is a second approach to define the geodesics with respect to the Levi-Civita connection
in a (pseudo) Riemannian manifold. Indeed, geodesics satisfy a variational principle because,
roughly speaking, they stationarize the length functional of curves and also another functional
called energy functional.

6.5.1 Basic notions of elementary calculus of variations in Rn

Let us recall some basic notion of elementary calculus of variations in Rn. Fix an open non-empty
set Ω ⊂ Rn, a closed interval I = [a, b] ⊂ R with a < b and take a non-empty set

G ⊂ {γ : I → Ω | γ ∈ Ck(I)}
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for some fixed integer 0 < k < +∞ Here and henceforth γ ∈ C l([a, b]), for ` = 1, 2, . . . ,∞,
means that γ ∈ C l((a, b)) and the limits towards either a+ and b− of all derivatives of γ exist
and are finite up to the order l, and smooth means l =∞.
A variation V of γ ∈ G, if exists, is a map V : [0, 1] × I → U such that, if Vs denotes the
function t 7→ V (s, t):

(1) V ∈ Ck([0, 1] × I) (i.e., V ∈ Ck((0, 1) × (a, b)) and the limits towards the points of the
boundary of (0, 1)× (a, b) of all the derivatives of order up to k exist and are finite),

(2) Vs ∈ G for all s ∈ [0, 1],

(3) V0 = γ and Vs 6= γ for some s ∈ (0, 1].

It is obvious that there is no guarantee that any γ of any G admits variations because both con-
dition (2) and the latter part of (3) are not trivially fulfilled in the general case. The following
lemma gives a proof of existence provided the domain G is suitably defined.

Lemma 6.30. Let Ω ⊂ (Rn)k be an open non-empty set, I = [a, b] with a < b. Fix
(p, P1, . . . , Pk−1) and (q,Q1, . . . , Qk−1) in Ω. Let D denote the space of the elements of

{γ : I → Rn | γ ∈ Ck(I)}

such that:

(1)
Ä
γ(t), d

1γ
dt1
, . . . , d

k−1γ
dtk−1

ä
∈ Ω for all t ∈ [a, b],

(2)
Ä
γ(a), d

1γ
dt1
|a, . . . , d

k−1γ
dtk−1 |a

ä
= (p, P1, . . . , Pk−1) and

Ä
γ(b), d

1γ
dt1
|b, . . . , d

k−1γ
dtk−1 |b

ä
= (q,Q1, . . . , Qk−1).

With the given definitions and hypotheses, every γ ∈ D admits variations of the form

V±(s, t) = γ(t)± scη(t) ,

where c > 0 is a constant, η : [a, b]→ Rn is Ck with

η(a) = η(b) = 0 ,

and
drη

dtr
|a =

drη

dtr
|b = 0

for r = 1, . . . , k−1. In particular, the result holds for every c < C, if C > 0 is sufficiently small.
As a consequence, endowing D with the topology induced by the norm

||γ||k := max

®
sup
I
||γ|| , sup

I

∣∣∣∣∣∣∣∣dγdt
∣∣∣∣∣∣∣∣ , . . . , sup

I

∣∣∣∣∣
∣∣∣∣∣dkγdtk

∣∣∣∣∣
∣∣∣∣∣
´
,
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every punctured metric ball B∗r (γ) = {γ1 ∈ D \{γ} | ||γ−γ1|| < r} is not empty for every r > 0.

Proof. The only non-trivial fact we have to show is that there is some C > 0 such thatÇ
γ(t)± scη(t),

d1

dt1
(γ(t)± scη(t)), . . . ,

dk−1

dtk−1
(γ(t)± scη(t))

å
∈ Ω

for every s ∈ [0, 1] and every t ∈ I provided 0 < c < C. From now on, for a generic curve, we
define τ : I → Rn,

τ̃(t) :=

Ç
τ(t),

d1τ(t)

dt1
, . . . ,

dk−1τ(t)

dtk−1

å
.

We can suppose that Ω is compact. (If not we can take a covering of γ̃([a, b]) made of open
balls of (Rn)k = Rnk whose closures are contained in Ω. Then, using the compactness of γ̃([a, b])
we can extract a finite subcovering. If Ω′ is the union of the elements of the subcovering,
Ω′ ⊂ Ω is open, Ω′ ⊂ Ω and Ω′ is compact and we may re-define Ω := Ω′.) ∂Ω is compact
because it is closed and contained in a compact set. If || || denotes the norm in Rnk, the
map (x, y) 7→ ||x − y|| for x ∈ γ̃, y ∈ ∂Ω is continuous and defined on a compact set. Define
m = min(x,y)∈γ̃×∂Ω ||x− y||. Obviously m > 0 as γ̃ is internal to Ω. Clearly, if t 7→ η̃(t) satisfies
||γ̃(t) − η̃(t)|| < m for all t ∈ [a, b], it must hold η̃(I) ⊂ Ω. Then fix η as in the hypotheses
of the Lemma and consider a generic Rnk-component t 7→ γ̃i(t) + scη̃i(t) (the case with − is
analogous). The set I ′ = {t ∈ I | η̃i(t) ≥ 0} is compact because it is closed and contained in
a compact set. The s-parametrized sequence of continuous functions, {γ̃i + scη̃i}s∈[0,1], mono-
tonically converges to the continuous function γ̃i on I ′ as s → 0+ and thus converges therein
uniformly by Fubini’s theorem. With the same procedure we can prove that the convergence is
uniform on I ′′ = {t ∈ I | η̃i(t) ≤ 0} and hence it is uniformly on I = I ′∪ I ′′. Since the proof can
be given for each component of the curve, we get that ||(γ̃(t) + scη̃(t))− γ̃(t)|| → 0 uniformly in
t ∈ I as sc → 0+. In particular ||(γ̃(t) + scη̃(t)) − γ̃(t)|| < m for all t ∈ [a, b], if sc < δ. Define
C := δ/2. If 0 < c < C, sc < δ for s ∈ [0, 1] and ||(γ̃(t) + scη̃(t))− γ̃(t)|| < m uniformly in t and
thus γ̃(t) + scη̃(t) ∈ Ω for all s ∈ [0, 1] and t ∈ I.
Taking C smaller if necessary, by means of a similar procedure we prove that, γ̃(t)− scη̃(t) ∈ D
for all s ∈ [0, 1] and t ∈ I, if 0 < c < C.
The last statement can be established as follows. Let γ1 ∈ D \{γ}. Such a curve exists with the
form γ1(t) = scη(t), with 0 < c < C due to the previous part of the proposition. By construction
||γ − γ1|| < r0 for some r0 > 0. Since 0 < sc < C for every s ∈ (0, 1), the curve scη belongs to
B∗sr0(γ). In other words B∗r (γ) is not empty for every r ∈ (0, r0). 2

Exercises 6.31. .
1. With the same hypotheses of Lemma 6.30, drop the condition γ(a) = p (or γ(b) = q, or

both conditions or other similar conditions for derivatives) in the definition of D and prove the
existence of variations V± in this case, too.
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We recall that, if G ⊂ Rn and F : G → R is any sufficiently regular function, x0 ∈ Int(G) is
said to be a stationary point of F if dF |x0 = 0. Such a condition can be re-written as

dF (x0 + su)

ds
|s=0 = 0 ,

for all u ∈ Rn. In particular, if F attains a local extreme value in x0 (i.e. there is a open
neighborhood of x0, U0 ⊂ G, such that either F (x0) > F (x) for all x ∈ U0\{x0} or F (x0) < F (x)
for all x ∈ U \ {x0}), x0 turns out to be a stationary point of F .
The definition of stationary point can be generalized as follows. Consider a functional on G ⊂
{γ : I → U | γ ∈ Ck(I)}, i.e. a mapping F : G→ R. We say that γ0 is a stationary point of
F , if the variation of F ,

δV F |γ0 :=
dF [Vs]

ds
|s=0

exists and vanishes for all variations of γ0, V .

Remark 6.32. There are different definition of δV F related to the so-called Fréchet and
Gateaux notions of derivatives of functionals. Here we adopt a third definition useful in our
context. �

6.5.2 Euler-Poisson equations

For suitable spaces G and functionals F : G→ R, defining an appropriate topology on G itself,
it is possible to show that if F attains a local extremum in γ0 ⊂ G, then γ0 must be a stationary
point of F . We state a precise result after specializing the functional F .
We henceforth work with domains G of the form D defined in Lemma 6.30 and we focus attention
on this kind of functionals,

F [γ] :=

∫
I

F

Ç
t, γ(t),

dγ

dt
, · · · , d

kγ

dtk

å
dt , (6.20)

where k is the same as that used in the Definition of D and F ∈ Ck(I × Ω×A), A ⊂ Rn being
an open set where the vectors dkγ/dtk take their values. Making use of Lemma 6.30, we can
prove a second important lemma.

Lemma 6.33. If F : D → R is the functional in (6.20) with D defined in Lemma 3.1, δV F |γ0

exists for every γ0 ∈ D and every variation of γ0, V and

δV F |γ0 =
n∑
i=1

∫
I

∂V i

∂s

∣∣∣∣
s=0

[
∂F

∂γi
+

k∑
r=1

(−1)r
dr

dtr

(
∂F

∂ d
rγi

dtr

)]∣∣∣∣∣
γ0

dt .
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Proof. From known properties of Lebesgue’s measure based on Lebesgue’s dominate conver-
gence theorem (notice that [0, 1] × I is compact an all the considered functions are continuous
therein), we can pass the s-derivative operator under the sign of integration obtaining

δV F |γ0 =
n∑
i=1

∫ b

a

(
∂V i

∂s

∣∣∣∣
s=0

∂F

∂γi
+

k∑
r=1

∂r+1V i

∂tr∂s

∣∣∣∣
s=0

∂F

∂ d
rγi

dtr

)
dt .

We have interchanged the derivative in s and r derivatives in t in the first factor after the second
summation symbol, it being possible by Schwarz’ theorem in our hypotheses. The following
identity holds ∫

I

∂r+1V i

∂tr∂s

∂F

∂ d
rγi

dtr

dt =

∫
I

(−1)r
∂V i

∂s

dr

dtr

(
∂F

∂ d
rγi

dtr

)
dt .

This can be obtained by using integration by parts and dropping boundary terms in a and b
which vanish because they contains factors

∂l+1V i

∂lt∂s
|t=a or b

with l = 0, 1, . . . , k− 1. These factors must vanish in view of the boundary conditions on curves
in D:

γ(a) = p and γ(b) = q ,

drtγ

drt
|a = Pr

and
drγ

drt
|b = Qr

for r = 1, . . . , k − 1 which imply that the variations of any γ0 ∈ D with their t-derivatives in a
and b up to the order k − 1 vanish in a and b whatever s ∈ [0, 1]. Then the formula in thesis
follows trivially. 2

A third and last lemma is in order.

Lemma 6.34. Suppose that f : [a, b] → Rn, with components f i : [a, b] → R, i = 1, . . . , n, is
continuous. If ∫ b

a

n∑
i=1

hi(x)f i(x)dx = 0

for every C∞ function h : R→ Rn whose components hi have supports contained in in (a, b),
then f(x) = 0 for all x ∈ [a, b].

Proof. If x0 ∈ (a, b) is such that f(x0) > 0 (the case < 0 is analogous), there is an integer
j ∈ {1, . . . , n} and an open neighborhood of x0, U ⊂ (a, b), where f j(x) > 0. Exploiting the
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elementary mathematical technology introduced in Section 2.3, take a function g ∈ C∞(R) with
supp g ⊂ U , g(x) ≥ 0 therein and g(x0) = 1, so that, in particular, f j(x0)g(x0) > 0. Shrinking
U , one finds another open neighborhood of x0, U ′ whose closure is compact and U ′ ⊂ U and
g(x)f j(x) > 0 on U ′. As a consequence minU ′g · f j = m > 0.
Below, χA denotes the characteristic function of a set A and h : (a, b)→ Rn is defined as hj = g
and hi = 0 if i 6= j. We have

0 =

∫ b

a

n∑
i=1

hi(x)f i(x)dx =

∫
U

g(x)f j(x)dx =

∫ b

a

χU (x)g(x)f j(x)dx

because the integrand vanish outside U . On the other hand, as U ′ ⊂ U and g(x)f(x) ≥ 0 in U ,

χU (x)g(x)f j(x) ≥ χU ′(x)g(x)f j(x)

and thus

0 =

∫ b

a

n∑
i=1

hi(x)f i(x)dx ≥
∫
U ′
g(x)f j(x)dx ≥ m

∫
U ′
dx > 0

because m > 0 and
∫
U ′ dx ≥

∫
U ′ dx > 0 since non-empty open sets have strictly positive Lebesgue

measure.
The found result is not possible. So f(x) = 0 in (a, b) and, by continuity, f(a) = f(b) = 0. 2

We conclude the general theory with two theorems.

Theorem 6.35. Let Ω ⊂ (Rn)k be an open non-empty connected set, I = [a, b] with a < b.
Fix (p, P1, . . . , Pk−1) and (q,Q1, . . . , Qk−1) in Ω. Let D denote the space of elements of the set
{γ : I → Rn | γ ∈ C2k(I)} such that

(1)
Ä
γ(t), d

1γ
d1t
, . . . , d

k−1γ
dk−1t

ä
∈ Ω for all t ∈ [a, b],

(2)
Ä
γ(a), d

1γ
d1t
|a, . . . , d

k−1γ
dk−1t

|a
ä

= (p, P1, . . . , Pk−1) and
Ä
γ(b), d

1γ
d1t
|b, . . . , d

k−1γ
dk−1t

|b
ä

= (q,Q1, . . . , Qk−1).

Finally define

F [γ] :=

∫
I

F

Ç
t, γ(t),

dγ

dt
, · · · , d

kγ

dtk

å
dt

where F ∈ Ck(I × Ω×A) for some open non-empty set A ⊂ Rn.
With these hypotheses, γ ∈ D is a stationary point of F if and only if it satisfies the Euler-
Poisson equations for i = 1, . . . , n:

∂F

∂γi
+

k∑
r=1

(−1)r
dr

dtr

(
∂F

∂ d
rγi

dtr

)
= 0 .
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Proof. It is clear that if γ ∈ D fulfills Euler-Poisson equations, γ is an extremal point of F
because of Lemma 6.33.
If γ ∈ D is a stationary point, Lemma 6.33 entails that

n∑
i=1

∫
I

∂V i

∂s

∣∣∣∣
s=0

[
∂F

∂γi
+

k∑
r=1

(−1)r
dr

dtr

(
∂F

∂ d
rγi

dtr

)]∣∣∣∣∣
γ0

dt = 0

for all variations V . We want to prove that these identities valid for every variation V of γ imply
that γ satisfies E-P equations. The proof is based on lemma 6.34 with

f i =

[
∂F

∂γi
+

k∑
r=1

(−1)r
dr

dtr

(
∂F

∂ d
rγi

dtr

)]∣∣∣∣∣
γ0

and

hi =
∂V i

∂s

∣∣∣∣
s=0

.

Indeed, the functions hi defined as above range in the space of C∞(R) functions with support
in (a, b) as a consequence of Lemma 6.30 when using variations V i(s, t) = γi0(t) + csηi(t) with
ηi ∈ C∞(R) supported in (a, b). In this case hi = cηi. The condition

n∑
i=1

∫
I

∂V i

∂s

∣∣∣∣
s=0

[
∂F

∂γi
+

k∑
r=1

(−1)r
dr

dtr

(
∂F

∂ d
rγi

dtr

)]∣∣∣∣∣
γ0

dt = 0

becomes

c

∫ b

a

n∑
i=1

hi(x)f i(x)dx = 0

for every choice of functions hi ∈ C∞((a, b)), i = 1, . . . , n and for a corresponding constant
c > 0. Eventually, Lemma 6.30 implies the thesis. 2

Remark 6.36. Notice that, for k = 1, Euler-Poisson equations reduce to the well-known
Euler-Lagrange equations interpreting F as the Lagrangian of a mechanical system. �

Theorem 6.37. With the same hypotheses of theorem 6.35, endow D with the topology
induced by the norm

||γ||k := max

®
sup
I
||γ|| , sup

I

∣∣∣∣∣∣∣∣dγdt
∣∣∣∣∣∣∣∣ , . . . , sup

I

∣∣∣∣∣
∣∣∣∣∣dkγdtk

∣∣∣∣∣
∣∣∣∣∣
´
.

If the functional F : D → R attains an extremal value at γ0 ∈ D, γ0 turns out to be a stationary
point of F and it satisfies Euler-Poisson’s equations.

115



Proof. Suppose γ0 is a local maximum of F (the other case is similar). In that case there is an
open norm ball B ⊂ D centered in γ0, such that, if γ ∈ B \ {γ0}, F (γ) < F (γ0). In particular if
V± = γ ± scη,

F (γ0 ± csη)− F (γ0)

s
< 0

for every choice of η ∈ C∞(R) whose components are compactly supported in (a, b) and s ∈ [0, 1].
c > 0 is a sufficiently small constant. The limit as s→ 0+ exists by Lemma 6.33. Hence

δV±F |γ0 ≤ 0 .

Making explicit the left-hand side by lemma 6.33 one finds

±
n∑
i=1

∫
I

ηi

[
∂F

∂γi
+

k∑
r=1

(−1)r
dr

dtr

(
∂F

∂ d
rγi

dtr

)]∣∣∣∣∣
γ0

dt ≤ 0 ,

and thus
n∑
i=1

∫
I

ηi

[
∂F

∂γi
+

k∑
r=1

(−1)r
dr

dtr

(
∂F

∂ d
rγi

dtr

)]∣∣∣∣∣
γ0

dt = 0 .

Exploiting Lemma 6.34 as in proof of Theorem 6.35, we conclude that γ0 satisfies Euler-Poisson’s
equations. As a consequence of Theorem 6.35, γ0 is a stationary point of F . 2

6.5.3 Geodesics of a metric from a variational point of view

Let us pass to consider geodesics in Riemannian and Lorentzian manifolds. We state and prove
a first theorem valid for properly Riemannian metrics and involves the length functional of a
smooth curve.

Theorem 6.38. Let (M,g) be a Riemannian manifold. Take p, q ∈ M such that there is a
common local chart (U, φ), φ(r) = (x1(r), . . . , xn(r)), with p, q ∈ U , assuming U connected. Fix
[a, b] ⊂ R, a < b and consider the length functional

L[γ] =

∫ b

a

 
gij(γ(t))

dxi(γ(t))

dt

dxj(γ(t))

dt
dt ,

defined on the space S of smooth curves γ : [a, b] → U (U being identified to the open set
φ(U) ⊂ Rn) with γ(a) = p, γ(b) = q and everywhere non-vanishing tangent vector γ′.

(a) If γ0 ∈ S is a stationary point of L, there is a smooth bijection with smooth inverse,
u : [0, L[γ0]]→ [a, b], such that γ ◦u is a geodesic with respect to the Levi-Civita connection
connecting p to q.

(b) If γ0 ∈ S is a geodesic (connecting p to q), γ0 is a stationary point of L.
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Proof. First of all, notice that the domain S of L is not empty (M is connected and thus path
connected by definition) and S belongs to the class of domains D used in Theorem 6.35: now
Ω = φ(U)× (Rn \{0}). L itself is a specialization of the general functional F and the associated
function F is C∞ (indeed the function x 7→

√
x is C∞ in the domain R \ {0}).

(a) By Theorem 6.35, if γ0 ∈ S is a stationary point of F , γ0 satisfies in [a, b]:

d

dt

 gki
dxi

dt»
grs

dxr

dt
dxs

dt

− 1
2
∂gij
∂xk

dxi

dt
dxj

dt»
grs

dxr

dt
dxs

dt

= 0 , (6.21)

where xi(t) := xi(γ0(t)) and the metric glm is evaluated on γ0(t).
Since γ′0(t) 6= 0 and the metric is positive, grs(γ0(t))dx

r

dt
dxs

dt 6= 0 in [a, b] and the function

s(t) :=

∫ s

a

…
grs(γ0(t))

dxr

dt

dxs

dt
dt

takes values in [0, L[γ0]] and, by trivial application of the fundamental theorem of calculus, is
differentiable, injective with inverse differentiable. Let us indicate by u : [0, L[γ0]] → [a, b] the
inverse function of s. By (6.21), the curve s 7→ γ(u(s)) satisfies the equations

d

ds

ñ
gki

dxi

ds

ô
− 1

2

∂gij
∂xk

dxi

ds

dxj

ds
= 0 .

Expanding the derivative we get

d2xi

ds2
gki +

∂gki
∂xj

dxi

ds

dxj

ds
− 1

2

∂gij
∂xk

dxi

dt

dxj

dt
= 0 .

These equations can be re-written as

d2xi

ds2
gki +

1

2

ñ
∂gki
∂xj

dxi

ds

dxj

ds
+
∂gkj
∂xi

dxj

ds

dxi

ds
− ∂gij
∂xk

dxi

ds

dxj

ds

ô
= 0 .

Contracting with grk these equations become

d2xr

ds2
+

1

2
grk
ï
∂gki
∂xj

+
∂gik
∂xj

− ∂gij
∂xk

ò
dxi

ds

dxj

ds
= 0 ,

which can be re-written as the geodesic equations with respect to the Levi-Civita connection:

d2xr

ds2
+ {i r j}

dxi

ds

dxj

ds
= 0 .

(b) A curve from p to q, t 7→ γ(t), can be re-parametrized by its length parameter: s = s(t),
s ∈ [0, L[γ]] where s(t) ∈ [0, L(γ0)] is the length of the curve γ0 evaluated from p to γ(t). In
that case it holds ∫ s

0

 
grl(γ0(t(s)))

dxr

ds

dxl

ds
ds = s
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and thus  
grl(γ0(t(s)))

dxr

ds

dxl

ds
= 1 .

Now suppose that t 7→ γ0(t) is a geodesic. Thus t ∈ [a, b] is an affine parameter: there are
c, d ∈ R with c > 0 such that t = cs+ d. As a consequence 

grl(γ0(t))
dxr

dt

dxl

dt
=

1

c

 
grl(γ0(t(s)))

dxr

ds

dxl

ds
(6.22)

and thus  
grl(γ0(t))

dxr

dt

dxl

dt
=

1

c
. (6.23)

Following the proof of (a) with reversed order, one finds that

d2xr

dt2
+ {i r j}

dxi

dt

dxj

dt
= 0

yields
d

dt

ñ
gki

dxi

dt

ô
− 1

2

∂gij
∂xk

dxi

dt

dxj

dt
= 0 ,

or, since c > 0,

c
d

dt

ñ
gki

dxi

dt

ô
− c1

2

∂gij
∂xk

dxi

dt

dxj

dt
= 0 .

Noticing that c is constant and taking advantage of (6.23), these equations are equivalent to
Euler-Poisson equations

d

dt

 gki
dxi

dt»
grs

dxr

dt
dxs

dt

− 1
2
∂gij
∂xk

dxi

dt
dxj

dt»
grs

dxr

dt
dxs

dt

= 0 ,

and this concludes the proof by Theorem 6.35. 2

We can generalize the theorem to the case of a Lorentzian manifold.

Theorem 6.39. Let (M,g) a Lorentzian manifold. Take p, q ∈ M such that there is a
common local chart (U, φ), φ(r) = (x1(r), . . . , xn(r)), with p, q ∈ U . Fix [a, b] ⊂ R, a < b and
consider the timelike length functional:

LT [γ] =

∫ b

a

 ∣∣∣∣gij(γ(t))
dxi(γ(t))

dt

dxj(γ(t))

dt

∣∣∣∣ dt ,
defined on the space ST of smooth curves γ : [a, b] → U (U being identified to the open set
φ(U) ⊂ Rn) with γ(a) = p, γ(b) = q and γ is timelike, i.e. g(γ′, γ̇) < 0 everywhere.
Suppose that p and q are such that ST 6= ∅.
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(a) If γ0 ∈ ST is a stationary point of LT , there is a differentiable bijection with inverse
differentiable, u : [0, LT [γ0]] → [a, b], such that γ ◦ u is a timelike geodesic with respect to
the Levi-Civita connection connecting p to q.

(a) If γ0 ∈ ST is a timelike geodesic (connecting p to q), γ0 is a stationary point of LT .

Proof. The proof is the same as the one of Theorem 6.38 with the specification that ST , if
non-empty, is a domain of the form D used in Theorem 6.35. In particular the set Ω ⊂ R2n used
in the definition of D is now the open set:

{(x1, . . . , xn, v1, . . . , vn) ∈ R2n | (x1, . . . , xn) ∈ φ(U) , (gφ−1(x1,...,xn))ijv
ivj < 0}

where gij represent the metric in the coordinates associated with φ. 2

Theorem 6.40. Let (M,g) be a Lorentzian manifold. Take p, q ∈ M such that there is a
common local chart (U, φ), φ(r) = (x1(r), . . . , xn(r)), with p, q ∈ U . Fix [a, b] ⊂ R, a < b and
consider the spacelike length functional:

LS [γ] =

∫ b

a

 
gij(γ(t))

dxi(γ(t))

dt

dxj(γ(t))

dt
dt ,

defined on the space SS of smooth curves γ : [a, b] → U (U being identified to the open set
φ(U) ⊂ Rn) with γ(a) = p, γ(b) = q and γ is spacelike, i.e. g(γ′, γ̇) > 0 everywhere.
Suppose that p and q are such that SS 6= ∅.

(a) If γ0 ∈ SS is a stationary point of LS, there is a differentiable bijection with inverse
differentiable, u : [0, LS [γ0]]→ [a, b], such that γ ◦ u is a spacelike geodesic with respect to
the Levi-Civita connection connecting p to q.

(b) If γ0 ∈ SS is a spacelike geodesic (connecting p to q), γ0 is a stationary point of LS.

Proof. Once again the proof is the same as the one of Theorem 6.38 with the specification
that SS , if non-empty, is a domain of the form D used in Theorem 6.35. In particular the set
Ω ⊂ R2n used in the definition of D is now the open set:

{(x1, . . . , xn, v1, . . . , vn) ∈ R2n | (x1, . . . , xn) ∈ φ(U) , (gφ−1(x1,...,xn))ijv
ivj > 0}

where gij represent the metric in the coordinates associated with φ. 2

As a final result, we prove the following theorem which is valid both for Riemannian and
Lorentzian manifolds. More precisely we consider a generic (pseudo) Riemannian case.

Theorem 6.41. Let (M,g) be a (pseudo) Riemannian manifold. Take p, q ∈ M such that
there is a common local chart (U, φ), φ(r) = (x1(r), . . . , xn(r)), with p, q ∈ U , assuming U
connected. Fix [a, b] ⊂ R, a < b and consider the energy functional:

E[γ] =

∫ b

a

gij(γ(s))
dxi(γ(s))

ds

dxj(γ(s))

ds
ds ,
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defined on the space S of smooth curves γ : [a, b] → U (U being identified to the open set
φ(U) ⊂ Rn) with γ(a) = p, γ(b) = q and everywhere non-vanishing tangent vector γ′.
The curve γ0 ∈ S is a stationary point of L if and only if it is a geodesic with respect to the
metric g, and the parameter s is an affine parameter.

Proof. The equations determining the stationary points read

d

ds

ñ
gki

dxi

ds

ô
− 1

2

∂gij
∂xk

dxi

ds

dxj

ds
= 0 .

Expanding the derivative we get

d2xi

ds2
gki +

∂gki
∂xj

dxi

ds

dxj

ds
− 1

2

∂gij
∂xk

dxi

dt

dxj

dt
= 0 .

Dealing with as in the proof of Theorem 6.38, these equations can be proved to be equivalent
to the geodesic equations with respect to the Levi-Civita connection:

d2xr

ds2
+ {i r j}

dxi

ds

dxj

ds
= 0 .

2

Exercises 6.42. Show that the sets Ω used in the proof of Theorem 6.39 and Theorem 6.40
are open in R2n.

(Hint. Prove that, in both cases Ω = f−1(E) where f is some continuous function on some
appropriate space and E is some open set in that space.)

Remark 6.43.
(1) Working in TM , the four theorems proved above can be generalized by dropping the hy-
potheses of the existence of a common local chart (U, φ) containing the differentiable curves.
(2) There is no guarantee of having a geodesic joining any pair of points in a (pseudo) Rie-
mannian manifold. For instance consider the Euclidean space E2 (see example 5.8.1), and take
p, q ∈ E2 with p 6= q. As everybody knows, there is exactly a geodesic segment γ joining p and
q. If r ∈ γ and r 6= p, r 6= q, the space M \ {r} is anyway a Riemannian manifold globally flat.
However, in M there is no geodesic segment joining p and q.
As a general result, it is possible to show that in a (pseudo) Riemannian manifold, if two points
are sufficiently close to each other there is at least one geodesic segments joining the points.
(3) There is no guarantee for having a unique geodesic connecting a pair of points in a (pseudo)
Riemannian manifold if one geodesic at least exists. For instance, on a 2-sphere S4 with the
metric induced by E3, there are infinite many geodesic segments connecting the north pole with
the south pole. �
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Chapter 7

The Exponential Map of Affine and
Metric Connections

We introduce in this chapter an important geometric tool called exponential map which, in its
most elementary version, allows one to identify locally the manifold with the tangent space at p.
It moreover provides a coordinate system such that the connection coefficients vanishes exactly
at p whenever the connection is torsion-free. This mathematical tool is of central relevance
in General Relativity since it permits to state a mathematically rigorous geometric version of
Einstein’s equivalence principle we shall introduce in the next chapter

7.1 Exponential map at a point

Let us start with discussing the exponential map at a point and some associated notions.

7.1.1 The exponential map

Consider a smooth manifold M equipped with an affine connection ∇. We have the first impor-
tant definition.

Definition 7.1. (Exponential map.) Let M be a smooth manifold equipped with the
affine connection ∇ and let denote by γp,v : Ip,v →M the unique (maximal) geodesic with initial
conditions γp,v(0) = p, γ′p,v(0) = v.

(1) If DpE := {v ∈ TpM | Ip,v 3 1}, the map

expp : DpE 3 v 7→ γp,v(1) ∈M (7.1)

is called exponential map at p.

(1) If DE := {(p, v) ∈ TM | v ∈ DpE}, the map

exp : DE 3 (p, v) 7→ γp,v(1) ∈M (7.2)
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is called exponential map on M . �

We pass to prove that DE,DpE 6= ∅ which are also open sets. Furthermore exp and expp are
smooth on the respective domains. Later, we will prove that, if further restrictions are imposed
to the domain DpE, then expp becomes a local diffeomorphism from TpM to M , so that points
around p are smoothly one-to-one with vectors in TpM around the zero vector.
We recall that a set B in an affine space is said to be star-shaped with center q ∈ B, if the
unique segment joining q to every r ∈ B \ {q} is completely contained in B. An open ball in Rn
is a star-shaped set with respect to every point inside it.

Theorem 7.2. Let M be a smooth manifold equipped with the affine connection ∇.

(a) DE is an open nonempty set of TM and exp : DE →M is smooth;

(b) DpE is an open nonempty set of TpM for every p ∈M and exp : DpE →M is smooth.

More precisely,

(c) DE is an open neighborhood of the trivial section M × {0} ⊂ TM ;

(d) DpE is an open neighborhood of 0 ∈ TpM for every p ∈M .

Finally, for every p ∈M ,

(e) v ∈ DpE implies λv ∈ DpM so that DpM is a star-shaped set with center 0 ∈ TpM ;

(f) if v ∈ DpE, then
expp(λv) = γp,v(λ) , for λ ∈ [0, 1], (7.3)

where I 3 λ 7→ γp,v(λ) be the unique (maximal) geodesic with γp,v(0) = p and γ′p,v(0) = v.

Proof. First of all consider the domain flow Φ(Γ) of the smooth vector field Γ on TM defined
in Section 6.4, whose integral curves projected onto M are the (maximal) geodesics of M . This
domain an open subset of TM × R according to Proposition 4.16. If we intersect this set with
TM×{1} we still have an open set1 in TM and the restriction of the flow is still smooth thereon.
Hence its composition with the canonical projection Π : TM → M is still smooth (since Π is
smooth). Since Π(Φ(Γ)) = exp, we have established that DE is an open set of TM and exp is
thereon smooth. When intersecting DE with TpM we still obtain an open set and the restriction
expp of exp thereon remains smooth. We have so far established (a) and (b).
Let us prove (c) and (d). If φ : U 3 q 7→ (x1, . . . , xn) is a local chart on M , consider the
associated natural coordinate patch on TM with coordinates

Tφ : TU 3 (q, v) 7→ (x1, . . . , xn, v1, . . . , vn) ∈ φ(U)× Rn ,
1Make use of (6) in Exercises 2.1, noticing that we are dealing with spaces which (at least locally) are topological

products.
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and recast the system of differential equations defining geodesic curves I 3 t 7→ γ(t) using that
local chart as we did in Section 6.4

dva

dt
= −Γabc(x

1(t), . . . , xn(t))vb(t)vc(t) , (7.4)

dxa

dt
= va(t) . (7.5)

Above I 3 t 7→ (x1(t), . . . , xn(t)) = φ(γ(t)) and γ′(t) = vk(t) ∂
∂xk
|γ(t).

If p ∈ U , v ∈ TpM , and t belongs to some open interval Ip,v 3 0 depending on p and vp, let us
indicate by

γ = γ(p, v, t)

the unique geodesic with initial conditions γ(0) = p and γ′(0) = v. In local coordinates, it
determines a maximal solution in TU of (7.4)-(7.5) with the said initial conditions. Theorem
6.24 and the topology of TM , imply in particular that, if we fix q ∈ U , then there exists an
open set of the form

Vr ×Bδ(0)× (−ε, ε) ⊂ Rn × Rn × R

where

(1) Vr ⊂ φ(U) is an open ball of radius r > 0 centered on φ(q),

(2) Bδ(0) is an open ball of radius δ > 0 centered on the origin,

(3) ε > 0,

such that
(Tφ)−1(Vr ×Bδ(0))× (−ε, ε) 3 (p, v, t) 7→ γ(p, v, t)

is well defined and smooth. We want to prove that it is possible increase ε and decrease δ in
order that the domain of the arising geodesic segments includes t = 1.
The uniqueness theorem entails that, for every λ > 0, the two geodesic segments

(−ε, ε) 3 t 7→ γ(p, λv, t) and (−ε/λ, ε/λ) 3 t 7→ γ(p, v, λt)

coincide, since both pass through p for t = 0 and both have the same initial tangent vector λv
at t = 0. Hence

γ(p, λv, t) = γ(p, v, λt) . (7.6)

We can now fix λ > 0 sufficiently small in order to have ε′ := ε/λ > 1, concluding that, if
(p, u) ∈ (Tφ)−1(Vr ×Bδ′(0)) with δ′ = λδ, the map:

(Tφ)−1(Vr ×Bδ′(0)) 3 (p, v) 7→ γ(p, v, t)

is well-defined for t ∈ (−ε′, ε′) ⊃ (−1, 1). Obviously the function

(Tφ)−1(Vr ×Bδ′(0)) 3 (p, up) 7→ expp(up) = γ(p, up, 1) (7.7)
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is well defined and jointly smooth.
We have in particular established that DE includes open sets of the form (Tφ)−1(Vrq ×Bδ′q(0)),

where Vrq is an open set containing q ∈ M . In particular (Tφ)−1(Vrq × Bδ′q(0)) 3 (q, 0) ∈
TM . Since all that is valid for every q ∈ M , we can assert that the open set DE is an open
neighborhood of the trivial section M×{0} ⊂ TM and evidently DpM is an open neighborhood
of 0 ∈ TpM .
We pass to (e) and (f). If v ∈ DpE, then the domain of γ(p, v, ·), which is of the form (−a, b),
for a, b > 0 possibly infinite, includes 1. As a consequence, the domain of γ(p, λv, ·), which is of
the form (−a/λ, b/λ) still includes 1 if |λ| ≤ 1 so that λv ∈ DpE. We can therefore apply (7.6)
with t = 1 finding

expp(λu) = γ(p, λu, 1) = γ(p, u, λ) ,

which is the thesis. 2

A special case of the theorem above is stated in the following corollary.

Proposition 7.3. A manifold M equipped with an affine connection is geodesically complete
if and only if DE = TM and in that case exp : TM →M is everywhere smooth.

Proof. If M is geodesically complete, then DE = TM evidently. Vice versa, if DE = TM we
conclude that the manifold is complete in view of the identity γp,v(λ) = γp,λv(1), since the right
hand side is defined for every (p, λv) ∈ TM . 2

Remark 7.4. Theorem 7.15 below establishes some other features of Riemannian complete
manifolds. �

We are in a position to state and prove the most important basic result concerning the local
smooth identification of M and TpM .

Theorem 7.5. Let M be a smooth manifold equipped with the affine connection ∇ and p ∈M .
There is a open set B ⊂ DpE – which is an open neighborhood of 0 ∈ TpM – and an open set
Np ⊂M with p ∈ Np such that

expp |B : B → Np

is a diffeomorphism (where B is endowed with the natural smooth structure induced by TpM
viewed as an affine space).

Proof. According to (3) in Theorem 4.5, it is sufficient to prove that d expp |v=0 : T0TpM → TpM
is bijective. Now observe that, if f : N → M is smooth and η : (−α, α) → N is smooth and
satisfies η′(0) = u, then

dfη(0)u =
d

dλ
|λ=0f(η(λ)) .
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Applying this result to the case N = TpM , M = M , f = expp, η(λ) = λu, we have

d expp |0u =
d

dλ
|λ=0 expp(λu) =

d

dλ
|λ=0γ(p, u, λ) = u ,

where we have used (7.3)
expp(λu) = γ(p, u, λ) .

Since d expp |0 = T0TpM ≡ TpM 3 u 7→ u ∈ TpM the proof is over. 2

7.1.2 Normal neighborhoods, geodesic balls, injectivity radius

Another natural mathematical notion we introduce is that of normal neighborhood of a point.
It arises if compining (e) and (f) of Theorem 7.2 with Theorem 7.5.

Definition 7.6. (Normal neighborhoods of a point) Let M be a smooth manifold
equipped with the affine connection ∇ and p ∈ M . A normal neighborhood of p is an open
set of the form expp(B), such that

(a) B ⊂ TpM is an open star-shaped set with center 0 ∈ TpM ;

(b) expp |B is a diffeomorphism.

