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Main Problem : Deduce geometry from positivity of Kx.

Expected-Known (for the 3 “pure” geometries) :

Kx | m1(X) dx X(k) birational : &
<0 | {1} =0 X? Ky = —00 <= RC
=0 Ab =07 X7 k=0

>0 7?7 | >0 (gen.)? | Finite (gen.)? K=n

When n > 2 : birational version needed ; “mixed” signs.

Decomposition problem :
“pure” parts by fibrations.

“split” X canonically into its
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INTRODUCTION II : THE DECOMPOSITION.

@ Only possible in the larger category of “geometric orbifolds”.
@ Decomposition achieved in 2 steps :

@ 1st step : “splits” canonically any geometric orbifold (X/A)
by one fibration (the “core”) into its antithetical parts :
“Special” (the orbifold fibres), and :

General Type (the “orbifold” base).

@ 2nd step :Special orbifolds are (conditionally) canonically
towers of fibrations with fibres having alternatively either
Ky = —ooor Kk =0.

@ Conjecturally, special orbifolds enjoy the same expected
properties as manifolds with k. = —oo or k = 0. (Because of
their expected stability under “orbifold extension™).
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@ Motivation : Eliminate multiple fibres by “virtual cover’ of
the base.
e Example : C= hyperelliptic of genus g > 2, v : C — C.
E= elliptic, t : E — E translation of order 2.
X' =ExC— X:=(X'"/ <txv>) étale of degree 2.
Let f: X =Y :=(C/<v¥>)=P;.
o X, = E, Y =P; don't"detect” the general type “quotient” C.
@ "Revealed” by its orbifold base (P1/Af¢),
Ar = (1/2).023F {a}),
Kc = V*(Ky + Af).

@ Geometric orbifolds generalise this construction.
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Geometric orbifolds= pairs (X/A), A =3, a;.D;, J finite,

(1-1/m;) = aj €]0,1] N Q,D; irreducible divisors,

mj €]1,4+o00] :=multiplicities. (Same objects as in LMMP, but
from (apparently) different motivations).

Interpolates between 2 extreme cases : “proper” (A = 0) and
“Logarithmic” (a; = 1,Vj).

(X/A) is smooth if Supp(A) :=UD; = n.c.

(X/A) is integral if m; € Z,V)).

Smooth orbifolds= orbifold resolutions of |.c orbifolds.

Integral orbifolds=Virtual coverings of X A-ramified
=fully geometric objects, same properties as varieties.

K(X/A) = KX + A, H(X/A) = /i(X, KX —I—A)
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e Fibration : Any regular surjective map with connected fibres
f: X — Y, with Y normal.

e VE any irreducible divisor on Y, let : f*(E) =), tx.Dx + R,
with : f(Dy) = E,Vk, and R f-exceptional.

o Muiltiplicities : Define : m¢(E) := inf{tx}.

e ‘“classical” (integral) multiplicities : gedy instead of infy.

e Orbifold base (of f) := (Y/Af), with :
Ar =Y (1- ig)E

e Fundamental invariant : k(Y /A¢). Not birational.

o Let k(f) :=r(Y'/Ag), for f': X' — Y’ obtained by
flattening and smoothing of f. (Not needed if k(YY) > 0)



(WEAK) SPECIALNESS : GEOMETRY

e X special : <—
(Af : X ——» Y dominant, with : x(f) = dim(Y) > 0)



(WEAK) SPECIALNESS : GEOMETRY

e X special : <—
(Af : X ——» Y dominant, with : x(f) = dim(Y) > 0)
e Birational, étale (surprisingly hard).



(WEAK) SPECIALNESS : GEOMETRY

e X special : <—
(Af : X ——» Y dominant, with : x(f) = dim(Y) > 0)

e Birational, étale (surprisingly hard).

o X very weakly special (VWS) <= #if : X --» Y with
k(Y)=dim(Y) >0



(WEAK) SPECIALNESS : GEOMETRY

e X special : <—
(Af : X ——» Y dominant, with : x(f) = dim(Y) > 0)

e Birational, étale (surprisingly hard).

o X very weakly special (VWS) <= #if : X --» Y with
k(Y)=dim(Y) >0

e X weakly special (WS) <= X’ is VWS, VX' — X étale.



