SPECIAL ORBIFOLDS AND BIRATIONAL CLASSIFICATION. LEVICO. GGA VIII

Frédéric Campana

Université Nancy 1

25 mai 2008

• $X := \mathbb{C}$ -projective connected *n*-fold, K_X its canonical bundle.

- $X := \mathbb{C}$ -projective connected *n*-fold, K_X its canonical bundle.
- Main Problem : Deduce geometry from positivity of K_X .

- $X := \mathbb{C}$ -projective connected *n*-fold, K_X its canonical bundle.
- Main Problem : Deduce geometry from positivity of K_X .
- Expected-Known (for the 3 "pure" geometries) :

K _X	$\pi_1(X)$	d _X	$\overline{X(k)}$	birational : κ
< 0	$\{1\}$	$\equiv 0$	Χ?	$\kappa_+ = -\infty \Leftarrow RC$
$\equiv 0$	Ãb	\equiv 0 ?	Χ?	$\kappa = 0$
> 0	??	> 0 (gen.)?	Finite (gen.)?	$\kappa = n$

- X := C-projective connected *n*-fold, K_X its canonical bundle.
- Main Problem : Deduce geometry from positivity of K_X .
- Expected-Known (for the 3 "pure" geometries) :

K _X	$\pi_1(X)$	d _X	$\overline{X(k)}$	birational : κ
< 0	{1}	$\equiv 0$	Χ?	$\kappa_+ = -\infty \Leftarrow RC$
$\equiv 0$	Ãb	\equiv 0 ?	Χ?	$\kappa = 0$
> 0	??	> 0 (gen.)?	Finite (gen.)?	$\kappa = n$

• When $n \ge 2$: birational version needed; "mixed" signs.

- X := C-projective connected *n*-fold, K_X its canonical bundle.
- Main Problem : Deduce geometry from positivity of K_X .
- Expected-Known (for the 3 "pure" geometries) :

K _X	$\pi_1(X)$	d _X	$\overline{X(k)}$	birational : κ
< 0	{1}	$\equiv 0$	Χ?	$\kappa_+ = -\infty \Leftarrow RC$
$\equiv 0$	Ãb	\equiv 0 ?	Χ?	$\kappa = 0$
> 0	??	> 0 (gen.)?	Finite (gen.)?	$\kappa = n$

- When $n \ge 2$: birational version needed; "mixed" signs.
- **Decomposition problem :** "split" X canonically into its "pure" parts by fibrations.

• Only possible in the larger category of "geometric orbifolds".

- Only possible in the larger category of "geometric orbifolds".
- Decomposition achieved in 2 steps :

- Only possible in the larger category of "geometric orbifolds".
- Decomposition achieved in 2 steps :
- 1st step : "splits" canonically any geometric orbifold (X/Δ) by one fibration (the "core") into its antithetical parts : "Special" (the orbifold fibres), and : General Type (the "orbifold" base).

- Only possible in the larger category of "geometric orbifolds".
- Decomposition achieved in 2 steps :
- 1st step : "splits" canonically any geometric orbifold (X/Δ) by one fibration (the "core") into its antithetical parts : "Special" (the orbifold fibres), and : General Type (the "orbifold" base).
- 2nd step : Special orbifolds are (conditionally) canonically towers of fibrations with fibres having alternatively either *κ*₊ = −∞ or *κ* = 0.

- Only possible in the larger category of "geometric orbifolds".
- Decomposition achieved in 2 steps :
- 1st step : "splits" canonically any geometric orbifold (X/Δ) by one fibration (the "core") into its antithetical parts : "Special" (the orbifold fibres), and : General Type (the "orbifold" base).
- 2nd step : Special orbifolds are (conditionally) canonically towers of fibrations with fibres having alternatively either *κ*₊ = −∞ or *κ* = 0.
- Conjecturally, special orbifolds enjoy the same expected properties as manifolds with $\kappa_+ = -\infty$ or $\kappa = 0$. (Because of their expected stability under "orbifold extension").

• Motivation : Eliminate multiple fibres by "virtual cover" of the base.

• Motivation : Eliminate multiple fibres by "virtual cover" of the base.

- Motivation : Eliminate multiple fibres by "virtual cover" of the base.
- **Example** : C = hyperelliptic of genus $g \ge 2$, $\vartheta : C \to C$. E = elliptic, $t : E \to E$ translation of order 2. $X' := E \times C \to X := (X'/ < t \times \vartheta >)$ étale of degree 2. Let $f : X \to Y := (C/ < \vartheta >) \cong \mathbb{P}_1$.

- Motivation : Eliminate multiple fibres by "virtual cover" of the base.
- **Example :** C = hyperelliptic of genus $g \ge 2$, $\vartheta : C \to C$. E = elliptic, $t : E \to E$ translation of order 2. $X' := E \times C \to X := (X' / \langle t \times \vartheta \rangle)$ étale of degree 2. Let $f : X \to Y := (C / \langle \vartheta \rangle) \cong \mathbb{P}_1$.
- $X_y \cong E, Y \cong \mathbb{P}_1$ don't "detect" the general type "quotient" C.

- Motivation : Eliminate multiple fibres by "virtual cover" of the base.
- **Example :** C = hyperelliptic of genus $g \ge 2$, $\vartheta : C \to C$. E = elliptic, $t : E \to E$ translation of order 2. $X' := E \times C \to X := (X'/ < t \times \vartheta >)$ étale of degree 2. Let $f : X \to Y := (C/ < \vartheta >) \cong \mathbb{P}_1$.
- $X_y \cong E, Y \cong \mathbb{P}_1$ don't "detect" the general type "quotient" C.
- "Revealed" by its **orbifold base** (\mathbb{P}_1/Δ_f) , $\Delta_f = (1/2).(\sum_{1}^{2g+2} \{a_j\}),$ $K_C = v^*(K_Y + \Delta_f).$

- Motivation : Eliminate multiple fibres by "virtual cover" of the base.
- **Example :** C = hyperelliptic of genus $g \ge 2$, $\vartheta : C \to C$. E = elliptic, $t : E \to E$ translation of order 2. $X' := E \times C \to X := (X'/ < t \times \vartheta >)$ étale of degree 2. Let $f : X \to Y := (C/ < \vartheta >) \cong \mathbb{P}_1$.
- $X_y \cong E, Y \cong \mathbb{P}_1$ don't "detect" the general type "quotient" C.
- "Revealed" by its orbifold base (\mathbb{P}_1/Δ_f) , $\Delta_f = (1/2).(\sum_{1}^{2g+2} \{a_j\}),$ $K_C = v^*(K_Y + \Delta_f).$
- Geometric orbifolds generalise this construction.

• Geometric orbifolds= pairs (X/Δ) , $\Delta = \sum_{J} a_{j}.D_{j}, J$ finite, $(1 - 1/m_{j}) = a_{j} \in]0, 1] \cap \mathbb{Q}, D_{j}$ irreducible divisors, $m_{j} \in]1, +\infty]$:=multiplicities. (Same objects as in LMMP, but from (apparently) different motivations).

- Geometric orbifolds= pairs (X/Δ) , $\Delta = \sum_J a_j D_j$, J finite, $(1 - 1/m_j) = a_j \in]0, 1] \cap \mathbb{Q}, D_j$ irreducible divisors, $m_j \in]1, +\infty]$:=multiplicities. (Same objects as in LMMP, but from (apparently) different motivations).
- Interpolates between 2 extreme cases : "proper" ($\Delta = 0$) and "Logarithmic" ($a_j = 1, \forall j$).

- Geometric orbifolds= pairs (X/Δ) , $\Delta = \sum_J a_j D_j$, J finite, $(1 - 1/m_j) = a_j \in]0, 1] \cap \mathbb{Q}, D_j$ irreducible divisors, $m_j \in]1, +\infty]$:=multiplicities. (Same objects as in LMMP, but from (apparently) different motivations).
- Interpolates between 2 extreme cases : "proper" ($\Delta = 0$) and "Logarithmic" ($a_j = 1, \forall j$).
- (X/Δ) is smooth if $Supp(\Delta) := \cup D_j = n.c.$

- Geometric orbifolds= pairs (X/Δ) , $\Delta = \sum_J a_j D_j$, J finite, $(1 - 1/m_j) = a_j \in]0, 1] \cap \mathbb{Q}, D_j$ irreducible divisors, $m_j \in]1, +\infty]$:=multiplicities. (Same objects as in LMMP, but from (apparently) different motivations).
- Interpolates between 2 extreme cases : "proper" ($\Delta = 0$) and "Logarithmic" ($a_j = 1, \forall j$).
- (X/Δ) is smooth if $Supp(\Delta) := \cup D_j = n.c.$
- (X/Δ) is integral if $m_j \in \overline{\mathbb{Z}}, \forall j$).

- Geometric orbifolds= pairs (X/Δ) , $\Delta = \sum_J a_j D_j$, J finite, $(1 - 1/m_j) = a_j \in]0, 1] \cap \mathbb{Q}, D_j$ irreducible divisors, $m_j \in]1, +\infty]$:=multiplicities. (Same objects as in LMMP, but from (apparently) different motivations).
- Interpolates between 2 extreme cases : "proper" ($\Delta = 0$) and "Logarithmic" ($a_j = 1, \forall j$).

白 と く き と く き と …

- (X/Δ) is smooth if $Supp(\Delta) := \cup D_j = n.c.$
- (X/Δ) is integral if $m_j \in \overline{\mathbb{Z}}, \forall j$).
- Smooth orbifolds= orbifold resolutions of I.c orbifolds.

- Geometric orbifolds= pairs (X/Δ) , $\Delta = \sum_J a_j D_j$, J finite, $(1 - 1/m_j) = a_j \in]0, 1] \cap \mathbb{Q}, D_j$ irreducible divisors, $m_j \in]1, +\infty]$:=multiplicities. (Same objects as in LMMP, but from (apparently) different motivations).
- Interpolates between 2 extreme cases : "proper" ($\Delta = 0$) and "Logarithmic" ($a_j = 1, \forall j$).
- (X/Δ) is smooth if $Supp(\Delta) := \cup D_j = n.c.$
- (X/Δ) is integral if $m_j \in \overline{\mathbb{Z}}, \forall j$).
- Smooth orbifolds= orbifold resolutions of I.c orbifolds.
- Integral orbifolds=Virtual coverings of X Δ-ramified =fully geometric objects, same properties as varieties.

