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INTRODUCTION I : THE 3 PURE GEOMETRIES.

X := C-projective connected n-fold, KX its canonical bundle.

Main Problem : Deduce geometry from positivity of KX .

Expected-Known (for the 3 “pure” geometries) :

KX π1(X ) dX X (k) birational : κ

< 0 {1} ≡ 0 X ? κ+ = −∞⇐ RC

≡ 0 Ãb ≡ 0 ? X ? κ = 0

> 0 ? ? > 0 (gen.) ? Finite (gen.) ? κ = n

When n ≥ 2 : birational version needed ; “mixed” signs.

Decomposition problem : “split” X canonically into its
“pure” parts by fibrations.
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INTRODUCTION II : THE DECOMPOSITION.

Only possible in the larger category of “geometric orbifolds”.

Decomposition achieved in 2 steps :

1st step : “splits” canonically any geometric orbifold (X/∆)
by one fibration (the “core”) into its antithetical parts :
“Special” (the orbifold fibres), and :
General Type (the “orbifold” base).

2nd step :Special orbifolds are (conditionally) canonically
towers of fibrations with fibres having alternatively either
κ+ = −∞ or κ = 0.

Conjecturally, special orbifolds enjoy the same expected
properties as manifolds with κ+ = −∞ or κ = 0. (Because of
their expected stability under “orbifold extension”).
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INTRODUCTION III : MOTIVATION FOR ORBIFOLDS.

Motivation : Eliminate multiple fibres by “virtual cover” of
the base.

Example : C= hyperelliptic of genus g ≥ 2, ϑ : C → C .
E= elliptic, t : E → E translation of order 2.
X ′ := E × C → X := (X ′/ < t × ϑ >) étale of degree 2.
Let f : X → Y := (C/ < ϑ >) ∼= P1.

Xy
∼= E ,Y ∼= P1 don’t“detect” the general type “quotient”C .

“Revealed” by its orbifold base (P1/∆f ),
∆f = (1/2).(

∑2g+2
1 {aj}),

KC = v∗(KY + ∆f ).

Geometric orbifolds generalise this construction.
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GEOMETRIC ORBIFOLDS. OBJECTS

Geometric orbifolds= pairs (X/∆), ∆ =
∑

J aj .Dj , J finite,
(1− 1/mj) = aj ∈]0, 1] ∩Q,Dj irreducible divisors,
mj ∈]1,+∞] :=multiplicities. (Same objects as in LMMP, but
from (apparently) different motivations).

Interpolates between 2 extreme cases : “proper” (∆ = 0) and
“Logarithmic” (aj = 1,∀j).

(X/∆) is smooth if Supp(∆) := ∪Dj = n.c .

(X/∆) is integral if mj ∈ Z̄,∀j).

Smooth orbifolds= orbifold resolutions of l.c orbifolds.

Integral orbifolds=Virtual coverings of X ∆-ramified
=fully geometric objects, same properties as varieties.

K(X/∆) := KX + ∆, κ(X/∆) := κ(X ,KX + ∆).
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ORBIFOLD BASE OF A FIBRATION.I

Fibration : Any regular surjective map with connected fibres
f : X → Y , with Y normal.

∀E any irreducible divisor on Y , let : f ∗(E ) =
∑

k tk .Dk + R,
with : f (Dk) = E , ∀k , and R f -exceptional.

Multiplicities : Define : mf (E ) := infk{tk}.
“classical” (integral) multiplicities : gcdk instead of infk .

Orbifold base (of f ) := (Y /∆f ), with :
∆f :=

∑
E (1− 1

mf (E) ).E

Fundamental invariant : κ(Y /∆f ). Not birational.

Let κ(f ) := κ(Y ′/∆f ′), for f ′ : X ′ → Y ′ obtained by
flattening and smoothing of f . (Not needed if κ(Y ) ≥ 0)
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(WEAK) SPECIALNESS : GEOMETRY

X special : ⇐⇒
(@f : X 99K Y dominant, with : κ(f ) = dim(Y ) > 0)

Birational, étale (surprisingly hard).