The point p is called the center of the normal neighborhood. �

Remark 7.7.
(1) As a trivial consequence of the definition, if U = expp(B) is a normal neighboorhood of p and
B′ ⊂ B is another open star-shaped neighborhood with center 0 ∈ TpM , then also U ′ = expp(B

′)
is a normal neighborhood of p.
(2) If p ∈ M and we fix a (positive) scalar product in TpM (even if there is no metric on M ,
but there is a connection), it is evident that the open balls centered on the origin of TpM of
radius sufficiently small give rise to normal neighborhoods of with center p as a trivial conse-
quence of the fact that all metric topologies in finite dimensional vector spaces are equivalent. �

(2) in Remark 7.7 implies the following pair of technically interestig fact.

Proposition 7.8. The class of normal neighborhoods of the points of a smooth manifold
equipped with an affine connection is a basis of the topology.

Proof. The open balls centered on the origin of TpM of radius sufficiently small give rise, under
the action of the local diffeomorphism expp, to normal neighborhoods of with center p. Since it
is valid for every p the assertion is evident. 2

Proposition 7.9. A connected smooth manifold M equipped with an affine connection ∇ is
connected by piecewise geodesic curves. In other words, if p, q ∈ M there is a continuous curve
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γ : [a, b]→ M with γ(a) = p and γ(b) = q and [a, b] = [a1, a2] ∪ [a2, a3] ∪ · · · ∪ [an−1, an], where
a1 = a, an = b and every γ|[ak,ak+1] is a geodesic segment.

Proof. Let A ⊂M the set of points which are connected to a given p ∈M with some piecewise
geodesic path. It is easy to prove that A is open, because if q ∈ A and γ connects p and q,
dealing with a normal neighborhood Nq centered on q, every point q′ ∈ Nq can be connected to
p by adding geodesic segment q to q′. With this procedure one has a piecewise geodesic from
p to q′. With an analogous argument, the set B ⊂ M which are not connected by piecewise
geodesics to p is proved to be open as well. In summary, M = A ∪ B where A and B are open
disjoint sets. Since M is connected, it must be either M = A and B = ∅ or M = B and A = ∅.
The second possibility is not allowed as p ∈ A, hence M = A. 2

To go on, let us specialize the considered manifold to a Riemannian one.

Definition 7.10. (Geodesical ball) If (M,g) is a Riemannian manifold

expp(Br(0)) ⊂M

is called geodesic ball of radius r and center p if

Br(0) :=
{
v ∈ TpM

∣∣∣»gp(v, v) < r
}
, (7.8)

where r > 0. �

If (M,g) is Riemannian, it should be evident, according to (2) in Remark 7.7, that a geodesic
ball centered on p with sufficiently small radius is a normal neighborhood of p. This fact is
embodied in the following definition.

Definition 7.11. (Injectivity radius) If (M,g) is Riemannian and ∇ is the Levi-Civita
connection.

(a) The injectivity radius at p is

Injp(M) := sup
{
r > 0

∣∣ expp(Br(0)) is a normal neighborhood of p
}
.

where definition (7.8)

Br(0) :=
{
v ∈ TpM

∣∣∣»gp(v, v) < r
}

has been adopted.

(b) The injectivity radius of M is

Inj(M) := inf
p∈M

Injp(M) .
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Remark 7.12.
(1) If M is compact and equipped with a smooth (properly) Riemannian metric, then its in-
jectivity radius is strictly positive (see (4) in Exercises 7.38). This property is also shared with
other types of manifolds called of bounded geometry which occupy and intermediate place be-
tween compact Riemannian manifolds and generic Riemannian manifolds.
(2) It turns out that if a Riemannian manifold has strictly positive injectivity radius then it
is complete and thus exp is smooth and everywhere defined on TM (see (5) in Exercises 7.38). �

Normal neighborhoods are star-shaped with respect to geodesics in the sense of the following
important technical theorem.

Theorem 7.13. Let M be a smooth manifold equipped with the affine connection ∇ and
p ∈M . If U = expp(B) 3 p is a normal neighborhood of p and q ∈ U \ {p}, then

(a) there is a geodesic segment γ : [0, 1]→ U with γ(0) = p and γ(1) = q;

(b) the geodesic segment in (a) is unique and γ′(0) = (expp |B)−1(q).

Proof. (a) By definition U = expp(B) for some star-shaped open neighborhood B of center
0 ∈ TpM . If q ∈ U \ {p}, then (expp |B)−1(q) =: v ∈ B and the segment [0, 1] 3 t 7→ tv stays
in B (it being star-shaped) and thus its image through expp is completely included in U by
construction. [0, 1] 3 t 7→ expp(tv) ∈ U is nothing but a geodesic segment joining p (t = 0) and
q (t = 1) by Theorem 7.2.
(b) If η : I → U is a geodesic segment such that η(0) = p and η(1) = q, since 1 ∈ I, by definition,
u := η′(0) ∈ DpE so that (7.3) is valid, we also have

η(t) = expp(tu) for t ∈ [0, 1].

Comparing with the geodesic segments [0, 1] 3 t 7→ expp(tv), with v ∈ B, constructed in (a) we
have in particular expp(1v) = expp(1u) = q. This implies v = u – as well as the uniqueness of
the said geodesic – just by applying (expp |B)−1 to both sides by noticing that also u ∈ B.
(We prove2 that u ∈ B. As B ⊂ TpM is star-shaped with center 0, if u 6∈ B, then there is
t0 ∈ [0, 1] such that tu ∈ B for t < t0 and tu 6∈ B for t > t0, and t0u 6∈ B because B is open
and t0u ∈ ∂B. Then consider a sequence B 3 tnu → t0u. Since η : [0, 1] → U is continuous,
η(tn)→ η(t0) ∈ U . Since η(tn), η(t0) ∈ U = expp |B(B) and expp |B → U is a diffeomorphism,

(expp |B)−1(η(tn))→ (expp |B)−1(η(t0)) ∈ B .

As tnu ∈ B, we find a contradiction

B 63 t0u← tnu = (expp |B)−1(expp(tnu)) = (expp |B)−1(η(tn))→ (expp |B)−1(η(t0)) ∈ B .

2I add this proof because it is a bit more subtle than I expected and I cannot understand the proof of this
point in O’Neill’s book [O’Ne83].
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2

Remark 7.14. We stress that the uniqueness property discussed in the Proposition above is
strictly related to the requirement that the complete segment stays in the normal neighborhood.
The result could be false if dropping this condition. Think of the unit-radius sphere S2 embed-
ded in R3 with the induced metric. The south hemisphere is a normal neighborhhod of the south
pole. If Q stays in the south hemisphere, then there is a unique geodesic joining it with the
south pole and remaining in the south hemisphere. However there is another geodesic connecting
the two points which passes throught the north pole! The injectivity radius of S2 is, in fact, π. �

7.1.3 Hopf-Rinow’s theorem

To conclude, we state without proof [KoNo96, doC92] a fundamental result of Riemannian man-
ifolds theory known as the Hopf-Rinow theorem (there are related but much weaker results in
Lorentzian geometry [BEE96, Min19]).

Theorem 7.15. (Hopf-Rinow’s theorem.) Let (M,g) a Riemannian manifold. The
following facts are equivalent.

(a) The manifold is geodesically complete.

(b) M equipped with the distance dg induced by the metric (5.2) is a complete metric space.

(c) Closed metrically bounded sets are compact.

If the previous properties are valid, then for every pair p, q ∈ M there exist a geodesic segment
γ : [t1, t2]→M such that γ(t1) = p and γ(t2) = q. Furthermore

Lg(γ) = dg(p, q) .

Remark 7.16. The converse of (c) is trivial in every smooth Riemannian manifold: a com-
pact set K is closed because M is Hausdorff. Furthermore since K is compact, it admits a finite
covering made of open metric balls of finite radius and therefore there is a larger ball of finite
radius including all those balls and K as well. �

7.2 Normal coordinates and geodesically convex sets

This section is devoted to introduce a type of local charts which has many applications in pure
and applied mathematics especially to physics. We only present the basic construction. A more
detailed discussion can be found in [O’Ne83, KoNo96].
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7.2.1 Normal coordinates around a point

Consider a smooth manifold M equipped with an affine connection ∇. If Np is a normal neigh-
borhood of p ∈M , we can naturally define a local chart simply choosing a basis of TpM .

Definition 7.17. (Normal coordinates around a point.) Let M be a smooth manifold
endowed with an affine conection ∇ and p ∈ M . A local chart (U, φ) is called a system of
normal coordinates centered on p if

(a) U is a normal neighborhood of p;

(a) φ : U 3 q 7→ (x1, . . . , xn) ∈ Rn such that q = expp
(
xkek

)
, where {ek}k=1,...,n ∈ TpM is a

fixed vector basis. �

It is clear that the coordinates are well defined since expp |B : B → U , where B = φ(U) is the
star-shaped open set centered on 0 ∈ TM that defines the normal neighborhood U of p, is a
diffeomorphism by hypothesis. A more explicit expression for φ is

φ : U 3 q 7→
(
〈(expp |B)−1(q), e∗1〉, · · · , 〈(expp |B)−1(q), e∗1〉

)
∈ B .

Normal coordinates enjoy very nice properties.

Proposition 7.18. Let M be a smooth manifold equipped with a smooth affine connection ∇
which is torsion-free, the Levi-Civita connection in particular if (M,g) is (pseudo) Riemannian.
The following facts hold for every system of normal coordinates (U, φ) centered on p ∈M .

(a) If Γabc are the connection coefficients of ∇ in the said coordinates, then

Γabc(p) = 0 for a, b, c = 1, 2, . . .dim(M),

(b) If ∇ is the Levi-Civita connection of (M,g) and gab are the components of the metric in
the said coordinates, then

∂gab
∂xc
|φ(p) = 0 for a, b, c = 1, 2, . . . ,dim(M).

(c) If γ : [0, 1] 3 t 7→ U is the unique geodesic segment joining p at t = 0 with q at t = 1, then

φ(γ(t)) = (tx1(q), . . . , txn(q)) for every t ∈ [0, 1] (7.9)

Proof. (c) Since geodesics starting from p are described by γ : I 3 t 7→ expp(tx
kek), where

xkek ∈ B, in the considered coordinates, such a geodesic has equation xi(t) = txi, where
x1, . . . , xn are the normal coordinates of the point reached by the said geodesic when t = 1.
This identity proves (c).
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(a) In view of of the coordinate expression found above of the geodesics emanated form p, we

have d2xi

dt2
= 0. On the other hand, it must also hold

d2xi

dt2
+ Γijk(γ(t))

dxj

dt

dxk

dt
= 0 .

As a consequence, for every t ∈ [0, 1]:

Γijk(γ(t))
dxj

dt

dxk

dt
= 0 .

In particular, for t = 0,

Γijk(p)x
jxk = 0 , for all (x1, . . . , xn) in a neighborhood of 0 ∈ Rn .

Evidently the statement above is therefore valid for all (x1, . . . , xn) ∈ R. If the connection is
torsion-free, i.e. Γijk = Γikj , the identities above entail that, using xi = ui + zi,

Γijk(p)u
jzk = 0 for all ui, zi ∈ R,

and thus:
Γijk(p) = 0 .

The proof of (b) is an immediate consequence (a) and of the identity ∇g = 0, which, in coordi-
nates reads:

∂gki
∂xj

= Γsjkgsi + Γsjigks . (7.10)

2

7.2.2 The Gauss lemma and local length minimizing/maximizing geodesics

With the help of the notion of normal neighborhoods and normal coordinates it is possible to
prove [KoNo96, O’Ne83, doC92, Pos01, Min19] some remarkable facts regarding local length
minimizing/maximizing properties of geodesics. The crucial technical tool is a theorem known
as the Gauss Lemma.

To state the theorem, observe that in a (pseudo) Riemannian manifold (M,g) every tangent
space TpM viewed as a manifold in its own right admits a flat metric G induced by gp. This is the
metric that is constant in every Cartesian coordinate system on TpM and takes the components of
gp costantly. As a consequence, a normal neighborhood Np = expp(B) centered on p ∈M admits
two natural metrics: one is the restriction to Np of g, the other is the restriction to Np of G,
when taking the identitfication Np = expp(B) into account. By construction gp(u, v) = Gp(u, v),
but

gq(u, v) 6= Gq(u, v)

in general if q ∈ Np \ {p} and u, v ∈ TqM . A remarkable result is that, however, the geodesic
segments exiting from p are the same for g and G as consequence of the discussion around
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definition 7.17. This fact is evident if observing that in normal coordinates centered on p, the
geodesic γ : [0, 1] 3 t 7→ exp(tu) has the form of a Rn segment, i.e., a G-geodesic,

[0, 1] 3 t 7→ (tu1, . . . , tun) ∈ Rn ,

and conversely all such segments are g-geodesics. Relying upon this fact, the following impor-
tant result completes the discussion about the interplay of g and G establishing that actually
gq(u, v) = Gq(u, v) is valid when one of the vectors u, v are suitably chosen.

Theorem 7.19. (Gauss Lemma.) Let (M,g) be a (pseudo) Riemannian manifold and
Np = expp(B), with B ⊂ TpM , a normal neighborhood centered on p ∈M . Consider a geodesic
segment γ : [0, 1]→ γ(t) ∈ B exiting from p and remaining in B, then

gγ(t)(γ
′(t), v) = Gγ(t)(γ

′(t), v) ∀t ∈ [0, 1] , ∀v ∈ Tγ(t)M , (7.11)

where G is the flat metric on Np induced by gp and the identification Np = expp(B), B ⊂ TpM .

Proof. If (M,g) is pseudo Riemannian and (7.11) is valid for geodesic segments such that the
initial tangent vector w satisfies either g(w,w) < 0 or g(w,w) > 0, then it is also valid for
the case g(w,w) = 0 by the joint (t, w) continuity, when representing the relevant geodesics as
γ : [0, 1] → exp(tw) ∈ B. Therefore we shall only consider the case g(w,w) 6= 0 in the rest of
the proof. Furthermore the thesis is trivial when γ is the constant geodesic because γ′(t) = 0,
so that we shall consider only non-constant geodesics.
Let us define an initial system of normal coordinates ψ : B 3 w 7→ (x1(w), . . . , xn(w)) ∈ Rn
centered on p ≡ (0, . . . , 0) with gij(p) = ±δij . In a conical neighborhood of a fixed geodesic
γ : [0, 1] → exp(tu) ∈ B, we can now define a new coordinate system as follows. First observe
that a (non lightlike and non-constant) geodesics exiting from p can be written in the said normal
coordinates

[0, c] 3 r 7→ (rn1, . . . , rnn)

where gij(0, . . . , 0)ninj = ±1 and c > 0. The sign depends on the nature of g and the type of the
initial vector u. Notice that we passed from the parametrization t, i.e., γ : [0, 1]→ exp(tu) ∈ B
to the new affine parametrization r, i.e., γ : [0, cu] → exp(rnu) ∈ B where we use the same
symbol γ for the sake of semplicity. Evidently nu is, up to sign, the unit vector parallel to u
and cu =

√
|gp(u, u)|.

We can next complete the coordinate r with n − 1 coordinates ω1, . . . , ωn−1 defined on the
surface gij(0, . . . , 0)ninj = ±1 in Rn identified with TpM . The sign is again determined by the
nature of g and the type of the initial vector u of the initially fixed geodesic covered by our
coordinate system: all that is done in some conical neighborhood 0 < r < r0, (ω1, . . . , ωn−1) ∈ A
— where A ⊂ Rn−1 is open – of the coordinate representation of u. In summary, the relation
between normal coordinates and the new coordinate system reads

xk = rnk(ω2, . . . , ωn) , (7.12)
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for some smooth functions nk = nk(ω2, . . . , ωn) on A. In the rest of the proof we shall use the
notation

(y1, . . . , yn) = (r, ω2, . . . , ωn)

so that the metric takes the expression

g = hijdy
i ⊗ dyj .

Within this new coordinate system the (portions of) non-constant geodesic segments exiting
from p have the form

(0, c] 3 λ 7→ (λ, ω2, . . . , ωn−1)

for some constants c > 0 and constant values ω1, . . . , ωn ∈ A. From the geodesical equation

d2yk

dλ2
= Γk11(λ, ω2, . . . , ωn−1)

dy1

dλ

dy1

dλ
.

we have
0 = Γk11(λ, ω2, . . . , ωn−1) .

Expanding the right-hand side according to (6.9), we find

0 = 2
∂h11

∂yk
− ∂h1k

∂y1

where both derivatives are computed along the geodesic. Notice that

h11 = g

Å
∂

∂r
,
∂

∂r

ã
=
∂xk

∂r

∂xh

∂r
ghk = nhnkghk = ±1 .

That identity is valid all along the considered geodesic, i.e., varying y1 = r = λ, since nk are
the components of its tangent vectors which is parallely transported. On the other hand, this
identity must be valid also changing the initial vector of the geodesic, i.e., changing the values
ω2, . . . , ωn−1 which are nothing but the coordinates y2, . . . , yn. In summary h11 is constant in
the coordinates y1, . . . , yn so that

0 =
∂h1k

∂y1

along each geodesic exiting from p. In particular

h1k(λ, ω
2, . . . , ωn) = h1k(λ

′, ω2, . . . , ωn) , λ, λ′ > 0 . (7.13)

It is not difficult to prove from (7.12) that

h1k(q) =
∂xa

∂r
|q
∂xb

∂ωk
|qgab(q)→ ±δ1k if q → p
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where p is the center of the initial normal coordinates and the sign may be negative only if
the metric is Lorentzian. In summary, for the geodesic γ : [0, 1] 3 t 7→ exp(tu) ∈ B (re-
parametrization of [0, cu] 3 λ 7→ exp(λnu) ∈ B),

gγ(t)(γ
′(t), v) = hhk(y

1(t), . . . yn(t))uhvk = ±u1v1 , t > 0 .

All the reasoning can be repeated as it stands by keeping the coordinate system in B and using
the metric G in place of g, taking advantage of the fact that the coordinate representation of
the G-geodesics exiting from p is identical to the coordinate representation of the g-geodesics
exiting from p. We therefore have

Gγ(t)(γ
′(t), v) = Hhk(y

1(t), . . . yn(t))uhvk = ±u1v1 , t > 0 .

Comparing the two obtained identities, we have

gγ(t)(γ
′(t), v) = Gγ(t)(γ

′(t), v) , ∀v ∈ Tγ(t)M ,

for t > 0. Continuity implies that the identity is valid also for t = 0. 2

Remark 7.20. The Gauss lemma is very often stated as follows3. Take q ∈ Np \ {p} and
define u := (exp |B)−1(q). Viewing u, v ∈ B as vectors in Tu(TpM), so that both

(d expp)uu ∈ TqM and (d expp)uv ∈ TqM ,

we have
gexpp u

(
(d expp)uu, (d expp)uv

)
= gp(u, v) . (7.14)

�

We are now in a position to state and prove our first result about local minimization of
length of curves by geodesical segments.

Proposition 7.21. Consider a Riemannian manifold (M,g) and a normal neighborhood
Np = expp(B) of p ∈ M . If q ∈ Np \ {p} and γ : [0, 1] → Np is the unique geodesic segment
joining the centre p with q remaining in Np, then Lg(γ) minimize the length of the piecewise
smooth curves joining p and q remaining in Np.

Proof. Some preparatory tools are necessary specializing to the Riemannian case the coordinate
system already exploited in the proof of the Gauss lemma. Consider a normal coordinate system
centered on p φ : Np → (x1, . . . , xn) ∈ Rn centered on p where Np = expp(B). Assume that
(gp)ab = δab are the components of the metric at p in the said coordinate system and define the
radial function

r(q) := (expp |B)−1(q) =

Ã
n∑
k=1

xk(q)2 , q ∈ Np .

3I find this formulation a little too obscure.
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This function is smooth on Np but the origin of the coordinates 0 = φ(p) where r is however
continuous and the derivatives ∂r

∂xk
are bounded in a neighborhood of 0. If γ : [0, 1]→ Np is the

unique geodesic from p to q, as a consequence of the preservation of the length of the tangent
vector along a metric geodesic we find

Lg(γ) =

∫ 1

0

»
|g(γ′(t), γ′(t))|dt =

∫ 1

0

»
|g(γ′(0), γ′(0))|dt =

∫ 1

0

r(q)dt = r(q) ,

where we have used the expression γ(t)k = txk(q) (7.9) in normal coordinates. The function
r satisfies a non-trivial fact stated in the following lemma which is consequence of the Gauss
lemma.

Lemma 7.22. If r is defined as above and referring to the used normal coordinates centered
on p,

ghkq
∂r

∂xk
|φ(q) =

xh(q)

r(q)
. (7.15)

Proof. First of all observe that, if using normal coordinates φ : Np 3 r 7→ (x1(r), . . . , xn(r)) ∈ B
centered on p (and we also assume that (gp)ab = δab as said for simplicity), the exponential
map acts as the identity map in coordinates. Complete the coordinate r :=

√∑n
i=1(xi)2 with

coordinates ω2, . . . , ωn in a neighborhood of the fixed vector w ∈ TpM corresponding to the fixed
q ∈M through expp |B in order to have a local chart in TpM around w. The added coordinates
are assumed to be coordinates on the embedded manifolds Sr := {u ∈ TpM |

∑n
i=1(xi)2 = r2}.

In particular, ≠
∂

∂r
, dr

∑
= 1 ,

≠
∂

∂ωk
, dr

∑
= 0 k = 2, . . . , n . (7.16)

Observe that
∂

∂r
=
∂xi

∂r

∂

∂xi
=
xk

r

∂

∂xk

satisfies

gp

Å
∂

∂ωi
,
∂

∂r

ã
= 0 , i = 2, . . . , n . (7.17)

All this structure in TpM can be exported in Np around q through the expp its pushforward and
the pullback of the inverse map. Preserving the names of the coordinates, (7.16) still holds in
Np around q by construction.≠

∂

∂r
|q, dr|q

∑
= 1 ,

≠
∂

∂ωk
|q, dr|q

∑
= 0 k = 2, . . . , n (7.18)

Regarding (7.17), Theorem 7.19 immediately implies that

gq

Å
∂

∂ωi
|q,

∂

∂r
|q
ã

= 0 , i = 2, . . . , n . (7.19)
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Notice that now gq appears in place of gp. We can decompose the functional

gq

Å
·, ∂
∂r
|q
ã
∈ T ∗qM

along the basis dr|q, dωk|q. Taking (7.18) and (7.19) into account, the only possibility is

gq

Å
·, ∂
∂r
|q
ã

= cdr|q ,

for some c ∈ R. On the other hand,

1 = gq

Å
∂

∂r
|q,

∂

∂r
|q
ã

= c

≠
∂

∂r
|q, dr|q

∑
= c1

where, in the right hand side, we used the fact that

gp

Å
∂

∂r
,
∂

∂r

ã
= 1

in TpM , as one proves by direct inspection, and next observe that (see also (7.21) below) ∂
∂r |q is

the parallel transport of the vector ∂
∂r |p from p to q along the unique geodesic segment joining

p and q in Np, hence its length is preserved as due to Proposition 6.21. In summary c = 1, so
that

gq

Å
·, ∂
∂r
|q
ã

= dr|q .

This identity, in normal coordinates reads

(gq)kh
xh(q)

r(q)
=

∂r

∂xk
|φ(q)

and this is an equivalent way to write (7.15). 2

To go on, define the smooth vector field on Np \ {p}

Rq :=
xk(q)

r(q)

∂

∂xk
|q . (7.20)

Finally observe that, if γ : [0, 1]→ Np is the unique geodesic joining p and q, again from (7.9)

g(Rq, Rq) =
xk(q)xh(q)gkh(q)

r(q)2
=

g(γ′(1), γ′(1))

r(q)2
=

g(γ′(0), γ′(0))

r(q)2
= 1 , (7.21)

where we have exploited Proposition 6.21. Consider a smooth curve α : [0, 1]→ Np with α(0) = p
and α(1) = q. Exploiting (7.21), we can orthogonally decompose

α′(t) = g(α′(t), Rα(t))Rα(t) +N(t) ,
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for t > 1, where N(t) is a smooth vector field defined on α which is everywhere ortogonal to
Rα(t). Hence»

|g(α′(t), α′(t))| =
»

g(α′(t), Rα(t))2 + g(N(t), N(t)) ≥ |g(α′(t), Rα(t))| ≥ g(α′(t), Rα(t)) .

Taking advantage of (7.15),

g(α′(t), Rα(t)) = ghkα
′h ∂r

∂xk
=

∂r

∂xk
|φ(α(t))α

′k(t) =
dr(α(t))

dt
.

In summary,

Lg(α) =

∫ 1

0

»
|g(α′(t), α′(t))|dt ≥

∫ 1

0

|g(α′(t), Rα(t))|dt ≥
∫ 1

0

dr(α(t))

dt
dt = r(q) = Lg(γ) .

Concluding the proof for smooth curves. The piecewise smooth case can be worked out decom-
posing the various integrals into a finite sum of smooth pieces. 2

As a consequence, Lg(γ) coincides with d
(Np)
g (p, q) by definition (5.2) where (Np) indicates

that the distance is referred to Np as the manifold where one has to define the used curves. It

is possible to replace d
(Np)
g (p, q) with dg(p, q) if choosing Np as a geodesic ball as we are going

to prove. We remind that geodesical balls of sufficiently small radius are always normal neigh-
borhoods of their centers. In this case, the geodesic segment joining the center of the ball with
a point in the ball is also the unique distance-minimizing geodesic segment in the whole manifold.

Proposition 7.23. Consider a Riemannian manifold (M,g) and a normal neighborhood

N
(r)
p = expp(Br) of p ∈ M made of a geodesic ball of radius r > 0. If q ∈ N

(r)
p \ {p} and

γ : [0, 1] → N
(r)
p is the unique geodesic segment joining the centre p with q remaining in N

(r)
p ,

then the following holds.

(a) Lg(γ) minimizes the length of the piecewise smooth curves joining p and q in the whole
M . In particular

dg(p, q) = L(γ) . (7.22)

(b) The said γ is the unique minimizing geodesic segment joining p and q with domain [0, 1]
in the whole manifold M . In other words, a geodesic segment β : [0, 1]→M joining p and

q(a priori not completely included in N
(r)
p ) satisfies either L(β) > L(γ) or β = γ.

Proof. (a) Consider a piecewise smooth curve α joining p and q that is not completely con-

tained in N
(r)
p . Let rq < r be length of γ. Next consider another geodesical ball N

(r′)
p centered

on p of radius r′ > rq and r′ < r. Let a be the point where α meets for the first time the

boundary of N
(r′)
p . Using Proposition 7.21, the unique geodesic segment joining p and a in

N
(r)
p (parametrized in [0, 1]) has lenght r′. Therefore the portion of α form p to a has already
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length ≥ r′ > rq = L(γ) so that L(α) > L(γ) and the thesis follows. The proof of (b) is

easy. If L(γ) = L(β), then every point on β([0, 1]) belongs to N
(r)
p because the legth ascissa

on β is nothing but the radial coordinate of the corresponding point referred to the center
of the ball p. In this case β is a geodesic segment joining p and q and completely remaining
in a normal neghborhood of p. The uniqueness property of these geodesics implies that γ = β. 2

The existence of a minimizing geodesics in Riemannian manifolds is globally true in complete
manifolds as established by Theorem 7.15, in the sense that every pair of points, also arbitrarily
far, are joined by a geodesic segment whose length coincides with the distance of the points.
Notice that this geodesic segment could be not unique if the one of the two points is not a
normal neighborhood of the other (think of the North and South poles in 2-dimensional sphere
equipped with the standard Riemannian metric). However if a piecewise smooth curve minimizes
the length of the curves joining two points arbitarily far to each other, it must be a geodesic
segment up to reparametrization as established below.

Proposition 7.24. A piecewise smooth curve segment γ : [a, b] → M with γ(a) = p and
γ(b) = q and p, q ∈ M for a Riemannian manifold (M,g) can be reparametrized to a geodesic
segment defined in [0, 1] if it minimized the distance of p and q, i.e., if L(γ) = dg(p, q).

Proof. If a′, b′ ∈ [a, b] with a′ < b′, it must hold L(γ|[a′,b′]) = dg(γ(a′), γ(b′)) otherwise it is easy
to prove that L(γ) > dg(p, q). Choosing a′ and b′ sufficiently close to each other, it turns out
that γ|[a′,b′] is included in a normal neighborhood of γ(a′) and thus it can be reparametrized to
a geodesic segment due to Proposition 7.21. Since γ([a, b]) is compact, we can cover [a, b] with
a finite covering of such intevals [a′, b′]. The uniqueness theorem of the differential equation
defining geodesics easily implies that γ can be globally reparametrized to a geodesic segment.
2

Let us pass to Lorentzian manifolds where we state similar local results [O’Ne83, BEE96,
Min19].

Proposition 7.25. Consider a Lorentzian manifold (M,g) and a normal neighborhood Np

of p ∈ M . If q ∈ Np \ {p} assume that the unique geodesic segment γ : [0, 1] → Np joining the
centre p with q completely contained in Np is timelike. Then L(γ) maximize the length of the
smooth timelike curves α : I → Np joining p and q.
The property is valid also referring to piecewise smooth timelike curves I 3 t 7→ α(t) ∈ Np such
that4 g(α′(t−i ), α′(t+i )) < 0 with obvious notations, for every non-smoothness point ti ∈ I.

Proof. As in the Riemannian case we prove the thesis for smooth curves, the piecewise smooth
case being a trivial generalization after a remark we shall state at the end of the proof.

4If (M,g) is time-oriented according to Def. 8.10, these curves are all future-directed or past-directed as stated
in (2) Remark 8.11.
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Some preparatory tools are necessary. Consider a normal coordinate system centered on p
φ : Np → (x1, . . . , xn) ∈ Rn centered on p where Np = expp(B). Assume that (gp)ab = ηab ≡
diag(−1, 1, . . . , 1) are the components of the metric at p in the said coordinate system and define
the time radial function

r(q) := (expp |B)−1(q) =

Ã
x1(q)2 −

n∑
k=2

xk(q)2 , q ∈ Vp ,

in the open cone Vp around the x1 axis defined by the points with coordinates xk such that the
radicand is positive and known as the light cone at p.
This function is smooth on Np but the boundary ∂Vp where r is however continuous and the
derivatives ∂r

∂xk
are bounded in a neighborhood of 0. If γ : [0, 1] → Np is the unique timelike

geodesic from p to q ∈ Vp, as a consequence of the preservation of the length of the tangent
vector along a metric geodesic we find

Lg(γ) =

∫ 1

0

»
|g(γ′(t), γ′(t))|dt =

∫ 1

0

»
|g(γ′(0), γ′(0))|dt =

∫ 1

0

r(q)dt = r(q) ,

where we have used the expression γ(t)k = txk(q) (7.9) in normal coordinates. We henceforth
assume to arrange the coordinates in order that the ∂

∂x1 -component of γ′(0) is positive. The
function r satisfies Lemma 7.22 as well, with a minus sign.

Lemma 7.26. If r is defined as above and referring to the used normal coordinates centered
on p,

ghkq
∂r

∂xk
|φ(q) = −x

h(q)

r(q)
. (7.23)

Proof. The proof is identical to that of Lemma 7.22, just paying attention to the different
definition of the function r, taking the signs into account. 2

To go on, define the smooth timelike vector field on Np \ {p}

Rq :=
xk(q)

r(q)

∂

∂xk
|q . (7.24)

Finally observe that, if γ : [0, 1] → Np is the unique timelike geodesic joining p and q, again
from (7.9)

g(Rq, Rq) =
xk(q)xh(q)gkh(q)

r(q)2
=

g(γ′(1), γ′(1))

r(q)2
=

g(γ′(0), γ′(0))

r(q)2
= −1 , (7.25)

where we have exploited Proposition 6.21. Consider a smooth timelike curve α : [0, 1] → Np

with α(0) = p and α(1) = q. Using (7.25), we can orthogonally decompose

α′(t) = g(α′(t), Rα(t))Rα(t) +N(t) ,
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for t > 1, where N(t) is a smooth vector field defined on α which is everywhere ortogonal to
Rα(t). Hence»
|g(α′(t), α′(t))| =

»
g(α′(t), Rα(t))2 − g(N(t), N(t)) ≤ |g(α′(t), Rα(t))| = −g(α′(t), Rα(t)) ,

where in the last passage we have used the fact that both α′(t), Rα(t) are timelike so that their
scalar product is negative since it is at p with our choice of the coordinates and it cannot change
later by continuity. Exploiting (7.15),

g(α′(t), Rα(t)) = ghkα
′h ∂r

∂xk
= − ∂r

∂xx
|φ(α(t))α

′k(t) = −dr(α(t))

dt
.

In summary,

Lg(α) =

∫ 1

0

»
|g(α′(t), α′(t))|dt ≤

∫ 1

0

|g(α′(t), Rα(t))|dt =

∫ 1

0

dr(α(t))

dt
dt = r(q) = Lg(γ) .

Concluding the proof for the smooth case. The piecewise smooth case with the further property
g(α′(t−i ), α′(t+i )) < 0 can be proved analogously by decomposing the integral above into a sum of
integrals over the smoothness subintervals. The only crucial fact is to assure |g(α′(t), Rα(t))| =
−g(α′(t), Rα(t)) on every subsegment. The first subinterval satisfies this requirement by con-

struction, the remaining ones do as well because, using an inductive proof, g(α′(t+i+1), Rα(ti)) < 0

arises form g(α′(t−i ), Rα(ti)) < 0 and g(α′(t−i ), α′(t+i )) < 0 by direct inspection (see Proposition
8.7). 2

We have a final result which established that, analogously to the Riemannian case, the timelike
geodesic segments are the unique type of smooth curves that may maximize the length. Notice
that there is no guarantee that these maximal curves exist. They exist under suitable hypotheses
on the Lorentzian manifold [BEE96, Min19].

Proposition 7.27. Consider, in the Lorentzian manifold (M,g), a timelike piecewise smooth
curve

γ : [a, b]→M

such that γ(a) = p and γ(b) = q. If γ maximize the length of all the piecewise smooth curves
joining p and q I 3 t 7→ α(t) ∈ Np such that g(α′(t−i ), α′(t+i )) < 0 for every non-smoothness
point ti ∈ I, then γ can be re-parametrized to the unique geodesic segment defined on [0, 1] that
joins p and q.

Proof. If a′, b′ ∈ [a, b] with a′ < b′, then L(γ|[a′,b′]) maximize the length of the timelike piecewise
smooth cirves joining γ(a′) and γ(b′), otherwise it is easy to prove that L(γ) has not the extremal
property assumed in the hypotheses. Choosing a′ and b′ sufficiently close to each other, it turns
out that γ|[a′,b′] is included in a normal neighborhood of γ(a′) and thus it can be reparametrized
to a geodesic segment due two Proposition 7.25. Since γ([a, b]) is compact, we can cover [a, b]
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with a finite covering of such intevals [a′, b′]. The uniqueness theorem of the differential equation
defining geodesics easily implies that γ can be globally reparametrized to a timelike geodesic
segment. 2

7.2.3 Riemannian normal coordinates adapted to a geodesic.

Let us pass to consider a more complicated construction concerning normal coordinates around a
given geodesic. In this case, we focus attention on the case where∇ is the Levi-Civita connection.

Let (M,g) be a (pseudo) Riemannian manifold. Let γ : I →M be a non-constant geodesic. In
case g is pseudo Riemannian, we assume that g(γ′, γ′) 6= 0. The local chart around γ(t0) for
some t0 ∈ I and adapted to γ is constructed with the following steps.

(1) Fix a basis {ei}i=2,...,n of the subspace Nγ(t0)γ of Tγ(t0)M normal to γ′(t0).

(2) Parallely transport that basis along γ. Due to Proposition 6.21, the transported vectors
define a basis {ei(t)}i=2,...,n for the subspace Nγ(t)γ of Tγ(t)M normal to γ′(t).

(3) Consider the map

E : U 3 (t, v2, . . . , vn) 7→ expγ(t)

(
n∑
i=2

viei(t)

)
, (7.26)

where U ⊂ I ×Rn−1 is an open set. We know that U exists as a consequence of Theorem
7.2 using also the fact that the maps I 3 t 7→ (γ(t), ei(t)) ∈ TM are continuous.

Remark 7.28. The geometric meaning of (7.26) should be clear: the map associates the
coordinates (t, v2, . . . , vn) to the point in M reached by the geodesic which starts from γ(t) with
initial vector

∑n
i=2 v

iei(t) normal to γ′(t), when the affine parameter of that new geodesic takes
the value 1. �

We have the following technically remarkable result.

Proposition 7.29. Let (M,g) be a (pseudo) Riemannian manifold and γ : I →M a geodesic
with g(γ′, γ′) 6= 0, define the map E as in (7.26) and fix τ ∈ I. The following facts are true.

(a) There is ε > 0 and an open set D ⊂ Rn−1 including 0 ∈ Rn−1 such that E|(τ−ε,τ+ε)×D
defines a diffeomorphism onto its image V ⊂M and thus if ψ := E|−1

(τ−ε,τ+ε)×D,

ψ : V 3 q 7→ (y1, . . . , yn) ∈ (τ − ε, τ + ε)×D

is a local chart around a portion of γ containing γ(τ).
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γ(τ)

γ(t)

e2

e1

e2(t)

e1(t)

q(t, v2, . . . , vn)

γ

Figure 7.1: Normal coordinates around γ

(b) The connection coefficients Γabc and the components of the metric gab in the said coordinate
system satisfy

Γabc(γ(t)) = 0 ,
∂gab
∂yc
|γ(t) = 0 if a, b, c = 1, . . . , n and t ∈ (τ − ε, τ + ε). (7.27)

Proof. Consider an auxiliary system of normal coordinates x1, . . . , xn centered on the initial
point p = γ(τ) associated to the initial basis {γ′(τ)} ∪ {ei(τ)}i=2,...,n of Tγ(τ)M . In that case,
exactly at t = τ ,

∂

∂x1
|p = γ′(τ) and

∂

∂xi
|p = ei(τ) for i = 2, . . . , n.