- Geometric orbifolds= pairs (X/Δ) , $\Delta = \sum_J a_j D_j$, J finite, $(1 - 1/m_j) = a_j \in]0, 1] \cap \mathbb{Q}, D_j$ irreducible divisors, $m_j \in]1, +\infty]$:=multiplicities. (Same objects as in LMMP, but from (apparently) different motivations).
- Interpolates between 2 extreme cases : "proper" ($\Delta = 0$) and "Logarithmic" ($a_j = 1, \forall j$).
- (X/Δ) is smooth if $Supp(\Delta) := \cup D_j = n.c.$
- (X/Δ) is integral if $m_j \in \overline{\mathbb{Z}}, \forall j$).
- Smooth orbifolds= orbifold resolutions of I.c orbifolds.
- Integral orbifolds=Virtual coverings of X Δ-ramified =fully geometric objects, same properties as varieties.

•
$$K_{(X/\Delta)} := K_X + \Delta, \ \kappa(X/\Delta) := \kappa(X, K_X + \Delta).$$

• **Fibration :** Any regular surjective map with connected fibres $f: X \rightarrow Y$, with Y normal.

- **Fibration** : Any regular surjective map with connected fibres $f : X \rightarrow Y$, with Y normal.
- $\forall E$ any irreducible divisor on Y, let : $f^*(E) = \sum_k t_k . D_k + R$, with : $f(D_k) = E, \forall k$, and R f-exceptional.
- Multiplicities : Define : $m_f(E) := \inf_k \{t_k\}$.

- **Fibration :** Any regular surjective map with connected fibres $f: X \rightarrow Y$, with Y normal.
- $\forall E$ any irreducible divisor on Y, let : $f^*(E) = \sum_k t_k . D_k + R$, with : $f(D_k) = E, \forall k$, and R f-exceptional.
- Multiplicities : Define : $m_f(E) := \inf_k \{t_k\}$.
- "classical" (integral) multiplicities : **gcd**_k instead of *inf*_k.

• Orbifold base (of
$$f$$
) := (Y/Δ_f) , with :
 $\Delta_f := \sum_E (1 - \frac{1}{m_f(E)}) \cdot E$

- **Fibration :** Any regular surjective map with connected fibres $f: X \rightarrow Y$, with Y normal.
- $\forall E$ any irreducible divisor on Y, let : $f^*(E) = \sum_k t_k . D_k + R$, with : $f(D_k) = E, \forall k$, and R f-exceptional.
- Multiplicities : Define : $m_f(E) := \inf_k \{t_k\}.$
- "classical" (integral) multiplicities : gcd_k instead of inf_k.
- Orbifold base (of f) := (Y/Δ_f) , with : $\Delta_f := \sum_E (1 - \frac{1}{m_f(E)}) \cdot E$
- Fundamental invariant : $\kappa(Y/\Delta_f)$. Not birational.

- **Fibration :** Any regular surjective map with connected fibres $f: X \rightarrow Y$, with Y normal.
- $\forall E$ any irreducible divisor on Y, let : $f^*(E) = \sum_k t_k . D_k + R$, with : $f(D_k) = E, \forall k$, and R f-exceptional.
- Multiplicities : Define : $m_f(E) := \inf_k \{t_k\}$.
- "classical" (integral) multiplicities : gcd_k instead of inf_k.
- Orbifold base (of f) := (Y/Δ_f) , with : $\Delta_f := \sum_E (1 - \frac{1}{m_f(E)}) \cdot E$
- Fundamental invariant : $\kappa(Y/\Delta_f)$. Not birational.
- Let $\kappa(f) := \kappa(Y'/\Delta_{f'})$, for $f' : X' \to Y'$ obtained by flattening and smoothing of f. (Not needed if $\kappa(Y) \ge 0$)

• X special : \iff $(\nexists f: X \dashrightarrow Y \text{ dominant, with } : \kappa(f) = \dim(Y) > 0)$

- X special : \iff $(\nexists f : X \dashrightarrow Y \text{ dominant, with } : \kappa(f) = \dim(Y) > 0)$
- Birational, étale (surprisingly hard).

- X special : \iff $(\nexists f : X \dashrightarrow Y \text{ dominant, with } : \kappa(f) = \dim(Y) > 0)$
- Birational, étale (surprisingly hard).
- X very weakly special (VWS) : $\iff \nexists f : X \dashrightarrow Y$ with $\kappa(Y) = \dim(Y) > 0$

- X special : \iff $(\nexists f : X \dashrightarrow Y \text{ dominant, with } : \kappa(f) = \dim(Y) > 0)$
- Birational, étale (surprisingly hard).
- X very weakly special (VWS) : $\iff \nexists f : X \dashrightarrow Y$ with $\kappa(Y) = \dim(Y) > 0$
- X weakly special (WS) : \iff X' is VWS, \forall X' \rightarrow X étale.

- X special : \iff $(\nexists f : X \dashrightarrow Y \text{ dominant, with } : \kappa(f) = \dim(Y) > 0)$
- Birational, étale (surprisingly hard).
- X very weakly special (VWS) : $\iff \nexists f : X \dashrightarrow Y$ with $\kappa(Y) = \dim(Y) > 0$
- X weakly special (WS) : $\iff X'$ is VWS, $\forall X' \rightarrow X$ étale.
- $S \Longrightarrow WS \Longrightarrow VWS$

- X special : \iff $(\nexists f : X \dashrightarrow Y \text{ dominant, with } : \kappa(f) = \dim(Y) > 0)$
- Birational, étale (surprisingly hard).
- X very weakly special (VWS) : $\iff \nexists f : X \dashrightarrow Y$ with $\kappa(Y) = \dim(Y) > 0$
- X weakly special (WS) : $\iff X'$ is VWS, $\forall X' \rightarrow X$ étale.
- $S \Longrightarrow WS \Longrightarrow VWS$
- Curves : $S \iff WS \implies VWS \iff g = 0, 1$

- X special : \iff $(\nexists f : X \dashrightarrow Y \text{ dominant, with } : \kappa(f) = \dim(Y) > 0)$
- Birational, étale (surprisingly hard).
- X very weakly special (VWS) : $\iff \nexists f : X \dashrightarrow Y$ with $\kappa(Y) = \dim(Y) > 0$
- X weakly special (WS) : $\iff X'$ is VWS, $\forall X' \to X$ étale.
- $S \Longrightarrow WS \Longrightarrow VWS$
- Curves : $S \iff WS \implies VWS \iff g = 0, 1$
- Surfaces : $S \iff WS$, but $WS \neq VWS$ (Elliptic surfaces).
(WEAK) SPECIALNESS : GEOMETRY

- X special : \iff $(\nexists f : X \dashrightarrow Y \text{ dominant, with } : \kappa(f) = \dim(Y) > 0)$
- Birational, étale (surprisingly hard).
- X very weakly special (VWS) : $\iff \nexists f : X \dashrightarrow Y$ with $\kappa(Y) = \dim(Y) > 0$
- X weakly special (WS) : $\iff X'$ is VWS, $\forall X' \to X$ étale.
- $S \Longrightarrow WS \Longrightarrow VWS$
- Curves : $S \iff WS \implies VWS \iff g = 0, 1$
- Surfaces : $S \iff WS$, but $WS \neq VWS$ (Elliptic surfaces).
- Threefolds : S ≠ WS (Examples of Bogomolov-Tschinkel : ∃ simply-connected threefolds VWS, but not Special).

(WEAK) SPECIALNESS : GEOMETRY

- X special : \iff $(\nexists f : X \dashrightarrow Y \text{ dominant, with } : \kappa(f) = \dim(Y) > 0)$
- Birational, étale (surprisingly hard).
- X very weakly special (VWS) : $\iff \nexists f : X \dashrightarrow Y$ with $\kappa(Y) = \dim(Y) > 0$
- X weakly special (WS) : $\iff X'$ is VWS, $\forall X' \to X$ étale.
- $S \Longrightarrow WS \Longrightarrow VWS$
- Curves : $S \iff WS \implies VWS \iff g = 0, 1$
- Surfaces : $S \iff WS$, but $WS \neq VWS$ (Elliptic surfaces).
- Threefolds : S ≠ WS (Examples of Bogomolov-Tschinkel : ∃ simply-connected threefolds VWS, but not Special).
- Multiple fibres not always eliminated by étale covers.

• Surfaces : The surface X = (X/0) is special \iff either :

- 1. $\kappa(X) = -\infty$, and $X \sim \mathbb{P}_1 \times C, g(C) = 0, 1$, or :
- 2. $\kappa(X) = 0$ (ie : $\sim K$ 3, Abelian, or undercover of these), or :
- 3. $\kappa(X) = 1$, and $q(X') \le 1, \forall X'$, étale cover of X
- $\iff (\kappa(X) \neq 2 \text{ and } \pi_1(X) \text{ virtually abelien})$
- $\iff \exists f : \mathbb{C}^2 \dashrightarrow X$ nondegenerate (up to general K3's).

Surfaces : The surface X = (X/0) is special ⇔ either :
1. κ(X) = -∞, and : X ~ P₁ × C, g(C) = 0, 1, or :
2. κ(X) = 0 (ie : ~ K3, Abelian, or undercover of these), or :
3. κ(X) = 1, and q(X') ≤ 1, ∀X', étale cover of X
⇔ (κ(X) ≠ 2 and π₁(X) virtually abelien)

- $\iff \exists f : \mathbb{C}^2 \dashrightarrow X$ nondegenerate (up to general K3's).
- $n \ge 3$: No such simple characterisation.