(WEAK) SPECIALNESS : GEOMETRY

e X special : <—
(Af : X ——» Y dominant, with : x(f) = dim(Y) > 0)
e Birational, étale (surprisingly hard).
o X very weakly special (VWS) <= #if : X --» Y with
k(Y)=dim(Y) >0
e X weakly special (WS) <= X’ is VWS, VX' — X étale.
o S— WS = VWS



(WEAK) SPECIALNESS : GEOMETRY

e X special : <—

(Af : X ——» Y dominant, with : x(f) = dim(Y) > 0)
Birational, étale (surprisingly hard).

X very weakly special (VWS) <= #f : X --» Y with
k(Y)=dim(Y)>0

X weakly special (WS) <= X' is VWS, VX' — X étale.
S= WS = VWS

Curves : S <— WS = VWS «<—= g =0,1



(WEAK) SPECIALNESS : GEOMETRY

e X special : <—

(Af : X ——» Y dominant, with : x(f) = dim(Y) > 0)
Birational, étale (surprisingly hard).

X very weakly special (VWS) <= #f : X --» Y with
k(Y)=dim(Y) >0

X weakly special (WS) <= X' is VWS, VX' — X étale.
S= WS = VWS

Curves : S <— WS = VWS «<—= g =0,1

Surfaces : S <= WS, but WS # VWS (Elliptic surfaces).



(WEAK) SPECIALNESS : GEOMETRY

e X special : <—

(Af : X ——» Y dominant, with : x(f) = dim(Y) > 0)
Birational, étale (surprisingly hard).

X very weakly special (VWS) <= #f : X --» Y with
k(Y)=dim(Y)>0

e X weakly special (WS) <= X’ is VWS, VX' — X étale.
o 5= WS = VWS

@ Curves : S <—= WS —= VWS «<—= g =0,1

°

°

Surfaces : S <= WS, but WS # VWS (Elliptic surfaces).

Threefolds : S # WS (Examples of Bogomolov-Tschinkel :
3 simply-connected threefolds VWS, but not Special).



(WEAK) SPECIALNESS : GEOMETRY

e X special : <—

(Af : X ——» Y dominant, with : x(f) = dim(Y) > 0)
Birational, étale (surprisingly hard).

X very weakly special (VWS) <= #f : X --» Y with
k(Y)=dim(Y)>0

e X weakly special (WS) <= X’ is VWS, VX' — X étale.
o 5= WS = VWS

@ Curves : S <—= WS —= VWS «<—= g =0,1

°

°

Surfaces : S <= WS, but WS # VWS (Elliptic surfaces).

Threefolds : S # WS (Examples of Bogomolov-Tschinkel :
3 simply-connected threefolds VWS, but not Special).

Multiple fibres not always eliminated by étale covers.
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o Surfaces : The surface X = (X/0) is special <= either :
1. k(X)) =—o0,and : X ~P; x C,g(C)=0,1, or:
2. k(X) =0 (ie : ~ K3, Abelian, or undercover of these), or :
3. k(X) =1, and g(X’) < 1,VX’, étale cover of X
<= (k(X) # 2 and 71(X) virtually abelien)
<= 3f : C? -—» X nondegenerate (up to general K3's).
@ n> 3 : No such simple characterisation.
o Deformation invariance of specialness when n > 37

o Orbifold Kobayashi-Ochiai :
[F¢ : C" --» X meromorphic non-degenerate] = X special.
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e X potentially dense (P.D) means : X/k, a number field,
and X (k') Zariski dense, for some larger number field k’.

@ Potential density is birational, preserved by étale covers
(Chevalley-Weil), products and rational images.

Basic examples : unirational (RC?), Abelian Var. (k = 07)
Harris Conjecture : VWS <= Potential Density ? (Wrong)
A-CT Conjecture : WS <= Potential Density ?

C Conjecture : Specialness <= Potential Density ?

A-CT contradicts C (On Bogomolov-Tschinkel examples)

(A-CT vs C Undecided). But hyperbolic analogue of C
known for some B-T's.

® 6 6 6 o o
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(WEAK) SPECIALNESS : HYPERBOLICITY

Expected Hyperbolic analogue of P.D : dx = 0.

dx = 0 <= C-connected. (=7)

d = 0 : birational, preserved by étale covers, products,
rational images. And chain-connectedness.