X very weakly special (VWS) :⇐⇒ @f : X 99K Y with
κ(Y ) = dim(Y ) > 0

X weakly special (WS) :⇐⇒ X ′ is VWS , ∀X ′ → X étale.

S =⇒WS =⇒ VWS

Curves : S ⇐⇒WS =⇒ VWS ⇐⇒ g = 0, 1

Surfaces : S ⇐⇒WS , but WS 6= VWS (Elliptic surfaces).

Threefolds : S 6= WS (Examples of Bogomolov-Tschinkel :
∃ simply-connected threefolds VWS, but not Special).

Multiple fibres not always eliminated by étale covers.
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∃ simply-connected threefolds VWS, but not Special).
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SPECIAL SURFACES

Surfaces : The surface X = (X/0) is special ⇐⇒ either :
1. κ(X ) = −∞, and : X ∼ P1 × C , g(C ) = 0, 1, or :
2. κ(X ) = 0 (ie : ∼ K3, Abelian, or undercover of these), or :
3. κ(X ) = 1, and q(X ′) ≤ 1, ∀X ′, étale cover of X
⇐⇒ (κ(X ) 6= 2 and π1(X ) virtually abelien)
⇐⇒ ∃f : C2 99K X nondegenerate (up to general K3’s).

n≥ 3 : No such simple characterisation.

Deformation invariance of specialness when n ≥ 3 ?

Orbifold Kobayashi-Ochiai :
[∃ϕ : Cn 99K X meromorphic non-degenerate] =⇒ X special.
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(WEAK) SPECIALNESS : ARITHMETICS

X potentially dense (P.D) means : X/k , a number field,
and X (k ′) Zariski dense, for some larger number field k ′.

Potential density is birational, preserved by étale covers
(Chevalley-Weil), products and rational images.

Basic examples : unirational (RC ?), Abelian Var. (κ = 0?)

Harris Conjecture : VWS ⇐⇒ Potential Density ? (Wrong)

A-CT Conjecture : WS ⇐⇒ Potential Density ?

C Conjecture : Specialness ⇐⇒ Potential Density ?

A-CT contradicts C (On Bogomolov-Tschinkel examples)

(A-CT vs C Undecided). But hyperbolic analogue of C
known for some B-T’s.
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(WEAK) SPECIALNESS : HYPERBOLICITY

Expected Hyperbolic analogue of P.D : dX ≡ 0.

dX ≡ 0⇐= C-connected. (=⇒ ?)

d ≡ 0 : birational, preserved by étale covers, products,
rational images. And chain-connectedness.

Basic examples : R.C, Abelian varieties (κ = 0?).
All Special surfaces, too.

(Harris Conjecture)∗ : VWS ⇐⇒ dX ≡ 0 ? (Wrong)

(A-CT Conjecture)∗ : WS ⇐⇒ dX ≡ 0 ? (Wrong)
(On some Bogomolov-Tschinkel examples).

(C Conjecture)∗ : S ⇐⇒ dX ≡ 0 ?
(True on these same Bogomolov-Tschinkel examples).
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SPECIAL vs WEAKLY SPECIAL I

There exists f : X → S an elliptic fibration (defined /Q) with
X , S smooth projective of dimension 3, 2, s.t :
1. π1(X ) = {1}
2. κ(S) = 1.
3. κ(S ,KS + ∆(f )) = 2.

Thus X is WS , but not Special .

After A-CT, X is P.D. After C, it is not. (More precisely :
after C, f (X (k)) ⊂ S Mordellic, ∀k a nb field).

(w. M. Paun :) X a B-T threefold s.t (c2
1 − c2)(S/∆f ) > 0.

There exists a projective curve C ⊂ S s.t : ∀h : C→ X , either
f ◦ h : C→ S is constant, or maps into C .

Either A-CT, or the expected link arithmetics-hyperbolicity
fails.
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SPECIAL vs WEAKLY SPECIAL II

Sketch : ∆f = (1− 1/m).D,D ⊂ S smooth =⇒ f ◦ h(C) is
m-tangent to D, ie : f ◦ h : C→ (S/∆f ) is an orbifold
morphism.