Using those coordinates to represent the image of the map E: Ek = Ek(t, v1, . . . , vn), we find

∂

∂t

∣∣∣∣
γ(τ)

(
expγ(t)

(
n∑
i=2

viei(t)

))k
=

∂

∂t

∣∣∣∣
t=τ

Ä
expγ(t) (0)

äk
+

n∑
i=2

vigk(τ, v2, . . . , vn)

∣∣∣∣∣
(v2,...,vn)=(0,...,0)

,

where the functions gk are smooth. Since expγ(t) (0) = γ(t), we conclude that:

∂

∂t

∣∣∣∣
γ(τ)

(
expγ(t)

(
n∑
i=2

viei(t)

))k
=

∂

∂t

∣∣∣∣
t=τ

γk(t) + 0 = γ′k(τ) =

Ç
∂

∂x1

∣∣∣∣
γ(τ)

åk
= δk1 ,

For j = 2, . . . , n, it also arises (there is no sum over j in the second exponential)

∂

∂vj

∣∣∣∣
γ(τ)

(
expγ(t)

(
n∑
i=2

viei(t)

))k
=

∂

∂vj

∣∣∣∣
(v2,...,vn)=(0,...,0)

Ä
expγ(τ)

(
vjej(τ) + 0

)äk
= (ej(τ))k = δkj .
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Therefore the rank of the map (7.26) at γ(τ) is n since using the said normal coordinates we
have found that

∂Ek

∂t
|γ(τ) = δk1 ,

∂Ek

∂vj
|γ(τ) = δkj for k = 1, . . . , n and j = 2, . . . , n

are the components of a n × n matrix with determinant 1. The map E defines a local dif-
feomorphism around the coordinate representation of γ(τ) from an open set we can always
assume to be of the form (τ − ε, τ + ε) × D to U ⊂ M and thus there is a local chart
ψ : U 3 q 7→ ψ(U) = (τ − ε, τ + ε)×D. This concludes the proof of (a).
The proof of (b) is analogous to that of Proposition 7.18. Let us idicate by y1, . . . , yn the local
coordinates defined above where y1 = 1 and yk = vk for k > 1.

(i) In coordinates y1, . . . , yn, the geodesics starting from γ(t) with initial tangent vector∑n
i=2 v

i ∂
∂yk
|α(t) have equation y1(λ) = t (constant!) and yj(λ) = λvj for j = 2, . . . , n.

Inserting in
d2yk

dλ2
+ Γkij

dyi

dλ

dyj

dλ
= 0

and considering the result for λ = 0 we find Γkij(γ(t))vivj = 0 if i, j = 2, . . . , n, which

imply Γkij(γ(t)) = 0 if i, j = 2, . . . , n for the arbitrariness of vk.

(ii) The vectors ∂
∂yj

with j = 2, . . . , n satisfy the equation of parallel transport with respect

to γ, that is with respect to ∂
∂y1 . In coordinates y1, . . . , yn, this equation reads

d

dt
δkj + δi1Γkir(γ(t))δrj = 0 ,

this entails Γk1j(γ(t)) = Γkj1(γ(t)) = 0 for j = 2, . . . , n.

(iii) Since γ is a geodesic, in coordinates y1, . . . , yn, the curve

y1 = t , yj = 0 if j = 2, . . . , n

satisfies the geodesic equation.

d2

dt2
δi1 + Γijk(γ(t))δj1δ

k
1 = 0 .

Hence Γk11(γ(t)) = 0.

We ave established that all coefficients Γijk vanish along the considered portion of γ. To conclude,
observe that, since

∂gki
∂yj

= Γsjkgsi + Γsjigks ,

142



then also the derivatives of the components of the metric vanishes along γ. 2

Definition 7.30. Let (M,g) be a (pseudo) Riemannian manifold and γ : I → M a geodesic
with g(γ′, γ′) 6= 0. The local chart defined as in (7.26) around a portion of γ is called (Rie-
mannian) normal coordinate system around γ, or adapted to γ. �

7.2.4 Convex normal neighborhoods and Whitehead’s theorem

Consider a manifold M with an affine connection ∇ (thus in particular a Riemannian or a
Lorentzian manifold). It is possible to make stronger the notion of normal neighborhood as
follows [O’Ne83, KoNo96, Pos01].

Definition 7.31. (Convex normal neighborhoods.) Let M be a smooth manifolds
endowed with an affine connection ∇. A convex normal neighborhood in M is an open set
U that is a normal neighborhood of every p ∈ U . �

The existence of normal convex neighborhoods in (pseudo) Riemannian manifolds and the fact
that they form a basis of the topology is due to Whitehead. The following result is more gener-
ally valid [KoNo96, Pos01] for smooth manifolds equipped with affine connections5.

Theorem 7.32. (Whitehead’s Theorem) Let M be a smooth manifold equipped with an
affine connection ∇ and p ∈ M . Every sufficiently small normal neighborhood C of p is also
convex normal and the class of convex normal neighborhoods is a basis of the topology of M .
More precisely, if (U, φ) is a system of normal coordinates centered on p, then there is a number
δ > 0 such that, if Br(0) ⊂ TpM is an open coordinate ball centered on 0 ∈ TpM with radius
r < δ, then C := expp(Br(0)) is a convex normal neighborhood of p.

Proof. Fix a system of normal coordinates (U, φ) centered on p ∈ M . We have a first lemma
where we use notations as Definition 3.25.

Lemma 7.33. There is a neighborhood W of (p, 0) ∈ DE ⊂ TM of the form

W = (Tφ)−1(φ(V )×B) ,

where V ⊂ U is a smaller neighborhood V 3 p and B ⊂ Rn is an open ball centered on the origin
of Rn such that

[0, 1]×W 3 (t, q, v) 7→ expq(tv) ∈ U ,

so that the both the projection onto M of the domain and the image of that function are simul-
taneously covered by the coordinate system φ.

5The proof in [O’Ne83] seems to me affected by a gap here closed with Lemma 7.33.
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Proof of Lemma 7.33. Consider the map

[0, 1]×DM 3 (t, q, v) 7→ F (t, q, v) := expq(tv) ∈M .

This map is continuous as a consequence of Theorem 7.2 and F (t, p, 0) = p for every t ∈ [0, 1].
Using the fact that [0, 1] is compact, it is easy to prove that we can fix an open neighborhood W
of (p, 0) ∈ DE ⊂ TM such that F (t, q, v) ∈ U if (t, q, v) ∈ [0, 1]×W . Indeed, due to continuity,
for every t ∈ [0, 1] there is an open neighborhood Wt of (t, p, 0) such that F (Wt) ⊂ U . We
can extract a finite subcovering {Wti}i=1,2,...,N of the compact [0, 1]× {p} × {0}. We can define
W := ∩i=1,...,NWti which is open because finite intersection of open sets.
We can finally assume, shrinking W around (p, 0) if necessary, that W ⊂ TU and, taking the
topology of TM into account and using the coordinates of U , Tφ(W ) = φ(V )×B where V ⊂ U
open, V 3 p and B ⊂ Rn is an open ball centered on the origin of Rn. 2

Next we pass to study the map

E : W 3 (p, v) 7→ (p, expp v) ∈ U × U ,

which is well defined in view of the previous lemma by E.

Lemma 7.34. It holds that the differential

dE|(p,0) : T(p,0)(TM)→ TpU × TpU

is bijective. Therefore, according to (3) in Theorem 4.5, there is an open neighborhood W ′ ⊂W
of (p, 0) ∈ TM which is diffeomorphically mapped onto an open neighborhood of (p, p) ∈ U ×U .

Proof of Lemma 7.34. We can compute the rank of E at (p, 0) using the local chart (U, φ).
In those coordinates, the map E is represented by

(x1, . . . , xn, v1, . . . , vn) 7→ (E1, . . . , En, Ẽ1, . . . , Ẽn)

:= (x1, . . . , xn, expp(v
1, . . . , vn)1, . . . , expp(v

1, . . . , vn)n)

where (p, 0) ≡ (0, . . . , 0, 0, . . . , 0). Hence, for h, k = 1, . . . n,

∂Ek

∂xh
|(p,0) = δkh ,

∂Ek

∂vh
|(p,0) = 0 ,

∂Ẽk

∂xh
|(p,0) = fkh (p) ,

∂Ẽk

∂vh
|(p,0) = δkh ,

where we have used the fact that in normal coordinates centered on p,

(expp(v))k = vk .
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The 2n× 2n matrix with the components as above define an injective map as one immediately
proves by direct inspection, concluding the proof. 2

At this point we can assume that E(W ′) = U ′ × U ′ where U ′ ⊂ U is a smaller neighborhood of
p. By definition of the map E, it must be Π(W ′) = U ′. In other words, for every q ∈ U ′

expq(Bq) = U ′ where Bq is an open neighborhood of 0 ∈ TqM .

Bq ⊂ TqM is open because it is the intersection of E−1(U ′ × U ′) ⊂ TM and the fiber TqM and
E−1(U ′ × U ′) is open6.
To conclude it is sufficient to prove that Bq is star-shaped for every q ∈ U ′ since, for the very
definition of normal neighborhood, it means that U ′ is a normal neighborhood of every q ∈ U ′.
Star-shaped mans that E(q, λv) ∈ U ′ if t ∈ [0, 1]. In turn, this is the same as requiring that
every geodesic segment [0, 1] 3 t 7→ expq(tv) is included in U ′ for v ∈ Bq. This fact is established
in the following final lemma.

Lemma 7.35. Choose U ′ := expp(Br(0)) where Bδ(0) ⊂ TpM is a coordinate ball of radius
r > 0 centered on 0 ∈ TpM . There is δ > 0 such that, if r < δ, then expq(tv) ⊂ U ′ for every
q ∈ U ′ and t ∈ [0, 1].

Proof of Lemma 7.35. We can perform all computations in normal coordinates of (U, φ) due
to Lemma 7.33, since [0, 1] ×W 3 (t, q, v) 7→ expq(tv) ∈ U and we are still working inside that
neighborhood W ⊂ TM of (p, 0), because W ⊃ W ′ = E(U ′ × U ′) in our construction. Now we
are free to choose U ′ as in the hypothesis provided r > 0 is sufficiently small since the normal
nighborhoods form a basis of the topology.
In normal coordinates centred on p, U ′ is therefore represented by the ball

Br(0) := {x ∈ R3‖ ||x|| < r}

for some r > 0 and where x = (x1, . . . , xn), the center of the chart coinciding with φ(p).
To go on, assuming that ∇ is torsion-free, consider the quadratic form defined by the coefficients
Gab(q) at each point q ∈ U , where q has coordinates (x1, . . . , xn),

Gab(q) := δab +
∑
c

Γcab(q)x
c .

(Till the end of the proof we will not take advantage of Einstein’s summation convention on
repeated indices.) If the coefficients Γcab are not symmetric, we can replace ∇ with the torsion-
free connection whose coefficients are 1

2(Γcab + Γcba) since it has the same geodesics as ∇. For
q = p, the quadratic form is strictly positive and therefore, since the term added to δab is smooth
and vanishes at the origin, it remains strictly positive provided ||x|| < δ for some δ > 0. Let us
correspondingly fix 0 < r < δ.

6Make use of (6) in Exercises 2.1 locally.
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Consider a geodesic segment γ starting at q ∈ U ′ for t = 0 and reaching q′ ∈ U ′ \ {q′} at t = 1
(i.e., expq(v) = q′). Suppose that it is not completely contained in U ′. Therefore, if denoting
x(t) := φ(γ(t)), so that ||x(0)|| < r and ||x(1)|| < r, the smooth function ||x(t)||2 must reach a
maximum value in t0 ∈ (0, 1) with ||x(t0)|| > r. In particular

d2||x(t)||2

dt2
|t0 ≤ 0 . (7.28)

Let us prove that this is not possible and thus γ([0, 1]) ⊂ U ′ concluding the proof. In fact, from
(7.28) and the geodesic equation,

d2||x(t)||2

dt2
|t0 = 2

∑
i

dxi

dt
|t0
dxi

dt
|t0 + 2

∑
i

xi(t0)
d2xi

dt2
|t0

= 2
∑
i

dxi

dt
|t0
dxi

dt
|t0 − 2

∑
i,c,d

xi(t0)Γicd(x(t0))
dxc

dt
|t0
dxd

dt
|t0 =

∑
cd

Gcd(x(t0))
dxc

dt
|t0
dxd

dt
|t0 > 0 ,

where we have also used the fact that the tangent vector of the geodesic cannot vanish since the
geodesic is non-constant. We have found a contradiction with (7.28). 2

The proof of the theorem ends defining C := U ′. 2

Remark 7.36.
(1) If C is a convex normal neighborhood in M , the following facts are valid directly from the
definition.

(a) If B ⊂ TqM , q ∈ C, is an open star-shaped neighborhood with center the origin, then
D := expq(B) is a automatically a normal neighborhood of q;

(b) there is a unique geodesic segment parametrized in [0, 1] joining q, r ∈ C with q 6= r and
completely included in C;

(c) If C ′ ⊂ C is an open set such that every geodesic segment in C joining some given q ∈ C ′
to every other r ∈ C ′ is completely included in C ′, then C ′ is a normal neighborhood of q.

(2) if (M, g) is Riemannian, Theorem 7.32 immediately implies that every sufficiently small
geodesic ball is convex normal.
(3) Propositions 7.21 and 7.25 are a fortori valid for the length of every geodesic segment, respec-
tively timelike geodesic segment, joining two distinct points in an normal convex neighborhood
and completely included in it. �

7.2.5 Coverings of convex neighborhoods with a nice intersection property

To conclude we state and prove a useful property of the basis of convex normal neighborhoods.
If we consider a pair of convex normal neighborhoods C and C ′ such that C ∩ C ′ 6= ∅ and
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p, q ∈ C ∩C ′, it is not necessarily true that the unique geodesic segment (parametrized in [0, 1])
joining p and q in C coincides with the analogous unique geodesic segment joining p and q in
C ′. However that is evidently true when C ∩C ′ is convex normal as well since, in that case, the
unique geodesic segment joining p and q in C ∩ C ′ is also included in C and in C ′.
A natural issue therefore arises. If M is a smooth manifold equipped with an affine connection
∇, is there an open covering of convex normal neighborhoods C such that, if C,C ′ ∈ C, then
C ∩ C ′ is empty or convex normal?
We actually have a bit stronger result proved in the following proposition7.

Proposition 7.37. Let M be a smooth manifold equipped with an affine connection ∇ and A

a covering of M made of open sets. Then there exists a covering C of M made of convex normal
neighborhoods (with respect to ∇) such that,

(a) if C ∈ C, then C ⊂ UC ∈ A, i.e., C is a refinement of A,

(b) if C,C ′ ∈ C and C ∩ C ′ 6= ∅, then C ∩ C ′ is convex normal.

Proof. Consider the covering C0 made of all convex normal neighborhoods that are subsets
of the elements of A. C0 is well defined as the convex normal neighborhoods form a basis of
the topology. Exploiting theorem 2.28, using the fact that M is Hausdorff and paracompact,
consider a refinement A0 of C0 satisfying, for every V ∈ A0,⋃

{V ′ ∈ A0 | V ′ ∩ V 6= ∅} ⊂ CV

for some CV ∈ C0. The proof concludes by defining C as the family of convex normal neighbor-
hoods subsets of the elements of A0 so that (a) is in particular true by construction. To prove
(b), we start by observing that, if C,C ′ ∈ A0, then C ⊂ V and C ′ ⊂ V ′ for some V, V ′ ∈ A0; if
furthermore C∩C ′ 6= ∅, we conclude that V ∩V ′ 6= ∅ and thus C∪C ′ ⊂ V ∪V ′ ⊂ CV . Property
(b) is now easy using convex normality of CV . First the intersection C ∩ C ′ is open. Next, if
p, q ∈ C∩C ′, then the unique geodesic segment γ : [0, 1]→ CV joining p and q is also completely
included in C ∩C ′ since it must simultaneously stay in C and C ′, they being convex normal as
well. This means that C ∩C ′ = expp(B) for some star-shaped open set B ⊂ Tp(C ∩C ′) centered
on the origin of TpM . 2.

Exercises 7.38.
1. Consider a Rimannian manifold (M, g) and a geodesic ball Dr(p) centered on p with

radius r > 0 whose closure stays in a normal neighborhood Np of p (this is the case in particular
if r < Injp(M)). Prove that r coincides to length of every geodesic segment joining the center
to the boundary and completely included in the geodesic ball. In particular, using Proposition
7.21,

Dr(p) = {q ∈M | d(Np)
g (p, q) < r} . (7.29)

7This proposition is stated in [O’Ne83] as a lemma, but the poof is only sketched concerning a non-trivial use
of the paracompactness property.
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Solution. The boundary of the geodesic ball is one-to-one with the boundary of the cor-
responding metric ball Br(0) ⊂ TpM since expp is a diffeomorphism in an open set including
the closure of the ball. A geodesic segment completely contained geodesic ball and joining the
center p with a point q of the boundary, just in view of the definition of exponential map has the
form [0, 1] 3 t 7→ expp(tv) = γ(t), where q = exp(v) and g(v, v) = r2 since v ∈ ∂Br(0). Hence

L(γ) =

∫ 1

0

»
g(γ′(u), γ′(u))du =

∫ 1

0

»
g(v, v)du =

∫ 1

0

rdu = r .

2. Consider a Riemannian or Lorentzian manifold (M,g) and a convex normal neighborhood
U . Prove that the map called Synge’s world function in General Relativity

U × U 3 (x, y) 7→ σ(x, y) := gx((expx |Bx)−1y, (expx |Bx)−1y)

is well defined, smooth, and

σ(x, y) = gx((expy |By)−1x, (expy |By)−1x) .

Here, if z ∈ U , Bz is the starshaped neighborhood centered on 0 ∈ TzM such that expz(Bz) = U
according to the definition of convex normal neighborhood. Prove that in the Riemannian case

σ(x, y) = d
(U)
g (x, y)2

3. Consider a (pseudo) Riemannian manifold (M,g) and an open neighborhood A ⊂M×M
of the diagonal ∆ := {(x, x) ∈ M ×M | x ∈ M}. Prove that there is an open set A0 ⊂ A with
A0 ⊃ ∆ such that the Synge world function σ : A0 → R is well defined and smooth thereon.

Solution. Since A is open, (x, x) ∈ A, and the products of elements of a topological basis of
M form a topological basis of M ×M , we can always pick out a neighborhood Ox ⊂M of every
x such that Ox×Ox ⊂ A. Therefore A1 :=

⋃
x∈M Ox×Ox ⊂ A is another open neighborhood of

∆ and A := {Ox}x∈M is an open covering of M . Applying proposition 7.37, we can costruct a
covering C of M made of convex normal neighborhoods which are subsets of elements of A and
such that if C,C ′ ∈ C and C ∩ C ′ 6= ∅, then C ∩ C ′ is a convex normal neighborhood. Finally,
define A0 :=

⋃
C∈CC × C. With that definition, A0 ⊂ A and A0 ⊃ ∆ as wanted. To conclude,

suppose that (p, q) ∈ A0. By definition, there must be a convex normal neighborhood C ∈ C

with C 3 p, q. According to exercise 2,

σ(p, q) = gp((expq |Bq)−1p, (expq |Bq)−1p) ,

is a smooth function in C×C. If there is another C ′ ∈ C such that p, q ∈ C ′, the analogous value
σ(p, q) coincides with the one obtained dealing with C. That is because that value is nothing
gq(v, v) of the initial tangent vector v to the unique geodesic segment in C (resp. C ′) from q to
p (parametrized in [0, 1]) and such geodesic segment joining the points in C (resp. C ′) coincides
with the analogous geodesic segment joining the points in C∩C ′ which is is convex normal as well.
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4. With σ(p, q) defined as in exercise 2 and referring to a coordinate system, prove that

∂

∂xkp′
|p′=pσ(p′, q) = −2(gp)klv

l ,

where v = vk ∂
∂xk
|p is the initial tangent vector in TpM of the geodesic segment γ : [0, 1] → U

with γ(0) = p and γ(1) = q. Similarly

∂

∂xkq′
|q′=qσ(p, q′) = 2(gq)klu

l ,

where u = uk ∂
∂xk
|q is the tangent vector at q of the geodesic segment γ : [0, 1]→ U with γ(0) = p

and γ(1) = q.
Finally prove that

∂2σ(p, q)

∂xkp∂x
h
q

|p=q=r = −2(gr)kh .

(Hint. Start with the second question using Lemma 7.22 or Lemma 7.26 as is the case,
observing that σ(p, q) = r2(q).)

5. Taking Theorem 7.32 into account, prove that a compact Riemannian manifold has a
strictly positive injectivity radius.

Solution. If p ∈ M there is Rp > 0 such that a geodesic ball Γrp(p) of radius rp < Rp
centered on p is a convex normal neighborhood of p. For every p ∈ M , fix such a ball of
radius 0 < ρi := (rp/2) − εi for some small εi. Using compactness extract a finite covering
{Γρi(pi)}i=1,...,N from the said covering. Every p ∈M necessarily belongs to some Γρi(pi). Since

Γρi(pi) ⊂ Γrpi (pi) and the latter is normal convex, a geodesic ball of radius ri/2 centered on p
define a normal neighborhood of p from trivial properties of metric balls in Γrpi (pi), if taking
(7.29) into account. Therefore Inj(M) ≥ min{ri/2 | i = 1, 2, . . . , N}.

6. Prove that Inj(M) > 0 for a Riemannian manifold (M, g), then the manifold is geodesi-
cally complete, DE = TM , and thus in particular exp : TM → M is smooth. Conclude that
compact Riemannian manifolds have the features above,

(Hint. Assume that there is a maximal geodesic γ : (a, b)→M with b < +∞. We can always
suppose that the affine parameter is the arch length, so that γ has finite length if evaluated from
every fixed r0 ∈ (a, b) towards b. Consider a normal neighborhood of each element of a sequence
of points γ(sk) with sk → b which are geodesic balls. Prove that the radius of those geodesic
balls must tend to 0 as n→ +∞, implying that Inj(M) = 0 against the hypothesis. The same
argument is valid if a > −∞.)

7. Consider a smooth vector field X on the complete Riemannian manifold (M,g). Prove
that, if

sup
p∈M

gp(X,X) < +∞ ,
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then X is complete as well.
Solution. Let γ : (α, ω)→M be an integral curve of X such that ω < +∞ (the other case is

similar). Take t0 ∈ (α, ω) and consider the continuous map [t0, ω) 3 t 7→ dg(γ(t0), γ(t)) =: f(t),
If this function is bounded we have a contraddiction since Theorem 7.15 proves that the closed
metric balls of finite radius are compact and Proposition 4.19 implies ω = +∞. Since f is
continuous and therefore bounded on each interval [t0, u] with t0 < u < ω, it must exist a
sequence tn → ω such that dg(γ(t0), γ(tn)) → +∞. If s = s(t) is the lenght coordinate on γ
evaluated from some point on the curve, it holds for tn → ω∣∣∣∣∣ dsdt

∣∣∣∣
un

∣∣∣∣∣ =
|s(tn)− s(t0)|

tn − t0
≥ dg(γ(t0), x(t))

tn − t0
→ +∞ ,

where we exploited the Lagrange theorem and the points un stay in [t0, tn]. This is impossible
because due to the very definition of length coordinate,Å

ds

dt

ã2

= gγ(t) (X(γ(t)), X(γ(t)))

is bounded.

8. Extend to piecewise smooth curves the statements of Propositions 7.21 and 7.25.
(Hint. Use the same sketch of proof in every smoothness subinterval and then exploit the

additivity property of the integral.)

9. Consider a Lorentzian manifold (M, g) and a Killing vector K. Prove that if K is light-like,
i.e., g(K,K) = 0 the it is parallely transported with respect to itself: ∇KK = 0.

(Hint. Use the Killing equation in terms of covariant derivative and contract both sides with
K.)

10. Prove Proposition 6.13 using the properties of normal coordinates. Prove more generally
that

∇aKb +∇bKa = LKgab (7.30)

where ∇ is the Levi Civita derivative associated to g.
Solution. Fix a system of normal coordinates centered on p and observe that, exactly at p,

LKg =
∂gabK

b

∂xa
+
∂gbaK

a

∂xb

since ∂gab
∂xc |p = 0 due to (b) in Proposition 7.29. In turn, for the same reason, that identity can

be re-written
LKg = ∇aKb +∇bKa

exactly at p. This identity is now independent from the coordinate system and the point.
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Chapter 8

General Relativity: a Geometric
Presentation

We have eventually accumulated a number of mathematical tools which permit us to formalize
the ideas that stay at the basis of the General Theory of Relativity.

Remark 8.1. We henceforth use the notions, definitions and notations introduced and dis-
cussed in [Mor20] (see also Example 6.29). �

8.1 The spacetime of General Relativity

We start with a mathematical presentation of the notion of spacetime and its physical interpre-
tation which are nothing but a generalization of the analogs in Special Relativity.

In General Relativity, exactly as in Special Relativity, the spacetime (M4,g) is supposed
to be a smooth1 manifold equipped with a smooth Lorentzian metric g. We however generally
consider n-dimensional spacetimes (Mn,g).

Definition 8.2. A n-dimensional spacetime is a n-dimensional Lorentzian manfold (M,g)
(thus connected, Hausdorff, second countable and the signature of g is (−1,+1, · · · ,+1)). �

It should be clear the reason why we assume that the spacetime is connected: no communication
would exist between different connected components, at least with the presently known physical
laws.

Remark 8.3. There exist many hypotheses about the possible discontinuous nature – or in
any case not described by a 4 dimensional Lorentzian manifold – of spacetime at very small
scales: the Planck scales ∼ 10−33 cm and ∼ 10−43s. Some quantum theory of spacetime should

1Actually, everything could be formulated with much less regularity [HaEl75], but we are not interested here
in discussing these issues and we adopt the most comfortable regularity hypotheses.
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pop out there. There are different proposals as the string theory in its different variants, the em
loop quantum gravity and various approaches based on non-commutative geometry. However
recent experimental observations made with the “Fermi Gamma-ray” space telescope, concerning
the so-called γ -bursts, have lowered the threshold for the existence of some quantum gravity
phenomena, such as violation of Lorentz symmetry, well below the Planck scale2. �

8.1.1 Types of vectors and curves in a spacetime

As a general informal principle, the geometric structure an the physical interpretation of what
exists around an event p ∈ Mn are the same as for the corresponding objects in Minkowski
spacetime Mn. We formalize later this idea in a specific principle of General Relativity. For the
moment we make the following assumptions.

Definition 8.4. If (Mn,g) is a spacetime, a vector Xp ∈ TpMn is called

(a) spacelike if g(Xp, Xp) > 0,

(b) timelike if g(Xp, Xp) < 0,

(c) lightlike if g(Xp, Xp) = 0 but Xp 6= 0,

(d) causal if it is timelike or lightlike.

The open light cone at p ∈Mn is

Vp := {Xp ∈ TpMn | g(Xp, Xp) < 0} ⊂ TpMn . (8.1)

With that defintion, the light cone at p is ∂Vp and closed light cone at p is Vp. �

Exactly as in Minkowski spacetime, Vp is the disjoint union of two halves whose closures meet
at 0 ∈ TpM . Fixing a (pseudo) orthonormal basis {ek}k=1,...,n ⊂ TpMn with e1 timelike and the
remaining vectors spacelike, and decomposing TpM

m 3 v = vkek, these two halves are

V (>)
p :=

{
v ∈ TpM

∣∣∣∣∣ n∑
α=2

(vα)2 < (v1)2 , v1 > 0

}

and

V (<)
p :=

{
v ∈ TpM

∣∣∣∣∣ n∑
α=2

(vα)2 < (v1)2 , v1 < 0

}
.

Proposition 8.2 in [Mor20] establishes in particular that this decomposition of Vp does not de-
pend on the used basis. Timelike vectors stay in those halves, whereas lightlike vectors belong to

2A. A. Abdo et al. em A limit on the variation of the speed of light arising from quantum gravity effects.
Nature 462, 331-334 (19 November 2009).
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the light cone at p, and causal vectors, fill the closed light cone at p which also contain 0 ∈ TpMn.

Definition 8.5. If (Mn,g) is a spacetime, a piecewise smooth curve I 3 u 7→ γ(u) ∈Mn is
called

(a) spacelike if γ′(u) is spacelike for all u ∈ I,

(b) timelike if γ′(u) is timelike for allu ∈ I,

(c) lightlike if γ′(u) is light like (hence γ′(u) 6= 0) for all u ∈ I.

The conditions above must be valid for both the tangent vectors at every singular point of the
domain I.

(d) Causal curves are those piecewise smooth curves which are piecewise timelike or lightlike
indifferently. �

Remark 8.6. The above classification is invariant under re-parametrization u = u(s) where
u′(s) 6= 0 everywhere. �

8.1.2 Time orientation of a spacetime

To avoid physical problems with the chronological order of events, it is also assumed that there
exist a time orientation of the spacetime, that is a continuous choice of one of the two halves

V
(>)
p and V

(>)
p of every every Vp. That continuous choice is made by assigning (if possible) a

smooth (continuous would be sufficient) timelike vector T . As a matter of fact, Tp chooses the
half V +

p of Vp defining the local future.

Proposition 8.7. Assume that two smooth timelike vector fields T and T ′ exist on the
spacetime (Mn, g). Then the following facts hold.

(a) g(Tp, T
′
p) < 0 for every p ∈Mn or g(Tp, T

′
p) > 0 for every p ∈Mn.

(b) T and T ′ choose the same half at p ∈Mn if and only if g(Tp, T
′
p) < 0 for every p ∈Mn.

Proof. Suppose that g(Tp, T
′
p) < 0 and g(Tq, T

′
q) > 0. Since Mn is connected then (Proposition

5.4) there is a continuous curve [a, b] 3 u 7→ γ(u) ∈ Mn with γ(a) = p and γ(b) = q. As
the function [a, b] 3 u 7→ g(Tγ(u), T

′
γ(u)) is continuous, it must vanish for some t0 ∈ (a, b), but

this is not possible because either g(Tγ(t0), T
′
γ(t0)) > 0 or g(Tγ(t0), T

′
γ(t0)) < 0 since both vectors

are timelike. (b) can be proved as we did in Proposition 8.2 in [Mor20] or by direct inspection. 2

All that leads to the following definition.

Definition 8.8. (Time orientation.) Consider a spacetime (Mn,g).

(a) (Mn,g) is called time orientable if it admits a smooth timelike vector field T .
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Figure 8.1: The Minkowski - Möbius strip spacetime cannot be time oriented

(b) Two such vector fields T, T ′ are said to define the same time-orientation if

g(Tp, T
′
p) < 0

for every p ∈Mn (i.e., they determine the same half of Vp at every point p ∈Mn).

(c) An orientation on (Mn,g) is a class of equivalence of the above equivalence relation.

(d) An oriented spacetime is a spacetime with a choice of a preferred time orientation.

(e) If (Mn,g) is oriented, V +
p ⊂ Vp is the future open cone defined at p ∈ TMn by the

orientation and V +
p and ∂V +

p are defined accordingly. �

Remark 8.9.
(1) It is not difficult to prove that, since Mn is assumed to be connected, if Mn is orientable,
then it admits exactly two possible time orientations as it happened to M4.
(2) There are spacetimes (Mn,g) which do not admit a time orientation. The basic example is
the Möbius strip ((1) Examples 3.30) obtained by a two-dimensional Minkowski spacetime with
spatial Minkowskian axis along the basis S1 and temporal Minkowskian axis along the fiber R. �

The given definition reflects into a finer classification of vectors and curves.

Definition 8.10. In a time-oriented spacetime (Mn,g),

(a) a non-vanishing causal vector Xp ∈ Vp is said to be future-directed (or future-oreinted)

if Xp ∈ V +
p ;

(b) A piecewise smooth causal curve γ : I → Mn is future-directed (or future-oreinted)

if γ′(u) ∈ V +
p for very t ∈ I, where that condition must be valid in particular for both the

tangent vectors at every singular point of the domain I.
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(c) A (piecewise) smooth future-directd causal curve I 3 u 7→ γ(u) ∈ Mn, where I is an
interval possibly containing one or both its endpoints, is called worldline. �

Remark 8.11.
(1) The above classification of curves is invariant under re-parametrization u = u(s) provided
u′(s) > 0 everywhere.
(2) In a time oriented spacetime (Mn,g), a piecewise smooth timelike curve I 3 t 7→ γ(t) ∈Mn

is future-directed or past-directed if and only if g(γ′(t−i ), γ′(t+i )) < 0 with obvious notations, for
every non-smoothness point ti ∈ I. The proof is trivial by exploiting Proposition 8.7. �

The notions of past-directed (or past-oriented) vector and causal curve are defined similarly.
As in Special Relativity, physically speaking, worldlines describe the histories of physical objects
(material points) evolving in the universe.

Remark 8.12. From now on a spacetime will be always supposed to be time oriented. �

8.1.3 Proper time and rest space associated to observers

We now focus our attention to those worldlines that are timelike and future oriented. We shall
call these worldlines observers from now on, since we want to equip them with some geometric
tools corresponding to physical instruments co-moving with them and useful to explore the
spacetime in an “infinitesimal” region around each event reached by the worldline.

According to the general principle that Special Relativity is assumed to be valid in a neigh-
borhood of an event (and this principle will be clearly stated in the next section in terms of the
so-called Strong Equivalence Principle) we can give the following definitions when dealing with
a timelike worldline I 3 u 7→ γ(u) ∈Mn.

(a) The affine parameter – the length coordinate up to the universal constant c > 0 with the
physical meaning of the speed of light –

τ(u) :=
1

c

∫ u

u0

»
|g(γ′(ξ), γ′(ξ))|dξ , (8.2)

is called proper time of the particle whose history is γ. It describes the temporal coor-
dinate measured with an ideal clock at rest with the particle whose history is γ. When
parametrizing a timelike worldline with the proper time, the tangent vector γ′(τ) will be
denoted by γ̇(τ) and that vector will be called the n-velocity of the material point. It
holds

g(γ̇(τ), γ̇(τ)) = −c2 . (8.3)

(b) The tangent space Tγ(τ)M
n is orthogonally decomposed as

Tγ(u)M
n = dΣγ(τ) ⊕ Span(γ̇(τ)) , (8.4)
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where dΣγ(τ) is a n − 1 subspace of Tγ(τ)M
n equipped with a (positive) scalar product

induced from the Lorentzian metric g. dΣγ(τ) is the rest space of γ at proper time τ . It
represents the “infinitesimal” rest space of a reference frame transported by the material
point whose history is γ.

Exactly as in Special Relativity (see Section 8.2.2 of [Mor20]), if σ = σ(τ) is another causal
wordline crossing γ(τ0), we can define the velocity of σ at τ0 (proper time of γ) with respect
to γ as

vσ,τ,γ :=
δX

δτ
∈ dΣγ(τ) , (8.5)

where
σ′ = δtγ̇(τ) + δX according to (8.4) .

Exactly as in Proposition 8.16 of [Mor20] (using the same proof) the following statement is valid.

Proposition 8.13. In a spacetime (Mn,g), with the given definition (8.5) of the velocity
vσ,τ,γ of σ at τ0 with respect to γ,

||vσ,τ,γ || :=
»

g(vσ,τ,γ ,vσ,τ,γ) ≤ c

where the value c is reached if and only if σ′ is lightlike at the considered event.

As a consequence, also in General Relativity, lightlike worldlines describe histories of material
points travelling at the speed of light for every observer. Furthermore, the speed of light if mea-
sured as in (8.5) is again the maximal admitted speed.

Remark 8.14. It is interesting to note that, in convex normal neighborhoods in Mn, the
geodesics of (Mn,g) maximize the proper time measured between two events they join as a
consequence of Proposition 7.25 and (3) in Remark 7.36. This result appears as a straightforward
physical generalization of (c) in Proposition 8.16 in [Mor20], even if the proof of the latter is
much more elementary than the former. �

8.2 A physical justification of the mathematical formalism

Even if the above picture is a nice generalization of the structure of the Special Theory of Relativ-
ity and a mathematician may be happy just for that, the natural question arising in theoretical
physicist’s mind should be now “Why should we relax the rigid but physically well motivated
affine space structure of Minkowski spacetime into the one of smooth (though Lorentzian) man-
ifold? What do we physically gain from this weaker assumption?”
The first answer to this crucial question is discussed in the next section and it is based on a
deep physical principle discovered by Einstein.
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8.2.1 Einstein’s equivalence principle in Physics

The so-called Equivalence Principle relies upon Einstein’s observation that the gravitational
mass and the inertial mass of every known physical body experimentally coincide.

(1) The gravitational mass is the constant M taking place in Newton’s universal graviation
formula,

~F = −G MM ′

||P −Q||3
(P −Q) ,

where ~F is the gravitational force acting on the body with mass M and due to the body
of mass M ′.

(2) The inertial mass m is instead the other constant, always proper of a given body, that
enters Newton’s second law of classical dynamics

~F (t, P,~v) = m~a .

Above ~a is the acceleration of the considered body, here viewed as a material point P ,
with velocity ~v, everything referred to an inertial reference frame I , when the point is
subjected to the force ~F .

Newton postulated
M = m .

This coincidence of values has been experimentally checked with a very high precision with
several experiments. Celebrated Eötvos’ experiment in 1908 confirmed that identity with a
sensibility of 10−9 exploiting a torsional pendulum. Later, Dicke and co-workes experimentally
confirmed the identity in 1964 with a sensibility of 10−12. In 2017 the satellite MICROSCOPE
confirmed the identity with a sensibility of 10−15. If assuming the coincidence of gravitational
and inertial masses, a crucial physical fact first observed by Einstein pops out, embodied in his
famous Equivalence Principle.

Equivalence Principle. It is always possible to locally cancel the dynamical effect of a gravita-
tional field by means of a suitable choice of the reference frame where one describes the motion
of a material point. Vice versa, it is always possible to locally create the dynamical effect of a
gravitational field by means of a suitable choice of the reference frame where one describes the
motion of a material point.