@ Basic examples : R.C, Abelian varieties (x = 07).
All Special surfaces, too.

e (Harris Conjecture)* : VWS <= dx =07 (Wrong)
e (A-CT Conjecture)* : WS < dx =07 (Wrong)
(On some Bogomolov-Tschinkel examples).
o (C Conjecture)* : S <= dx =07
(True on these same Bogomolov-Tschinkel examples).
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@ There exists f : X — S an elliptic fibration (defined /Q) with
X, S smooth projective of dimension 3,2, s.t :
1 m(X) ={1}
2. k(S)=1.
3. k(S,Ks + A(f)) = 2.

@ Thus X is WS, but not Special.

o After A-CT, X is P.D. After C, it is not. (More precisely :
after C, f(X(k)) C S Mordellic, Yk a nb field).

o (w. M. Paun :) X a B-T threefold s.t (c? — c)(S/Af) > 0.
There exists a projective curve C C S s.t : Vh: C — X, either
foh:C — S is constant, or maps into C.

o Either A-CT, or the expected link arithmetics-hyperbolicity
fails.
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m-tangent to D, ie : foh: C — (§/Af) is an orbifold
morphism.

o 1st step : (f o h(C) is m-tangent to D, and x(S/Af) =2
with (¢ — 2)(S/Ar) > 0)==(f o h(C) is algebraically
degenerate. (Orbifold Mc-Quillan).

Rests on the consideration of pluri-differential orbifold 1-forms.

@ 2nd step : For a general choice of D : the number of rational
or elliptic curves m-tangent to D is finite. (Since k(S/Af) =2
with (cZ — c2)(S/Af) > 0) : orbifold Bogomolov).
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e Canonical (or “Kodaira”) Dimension :
K(X/A) = k(X,Kx + A) > K(X).
o If (X/A) smooth, one defines Vp, N >0 : SN(Q(X/A))
lies between Sym™(Q%) and Sym™N(Q% (Log(Supp(A))).
e For p =1, in local analytic coordinates x = (xq, ..., xp) s.t : A

n (1-1/m
= J( /m;) . SM(Qx /) is the (locally

free) sheaf of Ox- modules generated by all
=Q X[k/mj](d)jj)(gk s.t: ZJ kj = N.
o If (X/A) integral, one can define also : 71(X/A), d(x/a)
integral points if (X/A) defined over a number field.

has local equation I'I
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e A morphism is a regular map f : (X/Ax) — (Y/Ay) s.t:
f(X) € Supp(Ay), and : te p.mx(D) > my(E), VE,D s.t :
tep > 0, where f*(E) = tg p.D + ... (with Y smooth).

o If (X/Ax) and (Y /Ay) are smooth, then f is an orb.morph.
iff £*(SN(QP(Y/Ay))) € (SY(QP(X/Ax))), YN, p.

e If (Y/Ay) is integral, then f is an orb.morph. iff
f.(Hol(D, (X/Ax))) < Hol(D, (Y/Ay)).

@ If X a smooth curve, Ax =0, then f is an orb. morph. iff
Vx € X st: f(x) € E C Supp(Ay), tex > my(E).

(If my(E) = 400, f(X) must avoid E).

e Orbifold rational curves are f : (P1/A) — (X/Ax), orbifold

morphisms birational on image, and s.t : deg(Kp, + A) < 0.

e “Classical” (integral) morphisms : m(E) divides t.m(D).
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e Elementary modifications : f : (X/Ax) — (Y/Ay) s.t:
birational, morphism, and f.(Ax) = Ay.

e Birational equivalence : generated by (chains of) elementary
modifications between smooth orbifolds. Denoted ~.

e Caution : (X/Ax) ~ (Y /Ay) may not be dominated by a
third one. (Ex : Cremona transformation on Py).

e Vf:(X/Ax)--»(Y/Ay) a birational equivalence
= f.(H(X, SM(QP(X/Ax)) — HO(Y, SN (QP(Y/Ay))
isomorphic, well-defined, YN, p.

e In particular : K(X/Ax) = k(Y /Ay).
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e Fibration : Any regular surjective map with connected fibres
f: X —=Y, with Y normal.

e VE any irreducible divisor on Y, let : f*(E) =), tx.Dx + R,
with : f(Dy) = E,Vk, and R f-exceptional.