- Surfaces : The surface X = (X/0) is special \iff either :
 - 1. $\kappa(X) = -\infty$, and : $X \sim \mathbb{P}_1 \times C$, g(C) = 0, 1, or : 2. $\kappa(X) = 0$ (ie : $\sim K3$, Abelian, or undercover of these), or : 3. $\kappa(X) = 1$, and $q(X') \leq 1, \forall X'$, étale cover of $X \iff (\kappa(X) \neq 2$ and $\pi_1(X)$ virtually abelien)
 - $\iff \exists f: \mathbb{C}^2 \dashrightarrow X \text{ nondegenerate (up to general } K3's).$
- $n \ge 3$: No such simple characterisation.
- **Deformation invariance** of specialness when $n \ge 3$?

- Surfaces : The surface X = (X/0) is special \iff either :
 - 1. $\kappa(X) = -\infty$, and : $X \sim \mathbb{P}_1 \times C$, g(C) = 0, 1, or : 2. $\kappa(X) = 0$ (ie : $\sim K3$, Abelian, or undercover of these), or : 3. $\kappa(X) = 1$, and $q(X') \leq 1, \forall X'$, étale cover of $X \iff (\kappa(X) \neq 2$ and $\pi_1(X)$ virtually abelien)
 - $\iff \exists f : \mathbb{C}^2 \dashrightarrow X$ nondegenerate (up to general K3's).
- $n \ge 3$: No such simple characterisation.
- **Deformation invariance** of specialness when $n \ge 3$?
- Orbifold Kobayashi-Ochiai :

 $[\exists \varphi : \mathbb{C}^n \dashrightarrow X \text{ meromorphic non-degenerate}] \Longrightarrow X \text{ special.}$

 X potentially dense (P.D) means : X/k, a number field, and X(k') Zariski dense, for some larger number field k'.

- X potentially dense (P.D) means : X/k, a number field, and X(k') Zariski dense, for some larger number field k'.
- Potential density is birational, preserved by étale covers (Chevalley-Weil), products and rational images.

- X potentially dense (P.D) means : X/k, a number field, and X(k') Zariski dense, for some larger number field k'.
- Potential density is birational, preserved by étale covers (Chevalley-Weil), products and rational images.
- Basic examples : unirational (RC?), Abelian Var. ($\kappa = 0$?)

- X potentially dense (P.D) means : X/k, a number field, and X(k') Zariski dense, for some larger number field k'.
- Potential density is birational, preserved by étale covers (Chevalley-Weil), products and rational images.
- Basic examples : unirational (RC ?), Abelian Var. ($\kappa = 0$?)
- Harris Conjecture : *VWS* ⇔ Potential Density? (Wrong)

- X potentially dense (P.D) means : X/k, a number field, and X(k') Zariski dense, for some larger number field k'.
- Potential density is birational, preserved by étale covers (Chevalley-Weil), products and rational images.
- Basic examples : unirational (RC ?), Abelian Var. ($\kappa = 0$?)
- Harris Conjecture : VWS ⇐ Potential Density? (Wrong)
- A-CT Conjecture : *WS* \iff Potential Density?

- X potentially dense (P.D) means : X/k, a number field, and X(k') Zariski dense, for some larger number field k'.
- Potential density is birational, preserved by étale covers (Chevalley-Weil), products and rational images.
- Basic examples : unirational (RC ?), Abelian Var. ($\kappa = 0$?)
- Harris Conjecture : VWS \iff Potential Density? (Wrong)
- A-CT Conjecture : *WS* \iff Potential Density?
- **C** Conjecture : *Specialness* \iff Potential Density?

- X potentially dense (P.D) means : X/k, a number field, and X(k') Zariski dense, for some larger number field k'.
- Potential density is birational, preserved by étale covers (Chevalley-Weil), products and rational images.
- Basic examples : unirational (RC ?), Abelian Var. ($\kappa = 0$?)
- Harris Conjecture : VWS ⇐ Potential Density? (Wrong)
- **A-CT Conjecture :** *WS* \iff Potential Density?
- **C** Conjecture : *Specialness* \iff Potential Density?
- A-CT contradicts C (On Bogomolov-Tschinkel examples)

- X potentially dense (P.D) means : X/k, a number field, and X(k') Zariski dense, for some larger number field k'.
- Potential density is birational, preserved by étale covers (Chevalley-Weil), products and rational images.
- Basic examples : unirational (RC ?), Abelian Var. ($\kappa = 0$?)
- Harris Conjecture : VWS \iff Potential Density? (Wrong)
- **A-CT Conjecture :** *WS* \iff Potential Density?
- **C** Conjecture : *Specialness* \iff Potential Density?
- A-CT contradicts C (On Bogomolov-Tschinkel examples)
- (A-CT vs C Undecided). But hyperbolic analogue of C known for some B-T's.

• Expected Hyperbolic analogue of P.D : $d_X \equiv 0$.

- Expected Hyperbolic analogue of P.D : $d_X \equiv 0$.
- $d_X \equiv 0 \iff \mathbb{C}$ -connected. (\implies ?)
- d ≡ 0 : birational, preserved by étale covers, products, rational images. And chain-connectedness.

- Expected Hyperbolic analogue of P.D : $d_X \equiv 0$.
- $d_X \equiv 0 \iff \mathbb{C}$ -connected. (\implies ?)
- $d \equiv 0$: birational, preserved by étale covers, products, rational images. And chain-connectedness.
- Basic examples : R.C, Abelian varieties (κ = 0?).
 All Special surfaces, too.

- Expected Hyperbolic analogue of P.D : $d_X \equiv 0$.
- $d_X \equiv 0 \iff \mathbb{C}$ -connected. (\implies ?)
- $d \equiv 0$: birational, preserved by étale covers, products, rational images. And chain-connectedness.
- Basic examples : R.C, Abelian varieties ($\kappa = 0$?). All Special surfaces, too.
- (Harris Conjecture)* : $VWS \iff d_X \equiv 0$? (Wrong)

- Expected Hyperbolic analogue of P.D : $d_X \equiv 0$.
- $d_X \equiv 0 \iff \mathbb{C}$ -connected. (\implies ?)
- d ≡ 0 : birational, preserved by étale covers, products, rational images. And chain-connectedness.
- Basic examples : R.C, Abelian varieties ($\kappa = 0$?). All Special surfaces, too.
- (Harris Conjecture)* : $VWS \iff d_X \equiv 0$? (Wrong)
- (A-CT Conjecture)* : $WS \iff d_X \equiv 0$? (Wrong) (On some Bogomolov-Tschinkel examples).

- Expected Hyperbolic analogue of P.D : $d_X \equiv 0$.
- $d_X \equiv 0 \iff \mathbb{C}$ -connected. (\implies ?)
- d ≡ 0 : birational, preserved by étale covers, products, rational images. And chain-connectedness.
- Basic examples : R.C, Abelian varieties ($\kappa = 0$?). All Special surfaces, too.
- (Harris Conjecture)^{*} : $VWS \iff d_X \equiv 0$? (Wrong)
- (A-CT Conjecture)* : $WS \iff d_X \equiv 0$? (Wrong) (On some Bogomolov-Tschinkel examples).
- (C Conjecture)* : S ↔ d_X ≡ 0? (True on these same Bogomolov-Tschinkel examples).

There exists f : X → S an elliptic fibration (defined /Q) with X, S smooth projective of dimension 3, 2, s.t :
1. π₁(X) = {1}
2. κ(S) = 1.
3. κ(S, K_S + Δ(f)) = 2.

- There exists f : X → S an elliptic fibration (defined /Q) with X, S smooth projective of dimension 3, 2, s.t :
 1. π₁(X) = {1}
 2. κ(S) = 1.
 3. κ(S, K_S + Δ(f)) = 2.
- Thus X is WS, but not Special.

- There exists f : X → S an elliptic fibration (defined /Q) with X, S smooth projective of dimension 3, 2, s.t :
 1. π₁(X) = {1}
 2. κ(S) = 1.
 3. κ(S, K_S + Δ(f)) = 2.
- Thus X is WS, but not Special.
- After A-CT, X is P.D. After C, it is not. (More precisely : after C, f(X(k)) ⊂ S Mordellic, ∀k a nb field).

- There exists f : X → S an elliptic fibration (defined /Q) with X, S smooth projective of dimension 3, 2, s.t :
 1. π₁(X) = {1}
 2. κ(S) = 1.
 3. κ(S, K_S + Δ(f)) = 2.
- Thus X is WS, but not Special.
- After A-CT, X is P.D. After C, it is not. (More precisely : after C, f(X(k)) ⊂ S Mordellic, ∀k a nb field).
- (w. M. Paun :) X a B-T threefold s.t (c₁² c₂)(S/Δ_f) > 0. There exists a projective curve C ⊂ S s.t : ∀h : C → X, either f ∘ h : C → S is constant, or maps into C.

- There exists f : X → S an elliptic fibration (defined /Q) with X, S smooth projective of dimension 3, 2, s.t :
 1. π₁(X) = {1}
 2. κ(S) = 1.
 3. κ(S, K_S + Δ(f)) = 2.
- Thus X is WS, but not Special.
- After A-CT, X is P.D. After C, it is not. (More precisely : after C, f(X(k)) ⊂ S Mordellic, ∀k a nb field).
- (w. M. Paun :) X a B-T threefold s.t (c₁² c₂)(S/Δ_f) > 0. There exists a projective curve C ⊂ S s.t : ∀h : C → X, either f ∘ h : C → S is constant, or maps into C.
- Either **A-CT**, or the expected link arithmetics-hyperbolicity fails.

 Sketch : Δ_f = (1 − 1/m).D, D ⊂ S smooth ⇒ f ∘ h(ℂ) is m-tangent to D, ie : f ∘ h : ℂ → (S/Δ_f) is an orbifold morphism.