Remark 8.15. Locally above means in suitable small spatial regions of space and for suitably
short intervals of time. �

Let us enter into the details of this idea sticking to framework of classical physics. Let us
consider a classical gravitational field ~g = ~g(t, P ) described in the rest coordinates of an inertial
reference frame I . The vector field ~g(t, P ) is therefore the gravitational acceleration vector
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field for a material point P in the rest space if I at time t. Let us change the reference frame
passing to the non-inertial one I ′ that is free falling in that gravitational field. This reference
frame is practically constructed first of all staying at rest with a particle O in motion in I with
acceleration

~aO|I (t) = ~g(t, O(t)) .

Secondly, equipping O with a triple of Cartesian axes centered on O(t) which are assumed not to
rotate in I . If the material point P , with inertial mass m and gravitational mass M , is initially
placed at O with some initial velocity, its motion in I is described by Newton’s equation

m~aP |I = M~g(t, P (t)) .

Since the relative motion of I and I ′ is translational, we also have

~aP |I (t) = ~aP |I ′(t) + ~aO|I (t) .

We conclude that the equation of moton of P in I ′ can be re-written

m~aP |I ′(t) = −m~aO|I (t) +M~g(t, P (t)) ,

that is, taking advantage of ~aO|I (t) = ~g(t, O(t)),

m~aP |I ′(t) = −m~g(t, O(t)) +M~g(t, P (t)) .

Eventually, since m = M , we obtain

m~aP |I ′(t) = m (~g(t, P (t))− ~g(t, O(t))) .

We see that, if P is close to the origin O of I ′ – and this is the case for sufficiently small times
since P was intially placed at O – then

~g(t, P (t))− ~g(t, O(t)) ∼ 0

so that ~aP |I ′(t) is arbitrarily small and the motion of P in I ′ turns out to be similar to a
straight inertial motion: as if the point were not subjected to the gravitational field.
Conversely, in the absence of gravitational fields, we can however simulate the dynamical effect
of a gravitational field by describing the motion of a given point P in a non-inertial reference
frame I ′, which is suitably accelerated with respect to an inertial reference frame I . Indeed,
with the same definition of O at rest with I ′ and the non-rotating Cartesian axes centered on
O, suppose that the acceleration ~aO|I is given. The equation of motion of the material point
P in absence of forces is, in the inertial reference frame I ,

m~aP |I = ~0 ,

Therefore, in the reference frame I ′,

m~aP |I ′(t) = −m~aO|I .
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In other words, where we write M in place of m in the right-hand side since M = m,

m~aP |I ′(t) = M~g . (8.6)

Here a gravitational field ~g = −~aO|I seems to take place.

Remark 8.16. Replacing the gravitational field with another interaction, e.g., the electro-
magnetic one (assuming that the material point P carries an electrical charge) we would not
able to achieve the same results. This feature is proper of the gravitational interaction. �

In the next section, we prove that if we adopt the geometric description of the spacetime of the
General Relativity as we presented in Section 8.1 and if we further assume the further postulate:

Geodesic Postulate. The worldlines of the material points classically described as free-falling
bodies in a gravitational field are represented in (M4,g) by causal future-directed geodesics of
the Levi-Civita connection;

then the the first half of the equivalence principle becomes a well-known geometric fact of
(pseudo) Riemannian geometry.

Remark 8.17.
(1) Another relevant fact connected with the above discussion is that, in a given gravitational
field, the classical motion of a free falling body depends on its initial velocity but not on its
mass (just because the two types of masses cancel each other in the equation of motion). Also
this fact is compatible with Geodesic Postulate, since geodesics are completely determined by
their initial point, their initial vector and no information is necessary concerning the mass of
the material point. After all, we did not have yet introduced the notion of mass in the general
relativistic description!
(2) As soon as we assume the Geodesic Postulate, we are committed to accept the idea that
the properties of the classical gravitational field are now embodied in the metric g. From this
viewpoint, passing from Special to General Relativity, g must have further properties than the
metrical ones. Furthermore, we are also forced to assume that the gravitational interaction is
not described by a 4-force, differently from the electromagnetic interaction for instance.
(3) In Special Relativity, causal future oriented geodesics are nothing but causal future ori-
ented affine segments since the connection coefficients vanish in Minkowskian coordinates. The
Geodesic Postulate in Special Relativity therefore selects the histories of material points that
are not subjected to forces. �

8.2.2 Equivalence principle and normal coordinates

Let us assume that causal geodesics are the histories of classically free-falling objects. We stick
to the case of a fourdimensional spacetime M4, but everything we say below does not depend
on that choice.
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Consider a timelike geodesic segment γ : I 3 t 7→ M4 parametrized by it proper time t, so
that g(γ̇, γ̇) = −1 where we are assuming that c = 1. Consider a normal coordinate system
around γ including γ(t0) in its domain for a fixed t0 ∈ I according to Definition 7.30. Let us
denote by (t, x1, x2, x3) the coordinates of the normal chart.

The property Γijk(γ(t)) = 0 (Propsition 7.29) produces a very clear formalization of part of
Einstein’s Equivalence Principle, which is automatically embodied in the mathematical formal-
ism of the General Relativity when assuming the Geodesic Postulate.

If we study the histories causal geodesics α = α(t) of free-falling bodies leaving γ at some
ti using the coordinates (t, x1, x2, x3), we discover that they are represented as straight non-
accelerated motions for sufficiently small times around t1. In other words, locally, the gravita-
tional effect has been suppressed by a suitable choice of the reference frame.

Without lack of generality, we may assume t1 = 0 as well as γ(0) ≡ (0, 0, 0, 0) in the used
coordinates (y1, y2, y3, y4) = (t, x1, x2, x3). The equations of α have the form

d2yi

dλ2
= −Γijk(α)

dyj

dλ

dyk

dλ
, i, j, k = 1, 2, 3, 4 ,

where λ is an affine parameter of the geodesic α. We arrange λ such that λ = 0 defines the
event γ(0), where α departs from γ. Taylor expansion around λ = 0 yields:

yi(λ) = 0 + λ
dyj

dλ
|λ=0 +

λ2

2

d2yj

dλ2
|λ=0 + λ2Oj(λ) ,

where Oj(λ)→ 0 as λ→ 0. However, in the considered coordinates, in view of Propsition 7.29,
we have Γijk(α(0)) = 0, so that:

d2yj

dλ2
|λ=0 = −Γijk(α(0))

dyj

dλ
|λ=0

dyk

dλ
|λ=0 = 0 ,

and thus

yi(λ) = λ
dyj

dλ
|λ=0 + λ2Oj(λ) . (8.7)

In particular, for the first coordinate y1 = t, we find

t(λ) = λ
dt

dλ
|λ=0 + λ2O1(λ) . (8.8)

Since the geodesics γ is timelike and α is causal, it must be

dt

dλ
|λ=0 6= 0 .

This fact implies that, around t = 0, we can use t as a parameter for the smooth curve α.
Starting with the parameter t from scratch, we can write

xα(t) = t
dxα

dt
|t=0 + t2Oα(t) , α = 1, 2, 3 . (8.9)
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The velocity of α respect to γ at t = 0 has components

vα =
dxα

dt
|t=0 , α = 1, 2, 3 ,

(and this is also in agreement with the definition (8.5) since dt
dt = 1) so that,

xα(t) = tvα + t2Oα(t) , α = 1, 2, 3 . (8.10)

where Oα(t)→ 0 as t→ 0.
Up to terms of third order in t – and this is a precise interpretation of the word “locally” in

the formulation of the Equivalence Principle – the motion of α is given by a constant-velocity
motion. The acceleration (classically due to the gravitational field) has been suppressed by an
appropriate choice of the coordinate system.

In this sense, the the first part of the equivalence principle is automatically encapsulated in
the assumption that M4 is a Lorentzian manifold where causal geodesics describe the evolution
of free-falling bodies. The possibility to locally simulate the existence of a gravitational filed
with the choice of the reference frame is a much more delicate issue since, up to now, actually
we do not know what the gravitational field is described in General Relativity.

8.3 The Strong Equivalence Principle and the extension of the
formalism

Once we have justified the geometric description of spacetime in General Relativity, in partic-
ular assuming the Geodesic Postulate, we can proceed with the construction of the formalism
including further important physical notions like mass, energy, momentum for pointwise and
extended physical objects.

8.3.1 The Strong Equivalence Principle

The idea is to export as much as possible from Special Relativity to General Relativity exploiting
the fact that in a neighborhood of an event the geometry of Special Relativity and the one of
General Relativity are very similar when dealing with normal coordinates.

We start from the mathematical observation that, if dealing with normal coordinates centered
on an event p (and defining those coordinates by fixing a pseudo orthonormal basis at the origin
of TpM

n) all definitions and law of Special Relativity written in Minkowskian coordinates which
at most include first order derivatives at p can be rewritten as they stand in normal coordinates
at p. In particular because Γaab(p) = 0 (Proposition 7.18) so that we cannot distiguish between
ordinary derivatives ∂

∂xk
|p (used in Minkowskian coordinates of Special Relativity) and covariant

derviatives ∇k|p.
From the physical side, these coordinates can be viewed as the normal coordinates around

a timelike geodesic passing through the said event. With this interpretation, the principle we
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are about stating asserts that, in those free falling laboratories, the laws of Special Relativ-
ity valid in inertial reference frames, i.e., Minkowskian coordinates, are locally valid also in
General Relativity, as if the gravitational interaction were not present, provided these laws are
local and derivatives appear up to the first order. In this sense, inertial frames of the Special
Relativity and free falling frames of General Relativity are “equivalent” for the formulation of
all physical laws of a certain type. Once accepted the principle, the exported laws written in
normal coordinates using the formalism of tensors and the covariant derivative have universal
validity in every coordinate system around the given event of the spacetime of General Relativity.

Strong Equivalence Principle. A physical law, including definitions and principles, that
holds in Special Relativity and that can be stated in terms of identities of tensors and first-order
derivatives of tensors at a given event of the spacetime is also valid in General Relativity, pro-
vided the derivatives are replaced by the corresponding covariant derivatives.

The identification of the proper time τ (measured with a clock at rest with an observer) with the
length parameter and the identification of dΣγ(τ) with the rest space of the observer represented
by a timelike world line γ, as we did in Section 8.1.3 are immediate consequence of the Strong
Equivalence Principle starting form the corresponding identifications in Special Relativity. How-
ever we spend some words about the physics involved in these notions in the spirit of the said
principle. These definitions of local nature are proper of inertial frames of Special Relativity so
that they can be exported to free falling observers frames provided by timelike geodesics and
normal coordinates around them. Let now consider two worldlines γ = γ(u) and γ1 = γ1(u)
crossing at p ∈Mn with the same n-velocity and assume that γ1 is a timelike geodesic. Adopting
the definitions in Section 8.1.3 we are actually assuming that dτ

du and the rest space dΣγ1(u) of
γ1 are the same as for γ exactly at p. In other words acceleration does not matter for ideal
clocks and ideal rulers. If one thinks that acceleration must matter, then the approach can be
reversed assuming that, for a generic observer γ different from a timelike geodesic, the notion
of proper time and rest space are at each instant by definition the ones of a free falling observer
instantaneously at rest with with γ.

We next pass to export to General Relativity the notion of n-momentum and mass of a
material point and their basic properties exploiting the Strong Equivalence Principle. This is
possible because all the involved laws and definitions can be stated referring to an event and at
most first-order derivatives enter the game (see in particular remark 8.31 in [Mor20] concernin
(d)).

If γ = γ(s) is a future-oriented causal world-line describing the history of a particle then

(a) there is a smooth vector field P = P (s) parallel to γ′(s) which is called n-momentum
and it identifies with the n-momentum of Special Relativity in every normal coordinate
system centered on every event reached by the worldine;

(b) if the worldline is a geodesic ∇γ′γ′ = 0, it is assumed that P is the tangent vector referred
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to an affine parametrization so that it is parallely transported along the worldline

∇γ′P = 0 or, equivalently, ∇PP = 0 . (8.11)

Requirement (8.11) is more weakly valid at a possibly isolated event e reached by the
worldline if ∇γ′γ′ = 0 is valid at that event;

(c) the mass of the particle is defined as the function m(s) ≥ 0 such that

g(P (s), P (s)) = −m(s)2c2 , (8.12)

ant it identitfies with the mass of Special Relativity in every normal coordinate system
centered on every event reached by the worldine;

(d) Consider Nin material points evolving along worldlines till a common event e giving rise
there to Nout material points still evolving along new worldlines. If the worldlines are
geodesics or more weakly, if all (ingoing and outgoing) wordlines satisfy ∇γ′γ′ = 0 exactly
at3 e, then the sum of the n-momenta entering e is equal to the sum of the n-momenta
exiting e:

Nin∑
i=1

P
(in)
(i)e =

Nout∑
i=1

P
(out)
(i)e . (8.13)

This identity makes sense because both sides are vectors in the same tangent space TeM
n.

Remark 8.18.
(1) Considering a timelike worldline γ(s) and passing to the proper time parametrization, its
n-momentum can be re-written in terms of the mass and the n-velocity of the particle as

P (τ) = m(τ)γ̇(τ) . (8.14)

This representation is not allowed if the worldline is lightlike.
(2) Notice that the mass may depend on the value of the parameter s, but it is constant if the
point evolves along a geodesic.
(3) Since P is parallel to γ′, we conclude that m(s) = 0 if and only if γ′(s) is lightlike.
(4) As in Special Relativity [Mor20], we can define the four momentum of a photon (a particle
of light) P in a semiclassical (non-quantum) view. Referring to a pseudo orthonormal basis on
an event of an observer represented by a worldiline γ whose timelike unit vector e0 is parallel to
γ′,

P 0 = ~
ω

c
, Pα = ~kα , α = 1, 2, 3,

where ω is the pulsation of the light wave associated with the photon measured with respect
to the proper time of the observer and kα the components of the wave vector measured in

3In this case, for each incoming worldline γ′ is the tangent vector computed as right derivative at the final
endpoint of its interval of definition, for the outcoming worldlines γ′ is the tangent vector computed as left
derivative at the initial endpoint of the interval of defininition.
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the rest space of the considered observer. Furthermore, ~ = h
2π with h the Planck constant

(6.626× 10−27erg sec). Since
3∑

α=1

(kα)2 =
(ω
c

)2

from the electromagnetic theory, we have in this case PaP
a = 0, so that photons must be mass-

less. �

A further step is to export some laws from Special to General Relativity concerning extended
continuous stystems.

As we know, in Special Relativity, the content of energy and momentum of a continuous
system are encapsulated in a (2, 0) symmetric tensor field Tab called the stress energy tensor of
the system (see Section (85 of [Mor20]). That tensor field, if the system is isolated, satisfies a
local law of the form, valid at each event p ∈M4,

∇aT ab = 0 . (8.15)

On the ground of the Strong Equivalence Principle we are committed to assume first of all that
such a tensor field does exist also in General Relativity for extended systems. Sometime its
specific form can be easily exported from Special Relativity to General Relativity since we can
once more take advantage of the Strong Equivalence Principle. That is the case for the ideal
fluid (Section 8.5.5 of [Mor20])

T ab = µ0V
aV b + ρ

Ç
gab +

V aV b

c2

å
, (8.16)

where V is the field of 4-velocities of the fluid, ρ the pressure, and µ0 the density of mass
measured at rest with a particle of fluid. All those quatities are evaluated at an event p. The
same result is valid for the stress energy tensor of the electromagnetic fields

T ab = F acF bc −
1

4
gabFcdF

cd . (8.17)

where the electromagnetic tensor Fab is defined as

[F ab]a,b=0,1,2,3 =


0 Ex/c Ey/c Ez/c

−Ex/c 0 Bz/c −By/c
−Ey/c −Bz/c 0 Bx/c
−Ez/c By/c −Bx/c 0

 . (8.18)

Above, Eα and Bβ are the components of the electric and magnetic field at p in normal coordi-
nates centered on p (with pseudo orthonormal axes).
Also the Maxwell equations can be directly exported to General Relativity from Special Rela-
tivity if written in terms of the electromagnetic tensor F ab

∇aF ab = −Jb , εabcd∇bFcd = 0 ,
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where J is four-current density Ja = ρ0V
a, where ρ0 is the charge density computed at rest with

the particles of a continuous charged body.

Remark 8.19. We stress that one should make use of the Strong Equivalence Principle cum
grano salis. After all, that is mathematics whereas the last word is always of physics. It may
happen that passing from flat to curved spacetime further terms show up in the formulation of
physical laws. The Strong Equivalence Principle seems to work because it is usually applied to
spacetimes which are very close to Minkowski spacetime, to assert that this regime is universally
valid also in the presence of robust gravitational phenomena (i.e., when the metric is intrinsically
different from Minkowski one) is a pure gamble. �

8.3.2 Conservation laws and Killing fields in General Relativity

Coming back to the stress energy tensor, since (8.15) respects the hypotheses of the Strong
Equivalence Principle, we should assume that it is also valid in General Relativity when the
physical system does not interact with any other external system in turn described with its
own stress energy tensor. That is exactly what happens in Special Relativity (Section 8.5.4 of
[Mor20]). The system cannot be completely isolated however: gravitational interaction cannot
be removed since it must present in some sense in the metric g as soon as the spacetime is not
flat.

A potential problem shows up with the interpretation of identity (8.15). In Special Rela-
tivity (8.15) is responsible for the conservation law of energy and momentum of the extended
continuous system as discussed in Sections 8.5.3 and 8.5.4 of [Mor20]. The conserved quantities
in M4 are integrals of components T 0a over the 3-space at rest with an inertial system, where x0

is the temporal Minkowskian coordinate orthogonal to these 3-surfaces, and (8.15) is equivalent
to the fact that those quantities are constant in time. In this sense (8.15) is intepreted as the
law of conservation of momentum and energy in local form.

In General Relativity no extended inertial frames exist – just because the manifold is not flat
so that no Minkowskian coordinates are at disposal – and the interpretation of (8.15) as a local
version of a conservation law is much more delicate and, generally speaking, definitely false. In
spite of this difficulty, (8.15) is commonly called the conservation law of the stress energy tensor.

From the physical side, we actually must expect that, in general, (8.15) does not correspond
to a conservation law, though we can assume that it is valid using the Strong Equivalence
Principle. This is because, as already stressed, it is impossible to completely isolate the system:
we cannot remove the interaction with the gravitation field which is now described (in a way
we still have to clarify) by the metric, at least when the spacetime is not (locally) flat. On the
other hand, the gravitational interaction is embodied in the general formalism in a way that it
does not permit to define a stress energy tensor of the gravitational field (though several very
interesting attempts exist in suitable classes of spacetimes [LaLi80]).

To discuss how conservation laws are formalized in General Relativity and how they are
related with identity (8.15), we start by treating the elementary case of a current J , a (1, 0)
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Figure 8.2: Conservation of Q

smooth vector field satisfying a local conservation rule

∇aJa = 0 (8.19)

everywhere in Mn. As an example, J can be the electric charge 4-current in M4. Taking
advantege of the divergence therem (Theorem 6.15), if the support of J is confined in a tube S
with timelike lateral surface (see figure 7.28) which intersect the relevant spatial sections Σ in
compact sects, we can define

QΣ :=

∫
Σ

〈J, n〉dµ(g(Σ)) , (8.20)

on a spacelike embedded submanifold Σ of co-dimension 1 and where n is future-oriented. This
quantity, in view of the divergence theorem, remains constant if computed over another similar
spacelike embedded submanifold Σ′ when (8.19) is valid. In summary we find a global conser-
vation law:

QΣ = QΣ′ . (8.21)

The idea is to interpret Σ and Σ′ as the extended rest spaces of some reference frame. Or
also of two different reference frames, proving that not only QΣ is conserved but that it is
also independent of the reference frame (as it happens for the electric charge in particular).
We shall discuss this interpretation of Σ in Section 8.5.1, when introducing the notion of

(extended) reference frame in General Relativity and for the moment we are just content with
this opportunity.

The hypothesis that the support of J is confined in a spatially bounded4 tube S can be
relaxed assuming a suitable rapid decay of J on Σ.

4However also the strict requirement of compactness S ∩ Σ can be required when J is a quantity associated
to a solution of a hyperbolic equation in Mn just by imposing compactly supported initial conditions on spatial
sections (Cauchy surfaces).
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Coming back to (8.15) we prove that, in the presence of a Killing field K, a conserved
quantity can be defined which depends on both the stess energy tensor and the Killing field.
This quantity is simply defined out of the current

JaK := KbT
ba . (8.22)

Indeed, if T ab satisfies (8.15), in view of the Killing equation (6.11) and T ab = T ba

∇aJaK = ∇a(KbT
ba) = (∇aKb)T

ba +Ka∇aT ba = (∇aKb)T
ba ,

but also the apparently surviving term vanishes, as

(∇aKb)T
ba =

1

2
(∇aKb)T

ba+
1

2
(∇bKa)T

ab =
1

2
(∇aKb)T

ba+
1

2
(∇bKa)T

ba =
1

2
(∇aKb+∇bKa)T

ba = 0.

If we define

Q
(K)
Σ :=

∫
Σ

〈JK , n〉dµ(g(Σ)) , (8.23)

then (8.21) is valid so that we can associate the pair made of a stress energy tensor and a Killing
vector with a conserved quantity.

Usually, the conserved quantity Q
(K)
Σ is interpreted as a notion of energy when K is timelike,

an energy strictly refererred to the notion of time appearing in the flow generated by K also
known as Killing time.

In Minkowski spacetime, every vector tangent to a coordinate of a Minkowskian reference
system is a Killing vector. It is easy to see that using those vectors, the definition above of
conserved quantities is in agreement with the standard one as discussed in Sections 8.5.3 and
8.5.4 of [Mor20].

Remark 8.20.
(1) The found result is once more a manifestation of the deep relation between dynamically
conserved quantities and symmetries as it happens with Noether’s theorem. In fact, K is a
Killing vector, so that it reflects the existence of a symmetry of the metric expressed by the Lie
version of Killing equation (5.7),

LKg = 0 ,

which, in turn, means that the metric is invariant under the action of the flow generated by K.
The difference with the standard formulation of Noether’s theorem is that here the symmetry
is of the background and not of the physical system associated to T ab.
(2) The general interpretation of Q(K) depends of the nature of the Lie group of continuous
symmetries of (M,g) whose the Lie algebra of Killing vector represent the Lie algebra. For
instance if that group includes a subgroup isomorphic to SO(3), it is natural to interpret the
three conserved quantities associated to the 3 Killing vectors generators of SO(3) as components
of the angular momentum of the system, and so on. This abstract approach leads in Minkowski
spacetime to the standard physical interpretation of the various conserved quantities. �
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As a special case of the discussion above, we can consider the case of a particle in a spacetime
with a Killing vector K and suppose that the point is isolated form external interactions (barring
the gravitational one). In this case, from (8.11) and the Killing equation, we have that, if we
define,

Q(s) := g(Kγ(s), γ
′(s)) , (8.24)

then Q(s) is constant along the worldline

dQ

ds
= 0 , (8.25)

because
d

ds
= g(∇γ′Kγ(s), γ

′(s)) + g(Kγ(s),∇γ′γ′(s)) = g(∇γ′Kγ(s), γ
′(s)) ,

but the apparently surviving terms also vanishes since, from (6.11),

g(∇γ′Kγ(s), γ
′(s)) = γ′aγ′b∇aKb =

1

2
(γ′aγ′b∇aKb + γ′bγ′a∇bKa) =

1

2
γ′aγ′b(∇aKb +∇bKa) = 0 .

This is not the whole story because we can consider the case where many particles are involved
establishing again a conservation law. If Nin material points evolving along geodesics in a
neighborhood of e where collide and give rise there to Nout material points still evolving along
geodesics at least close to e, then the sum of the quantities Q of the particles entering e is equal
to the sum of the quantities Q of the particles exiting e:

Nin∑
i=1

Q
(in)
(i) (e) =

Nout∑
i=1

Q
(out)
(i) (e) . (8.26)

The proof of the identity above is a trivial consequence of (8.13) just taking the scalar product
with Ke on both sides.

8.3.3 Energy extraction from rotating black holes

There exists an interesting theoretical phenomenon discovered by Penrose known as the energy
extraction process from a rotating black hole. We do not want to deal here with the notion of
rotating black hole (also known as Kerr’s black hole). The only important piece of information
is that the rotating black hole is a spacetime (M4,g) which admits a Killing vector field K with
special properties. In a spatial section of the spacetime, far from the so-called black hole region
surronded by the event horizon, the spacetime becomes flat and the metric tends to become
the Minkowskian one. Similarly, far from the black hole region, K tends to become a standard
Killing vector tangent to the temporal coordinate of a Minkowskian coordinate system5. Going
along the opposite direction, before crossing the event horizon another spatial region exists,

5This Minkowskian reference frame is completely determined by the black hole and by K: it is the asymptotic
reference frame where the spatial black hole region is viewed to rotate around an axis.
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called the ergosphere which surrounds the black hole region, therein K becomes spacelike. This
region exist just in view of the rotation of the black hole.
Consider a particle that starting from the Minkowskian region with an energy E with respect
to the asymptotic Minkowskian reference frame, falls into the ergosphere, there it breaks into
two particles and one of the two particles comes back, still along a geodesic, to the Minkowskian
region. We can define E = −Q(s) = g(K,P ) according to (8.24) using the Killing vector K.
The sign is chosen in order to have a positive energy E where both P and K are timelike and
future directed as it happens in the asymptotic Minkowskian region. There E becomes the
standard energy of the particle. The conservation law (8.26) of Q applied to the event where
the intial particle breaks leads to the identity

−KbP
b
(1) = −KbP

b +KbP
b
(2) i.e. E1 = E − E2 .

Furthermore, the values of E,E1, E2 are also constant along the respective worldlines since they
are geodesics and we can also apply (8.25). If K and P, P(1), P(2) are causal and future-oriented,
the energies E,E1, E2 are all positive so that, in particular 0 < E2, E1 ≤ E. However, the
identity above is still valid when K is not timelike, in this case −KbP

b is conserved but it has
not the meaning of energy and its sign can be arbitrary. As said the initial particle breaks just
inside the ergosphere of a Kerr black hole where K is spacelike. Suppose also that part 2 remains
inside the ergosphere whereas, as said, part 1 comes out and reaches the initial asymptotic
Minkowskian travelling along a geodesic. In this case E1 ≥ 0, because the momentum of the
particle future oriented as K is. However it is now permitted that E2 < 0, because K is spacelike
in the ergosphere even if P(2) is still timelike and future directed therein. As E = E1 + E2 it
must be

E1 > E > 0 .

E and E1 are the energies the particles have also when they, respectively, leave and reach the
asymptotic Minkowskian reference frame. As a matter of fact the asymptotic Minkowskian
observer who launched the inital particle and receives the final one extracts energy from the
black hole, more precisely form the ergosphere.

8.4 Newtonian correspondence and some consequence

Up to now, we have assumed that g is somehow related with the gravitational interaction, but
we did not yet investigate this fact. This is the goal of the next section, where shall grasp some
pieces of information. We shall see that, when the spacetime is close to Minkowski spacetime
and the used coordinates are well approximated by Minkowskian coordinates, then g00 turns out
to be related to the classical gravitational potential. Later, we pass to discuss two immediate
entangled phenomenological consequences of this result.

8.4.1 Newtonian correspondence

Let us consider a spacetime (M4,g) of General Relativity and assume that there exist a chart
φ : U 3 p 7→ (x0, x1, x2, x3) ∈ R4 where we define t := x0/c and the components of the metric
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g = gabdx
a ⊗ dxb are very close to those of Special Relativity in Minkowskian coordinates. We

stress that this is generally false in a generic spacetime over an extended region, but it is evidently
valid in our universe in a spatial region which includes the Solar system, where also Newtonian
physics works quite well. In this background, we study the equation of motion of the free-falling
bodies, i.e., of the geodesics, for massive material points in order to compare this motion with
the one predicted by the classical Newtonian theory of gravitation. In this intermediate regime,
we expect to find some correspondence between classical and general relativistic notions.

Here is the list of our assumptions and approximations.

(1) We assume that, with the following decomposition,

gab = ηab + hab, (8.27)

where ηab is the standard Minkowski metric

[ηab]a,b=0,1,2,3 = diag(−1, 1, 1, 1) , (8.28)

at each event of the chart the estiamate is true

|hab| << 1 . (8.29)

As a consequence, we shall consider negligible the contribution of such terms in some
passages below.

(2) As an approximation of different nature, we also suppose that there is a timelike Kil-
lling field defined in U coinciding with ∂

∂t . The Killing equation LKg = 0, writing the
components of g as functions of the coordinates ct, x1, x2, x3, immediately becomes

∂gab
∂t

= 0 , (8.30)

so that we are actually supposing that the metric does not depend on the (Killing) time,
as it happens in every Minkowskian reference frame in Special Relativity. This hypothesis
could be relaxed making more precise the dependence on time of the metric components,
but we stick to the basic case.

(3) We shall suppose that the velocity of the material points, roughly defined as vα = dxα

dτ
(α = 1, 2, 3), has very small magnitude with respect to the speed of light c:∣∣∣∣dxαdτ

∣∣∣∣ << c . (8.31)

Consequently, we shall consider negligible some addends in the following formulas when
they are multiplied with inverse powers of c.
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This picture is a way to (at least locally) embody the Newtonian universe in the spacetime of
General Relativity.

Let us pass to exploit these approximations in the geodesic equation for a timelike geodesic
γ parametrized with its propert time τ . First of all we get rid of τ in favour of t observing that

−c2 = g(γ̇, γ̇) ,

is explicitly written

−1 = (−1 + h00)

Å
dt

dτ

ã2

+
2

c

3∑
α=1

h0α
dt

dτ

dxα

dτ
+

1

c2

3∑
α,β=1

(δαβ + hαβ)
dxα

dτ

dxβ

dτ
.

Dropping all terms in the right-hand side with factors 1/c and 1/c2 and also neglecting h00 with
respect to 1 in view of (8.29), we conclude that

1 =
dt

dτ

is a good approximation in our context so that we can assume t = τ . With this approximation,
the geodesic equation reads (recall that x0 = ct)

d2xa

dt2
= −Γabc

dxb

dt

dxc

dt
= −c2

Γa00

Å
dt

dt

ã2

+
2

c
Γab0

dxb

dt

dt

dt
+

1

c2

3∑
α,β=1

Γaαβ
dxα

dt

dxβ

dt

 .

Dropping the terms of order 1/c and 1/c2 due to (8.31), we find

d2xa

dt2
= −c2Γa00 .

Let us pass to expand the expression of Γa00. Dropping all x0-derivatives in view of (8.30), we
find

Γa00 =
gab

2

Å
∂g0b

∂x0
+
∂gb0
∂x0

− ∂g00

∂xb

ã
= −g

ab

2

∂g00

∂xb
= −g

ab

2

∂h00

∂xb
,

so that the initial geodesic equation reduces to

gab
d2xb

dt2
=
c2

2

∂h00

∂xa
.

Namely
3∑

β=1

(ηaβ + haβ)
d2xβ

dt2
=
c2

2

∂h00

∂xa
.

where we have omitted the contribution of b = 0 since d2x0

dt2
= 0. For a = α = 1, 2, 3, we find

d2xα

dt2
+

3∑
β=1

hαβ
d2xβ

dt2
=
c2

2

∂h00

∂xα
.
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As a first approximation, assuming all components d2xγ

dτ2 of similar magnitude, we can drop the
second addend in the left-hand side in view of (8.29). The final equation is

d2xα

dt2
=
c2

2

∂h00

∂xα
, α = 1, 2, 3 . (8.32)

That is just Newton’s law of the motion of a material point free falling in a gravitational static
potential6

ϕ(~x) =
c2

2
h00(~x) , (8.33)

where ~x = (x1, x2x3). Actually ϕ is defined up to an additive constant. It is however reasonable
to keep the identification (8.33) as it stands, without adding additive constants, if we assume
that far from the source of the gravitational field where ϕ vanishes also the metric becomes
Minkowskian.

Remark 8.21. Notice that we have also found that, within our approximations,

g00(t, ~x) = −1 +
2

c2
ϕ(~x) . (8.34)

Within this geometric interpretation of gravitational Newtonian mechanics, the motion of Earth
around the Sun is due to the geometry of the spacetime of General Relativity. The timelike
geodesics are here proved to be strongly different from the ones of Minkowski spacetime, where
they are standard R4 segments in Minkowskian coordinates. To appreciate better this difference
from an intrinsic point of view, we should introduce some further geometric notions concerning
the curvature of a (pseudo) Riemannian manifold as we shall do later. �

8.4.2 Gravitational redshift

Equation (8.34) has an important consequence which can be experimentally tested and, actually,
it has been tested successfully several times. Not only: nowadays this consequence is also part
of the standard GPS technology.

Let us consider a region of spacetime where a timelike Killing vector K is defined and suppose
that, as in the previous section, we are dealing with a coordinate system t, x1, x2, x3 where

Ka =
∂

∂t
.

The metric is stationary in this system of coordinate and all physical stationary or periodic
phenomena are naturally referred to that the Kiling time. For instance, equilibrium thermody-
namics is referred to the Killing tiame and relevant notion of thermodynamic energy is associated
to that notion of time.
Consider a pair of observers which evolve in time with worldlines γ1 and γ2 that are integral

6u(~x) := −ϕ(~x) is the gravitational potential energy as a consequence.
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curves of K placed at different spatial positions ~x1 = (x1
1, x

2
2, x

3
3) and ~x2 = (x1

2, x
2
2, x

3
2). These

observers are “at rest” in an extended reference frame where all gravitational phenomena are
stationary. The local time they measure is however referred to ideal clocks they carry and thus
it is the proper time τ rather than the Killing time t. The difference of the two notions of time
is completely described by

dτi =
»
|g00(~xi)|dt =

…
1− 2

c2
ϕ(~xi)dt i = 1, 2 . (8.35)

where, in the last identity, we assumed that both the previous Newtonian approximation can be
exploited and the arbitrary additive constant of ϕ was chosen as discussed.

Suppose that, at rest with the observer whose worldline is γ1, there is an electromagnetic
source emitting waves with frequency f1 = c

T1
. The period T1 is referred to the proper time τ1.

However the wave propagates reaching γ2 and defines a common periodic process with respect
to the Killing time: when writing Maxwell’s equations in coordinates t, x1, x,2 , x3 no explicit
dependence on time t exists in any place and the only explicit dependence on t is in the source.
The solution of those equations must therefore have the same t-periond of the source. This
period is ∫ T

0

1√
|g00(~x1)|

dτ =
T1√
|g00(~x1)|

due to (8.35). In summary,
T1√
|g00(~x1)|

=
T2√
|g00(~x2)|

,

so that

f2 = f1

√
|g00(~x1)|√
|g00(~x2)|

.

Within the Newtonian approximation,

f2 = f1

√
1− 2

c2
ϕ(~x1)

1− 2
c2
ϕ(~x2)

. (8.36)

If ~x2 is farther form the source of the gravitational force than the other observer, the denominator
tends to 1 whereas the denominator remains finite and

f2 < f1 .

This phenomenon is known as the gravitational redshift: the frequency detected in a weaker
gravitational field of a source placed in a stronger gravitational field shifts towards the red
direction in the spectrum. This phenomenon is not only well known, but modern GPS technology
take it into account in the communications between Earth surface and satellites.
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The existence of the gravitational redshift was first confirmed directly by the celebrated exper-
iment by Pound and Rebka 7 in 1959. The result confirmed that the predictions of General
Relativity with an accuracy of 10%. In 1980 another test8, which exploited a maser, strongly
increased the accuracy of the measurement to about 0.01 %.

8.4.3 Gravitational time dilation

A related phenomenon (well illustrated in the 2014 movie Interstellar) is that of time dilation
due to the gravitational field. Consider two twin brothers who initially stay at ~x1 and next
one of them quickly moves to ~x2 where |ϕ(~x2)| >> |ϕ(~x1)| and he spends there a long period of
proper time

∆τ2 =

∫ s′

s

…
1− 2

c2
ϕ(~x2)dt =

…
1− 2

c2
ϕ(~x2)∆t ,

much longer than the time spent to travel to and from ~x2. When he goes back to ~x1, he discovers
that the age of his brother is increased of (disregarding the time of the trips)

∆τ1 =

∫ s′

s

…
1− 2

c2
ϕ(~xi)dt =

…
1− 2

c2
ϕ(~x1)∆t

so that

∆τ1 =

√
1− 2

c2
ϕ(~x1)

1− 2
c2
ϕ(~x2)

∆τ2 > ∆τ2 .

Remark 8.22. The qualitiative result would not change if taking the time necessay to travel
into account, but the formula would not be so easy as it should includes the details of the trip
as velocities etc. �

The existence of the gravitational time dilation was first established by the celebrated experiment
by Hafele an Keating in 1971 using four cesium-beam atomic clocks aboard commercial airliners.
The experiment also confirmed the time dilation predicted by Special Relativity. In 2010, Chou
and collaborators9 performed tests in which both gravitational and Special relativistic effects
were tested. It was possible to confirm the gravitational time dilation phenomenon from a
difference in elevation between two clocks of only 33 cm.

7Pound, R. V.; Rebka Jr. G. A. (November 1, 1959). Gravitational Red-Shift in Nuclear Resonance. Physical
Review Letters. 3 (9): 439–441.

8Vessot, R. F. C.; M. W. Levine; E. M. Mattison; E. L. Blomberg; T. E. Hoffman; G. U. Nystrom; B. F.
Farrel; R. Decher; P. B. Eby; C. R. Baugher; J. W. Watts; D. L. Teuber; F. D. Wills (December 29, 1980). Test
of Relativistic Gravitation with a Space-Borne Hydrogen Maser. Physical Review Letters. 45 (26): 2081–2084

9Chou, C. W.; Hume, D. B.; Rosenband, T.; Wineland, D. J. (2010). Optical Clocks and Relativity. Science.
329 (5999): 1630–1633.
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8.5 Extended reference frames in General Relativity and related
notions

This section is devoted to introduce the notion of extended reference frame in General Relativity
and to discuss some related concepts. It is clear that the idea of reference frame in General
Relativity has a more delicate status than in Special Relativity in view of the absence of inertial
reference frames. Actually, inertial reference frames still exist locally in the sense of normal
coordinate systems around a timelike geodesic. However this notion is a bit fuzzy also in view
of the mixing of gravitational interaction and inertia arising from the equivalence principle.
Furthermore it does not provide a canonical notion of rest space, but just an approximated rest
space described in the subspace orthogonal to the geodesic in the tangent space of any event
crossed by it. We are instead interested in a finitely extended structure obtained by collecting
in same way a number of observers described by worldlines.