1st step : (f ◦ h(C) is m-tangent to D, and κ(S/∆f ) = 2
with (c2

1 − c2)(S/∆f ) > 0)=⇒(f ◦ h(C) is algebraically
degenerate. (Orbifold Mc-Quillan).
Rests on the consideration of pluri-differential orbifold 1-forms.

2nd step : For a general choice of D : the number of rational
or elliptic curves m-tangent to D is finite. (Since κ(S/∆f ) = 2
with (c2

1 − c2)(S/∆f ) > 0) : orbifold Bogomolov).
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GEOMETRIC ORBIFOLDS : INVARIANTS

Canonical Bundle : KX + ∆ := K(X/∆).

Canonical (or “Kodaira”) Dimension :
κ(X/∆) := κ(X ,KX + ∆) ≥ κ(X ).

If (X/∆) smooth, one defines ∀p,N ≥ 0 : SN(Ωp
(X/∆)) :

lies between SymN(Ωp
X ) and SymN(Ωp

X (Log(Supp(∆))).

For p = 1, in local analytic coordinates x = (x1, ..., xn) s.t : ∆

has local equation Πj=n
j=1x

(1−1/mj )
j , SN(Ω1

(X/∆)) is the (locally

free) sheaf of OX -modules generated by all

uJ := ⊗jx
dkj/mje
j (

dxj

xj
)⊗kj , s.t :

∑
j kj = N.

If (X/∆) integral, one can define also : π1(X/∆), d(X/∆),
integral points if (X/∆) defined over a number field.
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For p = 1, in local analytic coordinates x = (x1, ..., xn) s.t : ∆

has local equation Πj=n
j=1x

(1−1/mj )
j , SN(Ω1

(X/∆)) is the (locally

free) sheaf of OX -modules generated by all

uJ := ⊗jx
dkj/mje
j (

dxj

xj
)⊗kj , s.t :

∑
j kj = N.

If (X/∆) integral, one can define also : π1(X/∆), d(X/∆),
integral points if (X/∆) defined over a number field.



GEOMETRIC ORBIFOLDS : MORPHISMS. I

A morphism is a regular map f : (X/∆X )→ (Y /∆Y ) s.t :
f (X ) ( Supp(∆Y ), and : tE ,D .mX (D) ≥ mY (E ), ∀E ,D s.t :
tE ,D > 0, where f ∗(E ) = tE ,D .D + ... (with Y smooth).

If (X/∆X ) and (Y /∆Y ) are smooth, then f is an orb.morph.
iff f ∗(SN(Ωp(Y /∆Y ))) ⊂ (SN(Ωp(X/∆X ))), ∀N, p.

If (Y /∆Y ) is integral, then f is an orb.morph. iff
f∗(Hol(D, (X/∆X ))) ⊂ Hol(D, (Y /∆Y )).

If X a smooth curve, ∆X = 0, then f is an orb. morph. iff
∀x ∈ X s.t : f (x) ∈ E ⊂ Supp(∆Y ), tE ,x ≥ mY (E ).
(If mY (E ) = +∞, f (X ) must avoid E ).

Orbifold rational curves are f : (P1/∆)→ (X/∆X ), orbifold
morphisms birational on image, and s.t : deg(KP1 + ∆) < 0.

“Classical” (integral) morphisms : m(E ) divides t.m(D).
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BIRATIONAL EQUIVALENCE

Elementary modifications : f : (X/∆X )→ (Y /∆Y ) s.t :
birational, morphism, and f∗(∆X ) = ∆Y .

Birational equivalence : generated by (chains of) elementary
modifications between smooth orbifolds. Denoted ∼.

Caution : (X/∆X ) ∼ (Y /∆Y ) may not be dominated by a
third one. (Ex : Cremona transformation on P2).

∀f : (X/∆X ) 99K (Y /∆Y ) a birational equivalence
=⇒ f∗(H

0(X ,SN(Ωp(X/∆X ))→ H0(Y ,SN(Ωp(Y /∆Y ))
isomorphic, well-defined, ∀N, p.