- Sketch : Δ_f = (1 − 1/m).D, D ⊂ S smooth ⇒ f ∘ h(ℂ) is m-tangent to D, ie : f ∘ h : ℂ → (S/Δ_f) is an orbifold morphism.
- 1st step : (f ∘ h(ℂ) is *m*-tangent to *D*, and κ(S/Δ_f) = 2 with (c₁² - c₂)(S/Δ_f) > 0)⇒(f ∘ h(ℂ) is algebraically degenerate. (Orbifold Mc-Quillan). Rests on the consideration of pluri-differential orbifold 1-forms.

- Sketch : Δ_f = (1 − 1/m).D, D ⊂ S smooth ⇒ f ∘ h(ℂ) is m-tangent to D, ie : f ∘ h : ℂ → (S/Δ_f) is an orbifold morphism.
- 1st step : (f ∘ h(ℂ) is *m*-tangent to *D*, and κ(S/Δ_f) = 2 with (c₁² - c₂)(S/Δ_f) > 0)⇒(f ∘ h(ℂ) is algebraically degenerate. (Orbifold Mc-Quillan). Rests on the consideration of pluri-differential orbifold 1-forms.
- 2nd step : For a general choice of D : the number of rational or elliptic curves m-tangent to D is finite. (Since κ(S/Δ_f) = 2 with (c₁² − c₂)(S/Δ_f) > 0) : orbifold Bogomolov).

• Canonical Bundle : $K_X + \Delta := K_{(X/\Delta)}$.

- Canonical Bundle : $K_X + \Delta := K_{(X/\Delta)}$.
- Canonical (or "Kodaira") Dimension : $\kappa(X/\Delta) := \kappa(X, K_X + \Delta) \ge \kappa(X).$

- Canonical Bundle : $K_X + \Delta := K_{(X/\Delta)}$.
- Canonical (or "Kodaira") Dimension : $\kappa(X/\Delta) := \kappa(X, K_X + \Delta) \ge \kappa(X).$
- If (X/Δ) smooth, one defines ∀p, N ≥ 0 : S^N(Ω^p_(X/Δ)) : lies between Sym^N(Ω^p_X) and Sym^N(Ω^p_X(Log(Supp(Δ))).

- Canonical Bundle : $K_X + \Delta := K_{(X/\Delta)}$.
- Canonical (or "Kodaira") Dimension : $\kappa(X/\Delta) := \kappa(X, K_X + \Delta) \ge \kappa(X).$
- If (X/Δ) smooth, one defines ∀p, N ≥ 0 : S^N(Ω^p_(X/Δ)) : lies between Sym^N(Ω^p_X) and Sym^N(Ω^p_X(Log(Supp(Δ))).
- For p = 1, in local analytic coordinates $x = (x_1, ..., x_n)$ s.t : Δ has local equation $\prod_{j=1}^{j=n} x_j^{(1-1/m_j)}$, $S^N(\Omega^1_{(X/\Delta)})$ is the (locally free) sheaf of \mathcal{O}_X -modules generated by all $u_J := \bigotimes_j x_j^{\lceil k_j/m_j \rceil} (\frac{dx_j}{x_j})^{\otimes k_j}$, s.t : $\sum_j k_j = N$.

- Canonical Bundle : $K_X + \Delta := K_{(X/\Delta)}$.
- Canonical (or "Kodaira") Dimension : $\kappa(X/\Delta) := \kappa(X, K_X + \Delta) \ge \kappa(X).$
- If (X/Δ) smooth, one defines ∀p, N ≥ 0 : S^N(Ω^p_(X/Δ)) : lies between Sym^N(Ω^p_X) and Sym^N(Ω^p_X(Log(Supp(Δ))).
- For p = 1, in local analytic coordinates $x = (x_1, ..., x_n)$ s.t : Δ has local equation $\prod_{j=1}^{j=n} x_j^{(1-1/m_j)}$, $S^N(\Omega^1_{(X/\Delta)})$ is the (locally free) sheaf of \mathcal{O}_X -modules generated by all $u_J := \bigotimes_j x_j^{\lceil k_j/m_j \rceil} (\frac{dx_j}{x_j})^{\otimes k_j}$, s.t : $\sum_j k_j = N$.
- If (X/Δ) integral, one can define also : π₁(X/Δ), d_(X/Δ), integral points if (X/Δ) defined over a number field.

GEOMETRIC ORBIFOLDS : MORPHISMS. I

• A morphism is a regular map $f : (X/\Delta_X) \to (Y/\Delta_Y)$ s.t : $f(X) \subsetneq Supp(\Delta_Y)$, and : $t_{E,D}.m_X(D) \ge m_Y(E)$, $\forall E, D$ s.t : $t_{E,D} > 0$, where $f^*(E) = t_{E,D}.D + ...$ (with Y smooth).

GEOMETRIC ORBIFOLDS : MORPHISMS. I

- A morphism is a regular map $f : (X/\Delta_X) \to (Y/\Delta_Y)$ s.t : $f(X) \subsetneq Supp(\Delta_Y)$, and : $t_{E,D}.m_X(D) \ge m_Y(E)$, $\forall E, D$ s.t : $t_{E,D} > 0$, where $f^*(E) = t_{E,D}.D + ...$ (with Y smooth).
- If (X/Δ_X) and (Y/Δ_Y) are smooth, then f is an orb.morph. iff $f^*(S^N(\Omega^p(Y/\Delta_Y))) \subset (S^N(\Omega^p(X/\Delta_X))), \forall N, p.$

GEOMETRIC ORBIFOLDS : MORPHISMS. I

- A morphism is a regular map $f : (X/\Delta_X) \to (Y/\Delta_Y)$ s.t : $f(X) \subsetneq Supp(\Delta_Y)$, and : $t_{E,D}.m_X(D) \ge m_Y(E)$, $\forall E, D$ s.t : $t_{E,D} > 0$, where $f^*(E) = t_{E,D}.D + ...$ (with Y smooth).
- If (X/Δ_X) and (Y/Δ_Y) are smooth, then f is an orb.morph. iff $f^*(S^N(\Omega^p(Y/\Delta_Y))) \subset (S^N(\Omega^p(X/\Delta_X))), \forall N, p$.
- If (Y/Δ_Y) is integral, then f is an orb.morph. iff $f_*(Hol(\mathbb{D}, (X/\Delta_X))) \subset Hol(\mathbb{D}, (Y/\Delta_Y))$.
GEOMETRIC ORBIFOLDS : MORPHISMS. I

- A morphism is a regular map $f : (X/\Delta_X) \to (Y/\Delta_Y)$ s.t : $f(X) \subsetneq Supp(\Delta_Y)$, and : $t_{E,D}.m_X(D) \ge m_Y(E)$, $\forall E, D$ s.t : $t_{E,D} > 0$, where $f^*(E) = t_{E,D}.D + ...$ (with Y smooth).
- If (X/Δ_X) and (Y/Δ_Y) are smooth, then f is an orb.morph. iff $f^*(S^N(\Omega^p(Y/\Delta_Y))) \subset (S^N(\Omega^p(X/\Delta_X))), \forall N, p.$
- If (Y/Δ_Y) is integral, then f is an orb.morph. iff $f_*(Hol(\mathbb{D}, (X/\Delta_X))) \subset Hol(\mathbb{D}, (Y/\Delta_Y))$.
- If X a smooth curve, $\Delta_X = 0$, then f is an orb. morph. iff $\forall x \in X \text{ s.t} : f(x) \in E \subset Supp(\Delta_Y), t_{E,x} \geq m_Y(E)$. (If $m_Y(E) = +\infty, f(X)$ must avoid E).

GEOMETRIC ORBIFOLDS : MORPHISMS. I

- A morphism is a regular map $f : (X/\Delta_X) \to (Y/\Delta_Y)$ s.t : $f(X) \subsetneq Supp(\Delta_Y)$, and : $t_{E,D}.m_X(D) \ge m_Y(E)$, $\forall E, D$ s.t : $t_{E,D} > 0$, where $f^*(E) = t_{E,D}.D + ...$ (with Y smooth).
- If (X/Δ_X) and (Y/Δ_Y) are smooth, then f is an orb.morph. iff $f^*(S^N(\Omega^p(Y/\Delta_Y))) \subset (S^N(\Omega^p(X/\Delta_X))), \forall N, p.$
- If (Y/Δ_Y) is integral, then f is an orb.morph. iff $f_*(Hol(\mathbb{D}, (X/\Delta_X))) \subset Hol(\mathbb{D}, (Y/\Delta_Y))$.
- If X a smooth curve, $\Delta_X = 0$, then f is an orb. morph. iff $\forall x \in X \text{ s.t} : f(x) \in E \subset Supp(\Delta_Y), t_{E,x} \geq m_Y(E)$. (If $m_Y(E) = +\infty, f(X)$ must avoid E).
- Orbifold rational curves are f : (P₁/Δ) → (X/Δ_X), orbifold morphisms birational on image, and s.t : deg(K_{P1} + Δ) < 0.

GEOMETRIC ORBIFOLDS : MORPHISMS. I

- A morphism is a regular map $f : (X/\Delta_X) \to (Y/\Delta_Y)$ s.t : $f(X) \subsetneq Supp(\Delta_Y)$, and : $t_{E,D}.m_X(D) \ge m_Y(E)$, $\forall E, D$ s.t : $t_{E,D} > 0$, where $f^*(E) = t_{E,D}.D + ...$ (with Y smooth).
- If (X/Δ_X) and (Y/Δ_Y) are smooth, then f is an orb.morph. iff $f^*(S^N(\Omega^p(Y/\Delta_Y))) \subset (S^N(\Omega^p(X/\Delta_X))), \forall N, p.$
- If (Y/Δ_Y) is integral, then f is an orb.morph. iff $f_*(Hol(\mathbb{D}, (X/\Delta_X))) \subset Hol(\mathbb{D}, (Y/\Delta_Y))$.
- If X a smooth curve, $\Delta_X = 0$, then f is an orb. morph. iff $\forall x \in X \text{ s.t} : f(x) \in E \subset Supp(\Delta_Y), t_{E,x} \geq m_Y(E)$. (If $m_Y(E) = +\infty, f(X)$ must avoid E).
- Orbifold rational curves are f : (P₁/Δ) → (X/Δ_X), orbifold morphisms birational on image, and s.t : deg(K_{P1} + Δ) < 0.
- "Classical" (integral) morphisms : m(E) divides t.m(D).