8.5.1 A general notion of extended reference frame

Let us consider a spacetime (Mn,g) which may be also a sub region of a larger spacetime.
An extended reference frame is a mathematical machinery used to one-to-one associate a space
position and a time location to every event of M . From a very general point of view we can
proceed as follow.

(a) Spatial position of an event. A very general procedure is to identify the spatial positions
with the maximal integral curves of a future-oriented timelike smooth vector field T . Since
T vanishes nowhere, these curves cannot intersect and there is one of them passing through
any event of the spacetime. The space position of e ∈Mn is exactly the unique worldline
γe integral curve of T crossing e.

(b) Time location of an event. A very general procedure is to identify the time locations with
the values of a surjective smooth function t : Mn → I, for an interval I ⊂ R, satisfying
natural requirements. First of all, simultaneous events should give rise to a suitable notion
of rest space of the reference frame at a given time. To this end, we assume that dt is
everywhere timelike and consider the family of the n− 1-surfaces

{Σs}s∈I where Σs := {p ∈Mn | t(p) = s ∈ I} (8.37)

Since dt cannot vanish, Theorem 4.13 implies that every Σs is an embedded submanifold
of co-dimension 1. By construction it is also spacelike. Since t is defined everywhere on
Mn, the union of the surfaces Σs is the whole Mn. Observe that these surfaces are also
pairwise disjoint by definition and they are one-to-one with the values of t. The time
location of e ∈Mn is the unique surface of the family that Σt(e) 3 e.

There is still a pair of issues to fix in this framework.
(i) Suppose that both T and t are given as above on (Mn,g). Let Σt0 be one of the n− 1-

spacelike surfaces associated to t. For every p ∈ Σt0 there is exactly one integral curve γp of T
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passing through p. However it is not necessarily true the converse: it is not obvious that every
Σt0 meets every integral curve of T . It seems instead natural to impose it to have a “number
of space positions” constant in time. In this case, all the integral curves of T are one-to-one
defined with the points of every fixed surface Σt.

(ii) Consider every p ∈ Σt0 and the unique integral line γp of T propagated from p and
arrange the origin of the Killing time in order that γp(t0) = p for every p ∈ Σt0 . With this
choice, Σt0 evolves according to the Killing time, defining other surfaces

Σt,t0 := {q ∈Mn | q = γp(t) , q ∈ Σt0} .

To avoid the existence of two different notions of rest space in the same reference frame, we
impose as our last condition that

Σt,t0 = Σt ∀t ∈ I .

This requirement will be actually stated as a condition valid for T and t:

〈T, dt〉 = 1 everywhere in Mn. (8.38)

Indeed, under this hypothesis

dt(γ(s))

ds
= 〈γ′(s), dt〉 = 〈T, dt〉 = 1

that implies that the lenght of an interval of time measured along the integral curves of T in
terms of the Killing time coincides with the lenght of the corresponding interval of time mea-
sured in terms of the time function t. In other words γp(t) ∈ Σt for every t ∈ I if we have
arranged the origin of the Killling time in order that γ(t0) ∈ Σt0 .

We are in a position to state our definition.

Definition 8.23. (Extended reference frame.) In a spacetime (Mn,g), an extended
refence frame (or system) over a region N ⊂Mn is defined by N and a pair (T, t), where

(a) T is a smooth future-oriented timelike vector field defined on N ,

(b) t : N → I – where I ⊂ R is an open interval – is a surjective smooth map with dt
everywhere timelike.

The following requirements are also assumed,

(1) every surface Σs defined in (8.37) meets all maximal integral line of T ,

(2) requirement (8.38) is valid and we consequently assume that the origin of the parameter
of every maximal integral curve of T is arranged to satisfy γ(t) ∈ Σt if t ∈ I.
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T is called time vector of the reference frame, t is called time coordinate of the reference
frame, and a submanifold Σt is called rest space at time t of the reference frame. �

Given a reference frame (N,T, t), we can define a local chart adapted to the reference frame,
equivalently called co-moving with it. It is a local chart φ : U 3 p 7→ (x0(p), . . . , xn−1(p)) ∈ Rn
such that, occasionally enumerating the coordinates form 0 to n− 1,

(1) U ⊂ N ,

(2) ∂
∂x0 = 1

cT on U ,

(2) x0 = ct restricted to U , so that the remaining coordinates x1, . . . , xn−1 define local coor-
dinates on Σt for every fixed value of x0 = t.

With this definition,

g00 = g

Å
∂

∂x0
,
∂

∂x0

ã
< 0 ,

furthermore,
g00 = g(dt], dt]) < 0 ,

and the Riemannian metric g(Σt) has components

gαβ with α, β = 1, . . . , n− 1, if g = gijdx
i ⊗ dxj .

It is not difficult to see that if φ : U 3 p 7→ (x0(p), . . . , xn−1(p)) ∈ Rn and ψ : V 3 p 7→
(y0(p), . . . , yn−1(p)) ∈ Rn are two local charts adapted to (N,T, t) and U ∩V 6= 0 then ψ ◦φ−1 :
φ(U ∩ V )→ ψ(U ∩ V ) has the coordinate expression

y0 = x0 , yα = yα(x1, . . . , xn−1) , α = 1, . . . n− 1 . (8.39)

Let us prove that extend reference frames exist.

Proposition 8.24. Let (Mn,g) be a spacetime. If p ∈ Mn and Sp ∈ TpM is timelike and
future directed, there is an extend reference frame (N,T, t) with p ∈ N and Tp = Sp.

Proof. Extend Sp to a smooth vector field S which is therefore necessarily timelike and future-
orineted around p. Fix a pseudo orthonormal basis e0, e2, . . . , en−1 of TpM with e1 parallel to Sp.
Using expp, we can extend the span of the spacelike n− 1 vectors e1, . . . , en−1 to an embedded
n − 1-submanifold Σ passing through p. Notice that the co-normal vector to Σ at p is g(e0, ·)
which is timelike by construction so that, in a neighbrhood N of p, Σ remains spacelike and we
restrict all the discussion to that neighborhhod. As Σ is an embedded submanifold, restricting
N if necessary, we can define a function t′ : N → R which vanishes exactly on that surface and
that dt is timelike in its domain (it is sufficient to use the coordinate t′ = x0 where x0, . . . , xn−1

are normal coordinates centered on p). By construction f := 〈S, dt′〉 cannot vanish because both
vectors in the bracket are timelike. We can always assume that the sign of f is positive (possibly
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changing the sign of the initial function t′). The vector field Tq := f(q)−1f(p)Sq satisfies (8.38)

with respect to t(q) := f(p)−1t′(q) and Tp = Sp. Finally, re-defining N := {Φ(T )
s (Σ) | s ∈ I}

restricting the interval I 3 s and Σ if necessary, also the condition (1) turns out to be satisfied
in view of the properties of the local flow Φ(T ). �

Remark 8.25.
(1) It is clear that the illustrated definition of reference frame is an extension of the notion of
Minkowskian reference frame F in Special Relativity (see [Mor20]) when N = M4. In that case
T = F = ∂

∂t and t = x0/c, where x0, x1, x2, x3 are a Minkowskian coordinate system co-movinng
with F . Similarly, Minkowskian coordinates co-moving with an inertial reference frame [Mor20]
in Special Relativity are a particular case of co-moving coordinates witn an extended reference
frame.
(2) Notice that 〈T, dt〉 = 1 implies that the contravariant form dt] of dt is past-directed since T
is future-directed and g(T, dt]) = 〈T, dt〉 = 1 > 0.
(3) Given an extended referenc frame we can decompose

T = ldt] + S .

The smooth function l is called lapse function and the smooth vector field S is called shift
vector field. This decomposition, more often written in terms of components,

T a = N(dt)a +Na ,

plays an important role in the so called ADM formalism [Wal84] to tackle the problem of solving
Einstein’s equations of gravitation we shal introduce later.
(4) The rest space Σt is the standard candidate where to define the conserved quantities as in
(8.20) and (8.23). �

8.5.2 Classes of stationary spacetimes and coordinates

Related with the definition of extended reference frame is that of stationary, static and ultrastatic
spacetime. Here, the timelike vector field used to define a reference frame is further assumed to
be Killing. Furthermore in two cases it is supposed that the spacetime is foliated by spacelike
surfaces as in the definition of reference frame. However requirements (1) and (2) are not as-
sumed.

Definition 8.26. Let (Mn,g) be a spacetime.

(1) (Mn,g) is called stationary if it admits a timelike Killing vector field K.

(2) (Mn,g) static if it is stationary and all the maximal integral curves of the preferred
timelike Killing vector field K meet n − 1-dimensional embedded submanifold Σ and are
normal to it.
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(3) (Mn,g) ultrastatic if it is static and the preferred timelike Killing vector field K satisfies

g(K,K) = −1

everywhere in Mn . �

Remark 8.27.
(1) Suppose that (Mn,g) is static with preferred timelike Killing vector K and preferred spa-
tial section Σ. Evidently Σ is necessarily spacelike since its co-normal vector if timelike (its
contravariant representation is parallel to K).

If K is complete, we can define a family of n− 1-dimensional embedded submanifolds

Σt := Φ
(K)
t (Σ) , t ∈ R .

As each Φ
(K)
t is an isometry, these surfaces are spacelike and orthogonal to K. By construction,

their union is Mn since Σ meets each integral curve of K and they are also pairwise disjoint if
every maximal integral curve of K meets Σ exactly once: if γ(t), γ(t′) ∈ Σ then t = t′. In this
case we have an extended reference frame (Mn,K, t) covering the whole manifold, where t is
the parameter of the integral curves of K. More precisely, (Mn,g) turns out to be isometrically
diffemorphic to R× Σ, where this latter manifold is equipped with a metric of the form

g(K,K)dt⊗ dt+ h ,

where h is the metric induced on Σ from g and g(K,K) generally depends on the position in

Σ but not on t. The isometry is the map R× Σ 3 (t, p) 7→ Φ
(K)
t (p). (See (1) and (2) Exercises

8.31.)
If K is not complete and we cannot control the generic domain, this construction is valid

only locally according with the domain of the flow Φ(K) in the following sense as the reader can
prove easily taking advantage of Propositions 4.18 and 4.21. Every maximal integral curve γ of
K meet Σ at a corresponding point p. Hence, there is an interval [0, ωp) with the property that,
if t1 ∈ [0, ωp), an open neighborhood Sp ⊂ Σ of p exists such that the spacelike pairwise disjoint
n− 1-dimensional embedded submanifolds

Spt := Φ
(K)
t (Sp) t ∈ [0, t1]

are well defined. The analogue is valid for an interval (αp, 0]. In this discussion ωp ∈ (0,+∞]
and αp ∈ [−∞,+0)
(2) It is possible to consider a weaker condition of static spacetime. We say that a spacetime
(Mn,g) is locally static if there is a Killing vector K such that, for every p ∈ Mn, there is
an emebdded spacelike n − 1-dimensional submanifold Σp such that p ∈ Σp and K is normal
to Σ. An example of spacetime that is locally static but not static is the open region of the
2-dimensional Minkowski spacetime defined by requiring t ∈ R and |x| < 2 + sin ct, where t, x
are standard Minkoskian coordinates and K = ∂

∂t . In this case, there is no common spacelike
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section that meets all complete integral lines of K, though every section at constant t satisfies
the requirement for a locally static spacetime. Some texts use the local requirement as the
definition of static spacetime. �

Let us examine the definition from the point of view of physics.

(a) Stationary means that, evolving along the integral curves of K, the metric properties of
the spacetime (including the gravitational ones) are seen as invariant.

(b) A static spacetime has further properties. First of all, we can decompose all structures
into time (along K) and space (each surface Σt) and, as above, the metric properties
decomposed in this way are invariant when the (Killing) time varies. However, we can also
revert the sign of the Killing time, around a given instant of time, redefined t = 0, and
the metric properties of the spacetime remain fixed. This inversion appears in spacetime
as a reflection with respect to every fixed rest space Σt (or a local version Spt, when K
is not complete). In some sense, for instance in black hole theory, a stationary non-static
spacetime may involve a spatial rotation and the orientation of the rotation breaks the
time reversal.

(c) An ultrastatic spacetime has the further nice property that the Killing time and the proper
time of the worldlines tangent to the Killing vector coincide.

Remark 8.28. We stress that, physically speaking, no equilibrium states, for instance in
thermodynamics, are possible in the absence of a timelike Killing vector since sooner or later
some metric or gravitational phenomena change the equilibrium. �

In some cases it is convenient to adapt an extended reference frame to a static structure using
the Killing vector K as the time vector and the surfaces Σt (Spt, when K is not complete) as
rest spaces. Furthermore the definitions above permit a corresponding definition of local charts.

Definition 8.29. Consider a spacetime (Mn,g) and a local chart φ : U 3 p 7→ (x0, . . . , xn−1) ∈
Rn.

(1) φ is stationary if the spacetime is stationary with preferred timelike Killing vector K,
∂
∂x0 = K in U .

(2) φ is static if the spacetime is static with preferred timelike Killing vector K and both
∂
∂x0 = K and ∂

∂xα are normal to K if α = 1, . . . , n− 1 in U .

(3) φ is ultrastatic if the spacetime is ultrastatic and φ is static. �

Remark 8.30.
(1) Observe that a static and ultrastatic chart, x0 coincides to the parameter of the integral
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curves of K and labels the surfaces Σx0 .
(2) Furthermore, again in the static and ultrastatic case, for every fixed x0 the coordinates
x1, . . . , xn−1 define a local chart of the spatial section Σx0 (or on a local version Spx0 when K is
not complete) according to Remark 8.27.
(3) According to the given definitions, in a stationary chart,

∂gab
∂x0

= 0 .

In a static chart, it also holds

g0b = gb0 = 0 b = 2, . . . , n .

In a ultrastatic chart, we have in addition to the previous facts,

g00 = −1 .

Exercises 8.31.
1. Consider a static spacetime (Mn,g) with preferred timelike Killing vector K and preferred

orthogonal spatial section Σ. Assume that K is complete and each maximal integral curve of
γ meets Σ exactly once (i.e., if γ(t), γ(t′) ∈ Σ then t = t′). Prove that (Mn,g) is isometrically
diffemorphic to R× Σ, where this manifold is equipped with the metric

g(K,K)dt⊗ dt+ h ,

where h is the metric induced on Σ from g (thus it does not depend on t), and g(K,K) generally
depends on the position in Σ but not on t. The isometry is the map

f : R× Σ 3 (t, p) 7→ Φ
(K)
t (p) ∈Mn .

Solution. The map R × Σ 3 (t, p) 7→ Φ
(K)
t (t) is evidently surjective since every q ∈ Mn

admits an integral line γq of K such that γq(t1) = q and, with the said hypotheses, γq(t0) =

p ∈ Σ. Hence f(t0, p) = q. The map is also injective. Indeed, if Φ
(K)
t (p) = Φ

(K)
t′ (p′), then

γ(t− t′) = Φ
(K)
t−t′(p) = p′ ∈ Σ and thus γ(0) = Φ

(K)
0 (p) = p ∈ Σ implies t− t′ = 0 so that p = p′.

The map f is smooth by construction. To prove that it is a diffeomorphism it is sufficient to
prove that df(t,p) has rank n, i.e., it is injective. For (st0 , vp0) ∈ T(t0,p0)R×Σ = Tt0R× Tp0Σ, we
have

df(st0 , vp0) = st0Kf(t0,p0) + dΦ
(K)
t0

vp0 ,

where the pushforward dΦ
(K)
t0

is the restriction to Σ 3 p of d(Φ
(K)
t0

) : Tp0M
n → Tp0M

n. As a

consequence, dΦ
(K)
t0

vp0 is tangent to Σt0 := Φ
(K)
t0

(Σ) by construction, whereas Kf(t0,p0) is normal

to that surface. Hence st0Kf(t0,p0) +dΦ
(K)
t0

vp0 = 0 means that st0Kf(t0,p0) = 0 and dΦ
(K)
t0

vp0 = 0.
Since K 6= 0 everywhere as it is timelike, we conclude that st0 = 0. Similarly vp0 = 0 because

dΦ
(K)
t0

: TpM
n → TpM

n is injective Φ
(K)
t0

: Mn → Mn being a diffeomorphism. We conclude
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that f is a diffeomorphism. The fact that f is also an isometry (it preserves the scalar product)
when the metric on the domain of f is g(K,K)dt⊗ dt+ h is an immediate consequence of the

above decomposition of df and of the fact that Φ
(K)
t0

: Mm →Mn is an isometry and it remains
an isometry when restricting the domain to Σ and the co-domain to its image Σt0 , also observing
that K is normal to every Σt by construction.

2. Assume all the hypotheses of the previous exercise, completeness of K in particular,
except the one which requires that each maximal integral curve of γ meets Σ exactly once. Find
a counterexample to the fact that (Mn,g) is isometrically diffeomorphic to R×Σ with the said
metric.

(Hint. Consider the two-dimensional Minkowski spacetime constructed on R2 with ct = x0 =
y and x1 = x. Then construct a time oriented spacetime over a cylinder by identifying (x, y)
and (x, y + T ) for some T > 0 fixed. Use K := ∂

∂y smoothly extended at y = T . Notice that
this K is complete.)

8.5.3 The problem of the spatial metric of an extend reference frame

We come here to a still controversial and still partially open problem regarding what physically
meaningful metric one should define on the rest spaces Σt of an extended reference frame when
the time vector field T is not orthogonal to Σt. This problem was tackled in various versions
by Langevin, Ehrenfest, Born, Landau and Lifshitz, and Cattaneo. The prototype of this long
standing issue is in particular the version of the problem stated for the metric of the rotating
platform we shall briefly discuss in the next section10.

The problem arises when realizing that, if T is not orthogonal to Σt, then the “infinitesimal”
rest space (see (8.4)) dΣγ(t) ⊂ Tγ(t)M of an observer whose worldline is an integral curve of
T is not tangent to Σt at γ(t). Generally speaking, we expect that the “infinitesimal” rest
space dΣγ(t) of an observer whose tangent vector is T should be an “infinitesimal portion” of the
extended rest space of the reference frame constructed out T . With a more precise mathematical
language we would expect that

dΣγ(t) = Tγ(t)Σt .

This is true if and only if T is normal to Σt.
For the same reason, it does not seem physically meningful assuming that the metric on Σt

coincides with the metric g(Σt) induced from Mn, since this induced metric does not produce
the physically meaningful scalar product in dΣγ(t). If T is instead normal to Σt, no problem

arises, as the scalar product g(Σt) is just the one already present in the subspaces dΣγ(t).
Any definition of a suitable metric ht in Σt should be based on some established physical

fact. In Landau and Lifshitz’ approach, this physical fact is the experimental result stated in

10See, in particular, Rizzi, G.; Ruggiero, M.L. (2002). Space geometry of rotating platforms: an operational
approach. Found. Phys. 32 (10): 1525–1556 and Rizzi, G.; Ruggiero, M. L. (2004). Relativity in Rotating
Frames. Dordrecht: Kluwer.
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the following postulate they implicitly assume.

Back and Forth Journey Postulate. The speed of light is constantly c if measured in vacuum
along an ideal ruler travelled by the light back and forth, independently of the state of motion of
the reference frame where the ruler is at rest.

Remark 8.32.
(1) It is worth remarking that this assumption is different from Einstein’s synchronization pro-
cedure of distant clocks at rest to each other with a known distance L between them. In that
case, they are synchronized just sending a particle of light from one clock at time τ0 to the other
clock requiring that it says τ0 + L

c on receiving the particle. Referring to the Back and Forth
Journey Postulate there is nothing to synchronize instead, since with a closed path only one
clock is exploited.
(2) The new principle may appear physically difficult to test in the general case if the spacetime
is not stationary, since the metric properties of the a real ruler may change in time. A better
version of the principle could concern “infinitesimally” short rulers in order that the time neces-
sary for the light to run them can be taken as small as possible in comparison with the typical
scale of time used by the metric to change11. Another point of view is that the postulate can
be adopted only for stationary spacetimes and stationary coordinates in a stationary chart. In
the rest of the section we shall apply the postulate for infinitesimally small rulers without any
hypothesis about stationarity. �

We are going to prove that the above postulate completely fixes the metric ht on every rest
space of an extended reference frame. Furthermore, if T is normal to Σt, then ht coincides with
the one induced from g.

Let us consider an extended reference frame (N,T, t) in a spacetime (Mn,g) and fix an event
p ∈ N . As a consequence of our definitions, Σt(p) is the rest space containing p. Another point
q ∈ Σt(p) infinitesimally close to p in the same rest space Σt(p) = Σt(q) can be heuristically
defined by fixing a very short vector δXp ∈ TpΣt(p): in a chart around p, where p corresponds to
the origin, the components of q are those of δXp. That is our mathematical description of the
“infinitesimally” short ruler said above.

Let next evolve these two points along the integral lines of T , respectively, γp and γq. We
also suppose that a particle of light is launched from γq to γp, reaching the latter exactly at p,

11I do not like very much this viewpoint since it seems to suggest that ideal rulers cannot exist, because their
length necessarily changes when the metric evolves in time. It is clear that if adopting that radical point of view,
then nothing may make sense in General Relativity, since the geometry, including its evolution in time described
by the evolution of the metric, is just a description of the properties of the ideal rulers (and ideal clocks)! A crucial
observation is that the structure of the ideal rulers (and clocks) is not described in General Relativity where their
existence is only postulated. From the physical point of view a ruler is “ideally rigid” as a consequence of other
interactions, different from the gravitational one. A safer point of view is that, under a certain scale, ideal rulers
exist just in view of the predominant action of these other interactions. This interpretation however seems to
imply that General Relativity is not a fundamental theory and that, in its standard presentation at least, it is a
strictly macroscopic theory.
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Figure 8.3: Determination of the physical length of δXp.

where it is bounced back to γq. This is a back and forth journey along a ruler, so we have to
impose that the velocity of that particle of light is c. This constraints defines the physical length
of δXp in terms of a metric on Σt(p) as we are going to prove.

As said, we arrange the starting time (defined by the time function) of the particle of light
such that it reaches γp exactly at p. The lightlike geodesic describing the worldline of the particle
of light in the first part of its trip has a tangent vector (supposed to be applied on p)

δN (−)
p = δt−Tp − δXp ,

where δt− > 0. The tangent vector for the second part of the trip is instead

δN (+)
p = δt+Tp + δXp ,

where again δt+ > 0. (See Fig. 8.32)
The requirement that δN (±) is lightlike reads

g(δt±Tp ± δXp, δt±Tp ± δXp) = 0 ,

that is
(δt±)2g(Tp, Tp)± 2δt±g(Tp, δXp) + g(δXp, δXp) = 0 . (8.40)

We can solve these equations for the unknowns δt± ≥ 0 taking the constraints −g(Tp, Tp) > 0
and g(δXp, δXp) ≥ 0 into account:

δt± =
±g(Tp, δXp)

−g(Tp, Tp)
+

√
g(Tp, δXp)2 − g(Tp, Tp)g(δXp, δXp)

−g(δXp, δXp)
. (8.41)
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The total amount of reference frame time spent by the particle of light in its complete trip is

δt = δt+ + δt− = 2

√
g(Tp, δXp)2 − g(Tp, Tp)g(δXp, δXp)

−g(Tp, Tp)
. (8.42)

To obtain the value δτ corresponding to δt in terms of the proper time measured along γp, it is

necessary to multiply this result with

√
−g(Tp,Tp)

c , obtaining

δτ =
2

c

 
g(δXp, δXp) +

g(Tp, δXp)g(Tp, δXp)

−g(Tp, Tp)
. (8.43)

At this juncture, we are in a position to use the postulate, requiring that the back and forth
speed of light computed along this ruler takes the value c, so that the total length of the ruler
2L must satisfy

L =
cδτ

2
=

 
g(δXp, δXp) +

g(Tp, δXp)g(Tp, δXp)

−g(Tp, Tp)
, (8.44)

where L coincides with the physical length of δXp. If a physically meaningful scalar product

hp : TpΣt(p) × TpΣt(p) → R

exists in agreement with the Back and Forth Journey Postulate, we should have L2 = h(δXp, δXp).
Hence

h(δXp, δXp) = g(δXp, δXp)−
g(Tp, δXp)g(Tp, δXp)

g(Tp, Tp)

Since a scalar product is competely determined by its norm as a consequence of the polarization
identity, if our metric exists, it has necessarily the form (where we relax the heuristic requirment
of dealing with “short” vectors)

h(Xp, Yp) := g(Xp, Yp)−
g(Tp, Xp)g(Tp, Yp)

g(Tp, Tp)
for all Xp, Yp ∈ TpΣt(p). (8.45)

The above symmetric bilinear form h is actually defined in the full TpM
n, but we are interested

to it only when Xp, Yp ∈ TpΣt(p). We have to prove that, with this choice of its domain, it is
positive definite so that it deserves the status of a scalar product.

Proposition 8.33. Let g : V × V → R be a Lorentzian metric over the real vector space
V of dimension n. If T ∈ V is a timelike vector and Σ ⊂ V is a n − 1- dimensional subspace
spanned by spacelike vectors, then the symmetric bilinear form

h(X,Y ) := g(X,Y )− g(T,X)g(T, Y )

g(T, T )
for all X,Y ∈ Σ (8.46)

is a (positive) scalar product in Σ. Moreover

h(X,Y ) := g(PX,PY ) for all X,Y ∈ Σ. (8.47)
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where P : V → V is the orthogonal projector onto

Span(T )⊥ := {Y ∈ V | g(Y, T ) = 0} .

(In other words, P is the linear map associating Y ∈ V with the second addend of the decompo-
sition Y = YT + Y ⊥T referred to the direct decomposition V = Span(T )⊕ Span(T )⊥.)

Proof. Since

Q =
g(T, ·)
g(T, T )

T

is the orthogonal projector onto Span(T ), it must be

P = I −Q = I − g(T, ·)
g(T, T )

T .

Inserting this expression in the right-hand side of (8.47), we obtain (8.46) with elementary
computations. We also have that

h(X,Y ) = g(PX,PY ) ≥ 0 for all X,Y ∈ V .

To prove it, it is sufficient to select an orthonormal basis in Span(T )⊥ and to add a non-vanishing
unit vector of Span(T ) producing a pseudo orthonormal basis of V . g takes its canonical form
with signature (−1, 1, . . . , 1) in that basis so that g(PX,PY ) ≥ 0 trivially because g(P ·, P ·) is
the (positive) scalar product induced by g on Span(T )⊥. Finally h(X,X) = 0 implies X = 0 for
X ∈ Σ concluding the proof. Indeed, h(X,X) = 0 yields g(PX,PX) = 0 which means PX = 0
because g(P ·, P ·) is positive. PX = 0 is equivalent to QX = X, that is X ∈ Span(T ), so that
X ∈ Σ ∩ span(T ) = {0}. 2

Definition 8.34. If (N,T, t) is an extended reference frame in the spacetime (Mn,g), the
physical metric on every rest space Σt is

h(t)(Xp, Yp) := g(Xp, Yp)−
g(Tp, Xp)g(Tp, Yp)

g(Tp, Tp)
for all Xp, Yp ∈ TpΣt (8.48)

where p ∈ Σt. �

Remark 8.35.
(1) The metric (8.48) was also introduced by Cattaneo12 following a different mathematical
procedure. We prefer here to insist on the physical meaning of that metric.
(2) In coordinates co-moving with the reference frame x0 = ct, x1, . . . , xn−1 we find

h(t) =
n−1∑
α,β=1

h
(t)
αβdx

α ⊗ dxβ where h
(t)
αβ = gαβ −

g0αg0β

g00
(8.49)

12See Rizzi, G.; Ruggiero, M. L. (2004). Relativity in Rotating Frames. Dordrecht: Kluwer.
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and this is the form of the metric found by Landau and Lifshitz [LaLi80]. It is possible to prove

(see (1) in Exercises 8.37) that the matrix of coefficients h
(t)
αβ is the inverse of the matrix of

coefficients gαβ, where gab are as usual the components of the metric in each cotangent space
induced by g. �

It is now interesting to compute the one-way speed of light using the found metric. Suppose the
worldline of a particle of light passing through p at time t has tangent vector Np ∈ TpMn. We
can uniquely decompose it as

Np = δtTp + δXp where δt > 0 and δX ∈ TpΣt(p) . (8.50)

Imposing g(Np, Np) = 0, the value of δt is the same as δt+ in (8.41). The speed of light at p is
the ration of the length of δXp referred to the metric h(t) and the proper time interval (measured
along an integral curve of T ) corresponding to δt, i.e.,

δτ =
1

c

»
−g(Tp, Tp) δt

With some lengthy but elementary computation we find13∣∣∣∣∣∣∣∣δXp

δτ

∣∣∣∣∣∣∣∣
h

=
c

1 +
g(Tp,δXp)√

−g(Tp,Tp)||δXp||h(t)

It is clear that the result does not depend on δXp but only on the unit vector np ∈ TpΣt(p)

defined by it, always using the metric h(t) to normalize δXp. The final formula is

c(t, np) =
c

1 +
g(Tp,np)√
−g(Tp,Tp)

, (8.51)

That is the one-way speed of light measured at p ∈ N with respect to the extended reference
frame (N,T, t). It is evident that c(t, np) = c independently form the direction np ∈ TpΣt if and
only if Tp is normal to Σt.

Remark 8.36.
(1) The one-way speed of light depends on which synchronization procedure one uses to syn-
chronize the ideal clocks placed at different “infinitesimally close” position: one at p and the
other at “q = p+δXp”, when approximating an “infinitesimal” neighborhhood in Σt(p) of p with
TpΣt(p) as in Fig. 8.32. We stress that these clocks measure the proper time τ and not the time t
of the reference frame. The speed of light (8.51) is obtained assuming that both clocks say τ = 0

13Landau and Lifshitz use a different definition of velocity defined in a reference frame (N,T, t) when translating
the approach of [LaLi80] to our framework. That definition, though defined into a complicated fashion in my view,
is nothing but the one measured at rest with an observer whose worldline is and integral curve of T according to
(8.5), completely disregarding the existence of t and Σt. In that case the speed of light is evidently always c.
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in the rest space Σt(p) when the measure of the speed of a particle of light starts. This means
that we are actually using a different synchronization procedure of ideal clocks than Einstein’s
one which imposes a different one-way speed of light (8.51). This different procedure is however
compatible with the postulate about the constant value of c measured back and forth along an
ideal ruler. Einstein’s procedure is possible only when choosing the time vector T and the time
function t such that T and Σt are orthogonal.
If T and Σt are orthogonal, then (8.41) implies that the time function t is such that

δt+ = δt− .

To better illustrate this identity consider two ideal clocks at rest with observers whose worldlines
are tangent to T and suppose that those observers continuously exchange particles of light, as in
the discussion around (8.41). A time function t permits to synchronize à la Einstein these two
clocks in the events p and q, which are smutaneous according to t, if the time δt− necessary to
reach p from the worldline γq, measured from q along the curve, is equal to the one δt+ necessary
to go back from p to γq, again measured from q. In this situation, if both observers set their
ideal clocks at τ = 0 at the (t-simultaneous) events p and q, then the speed of light from p to q
(and viceversa) turns out to be c directly from (8.51).
(2) In general, any synchronization imposed at p, q ∈ Σt of the proper time of ideal clocks
transported by γp and γq gets lost in the future of those events due to the gravitational redshift

which distinguishes t and τ , in other words, dτ
dt =

√
−g00

c depends on the considered worldline
tangent to T . Even if Einstein’s synchronization is possible and it was imposted on Σt, without
re-synchronizing the clocks (setting again τ = 0 for both clocks in another future rest space
Σt′) further measurements of the one-way speed of light between γp and γq at t′ produce values
different from c. All that is very different form what happens in Special Relativity, when
the reference frame is inertial: there the clocks remain synchronized for ever after the first
synchronization procedure and the one-way speed of light constantly takes the value c. The
reason is that in Minkowskian coordinates g00 is constant in space and time. In ultrastatic
spacetimes, for reference systems with T given by the preferred timelike Killing vector, Einstein’s
synchronization is similarly permanent.
(3) The natural measure induced by the metric h(t) (8.45) on Σt in co-moving coordinate is

dν(t) :=
√

deth(t)dx1 . . . dxn

where h(t) is the matrix of the components h
(t)
αβ appearing in (8.49). It is possible to prove that

(see (2) in Exercise 8.37)

dν(t) =
dµ(g(Σt))√

g(T, T )g(dt], dt])
(8.52)

where the left-hand side is the geometric measure on Σt associated to the induced metric g(Σt).
Notice that, if T is normal to Σt, the two measures coincide as we have that»

g(T, T )g(dt], dt]) =
√
g00 g00 =

»
g00(g00)−1 = 1 ,
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where we have used co–moving coordinates where, by hypothesis, g0α = gα0 = 0, so that
g00 = (g00)−1.

The geometric measure µ(g(Σt)) is the one entering the conservation laws via divergence theorem
(see Section 8.3.2). This fact implies that, when writing the conserved quantities QΣt (8.20)
over Σt using the physical measure ν(t), a further factor must appear in the integrand

QΣt :=

∫
Σt

〈J, n〉
»

g(T, T )g(dt], dt]) dν(t) .

�

Exercises 8.37.
1. Consider a coordinate system x0, x1, . . . xn−1 comoving with an extended reference frame

in a spacetime (Mn,g) Let gab denote the components of the spacetime metric and h
(t)
αβ, α, β =

1, . . . , n − 1 denote the components of the physical metric on every rest space at x0 constant.
Prove that

n−1∑
β=1

gαβh
(t)
βγ = δαγ , α, γ = 1, . . . , n− 1 , (8.53)

where gab are the usual components of the metric in each cotangent space induced by g.

Solution. The identity gabgbc = δac expands to following equations when specialising the
values of the free indices a and c.

n−1∑
β=1

gαβgβγ + gα0gβ0 = δαγ ,
n−1∑
β=1

gαβgβ0 + gα0g00 = 0 ,
n−1∑
β=1

g0βgβ0 + g00g00 = 1 .

The expression of gα0 obtained form the second equation inserted in the first one produces the
wanted identity when taking (8.49) into account.

2. Prove (8.52):

dν(t) =
dµ(g(Σt))√

g(T, T )g(dt], dt])
.

Solution. Using the same notation as in the previous exercise, it is sufficient to prove that

√
deth =

√
det g(Σt)√
g00g00

,

where
g(Σt) := [gαβ]α,β=1,...,n−1 , h(t) := [h

(t)
αβ]α,β=1,...,n−1 .

In fact the value of
√
g00g00 does not depend on the used co-moving chart and once the identity

above is satisfied in all co-moving local chart, (8.52) arises by a standard use of a partition of
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unity on Σt. From the Cramer rule to compute the inverse of a matrix, since g00 is an element
of the inverse matrix of the matrix of coefficients gab, we have

g00 =
det g̃

det g−1

where g̃ is the matrix of elements gαβ with α, β = 1, . . . , n− 1. Taking (8.53) into account, this
identity becomes

g00 =
det(h(t))−1

det g−1

so that
det g = g00 deth(t) .

With the same argument, we have that

g00 =
det g(Σt)

det g
.

Inserting the expression of det g obtained form this identity in the penultimate equation, we find
(8.52) when taking the square root of both sides.

8.5.4 Einstein’s synchronizability in stationary spacetimes

Consider an extended reference frame (N,T, t) in the spacetime (Mn,g) where T is not orthog-
onal to the rest spaces Σt. A natural question arises: if, keeping T , it is possible to re-define
t in order to fulfill that requirement so that the physical metric h(t) and the geometric one
g(Σt) coincides so that, in particular, the speed of light is constantly c for all times and spatial
directions in accordance with Einstein’s synchronization procedure (see (1) in Remark 8.36).

In general the answer is negative. However if (Mn,g) is stationary with preferred timelike
Killing vector K = T , the problem can be definitely discussed.

We tackle this problem only locally in a given co-moving stationary coordinate system

φ : U 3 p 7→ (x0 = ct, x1, . . . , xn−1) ∈ Rn with φ(U) = I × V

where I ⊂ R is an interval and V ⊂ Rn−1 an open connected set. We stress that the components
of the metric gab in this coordinate system do not depend on t = x0/c and we can therefore
identify V ⊂ Rn−1 with a common rest space independent of t where perform our analysis. This
space is also called the quotient space since it is one-to-one with the equivalence classes of the
events belonging to the integral curves of T . This space of curves actually always exists and
can be endowed with the structure of a smooth manifold. The important fact is that, when T
is a Killing vector, we can also give the quotient space a physically meaningful metric as we are
doing.
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In this framework, the problem is whether or not there is a smooth map f = f(x1, . . . , xn−1)
such that the new time function14

t′(x1, . . . , xn−1) := t(x1, . . . , xn−1) + f(x1, . . . , xn−1) (8.54)

satisfies, for some smooth function k : V → R \ {0},

dt′ = kT [ . (8.55)

In fact, that condition is equivalent to
dt′] = kT

and we know that dt′] is (up to rescaling) the unique vector normal to Σt′ due to Proposition
5.26. In components (8.55) reads

δ0
a +

n−1∑
α=1

∂f

∂xa
δaα = kga0 .

Hence,

k = (g00)−1 and
∂f

∂xα
=
gα0

g00
, α = 1, . . . n− 1 .