In particular : κ(X/∆X ) = κ(Y /∆Y ).
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ORBIFOLD BASE OF A FIBRATION. II

Fibration : Any regular surjective map with connected fibres
f : X → Y , with Y normal.

∀E any irreducible divisor on Y , let : f ∗(E ) =
∑

k tk .Dk + R,
with : f (Dk) = E , ∀k , and R f -exceptional.

Multiplicities : Let ∆X be an orbifold structure on X .
Define : m(f ,∆X )(E ) := infk{tk .mX (Dk)} ( ∃“classical”).

Orbifold base of (f,∆X ) := (Y /∆f ,∆X
), with :

∆f ,∆X
:=

∑
E (1− 1

m(f ,∆X )(E) ).E= largest orbifold on Y s.t :
f is an orbifold morphism in codimension 1.

Fundamental invariant : κ(Y /∆f ,∆X
). Not birational, but :

Becomes birational on suitable (“neat”) models, obtained
by flattening and then smoothing. Denoted κ(f /∆X ).

f : (X/∆) 99K Y of general type if κ(f /∆) = dim(Y ) > 0.
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BOGOMOLOV SHEAVES

Let (X/∆) smooth, L ⊂ Ωp
X rank one, coherent, Lm the

saturation in SN(Ωp
(X/∆)) of L⊗m, for m > 0.

Define : κ(X/∆, L) := limm>0{Log(h0(X ,Lm))
Log(m) }

Then : κ(X/∆, L) ∈ {−∞, 0, 1, ..., n}. Birational invariant.

Let f : X → Y be a fibration, and Lf := f ∗(KY ). Then :
κ(X/∆, Lf ) = κ(f /∆). (On any model).

Theorem : (Orbifold variant of Bogomolov (1978))
L ⊂ Ωp

X , p > 0 rank one coherent. Then :
1. κ(X/∆, L) ≤ p. (L :=Bogomolov iff equality).
2. κ(X/∆, L) = p⇐⇒∃f : X 99K Y s.t : L = f ∗(KY )
generically over Y , with : κ(f /∆) = dim(Y ) = p).

f → Lf induces natural bijection :
[f of ∆-general type]→ ∆-Bogomolov-sheaves.

Needs non-classical multiplicities (a major motivation).
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ORBIFOLD ADDITIVITY

Corb
n,m Conjecture : f : (X/∆)→ Y a fibration, (X/∆)

smooth. Then : κ(X/∆) ≥ κ(Xy/∆y ) + κ(f /∆) ?

Without ∆’s : due to S. Iitaka (1972).

Theorem : C orb
n,m if f : (X/∆)→ Y is of general type :

κ(X/∆) = κ(Xy/∆y ) + dim(Y ) if κ(f /∆) = dim(Y ).

Without ∆’s : due to E.Viehweg, Y. Kawamata, T. Fujita.
Proof : orbifold adaptation of theirs.

Corollary : If κ(X/∆) = 0, there does not exist
f : (X/∆) 99K Y of general type.

(X/∆) special⇐⇒ [@f : (X/∆) 99K Y of general type].
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SPECIAL ORBIFOLDS. II

κ(X/∆) = 0 =⇒ X special. (Uses C orb
n,m). (Toric examples).

(X/∆) Fano =⇒ X special.

(X/∆) = RCorb =⇒ X special.

κ+(X/∆) = −∞ : ⇐⇒κ(f /∆) = −∞, ∀f : (X/∆) 99K Y .

κ+(X/∆) = −∞ : =⇒(X/∆) = special ; (Obvious).

κ+(X/∆) = −∞ : ⇐⇒ X = RC orb ? (Standard without ∆’s).

Special ⇐⇒ connected by chaines of special suborbifolds.

Stable by “orbifold extension” (Xy/∆y ) and (Y /∆f ,∆X
)

special =⇒ (X/∆) special. (Very false without ∆’s).