 Elementary modifications : f : (X/Δ_X) → (Y/Δ_Y) s.t : birational, morphism, and f_{*}(Δ_X) = Δ_Y.

- Elementary modifications : f : (X/Δ_X) → (Y/Δ_Y) s.t : birational, morphism, and f_{*}(Δ_X) = Δ_Y.
- Birational equivalence : generated by (chains of) elementary modifications between smooth orbifolds. Denoted ~.

- Elementary modifications : f : (X/Δ_X) → (Y/Δ_Y) s.t : birational, morphism, and f_{*}(Δ_X) = Δ_Y.
- **Birational equivalence :** generated by (chains of) elementary modifications **between smooth orbifolds**. Denoted ~.
- Caution : (X/Δ_X) ~ (Y/Δ_Y) may not be dominated by a third one. (Ex : Cremona transformation on P₂).

- Elementary modifications : f : (X/Δ_X) → (Y/Δ_Y) s.t : birational, morphism, and f_{*}(Δ_X) = Δ_Y.
- **Birational equivalence :** generated by (chains of) elementary modifications **between smooth orbifolds**. Denoted ~.
- Caution: (X/∆_X) ~ (Y/∆_Y) may not be dominated by a third one. (Ex : Cremona transformation on P₂).
- $\forall f : (X/\Delta_X) \dashrightarrow (Y/\Delta_Y)$ a birational equivalence $\implies f_*(H^0(X, S^N(\Omega^p(X/\Delta_X)) \to H^0(Y, S^N(\Omega^p(Y/\Delta_Y))))$ isomorphic, well-defined, $\forall N, p$.

- Elementary modifications : f : (X/Δ_X) → (Y/Δ_Y) s.t : birational, morphism, and f_{*}(Δ_X) = Δ_Y.
- **Birational equivalence :** generated by (chains of) elementary modifications **between smooth orbifolds**. Denoted ~.
- Caution: (X/∆_X) ~ (Y/∆_Y) may not be dominated by a third one. (Ex : Cremona transformation on P₂).
- $\forall f : (X/\Delta_X) \dashrightarrow (Y/\Delta_Y)$ a birational equivalence $\implies f_*(H^0(X, S^N(\Omega^p(X/\Delta_X)) \to H^0(Y, S^N(\Omega^p(Y/\Delta_Y))))$ isomorphic, well-defined, $\forall N, p$.
- In particular : $\kappa(X/\Delta_X) = \kappa(Y/\Delta_Y)$.

• **Fibration :** Any regular surjective map with connected fibres $f: X \rightarrow Y$, with Y normal.

- **Fibration** : Any regular surjective map with connected fibres $f: X \rightarrow Y$, with Y normal.
- $\forall E$ any irreducible divisor on Y, let : $f^*(E) = \sum_k t_k . D_k + R$, with : $f(D_k) = E, \forall k$, and R f-exceptional.
- Multiplicities : Let Δ_X be an orbifold structure on X. Define : m(f, Δ_X)(E) := inf_k{t_k.m_X(D_k)} (∃"classical").

- **Fibration :** Any regular surjective map with connected fibres $f: X \rightarrow Y$, with Y normal.
- $\forall E$ any irreducible divisor on Y, let : $f^*(E) = \sum_k t_k . D_k + R$, with : $f(D_k) = E, \forall k$, and R f-exceptional.
- Multiplicities : Let Δ_X be an orbifold structure on X. Define : m(f, Δ_X)(E) := inf_k{t_k.m_X(D_k)} (∃"classical").
- Orbifold base of $(f,\Delta_X) := (Y/\Delta_{f,\Delta_X})$, with : $\Delta_{f,\Delta_X} := \sum_E (1 - \frac{1}{m(f,\Delta_X)(E)}) \cdot E = \text{ largest orbifold on } Y \text{ s.t } :$ f is an orbifold morphism in codimension 1.

- **Fibration** : Any regular surjective map with connected fibres $f: X \rightarrow Y$, with Y normal.
- $\forall E$ any irreducible divisor on Y, let : $f^*(E) = \sum_k t_k . D_k + R$, with : $f(D_k) = E, \forall k$, and R f-exceptional.
- Multiplicities : Let Δ_X be an orbifold structure on X. Define : m(f, Δ_X)(E) := inf_k{t_k.m_X(D_k)} (∃"classical").
- Orbifold base of $(f,\Delta_X) := (Y/\Delta_{f,\Delta_X})$, with : $\Delta_{f,\Delta_X} := \sum_E (1 - \frac{1}{m(f,\Delta_X)(E)}) \cdot E = \text{ largest orbifold on } Y \text{ s.t } :$ f is an orbifold morphism in codimension 1.
- Fundamental invariant : $\kappa(Y/\Delta_{f,\Delta_X})$. Not birational, but :

- **Fibration :** Any regular surjective map with connected fibres $f: X \rightarrow Y$, with Y normal.
- $\forall E$ any irreducible divisor on Y, let : $f^*(E) = \sum_k t_k . D_k + R$, with : $f(D_k) = E, \forall k$, and R f-exceptional.
- Multiplicities : Let Δ_X be an orbifold structure on X. Define : m(f, Δ_X)(E) := inf_k{t_k.m_X(D_k)} (∃"classical").
- Orbifold base of $(f,\Delta_X) := (Y/\Delta_{f,\Delta_X})$, with : $\Delta_{f,\Delta_X} := \sum_E (1 - \frac{1}{m(f,\Delta_X)(E)}) \cdot E = \text{ largest orbifold on } Y \text{ s.t } :$ f is an orbifold morphism in codimension 1.
- Fundamental invariant : $\kappa(Y/\Delta_{f,\Delta_X})$. Not birational, but :
- Becomes birational on suitable ("neat") models, obtained by flattening and then smoothing. Denoted $\kappa(f/\Delta_X)$.

- **Fibration** : Any regular surjective map with connected fibres $f: X \rightarrow Y$, with Y normal.
- $\forall E$ any irreducible divisor on Y, let : $f^*(E) = \sum_k t_k . D_k + R$, with : $f(D_k) = E, \forall k$, and R f-exceptional.
- Multiplicities : Let Δ_X be an orbifold structure on X. Define : m(f, Δ_X)(E) := inf_k{t_k.m_X(D_k)} (∃"classical").
- Orbifold base of $(f,\Delta_X) := (Y/\Delta_{f,\Delta_X})$, with : $\Delta_{f,\Delta_X} := \sum_E (1 - \frac{1}{m(f,\Delta_X)(E)}) \cdot E = \text{ largest orbifold on } Y \text{ s.t } :$ f is an orbifold morphism in codimension 1.
- Fundamental invariant : $\kappa(Y/\Delta_{f,\Delta_X})$. Not birational, but :
- Becomes birational on suitable ("neat") models, obtained by flattening and then smoothing. Denoted $\kappa(f/\Delta_X)$.
- $f: (X/\Delta) \dashrightarrow Y$ of general type if $\kappa(f/\Delta) = \dim(Y) > 0$.

• Let (X/Δ) smooth, $L \subset \Omega_X^p$ rank one, coherent, L^m the saturation in $S^N(\Omega_{(X/\Delta)}^p)$ of $L^{\otimes m}$, for m > 0.

• Let (X/Δ) smooth, $L \subset \Omega_X^p$ rank one, coherent, L^m the saturation in $S^N(\Omega_{(X/\Delta)}^p)$ of $L^{\otimes m}$, for m > 0.

白 ト く ヨ ト く ヨ トー

• Define :
$$\kappa(X/\Delta, L) := \overline{\lim}_{m>0} \{ \frac{Log(h^0(X, L^m))}{Log(m)} \}$$

- Let (X/Δ) smooth, $L \subset \Omega_X^p$ rank one, coherent, L^m the saturation in $S^N(\Omega_{(X/\Delta)}^p)$ of $L^{\otimes m}$, for m > 0.
- Define : $\kappa(X/\Delta, L) := \overline{\lim}_{m>0} \{ \frac{Log(h^0(X, L^m))}{Log(m)} \}$
- Then : $\kappa(X/\Delta, L) \in \{-\infty, 0, 1, ..., n\}$. Birational invariant.

- Let (X/Δ) smooth, $L \subset \Omega_X^p$ rank one, coherent, L^m the saturation in $S^N(\Omega_{(X/\Delta)}^p)$ of $L^{\otimes m}$, for m > 0.
- Define : $\kappa(X/\Delta, L) := \overline{\lim}_{m>0} \{ \frac{Log(h^0(X, L^m))}{Log(m)} \}$
- Then : $\kappa(X/\Delta, L) \in \{-\infty, 0, 1, ..., n\}$. Birational invariant.
- Let $f : X \to Y$ be a fibration, and $L_f := f^*(K_Y)$. Then : $\kappa(X/\Delta, L_f) = \kappa(f/\Delta)$. (On **any** model).

- Let (X/Δ) smooth, $L \subset \Omega_X^p$ rank one, coherent, L^m the saturation in $S^N(\Omega_{(X/\Delta)}^p)$ of $L^{\otimes m}$, for m > 0.
- Define : $\kappa(X/\Delta, L) := \overline{\lim}_{m>0} \{ \frac{Log(h^0(X, L^m))}{Log(m)} \}$
- Then : $\kappa(X/\Delta, L) \in \{-\infty, 0, 1, ..., n\}$. Birational invariant.
- Let $f : X \to Y$ be a fibration, and $L_f := f^*(K_Y)$. Then : $\kappa(X/\Delta, L_f) = \kappa(f/\Delta)$. (On **any** model).
- **Theorem** : (Orbifold variant of Bogomolov (1978)) $L \subset \Omega_X^p, p > 0$ rank one coherent. Then : 1. $\kappa(X/\Delta, L) \leq p$. (L :=**Bogomolov** iff equality). 2. $\kappa(X/\Delta, L) = p \iff \exists f : X \dashrightarrow Y \text{ s.t} : L = f^*(K_Y)$ generically over Y, with : $\kappa(f/\Delta) = dim(Y) = p$).