o Multiplicities : Let Ax be an orbifold structure on X.
Define : m(f, Ax)(E) := infg{tx.mx(Dx)} ( 3“classical”).

o Orbifold base of (f,Ax) := (Y /Afa,), with :
Arp, = g(1— m)f: largest orbifold on Y s.t:
f is an orbifold morphism in codimension 1.

e Fundamental invariant : (Y /Af a,). Not birational, but :

e Becomes birational on suitable (“neat”) models, obtained
by flattening and then smoothing. Denoted k(f/Ax).

f:(X/A)--»Y of general type if x(f/A) = dim(Y) > 0.
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o Let (X/A) smooth, L C Qf rank one, coherent, L™ the
saturation in SN(QfX/A)) of L®M, for m > 0.

o Define : K(X/A,L) := mm>0{Loggng 7 )}

@ Then : k(X/A,L) € {—0o0,0,1,...,n}. Birational invariant.
e Let f: X — Y be a fibration, and Ls := f*(Ky). Then :
k(X/A, Lf) = k(f/A). (On any model).
@ Theorem : (Orbifold variant of Bogomolov (1978))
L c Q%, p > 0 rank one coherent. Then :
1. k(X/A, L) < p. (L :=Bogomolov iff equality).
2. K(X/A, L) = pe=3f : X - Y st : L= F*(Ky)
generically over Y, with : k(f/A) = dim(Y) = p).
o f — Lf induces natural bijection :
[f of A-general type]— A-Bogomolov-sheaves.

e Needs non-classical multiplicities (a major motivation).
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Cg'2 Conjecture : f : (X/A) — Y a fibration, (X/A)
smooth. Then : k(X/A) > k(X,/A,) + K(f/A)?
Without A's : due to S. litaka (1972).

o Theorem : CZ% if f : (X/A) — Y is of general type :
k(X/A) = k(X,/A)) + dim(Y) if (f/A) = dim(Y).
Without A's : due to E.Viehweg, Y. Kawamata, T. Fujita.
Proof : orbifold adaptation of theirs.

Corollary : If k(X/A) =0, there does not exist
f:(X/A)--»Y of general type.

(X/A) special<=> [Af : (X/A) --» Y of general type].
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@ Special <= (canonical) tower of fibrations with orbifold fibres
having either Kk = 0, or k4 = —oo. (Conditionally in C,‘,’y’,’;)
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@ Theorem : Let (X/A) smooth. There exists a unique
fibration ¢ = c(x/a) : (X/A) — C = C(X/A) s.t:
1. Its general orbifold fibres are special.
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fibration ¢ = c(x/a) : (X/A) — C = C(X/A) s.t:
1. Its general orbifold fibres are special.
2. ¢(x/n) is either a fibration of general type (or the constant
map iff (X/A) is special).

® ¢(x/a) is called the core of (X/A), it is almost holomorphic.

® c(x/a) canonically “splits” (X/A) into its antithetical
“parts” : special (the fibres) vs general type (the base) in the
orbifold category.

@ Even when A =0, in general A(c) # 0. So the orbifold base
is needed also in this case. (Ex :[B-T]).

@ Conjecturally, ¢ splits arithmetics and hyperbolicity as well.



DECOMPOSITION OF THE CORE

o Assume C2%. Then : 3lr: (X/A) --> R st :
1. Its general orbifold fibres have xy = —o0.
2. k(r/A) > 0.



DECOMPOSITION OF THE CORE

o Assume C2%. Then : 3lr: (X/A) --> R st :
1. Its general orbifold fibres have K = —oo0.
2. k(r/A) > 0.
@ Weak (orbifold) substitute of “rational quotient” (or MRC).



DECOMPOSITION OF THE CORE

o Assume C2%. Then : 3lr: (X/A) --> R st :
1. Its general orbifold fibres have K = —oo0.
2. k(r/A) > 0.
@ Weak (orbifold) substitute of “rational quotient” (or MRC).
@ Assume x(X/A) > 0. Then : 31J: (X/A) --» J(X/A) s.t :
1. Its general orbifold fibres have x = 0.
2.dim(J(X/A)) = k(X/A).