Using the notation ~x := (x1, . . . , xn−1) and ~g := (g01, . . . , g0n−1) and where · denotes the stan-
dard scalar product in Rn−1, from elementary analysis, we conclude that a smooth function f
satisfying (8.55) when inserted in (8.54) exists if and only if∫ 1

0

~g(~η(u))

g00(~η(u))
· d~η
du
du = 0 (8.56)

for every smooth curve [0, 1] 3 u 7→ ~η(u) ∈ V such that ~η(0) = ~η(1). In this case, the function
f is defined as

f(~x) =

∫ 1

0

~g(~η(u))

g00(~η(u))
· d~η
du
du (8.57)

where [0, 1] 3 u 7→ ~η(u) ∈ V is any smooth curve joining a fixed point ~η(0) = ~x0 ∈ V to ~η(1) = ~x.
A necessary condition, which is also sufficient when V is simply connected, is the irrotation-

ality condition

∂

∂xα

Å
gβ0

g00

ã
=

∂

∂xβ

Å
gα0

g00

ã
everywhere in V for α, β = 1, . . . , n− 1. (8.58)

We conclude that these facts are equivalents for a stationary reference frame (in the domain of
a co-moving local chart),

(1) condition (8.56) holds;

14Observe that t′ is a good time function since 〈dt′, T 〉 = 〈dt, T 〉+ c
∑n−1
α=1

∂f
∂xα
〈dxα, ∂

∂x0
〉 = 〈dt, T 〉 = 1.
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(2) it is possible to change the time function in order to obtain rest spaces orthogonal to T
(so that the region of spacetime included in the domain of the coordinates turns out to be
static with respect to the Killing vector T );

(3) it is possible, changing the time function, to synchronize the proper time ideal clocks at
rest with the reference frame in accordance with Einstein’s synchronization procedure.

A necessary condition for the validity of (1)-(3), which is also sufficient if the spatial domain of
the coordinates is simply connected is (8.58).

8.5.5 The metric of a rotating platform and the Sagnac Effect

As an example which had a crucial impact on the development of this subject though it was born
in Special Relativity (by Langevin, Ehrenfest, Born and other authors15), we quickly examine
the issue concerning the reference frame of the rotating platform. In Minkowski spacetime
M4, consider an inertial reference frame and a co-moving Minkowskian system of coordinates
(t, x, y, z). Let us first re-write the metric in the local chart of (spatial) cylindric coordinates

g = −cdt⊗ dt+ dr ⊗ dr + r2dφ⊗ dφ+ dz ⊗ dz , (8.59)

where t ∈ R, r ∈ (0,+∞), φ ∈ (−π, π), and z ∈ R. Finally we pass to describe the met-
ric within another local system of coordinates related to the cylindrical ones by the following
transformations, for a constant ω > 0,

t′ = t , r′ = r , φ′ = φ+ ωt , z′ = z

These coordinates are co-moving with a new non-inertial reference frame, called the reference
frame of the rotating platform defined in the region r < c/ω in the domain of the cylindrical
coordinates. The time function of this new extended reference frame is t′ = t and the time
vector is

T =
∂

∂t′
=

∂

∂t
− ω ∂

∂φ
.

It is tangent to the wordlines of the physical particles forming the rotating platform.
Evidently T is a Killing vector since the coefficients of the metric in (8.59) do not depend on t
and φ. It is easy to see that g(T, T ) < 0, g(dt], dt]) < 0 provided if r < c/ω, and that 〈T, dt〉 = 1.
By direct inspection one sees that all integral curves of T in the domain r < c/ω meet every
3-surface at constant t.

In the new coordinates, which are by construction stationary and co-moving with the refer-
ence frame of the rotating platform, the metric reads

g = (−c2+ω2r′2)dt′⊗dt′+dr′⊗dr′+r′2dφ′⊗dφ′+dz′⊗dz′−r′2ω
(
dφ′ ⊗ dt′ + dt′ ⊗ dφ′

)
. (8.60)

15See Rizzi, G.; Ruggiero, M. L. (2004). Relativity in Rotating Frames. Dordrecht: Kluwer.
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It is clear that the coordinates are stationary but they do not satisfy condition (8.58) because

∂

∂r′
g0φ

g00
− ∂

∂φ′
g0r

g00
=

∂

∂r′
r′2ω

ω2r′2 − c2
6= 0 ,

and thus there is no chance to choose a new time function t in order that the conditions (1)-(3)
are satisfied. In particular the physical metric h on the rest space of the reference frame does not
coincide with the one induced by Minkowski metric (the standard Euclidean three-dimensional
metric). Indeed we have

h = dr′ ⊗ dr′ + dz′ ⊗ dz′ + r′2

1− ω2r′2

c2

dφ′ ⊗ dφ′ . (8.61)

Along the radial direction the metric coincides with the Euclidean one, however along the circles
everything changes. Using this metric one easily sees that the length of a circle of radius R is

LR :=
2πR»

1− ω2R2

c2

(8.62)

This fact alone implies that the geometry of the rest spaces is not Euclidean (so that there is
no way to obtain the metric in constant diagonal form by a suitable change of coordinates).

The istantaneous speed of light has the usual value c along the radial direction, instead along
the circles of radius r′, we find

c± =
c

1± r′ω
c

,

according to the direction, where we have used (8.51). The analogous velocity measured with
respect to the time t′ is

c′± =
√
−g00

1

1± r′ω
c

= c

»
1− r′2ω2

c2

1± r′ω
c

.

This means that whrn a particle of light travels along a complete circle of radius R, it takes a
period of time

∆t± =
LR
c′±

=
2πR

c

Å
1± Rω

c

ã
.

Then a difference of the two interval of total time exists which depends on the direction along
the circle of radius R the particle of light takes. For instance, we can assume to use a system of
mirrors or a fiber-optic cable fixed to a circle of the platform. This difference can be measured
in experiments and it is the well known Sagnac effect which was in the past the cause of a
discussion about the validity of Special Relativity.

Remark 8.38. Actually in experiments one measures corresponding intervals ∆τ± of proper
time of a clock fixed to the platform in a point of the circuit. These intervals are however equal
to ∆t± up to a common factor

1

c

√
−g00 =

 
1− R2ω2

c2
,
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so that the ∆τ+ −∆τ− 6= 0. �

8.6 Fermi-Walker’s transport in Lorentzian manifolds.

To conclude this chapter we discuss the technical notion of Fermi-Walker’s transport or non-
rotating transport along a worldline which has some applications in Special and General Rela-
tivity.

8.6.1 The equations of Fermi-Walker’s transport

If (Mn,g) is a spacetime, consider a timelike smooth curve γ : (a, b) → Mn parametrized by
its proper time t and assume that there is a smooth vector field X defined on γ according to
Definition 6.16. For the moment we also suppose that X(t) ∈ Σγ(t), Σγ(t) as usual denoting the
the rest space of the observer associated to γ, i.e., subspace of Tγ(t)M

n made of the vectors u
with g(u, γ̇(t)) = 0.

Remark 8.39. For instance X could be the spin of a particle whose world line is γ itself
when n = 4. �

We want to formalize the idea of a vector X which both

(a) does not rotate,

(b) preserves metrical properties in Σγ(t)

during its evolution along the worldline. Let us examine conditions (a) and (b) separately.

(a) As Tγ(t)M
n is orthogonally decomposed as Span(γ̇(t))⊕dΣγ(t), the only possible infinites-

imal deformations of Xγ(t) during an infinitesimal interval of time t must take place in
the linear space Span(γ̇(t)) spanned by γ̇. If X(t) does not satisfy Xγ(t) ∈ Σγ(t), a direct
generalization of the said condition is that the orthogonal projection of Xγ(t) onto dΣγ(t)

involves deformations along γ̇ only during its evolution.

(b) The condition about the preservation of metrical structures means that g(X(t), X(t)) is
constant.

Remark 8.40.
(1) Notice that γ̇ naturally satisfies both requirements.
(2) The non-rotating and metric preserving conditions can be generalized to a generic set of vec-
tors {X(a)(t)}a∈A. Here, condition (a) is formulated exactly as above for each vector separately,
while condition (b) property means that the scalar products g(X(a)(t), X(b)(t)), with a, b ∈ A,
are preserved during evolution along the line for t ∈ (a, b). �
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Our goal is to find a set of equations which are equivalent to the pair of conditions (a) and (b)
also relaxing the condition X(t) ∈ dΣγ(t). In this case, condition (a) is imposed only on the
orthogonal projection

X(t) + g(X(t), γ̇(t)) γ̇(t) ∈ dΣγ(t)

of X(t) onto Σγ(t). Condition (a) therefore reads

∇γ̇ [X(t) + g(X(t), γ̇(t)) γ̇(t)] = α(t)γ̇(t) , (8.63)

for some suitable smooth scalar function α we want to determine. Expanding (8.63). we find

∇γ̇X(t) + g(∇γ̇X(t), γ̇(t))γ̇(t) + g(X(t),∇γ̇ γ̇(t))γ̇(t) + g(X(t), γ̇(t))∇γ̇ γ̇(t)

= α(t)γ̇(t) . (8.64)

Taking the scalar product with γ̇(t) and using g(γ̇(t), γ̇(t)) = −1 we obtain

g(∇γ̇X(t), γ̇(t))− g(∇γ̇X(t), γ̇(t))− g(X(t),∇γ̇ γ̇(t)) = −α(t) (8.65)

so that
g(X(t),∇γ̇ γ̇(t)) = α(t) .

That identity, inserted in the right-hand side of (8.63), produces a definite formulation of con-
dition (a),

∇γ̇ [X(t) + g(X(t), γ̇(t)) γ̇(t)] = g(X(t),∇γ̇ γ̇(t))γ̇(t) ,

namely
∇γ̇X(t) +∇γ̇ [g(X(t), γ̇(t)) γ̇(t)]− g(X(t),∇γ̇ γ̇(t))γ̇(t) = 0 .

In summary, our final equation corresponding to the requirment (a) is

∇γ̇X(t) + g(X(t), γ̇(t))∇γ̇ γ̇(t) + g(∇γ̇X(t), γ̇(t))γ̇(t) = 0 . (8.66)

Let us finally impose the metric preserving property (b). To this end we modify the previous
equation as

∇γ̇X(t) + g(X(t), γ̇(t))∇γ̇ γ̇(t)− g(X(t),∇γ̇ γ̇(t))γ̇(t) +

ï
d

dt
g(X(t), γ̇(t))

ò
γ̇(t) = 0 . (8.67)

Now observe that, if both γ̇ and X satisfy the metric preserving property, we are commited to
also assume that

d

dt
g(X(t), γ̇(t)) = 0 . (8.68)

As a consequence, (8.67) specializes to

∇γ̇X(t) + g(X(t), γ̇(t))∇γ̇ γ̇(t)− g(X(t),∇γ̇ γ̇(t))γ̇(t) = 0 . (8.69)
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We have found that if X satisfies both the non-rotating condition (a) and the metric preserving
condition (b), then it satifies (8.69). Let us discuss if that equation implies conditions (a) and
(b). If the vectors of a family {X(a)(t)}a∈A satisfy (8.69), their scalar products along γ are
constant as shown below so that they agree with the condition (b). Moreover, observing that γ̇
itself fulfils (8.69), we also have that (8.68) holds true for every X(a)(t) and therefore they also
satisfy the equivalent condition (8.66) which is the mathematical statement of condition (a). We
conclude that (8.69) is equivalent to the couple of requirements (a)and (b). (8.69) is the wanted
equation.

Definition 8.41. (Fermi-Walker’s Transport of a vector along a curve.) Let (Mn,g)
be a Lorentzian manifold and γ : (a, b) → Mn a smooth timelike curve where t is the length
parameter (i.e., the proper time). A smooth vector field X on γ is said to be Fermi-Walker
transported along γ if

D(F )
γ X(t) = 0

for all t ∈ (a, b), where we have introduced the Fermi-Walker derivative along γ

D(F )
γ X(t) := ∇γ̇X(t) + g(X(t), γ̇(t))∇γ̇ γ̇(t)− (X(t),∇γ̇ γ̇(t))γ̇(t) . (8.70)

�

Proposition 8.42. The notion of Fermi-Walker’s transport along a curve γ as defined in
Definition 8.41 enjoys the following properties.

(1) It is metric preserving, i.e, if (a, b) 3 t 7→ X(t) and (a, b) 3 t 7→ X ′(t) are Fermi-Walker
transported along γ, then

(a, b) 3 t 7→ g(X(t), X ′(t))

is constant.

(2) (a, b) 3 t 7→ γ̇(t) is Fermi-Walker transported along γ.

(3) If γ is a geodesic with respect to the Levi-Civita connection, then the notions of parallel
transport and Fermi-Walker’s transport along γ coincide.

Proof. (1) Using the fact that the connection is metric one has:

d

dt
g(X(t), X ′(t)) = g(∇γ̇X((t), X ′(t)) + g(X(t),∇γ̇X ′(t)) . (8.71)

Making use of the equation of Fermi-Walker’s transport,

∇γ̇U(t) = −g(U(t), γ̇(t))∇γ̇ γ̇(t) + g(U(t),∇γ̇ γ̇(t))γ̇(t) ,
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for both X and X ′ in place of U , the terms in the right-hand side of (8.71) cancel out each
other. The proof of (2) is direct by noticing that

g(γ̇(t), γ̇(t)) = −1

and

g(γ̇(t),∇γ̇ γ̇(t)) =
1

2

d

dt
g(γ̇(t), γ̇(t)) = −1

2

d

dt
1 = 0 .

The proof of (3) is trivial noticing that if γ is a geodesic, then ∇γ̇ γ̇(t) = 0 and (8.71) specializes
to the equation of the parallel transport

∇γ̇U(t) = 0 .

2

Remark 8.43.
(1) If γ : (a, b)→M is fixed, the Fermi-Walker’s transport condition

∇γ̇V (t) = g(V (t),∇γ̇ γ̇(t))γ̇(t)− g(V (t), γ̇(t))∇γ̇ γ̇(t)

can be used as a differential equation. Expanding both sides in local coordinates (x1, . . . , xn) one
finds a first-order differential equation for the components of V referred to the bases of elements
∂
∂xk
|γ(t). As the equation is in normal form and linear where everything known is smooth, the

initial vector V (t0), where t0 ∈ (a, b), determines V uniquely along the whole curve (see the
analogous comment for the case of the parallel transport). In a certain sense, one may view the
solution (a, b)t 7→ V (t) as the “transport” and “evolution” of the initial condition V (t0) along γ
itself.
The global existence and uniqueness theorem has an important consequence. If γ : [a, b]→Mn

is fixed and u, v ∈ (a, b) with u 6= v, the notion of parallel transport along γ produces an
vector space isomorphism Fγ [u, v] : Tγ(u)M

n → Tγ(v)M
n which associates V ∈ Tγ(u)M

n with
that vector in Tγ(u)M

n which is obtained by Fermi-Walker transporting V in Tγ(u)M
n. Notice

that Fγ [u, v] also preserves the scalar product by property (1) of proposition 8.42, i.e., it is an
isometric isomorphism.
(2) The equation of Fermi-Walker’s transport of a vectorX in a n-dimensional spacetime (Mn,g)
can be re-written

dXa(t)

dt
= Xb(t)[Ab(t)V

a(t)−Aa(t)Vb(t)] , (8.72)

where we have indicated the n-velocity by V (t) = γ̇(t) and we have introduced the n-acceleration
A(t) := ∇γ̇ γ̇(t) of a worldline γ parametrized by the proper time t. Notice that g(A(t), V (t)) = 0
for all t and thus if A 6= 0, it turns out to be spacelike because V is timelike by definition. �

Examples 8.44. The famous Bargmann–Michel–Telegdi (BMT) equation describes the spin
precession of an electron in an external electromagnetic field F in Special Relativity. It reads
(for c = 1)

dSa

dτ
=

e

m
V aVbF

bcSc + 2µ(F ad − V aVcF
cd)Sd . (8.73)
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Above the derivative is computed along the worldline γ of the electron whose 4-velocity is V and
S is the polarization vector, describing the spin vector of the electron. It satisfies g(V, S) = 0 so
that it is always spacelike and stays in the rest space of the electron, and there it is normalized
to 1. Since this property is invariant changing the reference frame, we have g(S, S) = 1. The
coefficients e, m, and µ respectively denote the charge, the mass, and the magnetic moment of
the electron.
The written equation can be rephrased in terms of the Fermi-Walker derivative. To this end,
observe that the 4-velocity satisfies the equation of motion according to the Lorentz force (see
[Mor20])

dV a

dτ
=

e

m
F abVb .

Inserting this identity in the right-hand side of (8.73), we find

dSa

dτ
= V aAcSc + 2µ(F ad − V aVcF

cd)Sd ,

where we have used notations as in (8.72) so that A denotes the 4-acceleration of the electron.
Now observe that

AaV cSc = 0

by definition of S. Therefore the equation above can be re-written as

dSa

dτ
= Sc[AcV

a −AaVc] + 2µ(F ad − V aVcF
cd)Sd .

In other words, as expected since it deals with the phenomenon of precession of the spin, the
BMT equation says how the spin fails to be transported without rotating along the worldline of
the electron. This failure is due to the presence of an external electromagnetic field:

D(F )
γ Sa = 2µ(F ad − V aVcF

cd)Sd . (8.74)

8.6.2 Fermi-Walker’s transport and Lorentz group

The non-rotating property of Fermi-Walker’s transport can be viewed from another point of view
when Mn is the four-dimensional Minkowski spacetime M4. Consider the orthochronous proper
Lorentz group SO(1, 3)↑ [Mor20] represented by real 4× 4 matrices Λ : R4 → R4, with Λ = [Λij ],

i, j = 0, 1, 2, 3. Here the coordinate x0 represents the time coordinate and the remaining three
coordinates are the space coordinates in Minkowski spacetime. These sets of coordinates are the
natural coordinates of inertial frames and SO(1, 3)↑ (with the addition of spacetime translations)
describes the possible coordinate transformation between inertial reference frames. It is known
that every Λ ∈ SO(1, 3)↑ can uniquely be decomposed as

Λ = ΩP ,

where Ω, P ∈ SO(1, 3)↑ are respectively a rotation of SO(3) of the spatial coordinates which
does not affect the time coordinate, and a pure Lorentz transformation. In this sense, every pure
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Lorentz transformation does not contain rotations and represents the coordinate transformation
between a pair of pseudo-orthonormal reference frames in Minkowski spacetime [Mor20] which
do not involve rotations in their reciprocal position.
Every pure Lorentz transformation can uniquely be represented as

P = e
∑3
i=1 AiKi ,

where (A1, A2, A3) ∈ R3 and K1,K2,K3 are matrices in the Lie algebra of SO(1, 3), so(1, 3),
called boosts. The elements of the boosts Ka = [K(a)

i
j
] are

K(a)
0
j

= K(a)
i
0

= δai and K(a)
i
j

= 0 in all remaining cases.

We have the expansion in the metric topology of R16

P = eh
∑3
i=1 AiKi =

∞∑
n=0

hn

n!

(
3∑
i=1

AiKi

)n
,

and thus

P = I + h
3∑
i=1

AiKi + hO(h) ,

where O(h)→ 0 as h→ 0. The matrices of the form

I + h
3∑
i=1

AiKi .

with h ∈ R and (A1, A2, A3) ∈ R3 (notice that h can be re-absorbed in the coefficients Ai) are
called infinitesimal pure Lorentz transformations.
Now, consider a differentiable timelike curve γ : [0, ε)→M4, starting from p in a four dimensional
Lorentzian manifold M4, and fix a pseudo-orthonormal basis in TpM4, e0, e1, e2, e3 with e1 =
γ̇(0). We are assuming that the parameter t of the curve is the proper time. Consider the
evolutions of ei, t 7→ ei(t), obtained by using Fermi-Walker’s transport along γ. We want to
investigate the following issue.
What is the Lorentz transformation which relates the basis {ei(t)}i=0,...,3 with the basis of Fermi-
Walker transported elements {ei(t+ h)}i=0,...,3 in the limit h→ 0?
In fact, we want to show that the considered transformation is an infinitesimal pure Lorentz
transformation and, in this sense, it does not involves rotations.
To compare the basis {ei(t)}i=0,...,3 with the basis {ei(t + h)}i=0,...,3 we have to transport, by
means of parallel transport, the latter basis in γ(t). In other words, we intend to find the
Lorentz transformation between {ei(t)}i=0,...,3 and {P−1

α [γ(t), γ(t+ h)]ei(t+ h)}i=0,...,3, α being
the geodesic joining γ(t) and γ(t+ h) for h small sufficiently. We define

e′i(t+ h) := P−1
α [γ(t), γ(t+ h)]ei(t+ h) .
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Remark 8.45. The notation P−1
α [γ(t), γ(t + h)] stresses that the parallel transport if per-

formed along α, but the joinend points γ(t), γ(t+ h) (also) belong to the other curve γ. �

We have
e′i(t+ h)− ei(t) = h∇γ̇ei(t) + hO(h) .

Using the equation of Fermi-Walker’s transport we get

e′i(t+ h)− ei(t) = hg(ei(t), A(t))e0(t)− hg(ei(t), e0(t))A(t) + hO(h) , (8.75)

where A(t) = ∇γ̇ γ̇(t) is the 4-acceleration of the worldline γ itself and O(h) → 0 as h → 0.
Notice that g(A(t), e0(t)) = 0 by the (2) in Remarks 8.43 and thus

A(t) =
3∑
i=1

Ai(t)ei(t) , (8.76)

for some triple of functions A1, A2, A3. If ηab = diag(−1, 1, 1, 1) and taking (8.76) and the pseudo
orthonormality of the basis {ei(t)}i=0,...,3 into account, (8.75) can be re-written

e′i(t+ h) = ei(t) + h(Ai(t)e0(t)− ηi0A(t)) + hO(h) . (8.77)

If we expand e′i(t+ h) in components refereed to the basis {ei(t)}i=0,...,3, (8.77) becomes

(e′i(t+ h))j = δji + h(Ai(t)δ
j
0(t)− ηi0Aj(t)) + hOj(h) , (8.78)

where one should remind that A0 = 0. As (ei(t))
j = δji , (8.78) can be re-written

e′i(t+ h) = I + h

Ñ
3∑
j=1

AjKj

é
ei(t) + hO(h) . (8.79)

We have found that the infinitesimal transformation which connect the two bases is, in fact,
an infinitesimal pure Lorentz transformation. Notice that this transformation depends on the
4-acceleration A and reduces to the identity (up to terms hO(h)) if A = 0, i.e., if the curve is a
timelike geodesic.
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Chapter 9

Curvature

This chapter introduces the basic notion of curvature tensor for affine and metric connections,
on the other hand it discusses how these notions play a central role in the physical development
of General Relativity which we shall see in the next chapter.

9.1 Curvature tensors of affine and metric connections

According to Definition 5.7 a (pseudo) Riemannian manifold (M,g) is locally flat if it admits an
atlas made of local canonical charts (U,ψ). By definition, the coordinate representation of the
metric g metric in those coordinates has the constant form gij = ±δij , with the sign determined
by the signature of the metric.

In general the mentioned atlas does not contain global canonical charts, so that the manifold
is not globally flat. This is the case, for instance of a 2-dimensional cylinder C ⊂ R3, x2 +y2 = 1,
equipped with the metric induced by the standared metric of R2: it is locally flat but not globally
flat differently from R2 itself.

Since the metric tensor is constant in canonical coordinates defined in a neighborhood U of
any p ∈M , the Levi-Civita connection is represented by trivial connection coefficients in those
coordinates: Γkij = 0. As a consequence, in those coordinates,

∇i∇jZk =
∂2Zk

∂xi∂xj
=

∂2Zk

∂xj∂xi
= ∇j∇iZk ,

for every Z ∈ X(M). In other words, the covariant derivatives of vector fields commute

∇i∇jZk = ∇j∇iZk .

Due to the intrinsic nature of covariant derivatives, that identity holds in any coordinate system.
We have therefore established that the local flatness condition of (M,g) implies commutativity
of (Levi-Civita) covariant derivatives on vector fields on M . This fact completely characterizes
locally flat (pseudo) Riemannian manifolds because the converse implication also holds, as we
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shall prove in this chapter. Therefore, a (pseudo) Riemannian manifold can be considered
“curved” whenever commutativity of (Levi-Civita) covariant derivatives fails. This property
can be used to extend the notion of curved manifold to manifolds which are equipped with
non-metric connections ∇ as we shall see shortly.

Some quantitative notion is necessary to measure the failure of commutativity of the covariant
derivatives on vector fields. This notion is provided by the curvature tensor (field)R associated to
∇. In this way, commutativity of the covariant derivatives in M is equivalent to the requirement
that R = 0 everywhere in M .

In the special case of the the Levi-Civita connection, it is possible to prove a stronger
remarkable result: the condition R = 0 everywhere is equivalent to the local flatness of the
manifold, in the sense of the existence of an atlas made of charts where the metric takes its
constant canonical diagonal form.

9.1.1 Curvature tensor and Riemann curvature tensor

To introduce the curvature tensor, let us discuss in more detail the commutativity property of
covariant derivative acting on tensor fields using an intrinsic approach.

Lemma 9.1. Let M be a smooth manifold endowed with a torsion-free affine connection ∇.
The following facts are equivalent.

(a) Covariant derivatives of contravariant vector fields commute

∇i∇jZk = ∇j∇iZk (9.1)

in every chart on M and all coordinate indices i, j, k, for every Z ∈ X(M).

(b) The following identity holds everywhere on M

∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z = 0 , (9.2)

for all X,Y, Z ∈ X(M).

Proof. If X,Y ∈ X(M), (9.1) entails

XiY j∇i∇jZk = XiY j∇j∇iZk ,

which can be re-written,

Xi∇i(Y j∇jZk)−Xi(∇iY j)∇jZk = Y j∇j(Xi∇iZk)− Y j(∇jXi)∇iZk ,

or
Xi∇i(Y j∇jZk)− Y j∇j(Xi∇iZk)− (Xi(∇iY j)∇jZk − Y i(∇iXj)∇jZk) = 0 ,
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and finally

Xi∇i(Y j∇jZk)− Y j∇j(Xi∇iZk)− (Xi(∇iY j)− Y i(∇iXj))∇jZk = 0 .

Proposition 6.9, which relies on the hypothesis that ∇ is torsion-free, permits to recast the found
identity into the intrinsic form

∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z = 0 , ∀X,Y, Z ∈ X(M) .

In turn, (9.2) implies (9.1) when specialized to X = ∂
∂xi

and Y = ∂
∂xj

(smoothly extended out-

side the domain of the coordinate patch) also using [ ∂
∂xi
, ∂
∂xj

] = 0. 2

Remark 9.2. In case ∇ has a torsion T , we can reformulate condition (9.2) in order to
remain equivalent to condition (9.1) making explicit use of the torsion tensor T . In that case
(9.3) below would replaced by

Rp(Xp, Yp, Zp) =
(
∇Y∇XZ −∇X∇Y Z +∇[X,Y ]Z

)
p

+ T (Xp, Yp)Zp .

However, we are not interested in this extension so that we leave all details to the interested
reader. �

We are in a position to introduce a tensor field which is the quantitative measure of the failure
of condition (9.2).

Proposition 9.3. Let M be a smooth manifold equipped with an affine torsion-free connection
∇. The following facts are true.

(a) There is a unique smooth tensor field R such that Rp ∈ T ∗pM ⊗ T ∗pM ⊗ T ∗pM ⊗ TpM if
p ∈M and

Rp(Xp, Yp, Zp) =
(
∇Y∇XZ −∇X∇Y Z +∇[X,Y ]Z

)
p
, (9.3)

if X,Y, Z ∈ X(M).

(b) In local coordinates, we have

Rp(Xp, Yp, Zp)
l = (Rp)ijk

lXi
pY

j
p Z

k
p , (9.4)

where

Rijk
l =

∂Γlik
∂xj

−
∂Γljk
∂xi

+ ΓrikΓ
l
jr − ΓrjkΓ

l
ir , (9.5)

and

(Rp)ijk
l :=

≠
Rp

Å
∂

∂xi
|p,

∂

∂xj
|p,

∂

∂xk
|p
ã
, dxlp

∑
.
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Proof. By direct inspection one finds that, if Rijk
l is defined as in the right-hand side of (9.5),

then (
∇Y∇XZ −∇X∇Y Z +∇[X,Y ]Z

)l
p

= Rijk
lXi

pY
j
p Z

k
p , (9.6)

because, in particular, all derivatives of the fields X,Y, Z cancel each other in view of Schwarz’
theorem on crossed defivatives. Such an identity proves, in particular, that the map

X(M)× X(M)× X(M) 3 (X,Y, Z) 7→ (∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z)p ,

depends only on the values attained at p by X,Y, Z and not on the values these vector fields
take around this point. Since the map is multi R-linear, it defines a tensor

Rp ∈ T ∗pM ⊗ T ∗pM ⊗ T ∗pM ⊗ TpM .

By construction, the components of Rp are given in (9.5) and (9.3) holds. Finally, by construc-
tion, Rp is smooth when varying p ∈M . 2

Definition 9.4. (Curvature tensor and Riemann curvature tensor.) Let M be a
smooth manifold equipped with an affine torsion-free connection ∇.

(a) The smooth tensor field R defined in Proposition 9.3 is called curvature tensor (field)
of ∇.

(b) If ∇ is the Levi-Civita connection obtained by a metric g, R is called Riemann curva-
ture tensor (field) of g. �

Notation 9.5. The following standard notation is exploited.

(1) R(X,Y, Z) indicates the vector field that restricts to the vector Rp(Xp, Yp, Zp) at every
p ∈M .

(2) R(X,Y ) : X(M)→ X(M) is the differential operator

R(X,Y ) := ∇Y∇X −∇X∇Y +∇[X,Y ] ,

so that R(X,Y )Z = R(X,Y, Z). �

Exercises 9.6. .

1. Prove that
∇i∇jωk −∇j∇iωk = Rijk

lωl . (9.7)

2. Prove that, in the general case, Ricci’s identity holds:

∇i∇jΞi1···ip j1···jq −∇j∇iΞi1···ip j1···jq = −
p∑

u=1

Rijs
iuΞi1···s···ip j1···jq +

p∑
u=1

Rijju
sΞi1···ip j1···s···jq .
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To go on, we extend the notion of flatness to affine torsion-free and generally non-metric con-
nections.

Definition 9.7. (Locally flat affine connection.) Let M be a smooth manifold equipped
with an affine torsion-free connection ∇. M and ∇ are said locally flat if there is an atlas of
M where the connection coefficients vanish everywhere. �

Remark 9.8. The Levi-Civita connection of a locally flat (pseudo) Riemannian manifold is
evidently locally flat. �.

To conclude, we state a proposition that summarize all that we found adding some further minor
result. This statement will be completed later into a more general proposition.

Proposition 9.9. Let M be a smooth manifold equipped with a torsion-free affine connection
∇. The following facts are valid.

(1) The following statements are equivalent.

(a) Covariant derivatives of smooth tensor fields Ξ commute, i.e.,

∇i∇jΞA = ∇j∇iΞA ,

in every local chart;

(b) covariant derivatives of smooth contravariant vector fields X commute;

(c) covariant derivatives of smooth covariant vector fields ω commute;

(d) the curvature tensor associated with ∇ vanishes everywhere in M .

(2) If M is locally flat, then the equivalent facts (a)-(d) hold.

(3) If (M,g) is a locally flat (pseudo) Riemannian manifold and ∇ is the Levi-Civita connec-
tion, then the equivalent facts (a)-(d) hold.

Proof. It is clear that (a) ⇒ (b) and also (b) ⇒ (d) in view of Lemma 9.1 and (9.6). Further-
more, (d) ⇒ (c). Next (c) ⇒ (d) in view of (1) in Exercises 9.6. Finally, (d) ⇒ (a) due to (2) in
Exercises 9.6. The next statement in the thesis is consequence of (9.5): in the coordinates of the
atlas Rijkl must vanish and, since they define a tensor, they vanish in every coordinate system,
i.e., R = 0 in M . If ∇ is the Levi-Civita connection, local flatness implies there is an atlas
where the coefficients of the metric are constant and thus the Levi-Civita connection coefficients
vanish and one reduces to the previously considered case. 2
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M

Ap

Xp

x1 = s
Yp

x2 = t

A′q

Aq

x3 = · · · = xn = 0

Figure 9.1: Difference of parallely transported vectors

9.1.2 A geometric meaning of the curvature tensor

We want to spend some words about an interesting geometric meaning of the curvature tensor.
Consider a smooth M equipped with a torsion-free connection ∇ and a pair of linearly

independent smooth vector fields X,Y such that [X,Y ] = 0. In particular, according to Theorem
4.33, we can assume thatX|U = ∂

∂x and Y |U = ∂
∂y in a local chart φ : U 3 p 7→ (x, y, x3, . . . , xn) ∈

Rn. Starting form p ≡ (0, . . . , 0) we can reach the point q ≡ (h, k, 0, . . . , 0), where h, k > 0,
along two different swapped paths described in coordinates as follows.

(1) γ1 : [0, h+k]→ U made of a segment from (0, . . . , 0) to (h, 0, . . . , 0) followed by a segment
from (h, 0, . . . , 0) to (h, k, . . . , 0).

(2) γ2 : [0, h+k]→ U made of a segment from (0, . . . , 0) to (0, k, . . . , 0) followed by a segment
from (0, k, . . . , 0) to (h, k, . . . , 0).

A vector field Ap ∈ TpM can be parallely transported to q either along γ1, giving rise to the
vector Aq ∈ TqM , or along γ2, giving rise to the vector A′q ∈ TqM . If (M,g) is locally flat and
φ is a chart where the connection coefficints vanish, it is easy to see that Aq = A′q by direct
computation.

If M is not locally flat, in other words it is curve, one finds Aq 6= A′q in general (See Fig
9.1.2). In the Riemmanian case, think for instance of a sphere S2 embedded in R3 with the
induced metric. Intuitively speaking, the curvature is responsible for the failure of Aq = A′q.
This failure can be adopted as a definition of “curved manifold” differently from our approach
where we used the failure of the commutativity of the covariant derivatives.

What we want to show now is the the failure to have Aq = A′q is however quantitatively
measured by the Riemann tensor Rp in the limit h, k → 0, so that in the (pseudo) Riemannian

206



case the two ideas agree.
To go on with computations, we henceforth write (h, k) in place of (h, k, 0, . . . , 0) and we

derectly indicate the points with their coordinates.
From the equation of parallel transport,

dAa

dt
= −Γabc(γ(t))Abγ′c(t) ,

the vector A(h, 0) obtained by parallel transport of A(0, 0) = Ap along the segment joining (0, 0)
to (h, 0) satisfies

Aa(h, 0) = A(0, 0)−
∫ h

0

Γa1b(x, 0)Ab(x, 0)dx .

Transporting this vector to q = (h, k) along the segment joining (h, 0) and (h, k) produces

Aa(h, k) = A(0, 0)−
∫ h

0

Γa1b(x, 0)Ab(x, 0)dx−
∫ k

0

Γa2b(h, y)Ab(0, 0)dy

+

∫ k

0

Γa2c(h, y)

∫ h

0

Γc1b(x, 0)Ab(x, 0)dxdy .

This is the vector Aq produced by using γ1. The vector A′q computed by using γ2 has insted the
form

A′a(h, k) = A(0, 0)−
∫ k

0

Γa2b(0, y)Ab(0, y)dy −
∫ h

0

Γa1b(x, k)Ab(0, 0)dx

+

∫ h

0

Γa1c(x, k)

∫ h

0

Γc2b(0, y)Ab(0, y)dydx .

In summary,

A′a(h, k)−Aa(h, k) =

∫ h

0

Γa1c(x, k)

∫ h

0

Γc2b(0, y)Ab(0, y)dydx−
∫ k

0

Γa2c(h, y)

∫ h

0

Γc1b(x, 0)Ab(x, 0)dxdy

+

∫ h

0

Γa1b(x, 0)Ab(x, 0)dx−
∫ k

0

Γa2b(0, y)Ab(0, y)dy

+Ab(0, 0)

ñ∫ k

0

Γa2b(h, y)dy −
∫ h

0

Γa1b(x, k)dx

ô
.

We want to expand this difference in (h, k) up to the second order using the Taylor expansion
around (0, 0) ≡ p. A direct computation proves that all first and second order derivatives
vanishes barring

∂2

∂h∂k
|(0,0)

[
A′a(h, k)−Aa(h, k)

]
= Ab(0, 0)

ï
∂Γa2b
∂x1

−
∂Γa1b
∂x2

+ Γa1cΓ
c
2b − Γa2cΓ

c
1b

ò
(0, 0) .
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From (9.5), remembering that X = ∂
∂x1 and Y = ∂

∂x2 , we conclude that

A′q −Aq =
hk

2
Rp(Xp, Yp)Ap +O3(h, k) ,

where |O3(h, k)| ≤ C||(h, k)||3 in a neighborhood of (0, 0) for some constant C ≥ 0.
We have obtained that the curvature tensor R is a measure of the failure of the parallel

transport to be “commutative” when joining a pair of “infinitesimally” close points by using
paths tangent to a pair of commuting smooth vector fields.

9.1.3 Properties of curvature tensor and Bianchi identity

The curvature tensor enjoys a set of useful properties which we are going to summarize in the
proposition below. In the (pseudo) Riemannian case, these properties are very crucial in physics
because they play a central role in General Relativity as we shall see shortly.

Proposition 9.10. The curvature tensor R associated to an affine torsion-free connection
∇ on a smooth manifold M enjoys the following properties, where X,Y, Z,W are arbitrary in
X(M).

(1) R(X,Y )Z = −R(Y,X)Z or equivalently Rijk
l = −Rjik l.

(2) R(X,Y, Z) +R(Y,Z,X) +R(Z,X, Y ) = 0 or equivalently Rijk
l +Rjki

l +Rkij
l = 0 .

(3) If ∇ is the Levi-Civita connection, then

g (R(X,Y )Z,W ) = −g (Z,R(X,Y )W ) or equivalently Rijkl = −Rijlk

where Rijkl := Rijk
rgrl .

(4) If ∇ is the Levi-Civita connection, then the Bianchi identity holds

∇YR(Z,W ) +∇ZR(W,Y ) +∇WR(Y, Z) = 0 i.e. ∇kRijp a +∇iRjkp a +∇jRkip a = 0 .

(5) if ∇ is the Levi-Civita connection, then

Rijkl = Rklij .