- Let (X/Δ) smooth, $L \subset \Omega_X^p$ rank one, coherent, L^m the saturation in $S^N(\Omega_{(X/\Delta)}^p)$ of $L^{\otimes m}$, for m > 0.
- Define : $\kappa(X/\Delta, L) := \overline{lim}_{m>0} \{ \frac{Log(h^0(X, L^m))}{Log(m)} \}$
- Then : $\kappa(X/\Delta, L) \in \{-\infty, 0, 1, ..., n\}$. Birational invariant.
- Let $f : X \to Y$ be a fibration, and $L_f := f^*(K_Y)$. Then : $\kappa(X/\Delta, L_f) = \kappa(f/\Delta)$. (On **any** model).
- **Theorem** : (Orbifold variant of Bogomolov (1978)) $L \subset \Omega_X^p, p > 0$ rank one coherent. Then : 1. $\kappa(X/\Delta, L) \leq p$. (L :=**Bogomolov** iff equality). 2. $\kappa(X/\Delta, L) = p \iff \exists f : X \dashrightarrow Y \text{ s.t} : L = f^*(K_Y)$ generically over Y, with : $\kappa(f/\Delta) = dim(Y) = p$).
- $f \rightarrow L_f$ induces natural bijection : [f of Δ -general type] $\rightarrow \Delta$ -Bogomolov-sheaves.

- Let (X/Δ) smooth, $L \subset \Omega_X^p$ rank one, coherent, L^m the saturation in $S^N(\Omega_{(X/\Delta)}^p)$ of $L^{\otimes m}$, for m > 0.
- Define : $\kappa(X/\Delta, L) := \overline{lim}_{m>0} \{ \frac{Log(h^0(X, L^m))}{Log(m)} \}$
- Then : $\kappa(X/\Delta, L) \in \{-\infty, 0, 1, ..., n\}$. Birational invariant.
- Let $f : X \to Y$ be a fibration, and $L_f := f^*(K_Y)$. Then : $\kappa(X/\Delta, L_f) = \kappa(f/\Delta)$. (On **any** model).
- **Theorem :** (Orbifold variant of Bogomolov (1978)) $L \subset \Omega_X^p, p > 0$ rank one coherent. Then : 1. $\kappa(X/\Delta, L) \leq p$. (L :=**Bogomolov** iff equality). 2. $\kappa(X/\Delta, L) = p \iff \exists f : X \dashrightarrow Y \text{ s.t} : L = f^*(K_Y)$ generically over Y, with : $\kappa(f/\Delta) = dim(Y) = p$).
- $f \rightarrow L_f$ induces natural bijection : [f of Δ -general type] $\rightarrow \Delta$ -Bogomolov-sheaves.
- Needs non-classical multiplicities (a major motivation).

• C^{orb}_{n,m} Conjecture : $f : (X/\Delta) \to Y$ a fibration, (X/Δ) smooth. Then : $\kappa(X/\Delta) \ge \kappa(X_y/\Delta_y) + \kappa(f/\Delta)$?

- C^{orb}_{n,m} Conjecture : f : (X/Δ) → Y a fibration, (X/Δ) smooth. Then : κ(X/Δ) ≥ κ(X_Y/Δ_Y) + κ(f/Δ)?
- Without Δ 's : due to S. litaka (1972).

- C^{orb}_{n,m} Conjecture : $f : (X/\Delta) \to Y$ a fibration, (X/Δ) smooth. Then : $\kappa(X/\Delta) \ge \kappa(X_y/\Delta_y) + \kappa(f/\Delta)$?
- Without Δ's : due to S. litaka (1972).
- **Theorem :** $C_{n,m}^{orb}$ if $f : (X/\Delta) \to Y$ is of general type : $\kappa(X/\Delta) = \kappa(X_y/\Delta_y) + \dim(Y)$ if $\kappa(f/\Delta) = \dim(Y)$.

- **C**^{orb}_{n,m} **Conjecture :** $f : (X/\Delta) \to Y$ a fibration, (X/Δ) smooth. Then : $\kappa(X/\Delta) \ge \kappa(X_y/\Delta_y) + \kappa(f/\Delta)$?
- Without Δ's : due to S. litaka (1972).
- **Theorem :** $C_{n,m}^{orb}$ if $f : (X/\Delta) \to Y$ is of general type : $\kappa(X/\Delta) = \kappa(X_y/\Delta_y) + \dim(Y)$ if $\kappa(f/\Delta) = \dim(Y)$.
- Without Δ's : due to E.Viehweg, Y. Kawamata, T. Fujita.
 Proof : orbifold adaptation of theirs.

- **C**^{orb}_{n,m} **Conjecture :** $f : (X/\Delta) \to Y$ a fibration, (X/Δ) smooth. Then : $\kappa(X/\Delta) \ge \kappa(X_y/\Delta_y) + \kappa(f/\Delta)$?
- Without Δ's : due to S. litaka (1972).
- **Theorem :** $C_{n,m}^{orb}$ if $f : (X/\Delta) \to Y$ is of general type : $\kappa(X/\Delta) = \kappa(X_y/\Delta_y) + \dim(Y)$ if $\kappa(f/\Delta) = \dim(Y)$.
- Without Δ's : due to E.Viehweg, Y. Kawamata, T. Fujita. Proof : orbifold adaptation of theirs.
- Corollary : If $\kappa(X/\Delta) = 0$, there does not exist $f : (X/\Delta) \dashrightarrow Y$ of general type.

- C^{orb}_{n,m} Conjecture : $f : (X/\Delta) \to Y$ a fibration, (X/Δ) smooth. Then : $\kappa(X/\Delta) \ge \kappa(X_y/\Delta_y) + \kappa(f/\Delta)$?
- Without Δ's : due to S. litaka (1972).
- **Theorem :** $C_{n,m}^{orb}$ if $f : (X/\Delta) \to Y$ is of general type : $\kappa(X/\Delta) = \kappa(X_y/\Delta_y) + \dim(Y)$ if $\kappa(f/\Delta) = \dim(Y)$.
- Without Δ's : due to E.Viehweg, Y. Kawamata, T. Fujita. Proof : orbifold adaptation of theirs.
- Corollary : If $\kappa(X/\Delta) = 0$, there does not exist $f : (X/\Delta) \dashrightarrow Y$ of general type.
- (X/Δ) special $\iff [\nexists f : (X/\Delta) \dashrightarrow Y$ of general type].

• $\kappa(X/\Delta) = 0 \implies X$ special. (Uses $C_{n,m}^{orb}$). (Toric examples).

- $\kappa(X/\Delta) = 0 \implies X$ special. (Uses $C_{n,m}^{orb}$). (Toric examples).
- (X/Δ) Fano $\Longrightarrow X$ special.

- $\kappa(X/\Delta) = 0 \implies X$ special. (Uses $C_{n,m}^{orb}$). (Toric examples).
- (X/Δ) Fano $\Longrightarrow X$ special.
- $(X/\Delta) = \mathsf{RC}^{orb} \Longrightarrow X$ special.

- $\kappa(X/\Delta) = 0 \implies X$ special. (Uses $C_{n,m}^{orb}$). (Toric examples).
- (X/Δ) Fano $\Longrightarrow X$ special.
- $(X/\Delta) = \mathsf{RC}^{orb} \Longrightarrow X$ special.
- $\kappa_+(X/\Delta) = -\infty : \iff \kappa(f/\Delta) = -\infty, \forall f : (X/\Delta) \dashrightarrow Y.$

- $\kappa(X/\Delta) = 0 \implies X$ special. (Uses $C_{n,m}^{orb}$). (Toric examples).
- (X/Δ) Fano $\Longrightarrow X$ special.
- $(X/\Delta) = \mathsf{RC}^{orb} \Longrightarrow X$ special.
- $\kappa_+(X/\Delta) = -\infty : \iff \kappa(f/\Delta) = -\infty, \forall f : (X/\Delta) \dashrightarrow Y.$
- $\kappa_+(X/\Delta) = -\infty : \Longrightarrow (X/\Delta) = \text{special}; \text{ (Obvious)}.$

- $\kappa(X/\Delta) = 0 \implies X$ special. (Uses $C_{n,m}^{orb}$). (Toric examples).
- (X/Δ) Fano $\Longrightarrow X$ special.
- $(X/\Delta) = \mathsf{RC}^{orb} \Longrightarrow X$ special.
- $\kappa_+(X/\Delta) = -\infty : \iff \kappa(f/\Delta) = -\infty, \forall f : (X/\Delta) \dashrightarrow Y.$
- $\kappa_+(X/\Delta) = -\infty : \Longrightarrow (X/\Delta) = \text{special}$; (Obvious).
- $\kappa_+(X/\Delta) = -\infty$: $\iff X = RC^{orb}$? (Standard without Δ 's).

- $\kappa(X/\Delta) = 0 \implies X$ special. (Uses $C_{n,m}^{orb}$). (Toric examples).
- (X/Δ) Fano $\Longrightarrow X$ special.
- $(X/\Delta) = \mathsf{RC}^{orb} \Longrightarrow X$ special.
- $\kappa_+(X/\Delta) = -\infty : \iff \kappa(f/\Delta) = -\infty, \forall f : (X/\Delta) \dashrightarrow Y.$
- $\kappa_+(X/\Delta) = -\infty : \Longrightarrow (X/\Delta) = \text{special}$; (Obvious).
- $\kappa_+(X/\Delta) = -\infty : \iff X = RC^{orb}$? (Standard without Δ 's).
- Special \iff connected by chaines of special suborbifolds.