DECOMPOSITION OF THE CORE

o Assume C2%. Then : 3lr: (X/A) --> R st :
1. Its general orbifold fibres have K = —oo0.
2. k(r/A) > 0.
@ Weak (orbifold) substitute of “rational quotient” (or MRC).
@ Assume x(X/A) > 0. Then : 31J: (X/A) --» J(X/A) s.t :
1. Its general orbifold fibres have x = 0.
2. dim(J(X/A)) = k(X/A).
e J = Orbifold litaka-Moishezon fibration.



DECOMPOSITION OF THE CORE

o Assume C2%. Then : 3lr: (X/A) --> R st :
1. Its general orbifold fibres have K = —oo0.
2. k(r/A) > 0.

Weak (orbifold) substitute of “rational quotient” (or MRC).
Assume k(X/A) > 0. Then : 31J: (X/A) --» J(X/A) s.t:
1. Its general orbifold fibres have x = 0.

2.dim(J(X/A)) = k(X/A).

J = Orbifold litaka-Moishezon fibration.

Theorem : Assume C25. Then : ¢(x/a) = (Jor)".

(]



DECOMPOSITION OF THE CORE

o Assume C2%. Then : 3lr: (X/A) --> R st :
1. Its general orbifold fibres have K = —oo0.
2. k(r/A) > 0.

Weak (orbifold) substitute of “rational quotient” (or MRC).
Assume k(X/A) > 0. Then : 31J: (X/A) --» J(X/A) s.t:
1. Its general orbifold fibres have x = 0.

2.dim(J(X/A)) = k(X/A).

J = Orbifold litaka-Moishezon fibration.

Theorem : Assume C25. Then : ¢(x/a) = (Jor)".

(]

Corollary : (X/A) special <= (J o r)" =constant map.



LIFTING PROPERTIES

e Corollary : Assume C,‘,’f,?q.
Let P be a class of smooth orbifolds which :
1. is birationally stable.
2. contains all orbifolds with either k. = —o0 or Kk = 0.
3. is stable by extensions.
e Then : P D S (the class of special orbifolds).
e And P = S if, moreover :
4. P does not contain any orbifold of general type.
5. P is stable by image.
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CONJECTURES

o Conjectures :

e (X/A) special = m1(X/A) € Abelian?
143 true. But 2. unknown already if n = 2 and either :
K <0,or K=0.
o (X/A) special <= d(x/a) =07
e (X/A) special <= (X/A) potentially dense ? (/nb field).
@ In these last two cases, only 1. is known.
For 3., the local obstructions vanish.

Expectations : global obstructions do not exist.
And 2. is the orbifold extension of standard conjectures.
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e X a smooth surface, f : X — Py a fibration : A} divides A¢.
(Af # Af and k(f) = 1) = K(X) = 2.

o Classical multiple fibres :
k(P1/A}) = 1 <= m1(X) contains a “surface group” (or Fp).
k(X) =2 and k(P1/A}) = 1= dx > 0 generically, and X
“Mordellic” (Falting's and Chevalley-Weil).

e Non-classical multiple fibres : (*) : 3f : X — P; s.t:
k(f) =1 and m1(X) = {1}. (Thus &(X) = 2).
— no restriction on 7.

e In situation (*), dx > 0 still true generically. (Since
dx > f*(d(]pl/A;)) > 0).

e Conjecture : “Mordellicity” of X (in situation (*))?

@ abc = Orbifold Mordell = yes. (f(X(k)) C (P1/Ar)(k))
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o Let (P1/A), let p,q,r > 1 be integers, and :

A=(1-1/p){0}+(1—-1/q){1}+(1—1/r){oc0}.
K(X/A)=1<+= (1/p+1/q+1/r) < 1. (Over k = Q).
e Classical Q-rational points : (X/A)*(Q) :=
{x=2aP/b":(a,b,c) € Z,(a,b) =1,aP + b" = c9}.
e “Faltings+e" (D-G) : |(X/A)*(Q)| < 4+ if K(X/A) = 1.
e Non-classical Q-rational points : (X/A)(Q) :=
{x=a/b:(a,b,c)€Z,(a,b)=1,a+b=c,st:
ais p-full b is r-full, and c is g-full}, where :
a p-full means : m prime divides a, then : mP divides a.
Card{a < N,a=p — full} ~n_ 100 Cp.NY/P.
e Orbifold Mordell : |(X/A)(Q)| < +o0 if kK(X/A) =17
@ abc = Orbifold Mordell (Open. True over function fields)