Special ⇐⇒ (canonical) tower of fibrations with orbifold fibres
having either κ = 0, or κ+ = −∞. (Conditionally in C orb

n,m)
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THE CORE

Theorem : Let (X/∆) smooth. There exists a unique
fibration c = c(X/∆) : (X/∆)→ C = C (X/∆) s.t :
1. Its general orbifold fibres are special.
2. c(X/∆) is either a fibration of general type (or the constant
map iff (X/∆) is special).

c(X/∆) is called the core of (X/∆), it is almost holomorphic.

c(X/∆) canonically “splits” (X/∆) into its antithetical
“parts” : special (the fibres) vs general type (the base) in the
orbifold category.

Even when ∆ = 0, in general ∆(c) 6= 0. So the orbifold base
is needed also in this case. (Ex :[B-T]).

Conjecturally, c splits arithmetics and hyperbolicity as well.



THE CORE

Theorem : Let (X/∆) smooth. There exists a unique
fibration c = c(X/∆) : (X/∆)→ C = C (X/∆) s.t :
1. Its general orbifold fibres are special.
2. c(X/∆) is either a fibration of general type (or the constant
map iff (X/∆) is special).

c(X/∆) is called the core of (X/∆), it is almost holomorphic.

c(X/∆) canonically “splits” (X/∆) into its antithetical
“parts” : special (the fibres) vs general type (the base) in the
orbifold category.

Even when ∆ = 0, in general ∆(c) 6= 0. So the orbifold base
is needed also in this case. (Ex :[B-T]).

Conjecturally, c splits arithmetics and hyperbolicity as well.



THE CORE

Theorem : Let (X/∆) smooth. There exists a unique
fibration c = c(X/∆) : (X/∆)→ C = C (X/∆) s.t :
1. Its general orbifold fibres are special.
2. c(X/∆) is either a fibration of general type (or the constant
map iff (X/∆) is special).

c(X/∆) is called the core of (X/∆), it is almost holomorphic.

c(X/∆) canonically “splits” (X/∆) into its antithetical
“parts” : special (the fibres) vs general type (the base) in the
orbifold category.

Even when ∆ = 0, in general ∆(c) 6= 0. So the orbifold base
is needed also in this case. (Ex :[B-T]).

Conjecturally, c splits arithmetics and hyperbolicity as well.



THE CORE

Theorem : Let (X/∆) smooth. There exists a unique
fibration c = c(X/∆) : (X/∆)→ C = C (X/∆) s.t :
1. Its general orbifold fibres are special.
2. c(X/∆) is either a fibration of general type (or the constant
map iff (X/∆) is special).

c(X/∆) is called the core of (X/∆), it is almost holomorphic.

c(X/∆) canonically “splits” (X/∆) into its antithetical
“parts” : special (the fibres) vs general type (the base) in the
orbifold category.

Even when ∆ = 0, in general ∆(c) 6= 0. So the orbifold base
is needed also in this case. (Ex :[B-T]).

Conjecturally, c splits arithmetics and hyperbolicity as well.



THE CORE

Theorem : Let (X/∆) smooth. There exists a unique
fibration c = c(X/∆) : (X/∆)→ C = C (X/∆) s.t :
1. Its general orbifold fibres are special.
2. c(X/∆) is either a fibration of general type (or the constant
map iff (X/∆) is special).

c(X/∆) is called the core of (X/∆), it is almost holomorphic.

c(X/∆) canonically “splits” (X/∆) into its antithetical
“parts” : special (the fibres) vs general type (the base) in the
orbifold category.

Even when ∆ = 0, in general ∆(c) 6= 0. So the orbifold base
is needed also in this case. (Ex :[B-T]).

Conjecturally, c splits arithmetics and hyperbolicity as well.



DECOMPOSITION OF THE CORE

Assume C orb
n,m. Then : ∃!r : (X/∆) 99K R s.t :

1. Its general orbifold fibres have κ+ = −∞.
2. κ(r/∆) ≥ 0.

Weak (orbifold) substitute of “rational quotient” (or MRC).

Assume κ(X/∆) ≥ 0. Then : ∃!J : (X/∆) 99K J(X/∆) s.t :
1. Its general orbifold fibres have κ = 0.
2. dim(J(X/∆)) = κ(X/∆).