Proof. (1) is an immediate consequence of the definition of the curvature tensor given in
Proposition 9.3.
To prove (2), we start from the identity,

∇[i∇jωk] :=
1

3!
(∇i∇jωk +∇j∇kωi +∇k∇iωj −∇j∇iωk −∇i∇kωj −∇k∇jωi) = 0

which can be checked by direct inspection and using Γrpq = Γrqp. Next one directly finds by (9.5),

∇i∇jωk − ∇j∇kωk = Rijk
lωl (see Exercise 9.6.1) and thus ∇[i∇jωk] − ∇[j∇iωk] = R[ijk]

lωl.
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Hence R[ijk]
lωl = 0. Since ω is arbitrary R[ijk]

l = 0 holds. Using (1), it immediately leads to

Rijk
l +Rjki

l +Rkij
l = 0, i.e. (2).

(3) is nothing but the specialization of the identity (see Exercise 9.6.2)

∇i∇jΞi1···ip j1···jq −∇j∇iΞi1···ip j1···jq = −
p∑

u=1

Rijs
iuΞi1···s···ip j1···jq +

p∑
u=1

Rijju
sΞi1···ip j1···s···jq

to the case Ξ = g and using ∇igj1j2 = 0.
(4) can be proved as follows. Start from

Xa
,ij −Xa

,ji = Rijp
aXp

and take another covariant derivative obtaining

Xa
,ijk −Xa

,jik −Rijp aXp
,k = Rijp

a,kX
p

Permuting the indices ijk and summing the results, one hasÄ
Xa

,ijk −Xa
,jik −Rijp aXp

,k

ä
+
Ä
Xa

,jki −Xa
,ikj −Rjkp aXp

,i

ä
+
Ä
Xa

,kij −Xa
,kji −Rkip aXp

,j

ä
= Rijp

a,kX
p +Rjkp

a,iX
p +Rkip

a,j X
p .

This identity can be re-arranged as

(Xa
,ijk −Xa

,ikj) + (Xa
,jki −Xa

,jik) + (Xa
,kij −Xa

,kji)

−
Ä
Rijp

aXp
,k +Rjkp

aXp
,i +Rkip

aXp
,j

ä
= Rijp

a,kX
p +Rjkp

a,iX
p +Rkip

a,j X
p .

Exploiting Ricci’s identity (Exercise 9.6.2), we findÄ
−Rjkp aXp

,i +Rjki
pXa

,p

ä
+
Ä
−Rkip aXp

,j +Rkij
pXa

,p

ä
+
Ä
−Rijp aXp

,k +Rijk
pXa

,p

ä
−
Ä
Rijp

aXp
,k +Rjkp

aXp
,i +Rkip

aXp
,j

ä
= Rijp

a,kX
p +Rjkp

a,iX
p +Rkip

a,j X
p .

After some trivial cancellations we end up with

(Rjki
p +Rkij

p +Rijk
p)Xa

,p = Rijp
a,kX

p +Rjkp
a,iX

p +Rkip
a,j X

p .

Property (2) written in components eventually proves that the left-hand side vanishes, so that

(Rijp
a,k +Rjkp

a,i +Rkip
a,j )Xp = 0

for every vector field X. Since that field is arbitrary, we get

Rijp
a,k +Rjkp

a,i +Rkip
a,j = 0 ,
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that is
∇kRijp a +∇iRjkp a +∇jRkip a = 0

as wanted proving (4). Contracting the indices with those of the vector fields Y i, Zj ,W k one
gets also

∇YR(Z,W ) +∇ZR(W,Y ) +∇WR(Y,Z) = 0 .

Property (5) is a immediate consequence of (1),(2), and (3) .2

Exercises 9.11. Let Rijkl be the Riemann tensor of a (pseudo) Riemannian manifold with
dimension n. Prove that, at every point p ∈M , Rijkl has n2(n2−1)/12 independent components.

(Hint. Use properties (1) and (2) and (3) above.)

9.1.4 Riemann tensor and Killing vector fields

There is a nice interplay between Killing vector fields K and the Riemann tensor of a (pseudo)
Riemannian manifold (M,g) we are going to illustrate.

Let us start from the definition of Riemann tensor which gives

∇a∇bXc −∇b∇aXc = Rabc
dXd

according to (9.7). The Killing equation permits us to recast that identity to

∇a∇bXc +∇b∇cXa = Rabc
dXd .

Permuting cyclically the indices we also have

∇b∇cXa +∇c∇aXb = Rcab
dXd .

and
∇c∇bXa +∇c∇aXb = Rabc

dXd .

Adding together the first two identities and subtracting the third one we have

2∇b∇cXa = (Rabc
d +Rbca

d −Rcabd)Xd = −RcabdXd .

due to (1) in Proposition 9.10. In summary, a Killing vector field in a (pseudo) Riemannian
manifold satisfies the identity

2∇b∇cXa = −RcabdXd . (9.8)

Taking Proposition 5.22 into account, this identity implies the following important result.

Proposition 9.12. Let (M,g) be a (pseudo) Riemannian manifold. The following facts are
valid

(a) If a smooth Killing vector field vanishes at p ∈M and (∇aXb)p = 0 also holds, then X = 0
everywhere in M .
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(b) The vector space of smooth Killing vector fields has dimension n(n+ 1)/2 at most, where
n = dim(M)

Proof. Define the tensor field D such that, in components, Dab := ∇aXb. Let γ be such a path
connecting p and any fixed q ∈ U where U 3 p is the domain of a local chart. Along that curve,
we can defined the following system of differential equations in coordinates for the pair (X,D),

dXb(γ(t))

dt
= γa(t)Dab(γ(t)) ,

dDbc(γ(t))

dt
= −1

2
Rbca

d(γ(t))Xd(γ(t))γa(t) .

That system is written in normal form with right-hand side smooth and polynomal. As a con-
sequence there is a unique solution along the whole curve for every choice of initial conditions.
With the hypotheses of (a), this solution is the zero solution so that X(q) = 0. The same argu-
ment proves that the subset of M where X = 0 is open. Evidently, it is also open the set where
X 6= 0. Since M is connected and is the disjoint union of those open sets, one of them must
be empty. The former contains at least p. Hence M coincides to the set of the points where X
vanishes and it proves (a). The proof of (b) follows observing that as a consequence of (a), the
vector space of Killing vector fields has exactly the same dimesion of the space of the initial con-
ditions of the above system. Xp has n components, whereas (Dab)p has (n2 − n)/2 indipendent
coefficients due to the Killing equation Dab+Dba = 0. In summary, n+n(n−1)/2 = n(n+1)/2.
. 2

Corollary 9.13. Let (M,g) be a (pseudo) Riemannian manifold. If a Killing vector field X
on M vanishes in a set that admits an accumulation point, then it vanishes everywhere in M .

Proof. Let p be the accumulation point and consider a local chart around p. By continuity,
Xp = 0. Furthermore, the incremental ratios used to compute the partial derivatives ∂Xa

∂xb
|p

admit sequences of zero elements when approaching p. Since the limits exists and are the partial
derivatives, these derivatives must vanish at p. In summary, X satisfies the hypotheses of (a) in
the previous theorem and thus it is vanishes everywhere in M . 2

Remark 9.14. There are several cases of (pseudo) Riemanniam manifolds with the maximal
number of Killing vector fields, these spaces are said maximally symmetric spaces. For
instance Minkowski space and Euclidean spaces are always maximally symmetric, but also de
Sitter spacetime in General Relativity. These spaces have the nice property that the Riemann
tensor takes the form [KoNo96]

Rabcd =
S

n(n− 1)
(gacgbd − gbcgad)

where
S := gacRadc

d
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is the curvature scalar which, in the considered case, is also constant in M .
�

9.2 Local flatness and curvature tensor

This section is devoted to establish the fundamental result concerning the interplay between
curvature tensor and local flatness. We know from Proposition 9.9 that the curvature tensor
must vanish if the manifold is locally flat (either in the metric or in the affine case). We aim to
show that the converse implication is also true: the curvature tensor vanishes everywhere if and
only if M is locally flat. We shall prove this remarkable result both for (pseudo) Riemannian
manifolds and for smooth manifolds endowed with a torsion-free affine connection.

9.2.1 A local analytic version of Frobenius theorem.

A preliminary technical lemma is necessary. This is an analytic version [Shi72]1 in Rn of the
well-known Frobenius Theorem discussed in Theorem 4.33) and locally equivalent to it.

Theorem 9.15. Let A ⊂ Rn be an open set and let Fij : A×Rm → R be a set of C1 mapping,
i = 1, . . . , n, j = 1, . . . ,m. Consider the system of differential equations

∂Xj

∂xi
= Fij(x

1, . . . xn, X1, . . . Xm) , (9.9)

with initial conditions at a fixed p ∈ A,

Xj(p) = X
(0)
j j = 1, . . . ,m , (9.10)

where Xj = Xj(x
1, . . . xn) are unknown real-valued C1 functions and X

(0)
j ∈ R given constants.

Then there exists an open set U ⊂ A with p ∈ U such that a solution {Xj}j=1,...,m of (9.9)-(9.10)
exists and is unique in U if the following Frobenius conditions hold in A× Rm

∂Fij(x
1, . . . xn, Y1, . . . Ym)

∂xk
+

m∑
r=1

∂Fij(x
1, . . . xn, Y1, . . . Ym)

∂Y r
Fkr(x

1, . . . xn, Y1, . . . Ym)

=
∂Fkj(x

1, . . . xn, Y1, . . . Ym)

∂xi
+

m∑
r=1

∂Fkj(x
1, . . . xn, Y1, . . . Ym)

∂Y r
Fir(x

1, . . . xn, Y1, . . . Ym) .

Remark 9.16.
(1) Frobenius conditions are nothing but the statement of Schwarz’ theorem referred to the
solution {Xj}j=1,...,m, if it is C2:

∂2Xj

∂xi∂xk
=

∂2Xj

∂xk∂xi
,

1See also Remark 1.61 in [War83] and the nice discussion presented in H.A. Hakopian and M.G. Tonoyan,
Partial differential analogs of ordinary differential equations and systems. New York J. Math.10 (2004) 89–116.
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written in terms of the functions Fij , making use of the differential equation (9.9) itself.
(2) If the functions Fij are C∞, then the solution Xj is also C∞, as it arises by differentiating
both sides of (9.9) an arbitray number of times. �

9.2.2 Local flatness is equivalent to zero curvature tensor

We can state and prove the crucial theorem relating local flatness and the fact that the curvature
tensor vanishes everywhere.

Theorem 9.17. Let M be a smooth manifold equipped with a torsion-free affine connection
∇. The following facts are equivalent.

(a) ∇is locally flat.

(b) The curvature tensor R vanishes everywhere in M .

If (M,g) is (pseudo) Riemannian and ∇ is the Levi-Civita connection, then the above conditions
are equivalent to

(c) (M,g) is locally flat.

Proof. It is evident that (c) is equivalent to (a) if ∇ is the Levi Civita-connection. Indeed, (c)
implies (a) evidently. The converse is also true. In fact, assuming (a), the very definition of
Christoffel coefficients (6.9) and (7.10) imply that if the connection coefficients vanish in a chart,
then the components of the metric are constant there. Next, with a linear transformation, we
can simultaneously put the components of the metric in canonical form.
Let us pass to prove that (a) and (b) are equivalent. By Proposition 9.9, we know that (a)
implies (b). We have to show that (b) implies (a): if R = 0 everywhere, then there is an open
neighborhood of each p ∈ M where the connection coefficients vanish. To this end, fix p ∈ M
and take vector basis e1, · · · , en of TpM . The proof consists of two steps.

(A) We prove that there are n smooth vector fields X(1), . . . , X(n) defined in a sufficiently small
neighborhood U of p such that

(i) (X(a))p = ea,

(ii) ∇X(a) = 0 for a = 1, . . . , n,

(iii) {(X(a))q}a=1,...,n is also a basis of TqM if q ∈ U .

(B) We prove that there is a coordinate system y1, . . . , yn defined in U , such that

(X(a))q =
∂

∂ya
|q ,

for every q ∈ U and i = 1, . . . , n.
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(A) and (B) imply the thesis:

Γijk =

≠
∇ ∂

∂yj

∂

∂yk
, dyi
∑

=

≠
∇ ∂

∂yj
X(k), dy

i

∑
=
〈
0, dyi

〉
= 0 everywhere in U .

Proof of (A). The condition ∇X = 0 (we omit the index (a) for the sake of simplicity), using
a local coordinate system around p reads

∂Xi

∂xr
= −ΓirjX

j .

Theorem 9.15 assures that a solution locally exist (with fixed initial condition) if, in a neighbor-
hood of p,

−
∂Γirj
∂xs

Xj + ΓirjΓ
j
sqX

q

equals

−
∂Γisj
∂xr

Xj + ΓisjΓ
j
rqX

q

for all the values of i, r, s. Using the absence of torsion (Γikl = Γilk) and (9.5), the given condition
can be rearranged into

Rsrj
iXj = 0 ,

which holds because R = 0 in M . Using the found result, in a sufficiently small neighborhood
U of p we can define the vector fields X(1), . . . X(n) such that (i) (X(a))p = ea, (ii) ∇X(a) = 0 .
We finally prove that (iii) these vectors are everywhere linearly independent. Suppose that for
some c1, . . . , cn and for some q ∈ U (

n∑
a=1

caX(a)

)
q

= 0 .

We want to prove that c1 = · · · = cn = 0. Define the vector field S :=
∑n

a=1 c
aX(a) on U using

the found vector fields X(a) and the said constants. The equation ∇S = 0, with initial condition
Sq = 0, just in view of the validity of Frobenius conditions, admits the unique solution S = 0
in a neighborhood of q ∈ U , so that S must vanish therein. This fact proves the subset O ⊂ U
where S = 0 is open. On the other hand, the subset O′ of U where S 6= 0 is evidently open since
S is continuous. We therefore have the disjoint decomposition U = O∪O′ made of open subsets.
We can always assume that U is connected and this fact impies that U = O, since by hypothesis
O includes at least a point. In particular,

∑n
a=1 c

a(X(a))p = 0 which implies c1 = · · · = cn = 0
as wanted, since the vectors (X(a))p form a basis.

Proof of (B). Fix coordinates x1, . . . , xn on U and, for every q ∈ U , consider the dual basis

ω
(1)
q , . . . , ω

(n)
q ∈ T ∗qM of the basis (X(1))q, . . . , (X(n))q ∈ TqM . The covariant vector fields ω(a)

are smooth2 and satisfy ∇ω(a) = 0. Indeed, for every vector field Z one has:

0 = Z(δba) = ∇Z〈X(a), ω
(b)〉 = 〈∇ZX(a), ω

(b)〉+ 〈X(a),∇Zω(b)〉 = 0 + 〈X(a),∇Zω(b)〉 ,
2In a coordinate system defined in U , we have ω

(a)
j = (M−1)

(a)
j , where M is the matrix of smooth coefficients

Xk
(a). Hence also the inverse matrix has smooth coefficients.
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and thus ∇ω(b) = 0 because the vectors X(a) form a basis. We seek for smooth functions
ya = ya(x1, . . . , xn), where a = 1, . . . , n, defined on U (or in a smaller open neighborhood of p
contained in U) such that

∂ya

∂xi
= ω

(a)
i for i = 1, . . . , n. (9.11)

Once again Theorem 9.15 assures that these functions exists provided

∂ω
(a)
i

∂xr
=
∂ω

(a)
r

∂xi

for a, i, r = 1, . . . , n in a neighborhood of p. Exploiting the absence of torsion of the connection,
the condition above can be re-written in the equivalent form

∇rω(a)
i = ∇iω(a)

r ,

which holds true because ∇ω(a) = 0. Notice that the found set of smooth functions ya =
ya(x1, . . . , xn), a = 1, . . . , n satisfy

det

ï
∂ya

∂xi

ò
6= 0.

This is because, from (9.11), det
î
∂ya

∂xi

ó
= 0 would imply that the forms ω(a) are not linearly

independent and that is not possible because they form a basis. We have proved that the
functions ya = ya(x1, . . . , xn), a = 1, . . . , n define a local coordinate system around p. To
conclude, we notice that

〈X(a), ω
(b)〉 = δba

can be re-written in view of (9.11)

Xi
(a)

∂yb

∂xj

≠
∂

∂xi
, dxj
∑

= δba ,

that is

Xi
(a)

∂yb

∂xi
= δba .

Therefore:

Xi
(a) =

∂xi

∂ya
,

or, equivalently,

(X(a))q =
∂

∂ya
|q ,

is valid in a neighborhood of p. 2
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Chapter 10

Gravitation in General Relativity

This chapter has a twofold goal. On the one hand it clarifies what it is meant for external
gravitational field in General Relativity. This is done by taking advantage of the mathematical
tools presented in the previous chapter regarding the notion of curvature of a manifold. The
presence of an external gravitational field is encoded in the appearance of the so-called geodesic
deviation of free falling bodies which, in turn, is equivalent to a non-vanishing Riemann curvature
tensor. On the other hand, the chapter discusses how the matter generates its own gravitational
field according to the very famous Einstein equations. We conclude with a short discussion about
the relativistic cosmology arising from the Einstein Equations, pointing out also some problems
with the recent astronomical observations.

10.1 Geodesic deviation and local flatness of spacetime

In this section we introduce the notion of geodesic deviation. Afterwards we analyze the interplay
of local flatness and geodesic deviation measured for causal geodesics (more precisely timelike)
starting from the remark that, form a physical viewpoint, the geodesic deviation can be measured
for causal geodesic, observing the motion of (infinitesimal) falling bodies, but it can hardly be
evaluated on spacelike geodesics. We establish in particular that a generic spacetime is (locally)
flat if and only if there is no geodesic deviation for timelike geodesics.

10.1.1 External gravitational interaction in General Relativity

The issue we want to investigate now is the physical meaning in General Relativity of a statement
such “in the region Ω of a spacetime (Mn,g), the material points are subjected to an external
gravitational interaction.” (For the moment we disregard the gravitational interaction generated
by themselves.)

The Newtonian interpretation of the statement is based on the notion of gravitational force
present in Ω. The relativistic extension of the notion of force is that of n-force, so it may
seem natural to exploit it. Here an obstruction of physical nature pops up. The Equivalence
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Principle, which states that the gravitational field can be cancelled locally, does not allow the
use of a n-force: a n-force cannot be cancelled by the choice of the reference frame it being a
tensor (if it vanishes in a coordinate system it must vanish in all of them). If we make use of
the notion of n-force we cannot encompass the Equivalence Principle in the formalism, exactly
as it happens in Newtonian physics.

A meaningful idea is looking for some phenomenon that cannot be cancelled by any suitable
choice of the reference frame and trying to embody it in the formalism to describe the presence
of an external gravitational interaction. What we cannot cancel with the choice of the reference
frame is the relative acceleration between two or more free falling bodies, except in the (classi-
cal) case of a uniform static gravitational field, where this relative acceleration does not exist.
However, in this case, sooner or later relative accelerations appear, unless considering the un-
physical idealization of classical physics of a static uniform gravitational field infinitely extended
in space and time. On the basis of these remarks, we shall keep the relative acceleration as an
operational definition of the presence of external gravitational interaction acting on the bodies.

On the other hand, we already know from Section 8.4.1 that the failure of the metric to
be flat (Minkowskian), seems to be appropriate to describe the relativistic notion of external
gravitational interaction. We would like to include also this fact in the formalism. Indeed, we
shall see that the use of the relative acceleration is also in agreement with the idea that the
local flatness of the spacetime physically corresponds to the absence of external gravitational
interaction. This agreement passes through the properties of the Riemann tensor.

10.1.2 Geodesic deviation as description of external gravitational interaction

We need some preliminary definition to formalize the ideas discussed above. We shall adopt here
the most mathematically comfortable hypotheses for our physical goals, a technically different
formalization of the same notion is discussed and used in [O’Ne83].

Definition 10.1. Let (Mn,g) be a spacetime and consider a family of geodesics

γs : I 3 t 7→ γs(t) ∈Mn where s ∈ J

with I, J ⊂ R open non-empty intervals, t a (common) affine parameter, and assume that the
map

γ : J × I 3 (s, t) 7→ γs(t) ∈Mn

is an immersion. The map γ will be called a smooth congruence of geodesics. �

If we define

Tγs(t) := dγ
∂

∂t
|(s,t) , Sγs(t) := dγ

∂

∂s
|(s,t) , (10.1)

we have that T and S are everywhere linearly independent. Furthermore, since (s, t) ∈ J×I are
coordinates on J × I viewed as smooth 2-dimensional manifold, Theorem 4.5 implies that there
is a neighborhood U of (s0, t0) ∈ J × I and a local chart in a neighborhood V of γs0(t0) ∈ Mn
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with coordinates x1, . . . , xn, such that the points γs(t) ∈ V have coordinates (s, t, 0, . . . , 0) if
(s, t) ∈ U . In this local chart

Tγs(t) =
∂

∂t
|γ(s,t) , Sγs(t) =

∂

∂s
|γ(s,t) , (10.2)

where now s, t, x3, . . . , xn are coordinates on V . Therefore T and S are in that way locally
extended to smooth vector fields in Mn. With this extension, evidently,

[T, S]γs(t) = 0 , for every (s, t) ∈ I × J , (10.3)

since that commutator can be viewed as the commutator of the vector fields tangent to the first
two coordinates of the said chart around p in M . The coordinate t can be chosen as the length
parameter for spacelike geodesics, or the proper time for timelike geodesics.

At least when S is spacelike, ∇TS defines the relative velocity, referred to the parameter
t, between infinitesimally close geodesics (say γs and γs+δs). Similarly, ∇T (∇TS) defines the
relative acceleration, referred to the parameter t, between infinitesimally close geodesics.

Smooth congruences of geodesics exist as stated in the following lemma.

Lemma 10.2. Let (Mn,g) be a spacetime, p ∈ Mn and Tp, Sp ∈ TpMn linearly independent
vectors. Then there exists a smooth congruence of geodesics γ : J × I →Mn with I, J 3 0, such
that

(a) p = γ0(0),

(b) Tγ0(0) = Tp and Sγ0(0) = Sp

Proof. Fix normal coordinates φ : N 3 q 7→ (x1, . . . , xn) ∈ A := φ(N) ⊂ Rn around p with
∂
∂x1 |p = Tp and ∂

∂x2 |p = Sp. Finally consider the map

(−a, a)n 7→ f(x1, . . . , xn) = expφ(x1,...,xn)

Å
x1 ∂

∂x1
|φ(x1,...,xn)

ã
∈Mn

where a > 0 is sufficiently small such that the function above is well defined. By direct inspection,
one sees that

∂(φ ◦ f)a

∂xb
|0 = δab .

Thus f : (−δ, δ)n → Mn defines a local diffeomorphism if δ > 0 is sufficiently small. Hence the
2-dimensional embedded submanifold defined in normal coordinates by x3 = x4 = · · · = xn = 0
and x1 = t, x2 = s arbitrarily varying but remaining in (−δ, δ)n is mapped by f to an embedded
2-dimensional manifold Σ of Mn (a fortiori an immersion) passing through p for t = s = 0 and
defined by

γs(t) = expφ(0,s,0,...,0)

Å
t
∂

∂x1
|φ(0,s,0,...,0)

ã
.
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Σ

T

S
x2 = s

Figure 10.1: Construction of γ

By construction this is a smooth congruence of geodesics and Tγ0(0) = Tp and Sγ0(0) = Sp. 2

We are in a position to state a general definition that considers all possible cases including
spacelike geodesics.

Definition 10.3. If γ : J × I → Mn is a smooth congruence of geodesics in the spacetime
(Mn,g), the smooth field on γ

∇T∇TS

is said geodesic deviation of γ, where T and S are defined in (10.2). �

To this respect we have the following celebrated result.

Proposition 10.4. If γ : J × I → Mn is a smooth congruence of geodesics in the spacetime
(Mn,g), the equation of geodesic deviation is valid at every p ∈ γ(J × I),

∇T∇TS = R(S, T )T equivalently (∇T∇TS)k = Rijl
kSiT jT l . (10.4)

Remark 10.5.
(1) Though S and T , as vector fields in Mn outside γ(J × I), were defined with the help of an
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arbitrary coordinate system around every point p ∈ γs(t), the equation above does not depend
on this arbitrary choice as (1) the right-hand side is evaluated exactly on γs(t) and (2) the
left-hand side can be completely interpreted using Definition 6.16 and Proposition 6.18, when
first S and next ∇TS are viewed as smooth vector fields defined exactly on γs.
(2) In a (pseudo) Riemannian manifold, every vector field S = S(t) defined along a geodesic
segment γ = γ(t), with tangent vector γ′(t) := T (t), satisfying (10.4) is called a Jacobi field
of that geodesic. �

Proof of Proposition 10.4. From (10.3), we have

(∇T∇TS)k = T i∇i(T j∇jSk) = T i∇i
Ä
Sj∇jT k

ä
,

so that
(∇T∇TS)k =

(
T i∇iSj

)
∇jT k + SjT i∇i∇jT k .

Using (9.4) in the last term, we have

(∇T∇TS)k =
(
T i∇iSj

)
∇jT k + SjT i∇j∇iT k −Rijl kSjT iT l .

Exploiting again (10.3) in the first term on the right-hand side, we find

(∇T∇TS)k =
(
Si∇iT j

)
∇jT k + SjT i∇j∇iT k −Rijl kSjT iT l .

Swapping the summed indices i e j in the first term on the right-hand side, we eventually obtain

(∇T∇TS)k =
(
Sj∇jT i

)
∇iT k + SjT i∇j∇iT k −Rijl kSjT iT l .

Observe that the last addend can be transformed to

−Rijl kSjT iT l = Rjil
kSjT iT l = Rijl

kSiT jT l

where we have taken (i) of Proposition 9.10 into account. The overall result can be rearranged
to

(∇T∇TS)k = Sj∇j
Ä
T i∇iT k

ä
+Rijl

kSiT jT l .

The geodesic equation now implies that T i∇iT k = 0 producing (10.4). 2

The found result permits us to conclude our mathematical discussion with this paramount result
(which will be however improved in the next section from the physical point of view), where
one sees that in a region of the spacetime there is no external gravitational field (i.e., there is
geodesic deviation) if and only if that region is locally flat.

Theorem 10.6. Let Ω ⊂Mn be an open subset of a spacetime (Mn,g). The region Ω, viewed
as spacetime in its own right, is locally flat if an only if the geodesic deviation ∇T∇TS vanishes
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for every smooth congruence of geodesics taking values in Ω.

Proof. If R = 0 in Ω, then no geodesic deviation exists trivially. Let us prove the converse
fact. As established in Lemma 10.2, for every p ∈ Ω and Sp, Tp ∈ TpMn linearly independent,
there is a smooth congruence of geodesics taking values in a neighborhood of p such that the
vector fields S and T evaluated at p coincide with Sp and Tp respectively. In the hypothesis
that ∇T∇TS = 0 at p, the geodesic equation furnishes Rp(Sp, Tp)Tp = 0. Let us therefore use
first Tp = Up + Vp and next Tp = Up − Vp. Subtracting side-by-side the obtained results, taking
bi-linearity into account, one finds:

Rp(Sp, Up)Vp +Rp(Sp, Vp)Up = 0, (10.5)

which is valid for every Sp, Up, Vp ∈ TpM . Identity (2) in Propsition 9.10 can be specialized here
as:

Rp(Sp, Up)Vp +Rp(Up, Vp)Sp +Rp(Vp, Sp)Up = 0 . (10.6)

Summing side-by-side (10.5) and (10.6), taking (1) in Proposition 9.10 into account, it arises
2Rp(Sp, Up)Vp + Rp(Up, Vp)Sp = 0, which can be recast to 2Rp(Sp, Up)Vp − Rp(Up, Sp)Vp = 0,
where we employed Eq.(10.5) (with different names of the vectors). Using (1) in Propsition 9.10
again, we can restate the obtained result as: 2Rp(Sp, Up)Vp +Rp(Sp, Up)Vp = 0. In other words
Rp(Sp, Up)Vp = 0 for all vectors Sp, Up, Vp ∈ TpM , so that Rp = 0 as wanted. 2

10.1.3 Geodesic deviation of causal geodesics and local flatness

Even if the result established in Theorem 10.6 is mathematically interesting and it is also in the
spirit of our initial issue, from experimentalist’s viewpoint, we must admit that the geodesic de-
viation ∇T (∇TS) can hardly be measured along spacelike geodesics, excluding particular cases
of spacetimes as a static one, and referring to a very special choice of the field S. For this reason
it is natural to try to prove Theorem 10.6 referring only to causal geodesics with S spacelike.
More precisely we shall consider timelike geodesics. in this case, ∇T (∇TS) has the direct mean-
ing of relative acceleration of two infinitesimally close massive free falling bodies.

Theorem 10.7. Let Ω ⊂Mn be an open subset of a spacetime (Mn,g). The region Ω, viewed
as spacetime in its own right, is locally flat if and only if the geodesic deviation ∇T∇TS vanishes
for every smooth congruence of timelike geodesics taking values in Ω with S spacelike.

Proof. Evidently, if Ω is locally flat, then ∇T∇TS = 0 for every type of smooth congruence of
geodesics. Let us therefore prove that if the geodesic deviation is zero for all smooth congruences
of timelike geodesics with S spacelike in Ω, then R = 0 therein. If p ∈ Ω, for fixed Sp, Tp ∈ TpM ,
respectively spacelike and timelike, there is a smooth congruence of geodesics γ : J×I → Ω such
that (a) and (b) of Lemma 10.2 are true. By continuity, shrinking I and J around 0 if necessary,
all vectors S and T of γ are respectively timelike and spacelike. Our hypothesis therefore entails
that 0 = ∇T∇TS|p = Rp(Sp, Tp)Tp is valid for every choice of Tp ∈ TpM timelike and Sp ∈ TpM
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spacelike where, in particular, g(Sp, Tp) = 0. To extend this result to all possible arguments of R,
we start by noticing that Rp(Sp, Tp)Tp = 0 is still valid if dropping the requirements Sp spacelike
and g(Tp, Sp) = 0. Indeed, if Sp ∈ TpM is generic, we can decompose it as Sp = S′p + cTp, where
c ∈ R and S′p is spacelike with g(Tp, S

′
p) = 0, for some timelike vector Tp. Then

Rp(Sp, Tp)Tp = Rp(S
′
p, Tp)Tp + cRp(Tp, Tp)Tp = 0 + cRp(Tp, Tp)Tp = 0

where we have used (2) in Proposition 9.10. So, we can start with the hypothesis that

Rp(Sp, Tp)Tp = 0 for all Tp, Sp ∈ TpM with Tp timelike.

Let us show that this last constraint can be dropped, too. Fix Sp ∈ TpM arbitrarily and consider
the bi-linear map TpM 3 Tp 7→ FSp(Tp) := Rp(Sp, Tp)Tp. If we restrict FSp to one of the two

open halves V
(+)
p of the light-cone at p, e.g. that containing the future-directed timelike vectors,

we find FSp �V (+)
p

= 0 in view of the discussion above. Since every component of FSp is analytic

(it being a polynomial in the components of Tp) and defined on the connected open domain TpM ,
it must vanish everywhere on TpM . Summarizing, we have obtained that Rp(Sp, Tp)Tp = 0 for
every vectors Tp, Sp ∈ TpM . At this point Theorem 10.6 implies that Rp = 0 and thus the region
Ω is locally flat with respect to the metric g according to Theorem 9.17. 2

Remark 10.8. A similar result can be proved referring to congruences of light-like geodesics1.

10.2 The Einstein equations

This section is devoted to present the famous Einstein Equations describing how the matter
generates the gravitational field in General Relativity. The gravitational interaction, roughly
speaking, is now viewed as the curvature of the spacetime. However “curvature” is a quite
vague notion. We can think that it is the Riemann tensor as it seems from the discussion about
the geodesic deviation. However, we already know that in General Relativity, the gravitational
phenomenology has various facets. For instance, it is related to metric notions, differently form
what happens in classical physics.

On the other hand, the Riemann tensor is a quite complex object and it is not obvious that
the equations that relate the presence of matter to the curvature – viewing the matter as the
source of the curvature – involves the Riemann tensor and not some other tensor constructed
out of it.

10.2.1 Ricci tensor, contracted Bianchi identity and Einstein tensor

In a (pseudo) Riemannian manifold and referring to the Levi-Civita (metric torsion-free) con-
nection, there are several tensors which are obtained from Riemann tensor and they turn out

1See V. Moretti and R. Di Criscienzo, How can we determine if a spacetime is flat? Frontiers in Physics 1:12
(2013), DOI:10.3389/fphy.2013.00012.
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to be useful in physics. Let us focus on the properties of the curvature tensor established in
Proposition 9.10. By properties (1) and (3) the contraction of Riemann tensor over its first two
or last two indices vanishes. Conversely, the contraction over the second and fourth (or equiv-
alently, the first and the third using (2),(1) and (3)) indices gives rise to the only non-trivial
second order tensor obtained by one contraction form the Riemann tensor. This tensor is known
as the Ricci tensor:

Ricij := Rij := Rikj
k = Rki

k
j . (10.7)

By property (5) one has the symmetry of Ric:

Ricij = Ricji .

The contraction of Ric produces the so-called curvature scalar

S := R := Rkk . (10.8)

Another relevant tensor is the so-called Einstein’s tensor which plays a crucial role in General
Relativity as we shall see shortly. It is defined as

Gij := Ricij −
1

2
gijS . (10.9)

This tensor field satisfies a crucial identity as a consequence of Bianchi identity.

Proposition 10.9. In a spacetime (Mn,g) the Einstein tensor satisfies the equations

∇aGab = 0 ,

known as contracted Bianchi identity.

Proof. Starting from Bianchi’s identity

∇kRijp a +∇iRjkp a +∇jRkip a = 0

and contracting k and a one gets

∇kRijp k +∇iRjkp k +∇jRkip k = 0 .

This identity can be rewritten as:

∇kRijp k +∇iRjp −∇jRip = 0 ,

contracting i and p (after having raised the index p) it arises

∇kRj k +∇iRj i −∇jR = 0 .
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Multiplying by 1/2 and changing the name of k:

1

2
∇iRicij +

1

2
∇iRicij −

1

2
∇igijS = 0 .

Those are the equations written above, since they can be rearranged into:

∇i
Å
Ricij −

1

2
gijS

ã
= 0

concluding the proof. 2

Remark 10.10. As we said above, in a (pseudo)Riemannian manifold M , Ricci’s tensor and
the curvature scalar are the only non-vanishing tensors which can be obtained from Riemann
tensor using contractions. If dimM =: n ≥ 3, using Ric and S it is possible to built up a tensor
field of order 4 which satisfies properties (1),(2) and (3) in proposition 9.10 and produces the
same tensors as Rijkl under contractions. That tensor is

Dijkl :=
2

n− 2
gi[kRicl]j − gj[kRicl]i −

2

(n− 1)(n− 2)
Sgi[kgl]j .

Above [ab] indicates anti-symmetrization with respect to a and b. As a consequence

Cijkl := Rijkl −Dijkl

satisfies properties (1), (2) and (3) too and every contraction with respect to a pair of indices
vanishes. The tensor C, defined in (pseudo) Riemannian manifolds, is called Weyl’s tensor or
conformal tensor. It behaves in a very simple manner under conformal transformations.

10.2.2 The Einstein Equations

We come to the most interesting and intriguing issue: writing down the relativistic equations
that correspond to the Newtonian equations

∆ϕ = −4πG µ , (10.10)

where ϕ is the gravitational potential and µ the density of mass. This equation says how
the matter generates the gravitational filed in classical physics. The only clue to find the
corresponding equation in relativistic physics is perhaps the relation (8.34), found in Section
8.4.1, which relates ϕ and g00 in a semiclassical scenario

g00(t, ~x) = −1 +
2

c2
ϕ(~x) ,

It approximatively holds under suitable hypotheses which include small curvatures and small
velocities with respect to c and referring to a coordinate system where the metric is stationary
and the components of the metric are close to the Minkowskian one.
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Einstein spent 10 years on this formidable problem also eventually discovering his famous
equations. In the final part of his research work, around 1915 and later, he received some
technical help by various mathematicians like Grossmann and Levi-Civita.

A posteriori, we are about describing how to obtain those equations from physical principles,
with the help of some mathematical result. We divide the procedure into several steps to
emphasize the used physical and mathematical hypotheses.

(1) Since (10.10) relates the gravitational field to the density of mass, the equations we are
searching for should connect the density of mass to the curvature of the spacetime. It is
possible to see, with concrete examples (we shall discuss this point later with more details),
that the component T 00 of the stress energy tensor, which coincide to the density of mass-
energy, dominates over all remaining components in semi-classical scenarios. Einstein’s
idea was that in fully relativistic regimes the whole T ab should replace µ in the equation
that corresponds to (10.10).

(2) Since T ab is a tensor field, the simplest equation should equates T ab to some geometric
tensor Hab constructed out of the Riemann tensor which is also symmetric as Tab,

Hab = kTab . (10.11)

where k is some constant. Notice that, as Hab is a (0, 2) tensor, the Riemann tensor is
automatically ruled out.

Remark 10.11. This exclusion is actually in agreement with the physical evidence that
the gravitational field (here the curvature of the manifold) propagates outside the source.
An equation like (10.11) permits to have Rabc

d 6= 0 outside the support of Tab. �

(3) Another hypothesis by Einstein was that the tensor Hab should be constructed with the
derivatives of gab up to the second order, as the minimal extension of (10.10) and (8.34).

(4) The final requirement arose form a property of Tab due to the Strong Equivalence Principle.
Indeed, independently of the specific metric g of the spacetime, the stress energy tensor
must satisfy

∇aT ab = 0 .