- $\kappa(X/\Delta) = 0 \implies X$ special. (Uses $C_{n,m}^{orb}$). (Toric examples).
- (X/Δ) Fano $\Longrightarrow X$ special.
- $(X/\Delta) = \mathsf{RC}^{orb} \Longrightarrow X$ special.
- $\kappa_+(X/\Delta) = -\infty : \iff \kappa(f/\Delta) = -\infty, \forall f : (X/\Delta) \dashrightarrow Y.$
- $\kappa_+(X/\Delta) = -\infty : \Longrightarrow (X/\Delta) = \text{special}; \text{ (Obvious)}.$
- $\kappa_+(X/\Delta) = -\infty : \iff X = RC^{orb}$? (Standard without Δ 's).
- Special \(\leftarrow\) connected by chaines of special suborbifolds.
- Stable by "orbifold extension" (X_y/Δ_y) and $(Y/\Delta_{f,\Delta_X})$ special $\implies (X/\Delta)$ special. (Very false without Δ 's).

- $\kappa(X/\Delta) = 0 \implies X$ special. (Uses $C_{n,m}^{orb}$). (Toric examples).
- (X/Δ) Fano $\Longrightarrow X$ special.
- $(X/\Delta) = \mathsf{RC}^{orb} \Longrightarrow X$ special.
- $\kappa_+(X/\Delta) = -\infty : \iff \kappa(f/\Delta) = -\infty, \forall f : (X/\Delta) \dashrightarrow Y.$
- $\kappa_+(X/\Delta) = -\infty : \Longrightarrow (X/\Delta) = \text{special}; \text{ (Obvious)}.$
- $\kappa_+(X/\Delta) = -\infty$: $\iff X = RC^{orb}$? (Standard without Δ 's).
- Special \(\leftarrow\) connected by chaines of special suborbifolds.
- Stable by "orbifold extension" (X_y/Δ_y) and $(Y/\Delta_{f,\Delta_X})$ special $\implies (X/\Delta)$ special. (Very false without Δ 's).
- Special ⇐⇒ (canonical) tower of fibrations with orbifold fibres having either κ = 0, or κ₊ = −∞. (Conditionally in C^{orb}_{n,m})
- **Theorem :** Let (X/Δ) smooth. There exists a unique fibration $c = c_{(X/\Delta)} : (X/\Delta) \rightarrow C = C(X/\Delta)$ s.t :
 - 1. Its general orbifold fibres are special.
 - 2. $c_{(X/\Delta)}$ is either a fibration of general type (or the constant map iff (X/Δ) is special).

- **Theorem :** Let (X/Δ) smooth. There exists a unique fibration $c = c_{(X/\Delta)} : (X/\Delta) \rightarrow C = C(X/\Delta)$ s.t :
 - 1. Its general orbifold fibres are special.
 - 2. $c_{(X/\Delta)}$ is either a fibration of general type (or the constant map iff (X/Δ) is special).
- $c_{(X/\Delta)}$ is called **the core** of (X/Δ) , it is almost holomorphic.

- **Theorem :** Let (X/Δ) smooth. There exists a unique fibration $c = c_{(X/\Delta)} : (X/\Delta) \rightarrow C = C(X/\Delta)$ s.t :
 - 1. Its general orbifold fibres are special.
 - 2. $c_{(X/\Delta)}$ is either a fibration of general type (or the constant map iff (X/Δ) is special).
- $c_{(X/\Delta)}$ is called **the core** of (X/Δ) , it is almost holomorphic.
- c_(X/Δ) canonically "splits" (X/Δ) into its antithetical "parts" : special (the fibres) vs general type (the base) in the orbifold category.

- **Theorem :** Let (X/Δ) smooth. There exists a unique fibration $c = c_{(X/\Delta)} : (X/\Delta) \rightarrow C = C(X/\Delta)$ s.t :
 - 1. Its general orbifold fibres are special.
 - 2. $c_{(X/\Delta)}$ is either a fibration of general type (or the constant map iff (X/Δ) is special).
- $c_{(X/\Delta)}$ is called **the core** of (X/Δ) , it is almost holomorphic.
- c_(X/Δ) canonically "splits" (X/Δ) into its antithetical "parts" : special (the fibres) vs general type (the base) in the orbifold category.
- Even when Δ = 0, in general Δ(c) ≠ 0. So the orbifold base is needed also in this case. (Ex :[B-T]).

- **Theorem :** Let (X/Δ) smooth. There exists a unique fibration $c = c_{(X/\Delta)} : (X/\Delta) \rightarrow C = C(X/\Delta)$ s.t :
 - 1. Its general orbifold fibres are special.
 - 2. $c_{(X/\Delta)}$ is either a fibration of general type (or the constant map iff (X/Δ) is special).
- $c_{(X/\Delta)}$ is called **the core** of (X/Δ) , it is almost holomorphic.
- c_(X/Δ) canonically "splits" (X/Δ) into its antithetical "parts" : special (the fibres) vs general type (the base) in the orbifold category.
- Even when Δ = 0, in general Δ(c) ≠ 0. So the orbifold base is needed also in this case. (Ex :[B-T]).
- Conjecturally, c splits arithmetics and hyperbolicity as well.

Assume C^{orb}_{n,m}. Then : ∃!r : (X/Δ) --→ R s.t :
1. Its general orbifold fibres have κ₊ = -∞.
2. κ(r/Δ) ≥ 0.

- Assume C^{orb}_{n,m}. Then : ∃!r : (X/Δ) → R s.t :
 1. Its general orbifold fibres have κ₊ = -∞.
 - 2. $\kappa(r/\Delta) \geq 0$.
- Weak (orbifold) substitute of "rational quotient" (or MRC).

- Assume C^{orb}_{n,m}. Then : ∃!r : (X/Δ) --→ R s.t :
 1. Its general orbifold fibres have κ₊ = -∞.
 2. κ(r/Δ) ≥ 0.
- Weak (orbifold) substitute of "rational quotient" (or MRC).
- Assume κ(X/Δ) ≥ 0. Then : ∃!J: (X/Δ) --→ J(X/Δ) s.t :
 1. Its general orbifold fibres have κ = 0.
 2. dim(J(X/Δ)) = κ(X/Δ).

- Assume C^{orb}_{n,m}. Then : ∃!r : (X/Δ) → R s.t :
 1. Its general orbifold fibres have κ₊ = -∞.
 2. κ(r/Δ) ≥ 0.
- Weak (orbifold) substitute of "rational quotient" (or MRC).
- Assume κ(X/Δ) ≥ 0. Then : ∃!J : (X/Δ) --→ J(X/Δ) s.t :
 1. Its general orbifold fibres have κ = 0.
 2. dim(J(X/Δ)) = κ(X/Δ).
- J =Orbifold litaka-Moishezon fibration.

- Assume C^{orb}_{n,m}. Then : ∃!r : (X/Δ) --→ R s.t :
 1. Its general orbifold fibres have κ₊ = -∞.
 2. κ(r/Δ) ≥ 0.
- Weak (orbifold) substitute of "rational quotient" (or MRC).
- Assume κ(X/Δ) ≥ 0. Then : ∃!J : (X/Δ) --→ J(X/Δ) s.t :
 1. Its general orbifold fibres have κ = 0.
 2. dim(J(X/Δ)) = κ(X/Δ).
- J =Orbifold litaka-Moishezon fibration.
- **Theorem :** Assume $C_{n,m}^{orb}$. Then : $c_{(X/\Delta)} = (J \circ r)^n$.

- Assume C^{orb}_{n,m}. Then : ∃!r : (X/Δ) --→ R s.t :
 1. Its general orbifold fibres have κ₊ = -∞.
 2. κ(r/Δ) ≥ 0.
- Weak (orbifold) substitute of "rational quotient" (or MRC).
- Assume κ(X/Δ) ≥ 0. Then : ∃!J : (X/Δ) --→ J(X/Δ) s.t :
 1. Its general orbifold fibres have κ = 0.
 2. dim(J(X/Δ)) = κ(X/Δ).
- J =Orbifold litaka-Moishezon fibration.
- **Theorem :** Assume $C_{n,m}^{orb}$. Then : $c_{(X/\Delta)} = (J \circ r)^n$.
- Corollary : (X/Δ) special $\iff (J \circ r)^n = \text{constant map.}$

LIFTING PROPERTIES

• **Corollary :** Assume $C_{n,m}^{orb}$.

Let \mathcal{P} be a class of smooth orbifolds which :

- 1. is birationally stable.
- 2. contains all orbifolds with either $\kappa_+ = -\infty$ or $\kappa = 0$.
- 3. is stable by extensions.
- Then : $\mathcal{P} \supset \mathcal{S}$ (the class of special orbifolds).
- And $\mathcal{P} = \mathcal{S}$ if, moreover :
- 4. \mathcal{P} does not contain any orbifold of general type.
- 5. \mathcal{P} is stable by image.

• Conjectures :

• Conjectures :

• (X/Δ) special $\implies \pi_1(X/\Delta) \in Abelian$? 1+3 true. But 2. unknown already if n = 2 and either : K < 0, or $K \equiv 0$.

• Conjectures :

• (X/Δ) special $\implies \pi_1(X/\Delta) \in Abelian$? 1+3 true. But 2. unknown already if n = 2 and either : K < 0, or $K \equiv 0$.

•
$$(X/\Delta)$$
 special $\iff d_{(X/\Delta)} \equiv 0$?

• Conjectures :

• (X/Δ) special $\implies \pi_1(X/\Delta) \in Abelian$? 1+3 true. But 2. unknown already if n = 2 and either : K < 0, or $K \equiv 0$.

•
$$(X/\Delta)$$
 special $\iff d_{(X/\Delta)} \equiv 0$?

• (X/Δ) special $\iff (X/\Delta)$ potentially dense? (/nb field).

• Conjectures :

• (X/Δ) special $\implies \pi_1(X/\Delta) \in Abelian$? 1+3 true. But 2. unknown already if n = 2 and either : K < 0, or $K \equiv 0$.

•
$$(X/\Delta)$$
 special $\iff d_{(X/\Delta)} \equiv 0$?