J = Orbifold Iitaka-Moishezon fibration.

Theorem : Assume C orb
n,m. Then : c(X/∆) = (J ◦ r)n.

Corollary : (X/∆) special ⇐⇒ (J ◦ r)n =constant map.
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LIFTING PROPERTIES

Corollary : Assume C orb
n,m.

Let P be a class of smooth orbifolds which :
1. is birationally stable.
2. contains all orbifolds with either κ+ = −∞ or κ = 0.
3. is stable by extensions.
• Then : P ⊃ S (the class of special orbifolds).
• And P = S if, moreover :
4. P does not contain any orbifold of general type.
5. P is stable by image.



CONJECTURES

Conjectures :

(X/∆) special =⇒ π1(X/∆) ∈ Ãbelian?
1+3 true. But 2. unknown already if n = 2 and either :
K < 0, or K ≡ 0.

(X/∆) special ⇐⇒ d(X/∆) ≡ 0 ?

(X/∆) special ⇐⇒ (X/∆) potentially dense ? (/nb field).

In these last two cases, only 1. is known.
For 3., the local obstructions vanish.
Expectations : global obstructions do not exist.
And 2. is the orbifold extension of standard conjectures.
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1+3 true. But 2. unknown already if n = 2 and either :
K < 0, or K ≡ 0.

(X/∆) special ⇐⇒ d(X/∆) ≡ 0 ?

(X/∆) special ⇐⇒ (X/∆) potentially dense ? (/nb field).

In these last two cases, only 1. is known.
For 3., the local obstructions vanish.
Expectations : global obstructions do not exist.
And 2. is the orbifold extension of standard conjectures.



CONJECTURES

Conjectures :

(X/∆) special =⇒ π1(X/∆) ∈ Ãbelian?
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NON-CLASSICAL MULTIPLE FIBRES

X a smooth surface, f : X → P1 a fibration : ∆∗f divides ∆f .
(∆∗f 6= ∆f and κ(f ) = 1) =⇒ κ(X ) = 2.

Classical multiple fibres :
κ(P1/∆∗f ) = 1⇐⇒ π1(X ) contains a “surface group” (or F2).
κ(X ) = 2 and κ(P1/∆∗f ) = 1=⇒ dX > 0 generically, and X
“Mordellic” (Falting’s and Chevalley-Weil).

Non-classical multiple fibres : (*) : ∃f : X → P1 s.t :
κ(f ) = 1 and π1(X ) = {1}. (Thus κ(X ) = 2).
=⇒ no restriction on π1.

In situation (*), dX > 0 still true generically. (Since
dX ≥ f ∗(d(P1/∆∗f )) > 0).

Conjecture : “Mordellicity” of X (in situation (*)) ?

abc =⇒ Orbifold Mordell =⇒ yes. (f (X (k)) ⊂ (P1/∆f )(k))
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ORBIFOLD MORDELL AND abc

Let (P1/∆), let p, q, r > 1 be integers, and :
∆ := (1− 1/p).{0}+ (1− 1/q).{1}+ (1− 1/r).{∞}.
κ(X/∆) = 1 ⇐⇒ (1/p + 1/q + 1/r) < 1. (Over k = Q).

Classical Q-rational points : (X/∆)∗(Q) :=
{x = ap/br : (a, b, c) ∈ Z, (a, b) = 1, ap + br = cq}.
“Faltings+ε”(D-G) : |(X/∆)∗(Q)| < +∞ if κ(X/∆) = 1.

Non-classical Q-rational points : (X/∆)(Q) :=
{x = a/b : (a, b, c) ∈ Z, (a, b) = 1, a + b = c , s.t :
a is p-full,b is r -full, and c is q-full}, where :
a p-full means : m prime divides a, then : mp divides a.
Card{a ≤ N, a = p − full} ∼N→+∞ Cp.N

1/p.

Orbifold Mordell : |(X/∆)(Q)| < +∞ if κ(X/∆) = 1 ?

abc =⇒ Orbifold Mordell (Open. True over function fields)
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