We stress that this is an on shell equation: it is valid when the matter whose stress-energy
tensor is T ab satisfies the lows of motion for the specific metric of the spacetime viewed as
a given external gravitational interaction. Using this identity in (10.11), we must conclude
that

∇aHab = 0 . (10.12)

Whe stress that (10.12) must hold for every metric g automatically, since ∇aT ab = 0 is
valid for every metric as stated above.
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We know from the previous section that the Einstein tensor (10.9)

Gab := Ricab −
1

2
gabS

is symmetric and satisfies the said requirements, including the fact that it is constructed with
the derivatives, up to the second order of the metric, in components. The candidate equation is
therefore

kTab = Ricab −
1

2
gabS . (10.13)

It is worth stressing that in 1971 Lovelock established2 an important result later generalized in
various directions:

Theorem 10.12. (Lovelock Theorem.) In a smooth Lorentzian manifold (M, g) with
dim(M) = 4, the most general smooth natural tensor field Hab locally constructed out of the
metric and its derivatives up to the second in coordinates and which satisfies (10.12) has the
form

Hab = p Gab + q gab for arbitrary constants p, q ∈ R . (10.14)

As Einstein did, we initially set q = 0 in a spacetime of dimension 4, so that our equation is
(10.13) above. We want to fix the constant k by imposing that this equation produces (10.10)
in some classical limit. First of all, observe that, taking the trace of both sides we have,

S − 2S = kT ,

namely
S = −kT

where
T := T aa . (10.15)

We can therefore re-write our equations as

Ricab = k

Å
Tab −

1

2
Tgab

ã
. (10.16)

At this juncture, we assume to deal with a semi-classical stationary regime where, in a suit-
able coordinate system (x0 = ct, x1, x2, x3) = (x0, ~x), the metric appears to be close to the
Minkowskian one, as we did in Section 8.4.1. So that

gab = ηab + hab , gab = ηab − hab (10.17)

2D. Lovelock, The Einstein Tensor and Its Generalizations. Journal of Mathematical Physics. 12 (3): 498–502
(1971) and see also A. Navarro and J. Navarro Lovelock’s theorem revisited. Journal of Geometry and Physics 61
(2011) 1950–1956 for a modern view.

226



where hab and hab do not depend on x0, |hab| � 1 and we use the metric η to raise and lower
indices, so that

hab := ηacηbdhcd ,

in particular. Dropping systematically all terms containing products of hab (or hab), we obtain
the second identity in (10.17). Regarding T , we assume the simplest case of a gas of non-
interacting particles

T ab = µ0V
aV b (10.18)

where µ0 is the density of matter measured at rest with the particles whose 4-velocity is V . We
assume that µ is as the same order of magnitude as h and its derivatives, so that we also neglect
product of µ and h. Expanding V as in Special Relativity and assuming the components of the
spatial velocities very small with respect to c or better that the source is at rest in the said
coordinate frame,

V a = cδa0 ,

and, in our first-order approximation,

T = −µ0c
2 ,

and (10.16) produces (neglecting second order terms some of them being products of µ and hab)

Ric00 =
k

2
µ0c

2 . (10.19)

Finally,

Ric00 = R0j0
j =

∂Γj00

∂xj
−
∂Γjj0
∂x0

+ ΓjjkΓ
k
00 − Γj0kΓ

k
j0 .

The second addend is zero in view of our stationarity hypothesis. The last two terms are of the
second order in the perturbation h so that we can neglect them. The surviving term, dropping
all terms containing x0 derivatives in its explicit formula, yields

Ric00 = −1

2

3∑
α=1

∂2h00

∂(xα)2
= −1

2
∆~xh00 .

Inserting in (10.19),
−∆~xh00 = kµ0c

2 ,

which, compared with

−1 + h00(t, ~x) = −1 +
2

c2
ϕ(~x) ,

fournishes

−∆~xϕ =
kc4

2
µ0 .
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Comparing with (10.10), we find

k =
8πG

c4
.

In summary, Einstein equations read

8πG

c4
Tab = Ricab −

1

2
gabS . (10.20)

If the components Tab are assigned at every point of M4, the components gab of the metric
are the unknown in these differential equations which are non-linear so that its solution is very
difficult in general.

Remark 10.13.
(1) The vacuum Einstein equations

Ricab −
1

2
gabS = 0 , (10.21)

can be rephrased to (contracting a and b thus observing that S = 0)

Ricab = 0 . (10.22)

These equations still permit the presence of curvature, since they do not require R = 0.
(2) In principle, the degrees of freedom of the gravitational field are the independent compo-
nents of the metric tensor. Apparently they are 10 in four dimensions, taking the symmetry
gab = gba into account. However, we can fix four degrees of freedom choosing our system of
coordinates. Finally, the constraint ∇aGab = 0 imposes further four conditions. Apparently, the
remaining degrees of freedom are 10 − 4 − 4 = 2 and this turns out to be true at least in the
linearized theory, whereas when dealing with the full theory the situation is more complicated
and the Cauchy problem would deserve a detailed discussion. However the rough argument is
in agreement with the idea that the gravitational interaction, in a linearized quantum version,
is transported by quantum particles called gravitons. From general principles, gravitons must
have 2 degree of freedom. �

Non trivial consequences of Einstein equations received several experimental confirmations
since 2016. We quote only three of them.

(1) The the perihelion precession of Mercury’s orbit already in 1916 (predicted by Einstein in
1916 with incomplete equations!).

(2) The direct detection in 2016 by LIGO of gravitational waves and all the next direct detec-
tions also due to VIRGO. They in particular arise from the linearized Einstein equations for
the perturbation hab (10.17) after a suitable choice of the reference frame (more precisely
of the gauge):

− 1

c2

∂2h̃ab
∂t2

+ ∆~xh̃ab = −16πGTab (10.23)
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where h̃ab = hab− 1
2η

cdhcdηab. Equation (10.23) is the standard D’Alembert Equation with
source describing wave propagation in linear media. In the said approximation and viewing
the background as Minkowski space, the speed of these waves is still the speed of light c.

(3) The direct observation of a black hole in 2017 which is a very peculiar solution of the
Einstein Equations: the event horizon of the black hole at the center of M87 was directly
imaged at the wavelength of radio waves by the EHT.

10.2.3 The meaning of the cosmological constant

The Einstein Equations in the form (10.20) permit models of universe that are not stationary.
For that reason, Einstein introduced a further term in an improved version of his equations, a
posteriori the only permitted by Lovelock’s theorem,

8πG

c4
Tab = Ricab −

1

2
gabS + Λgab . (10.24)

The idea was to obtain in that way a stationary cosmological model by suitably tuning the
cosmological constant Λ. On the ground of the observational data, it was later evident the
true physical nature of that constant: it should assume values different from Einstein’s ones. The
correct vaue is such that it implies a non-stationary universe according to modern observations
where the universe is observed to be expanding in space and this expansion has an acceleration.
Astronomical observations suggest that Λ > 0 and that is has a very small value in natural
units:

Λ−1/2 ∼ 109 light years. (10.25)

This value is of the same order of magnitude as the size the observable Universe. As a conse-
quence, we expect that the effects of the cosmological constant in the Einstein Equations can
be disregarded unless we deal with cosmological length scales. This observation is in agreement
with the procedure we followed to determine the value k = 8πG

c4
where we completely neglected

the possible presence of Λ in the Einstein Equations.
We can move the term Λgab to the left-hand side of the Einstein Equations by viewing it as

a part of the cosmological stress energy tensor. As we shall see shortly, this is the case in the
standard cosmological model we describe in the next section. However this intepretation faces
a strong unresolved problem called the cosmological constant problem: quantum field theory,
intepreting the energy density associated to Λ as the quantum vacuum energy, suggests that the
value of Λ should be around 10120 times the value above.

10.2.4 Diffeomorphism invariance

The picture is now complete. Within the framework of General Relativity, the physical objects
are described in the spacetime M4 by tensor fields S associated to every material physical sys-
tem (including radiation) and the gravitational interaction/metric is described by the metric g
accompanied by the associated curvature tensors. We know that this picture is just an approxi-
mation which is valid at macroscopic scales, since quantum phenomena cannot be encompassed
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by this framework because other notions and mathematical structures must be added. Actually
it is by no means clear if a complete theory may be constructed in that way. However let us
stick to this macroscopic scenario to discuss a crucial point related to long standing foundational
issues with General Relativity actually not yet completely solved, since several details are still
open. The question is whether or not the mere smooth manifold structure of M4, before assigning
S and g, possesses any physical meaning. The commonly shared opinion about this issue is that
the smooth manifold structure of M4 has no physical significance. This apparently philosophical
discussion has actually a deep impact on concrete problems related to the Einstein Equations,
since it gives rise to the idea that there are gauge transformations in General Relativity similar
to the ones present in electromagnetism when describing the fields in terms of the (relativistic)
potentials A instend of the (relativistic) strength field F .

Consider a Generally Relativistic scenario (M4, S,g) and a diffeomorphism φ : M4 → M4.
We can use φ to transform S and g according to the general pullback map between tensor fields
of definite type constructed out the pushforward dφ−1 := d(φ−1) of vector fields and the pullback
φ∗ of 1-forms, and still generically denoted by φ∗S, where

(φ∗S)p := dφ−1 ⊗ · · · ⊗ dφ−1︸ ︷︷ ︸
r times

⊗φ∗ ⊗ · · · ⊗ φ∗︸ ︷︷ ︸
s times

Sφ(p) .

We therefore find an apparently different scenario (M4, φ∗S, φ∗g). The assumption of diffeo-
morphism invariance of General Relativity is that (M4, S,g) and (M4, φ∗S, φ∗g) describe the
same physics for every diffeomorphism φ : M4 →M4. This property can be fruitfully exploited,
for instance, when looking for solutions of the Einstein Equations. However, the most impor-
tant consequence is that only gauge-invariant quantities can represent physical observables. For
instance, the values of RabcdR

abcd at a certain event of M4 have no physical meaning in general.
They acquire a meaning if the events are intrisically charachterized. For instance, the values of
RabcdR

abcd at the events where S = 0. This prescription defines a gauge-invariant observable.
Roughtly speaking, the diffeomorphism invariance can be viewed as the possibility to ar-

bitrarily fix a sistem of coordinate. This possibility, if n = 4, permits us to choose 4 of the
independent 10 components of the metric, or to impose some conditions among the metric co-
efficients without lack of physical information. This opportunity is in particular exploited when
dealing with gravitational waves and also when studying the problem of solving the Einstein
Equations as a Cauchy problem with given initial data, for instance in the ADM formalism.

10.3 The birth of the cosmology as a science

This section is devoted to focus on some applications of the General Relativity, in particular
arising from the Einstein Equations. General Relativity has received many experimental confir-
mations especially regarding the description of the behaviour of bodies and light in an external
gravitational field, now viewed as curvature of the spacetime. In particular, the celebrated de-
flection of light by the Sun and the gravitational redshift of light. Here we are instead interested
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in consequences of Einstein Equations which concerns the production of the gravitational inter-
action from the matter. In this context one of the most relevant merit of Einstein Equations is
that they permitted the birth of cosmology as a science. Newtonian cosmology was inconsistent
for many reasons (e.g. the Olbers paradox), whereas a cosmology based on Einstein’s equations
gave rise to amazing results.

10.3.1 The FLRW cosmological model

The relativistic model of cosmology relies upon the Einstein Equations and a pair of further
assumptions.

(a) At cosmological scales, the clusters of galaxies viewewd as a gas has a stress-energy tensor
Tab with the form of a ideal fluid (8.16), we re-write here with a different notation,

Tab = ρ′VaVb + p′
Å
gab +

VaVb
c2

ã
. (10.26)

where as we know, ρ′ is the density of mass, p′ the pressure, and V the 4-velocity of the
galaxies.

(b) A Cosmological Principle (whose a mathematical formulation was due to the eminent
mathematician H. Weyl before the explicit construction of the model by physicists) is valid
for the general form of the large-scale spacetime: the metric and the spatial distribution of
matter in the universe turns out to be homogeneous and isotropic in an extended reference
frame co-moving with the cluster of galaxies.

The arising model is called FLRW model, after A. Friedmann, G. Lemaitre, H.P. Robertson,
and A.G. Walker. It is an exact solution of Einstein Equations (10.24) with the added parameter
Λ. Let us illustrate the mathematical structure of this model which actually defines a natural
cosmic extended reference frame according to Definition 8.23.

1. The spacetime is a postulated to be a 4-dimensional Lorentzian manifold diffeomorphic to
(α, ω)× Σ(k) and the metric reads

gFLRW = −c2dt⊗ dt+ a(t)2h(k)

where t ∈ (α, ω) and the metric on the said spatial section Σt (each diffeomorphic to Σ(k)) is

h(k) =
1

1− kr2
dr ⊗ dr + r2(dθ ⊗ dθ + sin2 θdφ⊗ dφ)

with x0 = ct and x1 = r, x2 = θ, x3 = φ formal spherical polar coordinates which cover (almost)
completely the spatial sections. Finally the scale parameter a is fixed as a(t0) = 1 where t0 is
“now”.
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(1.1) The parameter k can only constantly take one of the values −1, 0,+1 corresponding to
the three maximally symmetric 3-dimensional Riemannian manifolds (see Remark 9.14)
describing Σt.

(a) The 3D Hyperbolic space also known as the Lobacevskij space for k = −1,

(b) the flat Euclidean 3D space for k = 0,

(c) the 3-sphere for k = 1.

More generally, we can also replace these spaces for quotients space with respect the
discrete subgroup of isometries of the said Riemannian manifolds (e.g., a 3-torus in palce
of the Eucliden space). The choice of the above spatial metric is due to the requirements
of homogeneity and isotropy. We can focus on the metric h(k) since the factor a(t) is
constant at every fix time and it does not affect the observations below which are pertinent
for every fixed t. Thinking of (Σt,h

(k)) as an orientable manifold, h(k) has the following
properties (and it is possible to prove that they charachterize completely it up to quotients
with respect to discrete subgroups of isometries).

(i) For every p, q ∈ Σt, there exist a orientation-preserving (Definition 2.17) isometry
f : Σt → Σt such that f(p) = f(q). This property is the mathematical description of
the physical notion of homogeneity of the metrical structures.

(ii) For every p ∈ Σt, the subgroup of the isometries that leave fixed p includes a subgroup
which is isomorphic to O(3)3. The isometries representing SO(3) are orientation
preserving, whereas the one representing −I ∈ O(3) changes the orientation of the
manifold. This property is the mathematical description of the physical notion of
isotropy of the metrical structures.

(1.2) Physically speaking, the integral lines of the future-directed vector field ∂
∂t are the world-

lines of the clusters of galaxies (it is therefore parallel to V ) and t is the proper time
measured at rest with the clusters. The spacelike surfaces Σt crossed by the worldlines of
the clusters of galaxies are the rest-space at time t co-moving with these clusters. (Notice
that the time vector is orthogonal to the spatial sections, so the speed of light is c.)

(1.3) On surfaces Σt, the large-scale density of energy ρc2 (by definition measured at rest with
the galaxies) and the pressure p is assumed to be homogeneous and isotropic as the metric
structures, in other words, ρ and p are constant on every Σt, though they depend on t.

2. The evolution equations of gFLRW and the pressure p and the density of mass ρ are obtained
from (10.24) with the source (10.26) and using the said metric. Of the 10 equations obtained

3O(3) is a smooth manifold it being a Lie group. Here we are assuming that the map fp : O(3) × Σt → Σt
representing the said action of O(3) on Σt is smooth as well and that O(3) 3 R 7→ fp(R, ·) ∈ D(Σt) is injective,
it preserves the group structure, and every element in its image is an isometry.

232



from (10.24), only 2 are independent and they are known as the Friedmann equations:Å
ȧ(t)

a(t)

ã2

= − kc2

a(t)2
+

8πG

3

Å
ρ′(t) +

Λc2

8πG

ã
, (10.27)

ä(t)

a(t)
= −4πG

3

Å
ρ′(t) +

Λc2

8πG

ã
− 4πG

c2

Å
p′(t)− Λc4

8πG

ã
. (10.28)

These equations are obtained by the Einstein ones as follows. A straightforward computation
proves that

R00 = −3
ä

a
, Rαβ = (aä+ 2ȧ2 + 2k)hαβ , R0α = Rα0 = 0 , α, β = 1, 2, 3 , (10.29)

and also

R = 6

Å
ȧ

a
+
ȧ2

a2
+

k

a2

ã
. (10.30)

Using Va = −cδa0 in (10.26), (10.27) is nothing but 00 component of the Einstein equations
whereas (10.28) is obtained from the αβ components and taking the former equation into account.
The form of the two Friedmann equations suggests to intepret

ρ(t) := ρ′(t) +
Λc2

8πG
, p(t) := p′(t)− c2 Λc2

8πG
(10.31)

as effective density and pressure with a contribution of the cosmological constant. In other
words, the addend containing the cosmological constant in the Einstein Equations (10.24) is
moved from the right-hand side to the left-hand side and it gives rise to a new source of the
gravitational field,

T abΛ = − Λc4

8πG
gab . (10.32)

This “modern” interpretation will play a crucial role later.
We stress that the solutions in a also fix their maximal interval (α, ω) of definition, which

may result bounded from below or from above.

3. The Friedmann equations are accompanied with an equation of state, also known as
constitutive equation, connecting the (effective) pressure p and the (effective) density of
mass ρ as in (10.31).

(3.1) The simplest case, that permits to solve completely the equations above in the functions
of time a, ρ, p, is

p = wρc2 , (10.33)

where w is a constant.

(3.2) Realistic models consider mixtures of several non-interacting fluids. Each component has
an equation of state as above with its own constant w. The density and the pressure are
respectively the sum of the partial densities and pressures of the components.
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(3.3) The equation of conservation ∇aT ab = 0 produces in particular the identity

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
. (10.34)

This equation must be also a consequence of the Friedmann equations, in fact it also arises
form the first Friedmann equation used in the second one.

(3.4) Each component of the fluid satifies (10.34) separately when thinking the various parts
independent.

4. The constant k, the scale factor a = a(t) > 0, the functions p = p(t), ρ = ρ(t) are finally
determined from the two Friedmann equations and (10.33), and “initial conditions” at t = t0
grasped from the present astronomical observations.
Also (10.34) is useful in determining the solutions. Actaully the evolution of ρ and p easily arise
form the one of a just using (10.34) and the constitutuve equation. Indeed, taking advantage of
(10.33), equation (10.34) becomes

ρ̇

ρ
= −3(1 + w)

ȧ

a
,

which can be integrated giving rise to

ρ(t) = ρ(t0)a(t)−3(1+w) , p(t) = wρ(t0)c2a(t)−3(1+w) . (10.35)

where a(t0) = 1 and t0 is “now”.

From the experimental side, we can say that, by combining the observation data from WMAP
and Planck with theoretical results, astrophysicists now agree that the universe is almost com-
pletely homogeneous and isotropic and thus well described by a FLRW spacetime. Homogeneity
show up when averaging over a very large scale grater than4 400Mpc, the diameter of the
observed universe being 28.5Gpc.

10.3.2 The observed expansion of the Universe

According to experimental observations, the large-scale rest space is “expanding”and this expan-
sion can be easily described in the FLRW model. In other words a : (α, ω) 3 t 7→ (0,+∞) is an
increasing function of t. The net effect is that galaxies move away from each other isotropically.
This fact is strongly corroborated by experimental observations by Hubble already in 1922 who
discovered that the galaxies move away from Earth in all directions by observing the red-shift in
the spectra of the emitted light, and that their speed increases proportionally to their distance
from Earth as encoded in Hubble law we are going to discuss. The ratio

H(t) :=
ȧ(t)

a(t)
(10.36)

41pc ∼ 31× 1015m.

234



is called Hubble parameter. Its present value

H0 := H(t0) > 0 (10.37)

– where t0 as usual is “now” in the cosmological context – is (improperly) called Hubble
constant, even if it is not a constant! From (10.36), we have that (we write explicitely a(t0)
even if a(t0) = 1)

ȧ(t0) = H0a(t0) .

If a galaxy has distance d(t) from us at time t, due to the uniform expansion of the scale
parameter a, we have that

d(t)

d(t0)
=

a(t)

a(t0)
.

As a consequence,
ḋ(t)

d(t0)
|t=t0 =

ȧ(t0)

a(t0)
= H0

and we find the famous Hubble law

ḋ(t0) = d(t0)H0 > 0 , (10.38)

which says that the speed of a galaxy measured on Σt0 is proportional to its distance from Earth
(or from any other observer evolving with an integral line of ∂

∂t) measured on the present rest
space of the FLRW reference frame. The estimate value of H0, is

H0 = 2.2× 10−18s−1 .

Notice that this notion of speed permits in principle values larger than c.
The value of ḋ(t0) is very difficult to be directly measured because we actually are only able

to observe signals reacing us from the past, in view of the finite propagation speed of the light!
It can be indirectly measured obtained by measuring a red shift phenomenon associated to the
exansion itself in view of the following argument.

First of all we introduce a vector field which almost is a Killing vector. Let us introduce the
conformal time

η(t) :=

∫ t

t0

du

a(u)
(10.39)

Replacing the coordinate t for η, keeping the spatial coordinates, and writing a as a function of
η by inverting the function above, the FLRW metric reads

gFLRW = a(η)2
Ä
−c2dη ⊗ dη + h(k)

ä
.

As a consequence, if K := ∂
∂η ,

LKgFLRW = LKa(η)2
Ä
−c2dη ⊗ dη + h(k)

ä
= K

(
a(η)2

) Ä
−c2dη ⊗ dη + h(k)

ä
+

1

a(η)2
0 .
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Hence

LKgFLRW = K
(
a(η)2

) 1

a(η)2
gFLRW =

2

a(η)

da

dη
gFLRW = 2ȧ(t)gFLRW

where we used (10.39) in the last passage. Taking (7.30) into account, we have found that

∇aKb +∇bKa = 2ȧ(t)gFLRW . (10.40)

This equation, in the general context of a (pseudo) Riemannian manifold, defines a conformal
Killing vector field, when the right-hand side is a generic smooth scalar function multiplied
with the metric. Hence the conformal time η defines a conformal Killing vector K = ∂

∂η . A
conformal Killing vector can be used to define conserved quantities for massless particles or
extended systems whose stress energy tensor has zero trace (as the electromagnetic field). Let
us illustrate the first case in our context. We assume that a particle of light, whose geodesic
is parametrized with the affine paramenter s, is emitted from a far galaxy at s = se and it is
received here on Earth at s = s0 (“now”) and that P is the four momentum of the said photon
((4) in Remark see 8.18). P is paralelly transported with respect to itself along the geodesic
and more precisely it is the tangent vector referred to an affine parametrization of the geodesic
we can identify with s itself. Using also this fact, we have that the quantity KaP

a is constant
along the geodesic because

d

ds
KaP

a = P c∇c(KaP
a) = (∇cKa)P

cP a +KaP
c(∇cP a)

=
1

2
(∇aKc +∇cKa)P

cP a + 0 = 2ȧPcP
c + 0 = 0 .

On the other hand, using the defintion of K = ∂
∂η = a ∂∂t and (4) in Remark see 8.18,

KaP
a = a(t(s))~ω(γ(s)) = constant .

If f := ω
2π is the frequence of the light, we conclude that the emitted frequency f(γ(se)) and the

received frequency f(γ(s0)) are therefore related by5

a(t0)f(γ(s0)) = a(te)f(γ(se)) ,

where t0 > te := t(se). So that what we can measure is the red-shift parameter

z :=
f(γ(se))− f(γ(s0))

f(γ(se))
= 1− a(te)

a(t0)
> 0 . (10.41)

We remark that z > 0 arises from the fact that a(t0) > a(te) since the Universe expands while
the light travels from γ(se) to γ(t0). Positivity of z, measured along all directions around Earth,

5A different procedure similar to the one used for computing the gravitational red-shift that uses the fact that
the vacuum Maxwell equations do not explicitly depend on η, leads to the same result.
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is a qualitative proof of the isotropic expansion.

Remark 10.14. We can measure the red-shift because we know both f(γ(0)) and f(γ(1))
even if the former may seem inaccessible since it is the emission frequency in a galaxy far from
us. Actually we possess this information as soon as we assume that the far galaxies are made of
the same type of matter (chemical elements) as the stars in our galaxy. Each chemical element
emits a very precise spectrum of frequencies

(f1, fn, . . .)

called the emission spectrum of that element which is nothing but a physical signature of it.
Observing the spectral decomposition of the light emitted by a far galaxy we find the same
spectra of each chemical element present in the stars of our galaxy multiplied with a common
factor:

(f ′1, f
′
n, . . .) = (rf1, rfn, . . .)

That common factor r < 1 is just the ratio a(t(1))/a(t(0)). Obviously life is not so easy and
there are many other local phenomena (gravitational red shift, kinematical Doppler phenomena
etc) that may further modify the observed spectra, however the fundamental argument is the
one outlined above. �

To go on, assuming that t(1) − t(0) is “small”, we can approximate the right-hand side of
(10.41) by the approximating denominator with Taylor expansion

a(te) = a(t0) + (te − t0)ȧ(t0) +O(2) ' a(t0) [1− (te − t0)H(t(0))] ,

so that, form (10.41),
z ' (t0 − te)H0 .

If the distance between Earth and the emitter galaxy is not too large, we can estimate the time
t0 − te interval as simply the distance measured now (t = t0) divided by the speed of light:

z ' d(t0)

c
H(t0) . (10.42)

From (10.38) we have and estimate of the speed of the galaxies (measured with the distance in
Σt) as a function of the red-shift parameter:

ḋ(t0) ' cz . (10.43)

Remark 10.15. The observed expansion of the Universe proves that at large scale the
gravitational interaction is repulsive instead that attractive as we know very well. This fact is
a completely new feature of the gravitational interaction due to the relativistic model of the
gravitational interaction. �
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10.3.3 Evidence of spatial flatness: k = 0

Theoretically speaking, it is useful to introduce the density parameter

Ω(t) :=
ρ(t)

ρc(t)
where ρc(t) :=

3H(t)2

8πG
(10.44)

is the critical density. The measured value of ρc(t0) = 8.5 × 10−27Kg/m3. The theoretical
relevance of this quantity is due to the fact that the first Friendmann equation can be re-arranged
to

Ω(t)− 1 =
k

H(t)2a(t)2
.

Hence we can conclude that the following possibilities exist, where we stress that ρ includes the
contribution of the cosmological constant,

(a) ρ(t) < ρc(t) is equivalent to Ω(t) < 1 which means k = −1: open hyperbolic universe.

(b) ρ(t) = ρc(t) is equivalent to Ω(t) = 1 which means k = 0: open flat universe.

(a) ρ(t) > ρc(t) is equivalent to Ω(t) > 1 which means k = +1: closed spherical universe.

Notice that k cannot change in time, so the if one of the above possibilities is valid at a certain
time t, it must be always valid. From the observational side, the spatial geometry on the rest
spaces Σt0 appears to be very close to the flat case k = 0, which is the same as saying that
ρ(t0) = ρc(t0).

Remark 10.16. “Open” referes above to the simplest (simply-connected) manifold Σt with
k = −1, 0. However the shape of the spatial section of the Universe can be still “closed”
(compact) also if k = −1, 0 just by taking the quotient with respect to a discrete subgroup of
isometries. �

10.3.4 Big bang, cosmic microwave background, dark matter, and dark en-
ergy

From the late 1990s there is a standard cosmological model that includes both the observa-
tional information and the mathematical theory based on the FLRW geometric model and the
Friedmann equations discussed above, it is known as the ΛCDM model. It was later extended
by adding the cosmological inflation. It is defined by fixing all the free parameters previously
discussed (the constants w of the mixture) and the intial conditions at some time, tipically the
present one. This model embodies several remarkable features of our Universe, some of them
directly observed. We immediately quote a triple of interesting features of the ΛCDM model.

(a) In the far past, around 13.8 billion years ago, measured with the proper time of the
galaxies, all worldlines join at a sigle event where a = 0, thus of infinite curvature, called
the Big Bang. It happened at the finite initial value α of the interval of the argument of
a : (α, ω) 3 t 7→ (0,+∞), whereas ω = +∞.
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(b) There is a relic from the Big Bang called cosmic background radiation. One component
is the cosmic microwave background which is a large-scale homogeneous and isotropic
thermal (black body) radiation nowadays of the value of around 3K. This is due to
redshifted photons that have freely streamed from a cosmological epoch when the Universe
was transparent for the first time to radiation. Its discovery in 1965 (by chance6) together
with a number of detailed observations of its properties are considered nowadays one of
the major confirmations of the Big Bang hypothesis.

(c) From the big bang on, a(t) continued to increase with very different regimes: accelerating
(inflation) in the first instants after the Big Bang, and later still decelerating and accel-
erating. Nowadays we are in an accelerating regime. All that is in agreement with the
contemporary observations about the expansion of the Universe.

The model also explain the large-scale structure in the distribution of galaxies, the observed
abundances of hydrogen (including deuterium), helium and lithium, and – as already stressed
– the accelerating expansion of the universe observed in the light from distant galaxies and
supernovae.

As a matter of fact, almost all said above7 relies in particular on assuming that the source of
the Friedmann equations consists of a mixture of ideal fluids with 4 components, whose features
are inferred by direct or indirect experimental data (in particular by the space observatory
Planck)

(1) Dark energy: the energy density of this component now should amount to the 69.1% of
the total energy density of the universe. It has a quite anomalous equation of state with
w = −1 involving a negative pressure:

p = −ρc2 .

In fact, it is described by the term Λgab in (10.24) transferred in the left hand side and
intepreted as a part of Tab. This dominant term is responsible in the solution of Fried-
mann’s equations to a positive acceleration ä of the scale function a. This acceleration
is an experimental fact: the observed expansion of the universe is accelerating! Λ > 0 is
tuned in the ΛCDM model just to account for this observed accelerated expansion.

(2) Cold dark matter (CDM): the energy density of this component now should amount to
the 25.9% of the total energy density of the universe. It is postulated in order to account
for gravitational effects observed in very large-scale structures (as anomalous rotational
curves of galaxies, anamalous gravitational lensing of light by galaxy clusters etc.) that
cannot be explained by the observed quantity of standard matter. Its equation of state
assumes zero pressure because w = 0

p = 0 .

6By A. Penzias and R. Woodrow Wilson who measured the temperature to be around 3K. Later, R. Dicke,
P. J. E. Peebles, P. G. Roll and D. T. Wilkinson interpreted this radiation as a signature of the Big Bang.

7We omit to give details about the inflation mechanism which involves notions of quantum field theory.
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(3) Ordinary matter: the energy density of this component now should amount to the 4.1%
of the energy density of the universe. It has the equation of state involving zero pressure
for stars and intergalactic gas

p = 0 .

(4) Radiation: Another independent part of the mixture has equation of state arising from
w = 1

3 ,

p =
1

3
ρc2 .

This is a very negligible fraction made of massless particles, i.e., photons8, whose total
energy density is now of ∼ 3×10−4 the energy density of ordinary matter. The value w = 1

3
for the radiation component is obtained by observing that the stress energy tensor of the
EM field (8.17) satifies T aa = 0. When assuming the same constraint of the corresponding
stress-energy tensor (10.26) we find T aa = −ρc2 + 3p.

Remark 10.17. Ordinary matter and radiation are the only parts of the mixture actually
directly detected in astronomical observations. �

To see some consequences of these hypotheses, let us consider the first Friedmann equation.
It can be specialized toÅ

ȧ(t)

a(t)

ã2

= − kc2

a(t)2
+

8πG

3
(ρm(t) + ρr(t) + ρΛ(t))

where ρm is the density of energy due to ordinary matter and dark matter, ρr is the energy
density due to radiation and ρΛ is the density of energy due to dark energy. Taking the first
equation in (10.35) into accountÅ

ȧ(t)

a(t)

ã2

=
8πG

3

ï
−3kc2

8πG
a(t)−2 + ρm(t0)a(t)−3 + ρr(t0)a(t)−4 + ρΛ(t0)

ò
.

Now we neglect the term with the constant k which we know to be very small, obtainingÅ
ȧ(t)

a(t)

ã2

=
8πG

3

[
ρm(t0)a(t)−3 + ρr(t0)a(t)−4 + ρΛ(t0)

]
,

Making use of (10.37) and (10.44), we can recast this equation toÅ
ȧ(t)

a(t)

ã2

= H0

[
Ωm(t0)a(t)−3 + Ωr(t0)a(t)−4 + ΩΛ(t0)

]
,

i.e.,
da

dt
= a(t)

»
H0 [Ωm(t0)a(t)−3 + Ωr(t0)a(t)−4 + ΩΛ(t0)] . (10.45)

8Neutrinos could be added but their treatement needs particilar cure in view of their oscillating masses.
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All constants above are directly or indirectly known

H0 ∼ 2.2× 10−18s−1, Ωm(t0) ∼ 0.308, Ωr(t0) ∼ 10−4, ΩΛ(t0) ∼ 0.691 . (10.46)

Neglecting also the radiation term as Ωr(t0) ∼ 10−4, equation (10.47) becomes

da

dt
= a(t)

»
H0 [Ωm(t0)a(t)−3 + ΩΛ(t0)] . (10.47)

Since the right-hand side of this equation in normal form is smooth for a > 0, it has a unique
maximal solution in that region for the initial condition a(t0) = 1. It is

a(t) =

Å
Ωm(t0)

ΩΛ(t0)

ã1/3

sinh2/3

Å
t− tbb
tΛ

ã
for t > tbb, (10.48)

where

tΛ :=
2

3H0ΩΛ(t0)1/2

and we have set tbb ∈ R such that

1 =

Å
Ωm(t0)

ΩΛ(t0)

ã1/3

sinh2/3

Å
t0 − tbb
tΛ

ã
.

It is evident form the shape of the function y = sinhx, for x ≥ 0, that the above condition is
always satisfied for a unique tbb ∈ R and that it also satisfies tbb < t0. With the data (10.46), it
turns out that

t0 − tbb ' 13.8× 109years .

Notice that a(tbb) = 0: that is the Big Bang. In other words, the Big Bang was around 13.8×109

years ago. Studying the second derivative ä(t) of the specific solution (10.48), one easily sees
that it becomes positive for t > tp such that

a(tp) =

Å
Ωm(t0)

2ΩΛ(t0)

ã1/3

. (10.49)

It turns out that a(tp) ∼ 0.6. This means that, in this model, the expansion is now accelerating
after a phase of deceleration form the Big Bang. Notice that the responsabilty for this accelera-
tion is of Λ according to the previous remark. Another way to see it is the following one: setting
Λ→ 0+ we have that a(tp)→ +∞.

The model above is valid for sufficiently large times when the contribution of Λ and Ωm are
dominant with rspect to the radiation. For very small values of a(t), we cannot neglect the
radiation term which becomes dominant with respect to the matter term and the Λ term in
(10.45) as it increases as a−4 whereas the one of the matter increases as a−3 and Λ fournishes a
constant term. Hence the dynamics is expected to be more complicated than the one described
by (10.48) for small a. One may think that the presence of an intial the Big Bang is therefore
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t0 = now ttbb = 0 Big Bang

a(t)

Figure 10.2: Evolution of a(t) with the origin of t re-arranged in order to have the Big Bang at
tbb = 0.

disputable. Actually, the Big Bang is a quite common feature of the evolution of a if ρ and p
(defined in (10.31)) were positive before some time tp < t0. In fact, let us focus on the evolution
of a for a universe containing an effective fluid with ρ > 0 and p ≥ 0 (i.e., matter, radiation, and
dark matter are dominant with respect to the dark energy before tp). With these hypotheses,
from (10.28),

ä(t)

a(t)
= −4πG

3
(ρ+ 3p(t)) < 0⇒ ä(t) < 0 .

If we also assume that the universe has been expanding ȧ(t) > 0, then the curve a = a(t) ≥ 0
traced back in time necessarily reaches a singularity a(tbb) = 0 at some tbb < tp (see Fig. 10.17).

An overall caveat is hovever that it is not physically meaningful to assume that the compo-
nents of the fluid are really independent. In particular, radiation and matter must have strongly
interacted in the past, so that the previous rough model has to be refined into a more sophis-
ticated scenario where all interactions between the various components of the cosmic fluid and
their different quantum nature are taken into account. When the size of the Universe was very
small, fundamental quantum phenomena of matter played a crucial role. Furthermore, it seems
that very close to the Big Bang, a first accelarating expansion took place called inflation (see
the next paragraph). This first accelerating expansion needs a more sophisticated model than
the one outlined above and all known proposals to explain it are essentially of quantum nature.
That period and, a fortiori, the instatns before the cosmic inflation are still matter of discussion
since no reliable theory of quantum gravity exists for the moment.
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10.3.5 Open problems

An overall problem with the ΛCDM model above is evident. The largest part of the source of
gravitational interaction made of dark energy and dark matter is postulated to exist just in view
of the observations of the effects they would imply on ordnary matter when assuming the validity
of Einstein’s equations. No direct observation exist of dark energy and dark matter because,
up to now, it seems that this sort of matter does not interact in any way with standard matter
excluding the gravitational interaction. A number of proposals exist to explain the nature of the
dark energy and the dark mass9. But also other proposals assume that the Einstein equations
are incomplete or wrong10 at large scales and the dark where the model matter and energy
simply do not exist. There are also other problems with the apparently wrong predictions of
the model at relatively small scales (sub-galaxy scale), which however could be related with the
weird properties of dark matter.

Another important problem we only mention is the cosmological horizon problem. The
cosmic microwave background appears to posess the same temperature in all directions and it is
affected by very small perturbations. This experimental fact raises a serious problem. If we trace
back the origin of that radiation assuming an expansion of the spatial section of the universe
from the Big Bang to now without acceleration, then we discorver that the radiation that reached
us from different directions was producted in causally separated regions. How is it possible that
these regions had the same temperature without causal interactions? Cosmological inflation
is a proposal of solution to that problem. Within this theory, immediately after the Big Bang,
a first isolated rapid exponential expansion of space, with ä > 0, took place in the very early
universe: from 10−36 seconds after the Big Bang to some time between 10−33 and 10−32 seconds
after the singularity. During the inflation period the parameter a expanded by a fantastic factor
of at least 1026. The universe increased in size from a small and causally connected region in
near equilibrium. Inflation then expanded the universe very rapidly, isolating nearby regions
of spacetime by growing them beyond the limits of causal contact, freezing the uniformity at
large distances. After that inflationary period, the universe continued to expand at a slower
rate decelerating. As said above, the second acceleration of the expansion due to dark energy
stated after 9 × 109 years and it is still present. The nature of the first accelerating expansion
called inflation is not completely clear and there are several proposals to explain it especially
from quantum field theory.

9J.P. Ostriker and S. Mitton Heart of Darkness: Unraveling the mysteries of the invisible universe. Prince-
ton,Princeton University Press (2013).

10A. Maeder. An Alternative to the ΛCDM Model: The Case of Scale Invariance. The Astrophysical Journal
834 (2): 194 (2017).
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