- (X/Δ) special $\iff (X/\Delta)$ potentially dense? (/nb field).
- In these last two cases, only 1. is known.
 For 3., the local obstructions vanish.
 Expectations : global obstructions do not exist.
 And 2. is the orbifold extension of standard conjectures.

• X a smooth surface, $f : X \to \mathbb{P}_1$ a fibration : Δ_f^* divides Δ_f . $(\Delta_f^* \neq \Delta_f \text{ and } \kappa(f) = 1) \Longrightarrow \kappa(X) = 2.$

- X a smooth surface, $f : X \to \mathbb{P}_1$ a fibration : Δ_f^* divides Δ_f . $(\Delta_f^* \neq \Delta_f \text{ and } \kappa(f) = 1) \Longrightarrow \kappa(X) = 2.$
- Classical multiple fibres :

- X a smooth surface, $f : X \to \mathbb{P}_1$ a fibration : Δ_f^* divides Δ_f . $(\Delta_f^* \neq \Delta_f \text{ and } \kappa(f) = 1) \Longrightarrow \kappa(X) = 2.$
- Classical multiple fibres :

 $\kappa(\mathbb{P}_1/\Delta_f^*) = 1 \iff \pi_1(X)$ contains a "surface group" (or F_2). $\kappa(X) = 2$ and $\kappa(\mathbb{P}_1/\Delta_f^*) = 1 \Longrightarrow d_X > 0$ generically, and X"Mordellic" (Falting's and Chevalley-Weil).

• Non-classical multiple fibres : (*) : $\exists f : X \to \mathbb{P}_1 \text{ s.t} : \kappa(f) = 1 \text{ and } \pi_1(X) = \{1\}.$ (Thus $\kappa(X) = 2$). \implies no restriction on π_1 .

- X a smooth surface, $f : X \to \mathbb{P}_1$ a fibration : Δ_f^* divides Δ_f . $(\Delta_f^* \neq \Delta_f \text{ and } \kappa(f) = 1) \Longrightarrow \kappa(X) = 2.$
- Classical multiple fibres :

- Non-classical multiple fibres : (*) : $\exists f : X \to \mathbb{P}_1 \text{ s.t }: \kappa(f) = 1 \text{ and } \pi_1(X) = \{1\}.$ (Thus $\kappa(X) = 2$). \implies no restriction on π_1 .
- In situation (*), $d_X > 0$ still true generically. (Since $d_X \ge f^*(d_{(\mathbb{P}_1/\Delta_f^*)}) > 0)$.

- X a smooth surface, $f : X \to \mathbb{P}_1$ a fibration : Δ_f^* divides Δ_f . $(\Delta_f^* \neq \Delta_f \text{ and } \kappa(f) = 1) \Longrightarrow \kappa(X) = 2.$
- Classical multiple fibres :

- Non-classical multiple fibres : (*) : $\exists f : X \to \mathbb{P}_1$ s.t : $\kappa(f) = 1$ and $\pi_1(X) = \{1\}$. (Thus $\kappa(X) = 2$). \implies no restriction on π_1 .
- In situation (*), $d_X > 0$ still true generically. (Since $d_X \ge f^*(d_{(\mathbb{P}_1/\Delta_f^*)}) > 0)$.
- **Conjecture :** "Mordellicity" of X (in situation (*))?

- X a smooth surface, $f : X \to \mathbb{P}_1$ a fibration : Δ_f^* divides Δ_f . $(\Delta_f^* \neq \Delta_f \text{ and } \kappa(f) = 1) \Longrightarrow \kappa(X) = 2.$
- Classical multiple fibres :

- Non-classical multiple fibres : (*) : $\exists f : X \to \mathbb{P}_1$ s.t : $\kappa(f) = 1$ and $\pi_1(X) = \{1\}$. (Thus $\kappa(X) = 2$). \implies no restriction on π_1 .
- In situation (*), $d_X > 0$ still true generically. (Since $d_X \ge f^*(d_{(\mathbb{P}_1/\Delta_f^*)}) > 0)$.
- **Conjecture :** "Mordellicity" of X (in situation (*))?
- $abc \Longrightarrow$ Orbifold Mordell \Longrightarrow yes. $(f(X(k)) \subset (\mathbb{P}_1/\Delta_f)(k))$

• Let
$$(\mathbb{P}_1/\Delta)$$
, let $p, q, r > 1$ be integers, and :
 $\Delta := (1 - 1/p).\{0\} + (1 - 1/q).\{1\} + (1 - 1/r).\{\infty\}.$
 $\kappa(X/\Delta) = 1 \iff (1/p + 1/q + 1/r) < 1.$ (Over $k = \mathbb{Q}$).

• Let (\mathbb{P}_1/Δ) , let p, q, r > 1 be integers, and : $\Delta := (1 - 1/p).\{0\} + (1 - 1/q).\{1\} + (1 - 1/r).\{\infty\}.$ $\kappa(X/\Delta) = 1 \iff (1/p + 1/q + 1/r) < 1.$ (Over $k = \mathbb{Q}$).

御 と くき とくき とうき

• **Classical** \mathbb{Q} -rational points : $(X/\Delta)^*(\mathbb{Q}) := \{x = a^p/b^r : (a, b, c) \in \mathbb{Z}, (a, b) = 1, a^p + b^r = c^q\}.$

- Let (\mathbb{P}_1/Δ) , let p, q, r > 1 be integers, and : $\Delta := (1 - 1/p).\{0\} + (1 - 1/q).\{1\} + (1 - 1/r).\{\infty\}.$ $\kappa(X/\Delta) = 1 \iff (1/p + 1/q + 1/r) < 1.$ (Over $k = \mathbb{Q}$).
- Classical Q-rational points : $(X/\Delta)^*(\mathbb{Q}) :=$ $\{x = a^p/b^r : (a, b, c) \in \mathbb{Z}, (a, b) = 1, a^p + b^r = c^q\}.$
- "Faltings+ ε " (D-G) : $|(X/\Delta)^*(\mathbb{Q})| < +\infty$ if $\kappa(X/\Delta) = 1$.

- Let (\mathbb{P}_1/Δ) , let p, q, r > 1 be integers, and : $\Delta := (1 - 1/p).\{0\} + (1 - 1/q).\{1\} + (1 - 1/r).\{\infty\}.$ $\kappa(X/\Delta) = 1 \iff (1/p + 1/q + 1/r) < 1.$ (Over $k = \mathbb{Q}$).
- Classical Q-rational points : $(X/\Delta)^*(\mathbb{Q}) :=$ $\{x = a^p/b^r : (a, b, c) \in \mathbb{Z}, (a, b) = 1, a^p + b^r = c^q\}.$
- "Faltings+ ε " (D-G) : $|(X/\Delta)^*(\mathbb{Q})| < +\infty$ if $\kappa(X/\Delta) = 1$.
- Non-classical \mathbb{Q} -rational points : $(X/\Delta)(\mathbb{Q}) := \{x = a/b : (a, b, c) \in \mathbb{Z}, (a, b) = 1, a + b = c, s.t : a is p-full, b is r-full, and c is q-full, where : a p-full means : m prime divides a, then : <math>m^p$ divides a. Card $\{a \le N, a = p full\} \sim_{N \to +\infty} C_p.N^{1/p}$.

- Let (\mathbb{P}_1/Δ) , let p, q, r > 1 be integers, and : $\Delta := (1 - 1/p).\{0\} + (1 - 1/q).\{1\} + (1 - 1/r).\{\infty\}.$ $\kappa(X/\Delta) = 1 \iff (1/p + 1/q + 1/r) < 1.$ (Over $k = \mathbb{Q}$).
- Classical Q-rational points : $(X/\Delta)^*(\mathbb{Q}) := \{x = a^p/b^r : (a, b, c) \in \mathbb{Z}, (a, b) = 1, a^p + b^r = c^q\}.$
- "Faltings+ ε " (D-G) : $|(X/\Delta)^*(\mathbb{Q})| < +\infty$ if $\kappa(X/\Delta) = 1$.
- Non-classical \mathbb{Q} -rational points : $(X/\Delta)(\mathbb{Q}) := \{x = a/b : (a, b, c) \in \mathbb{Z}, (a, b) = 1, a + b = c, \text{ s.t } : a \text{ is } p$ -full, b is r-full, and c is q-full}, where : a **p**-full means : m prime divides a, then : m^p divides a. Card $\{a \le N, a = p - full\} \sim_{N \to +\infty} C_p . N^{1/p}$.
- Orbifold Mordell : |(X/Δ)(Q)| < +∞ if κ(X/Δ) = 1?

- Let (\mathbb{P}_1/Δ) , let p, q, r > 1 be integers, and : $\Delta := (1 - 1/p).\{0\} + (1 - 1/q).\{1\} + (1 - 1/r).\{\infty\}.$ $\kappa(X/\Delta) = 1 \iff (1/p + 1/q + 1/r) < 1.$ (Over $k = \mathbb{Q}$).
- Classical Q-rational points : $(X/\Delta)^*(\mathbb{Q}) := \{x = a^p/b^r : (a, b, c) \in \mathbb{Z}, (a, b) = 1, a^p + b^r = c^q\}.$
- "Faltings+ ε " (D-G) : $|(X/\Delta)^*(\mathbb{Q})| < +\infty$ if $\kappa(X/\Delta) = 1$.
- Non-classical \mathbb{Q} -rational points : $(X/\Delta)(\mathbb{Q}) := \{x = a/b : (a, b, c) \in \mathbb{Z}, (a, b) = 1, a + b = c, \text{ s.t } : a \text{ is } p$ -full, b is r-full, and c is q-full}, where : a **p**-full means : m prime divides a, then : m^p divides a. Card $\{a \le N, a = p - full\} \sim_{N \to +\infty} C_p . N^{1/p}$.
- Orbifold Mordell : $|(X/\Delta)(\mathbb{Q})| < +\infty$ if $\kappa(X/\Delta) = 1$?
- *abc* ⇒ Orbifold Mordell (Open. True over function fields)