SPECIAL ORBIFOLDS AND BIRATIONAL CLASSIFICATION. LEVICO. GGA VIII

Frédéric Campana

Université Nancy 1
25 mai 2008

INTRODUCTION I : THE 3 PURE GEOMETRIES.

- $X:=\mathbb{C}$-projective connected n-fold, K_{X} its canonical bundle.

INTRODUCTION I : THE 3 PURE GEOMETRIES.

- $X:=\mathbb{C}$-projective connected n-fold, K_{X} its canonical bundle.
- Main Problem : Deduce geometry from positivity of K_{X}.

INTRODUCTION I : THE 3 PURE GEOMETRIES.

- $X:=\mathbb{C}$-projective connected n-fold, K_{X} its canonical bundle.
- Main Problem : Deduce geometry from positivity of K_{X}.
- Expected-Known (for the 3 "pure" geometries) :

K_{X}	$\pi_{1}(X)$	d_{X}	$\overline{X(k)}$	birational $: \kappa$
<0	$\{1\}$	$\equiv 0$	$X ?$	$\kappa_{+}=-\infty \Leftarrow R C$
$\equiv 0$	$\overline{A b}$	$\equiv 0 ?$	$X ?$	$\kappa=0$
>0	$? ?$	>0 (gen.) $?$	Finite (gen.) ?	$\kappa=n$

INTRODUCTION I : THE 3 PURE GEOMETRIES.

- $X:=\mathbb{C}$-projective connected n-fold, K_{X} its canonical bundle.
- Main Problem : Deduce geometry from positivity of K_{X}.
- Expected-Known (for the 3 "pure" geometries) :

K_{X}	$\pi_{1}(X)$	d_{X}	$\overline{X(k)}$	birational $: \kappa$
<0	$\{1\}$	$\equiv 0$	$X ?$	$\kappa_{+}=-\infty \Leftarrow R C$
$\equiv 0$	$\widehat{A b}$	$\equiv 0 ?$	$X ?$	$\kappa=0$
>0	$? ?$	>0 (gen.) ?	Finite (gen.)?	$\kappa=n$

- When $\mathbf{n} \geq 2$: birational version needed; "mixed" signs.

INTRODUCTION I : THE 3 PURE GEOMETRIES.

- $X:=\mathbb{C}$-projective connected n-fold, K_{X} its canonical bundle.
- Main Problem : Deduce geometry from positivity of K_{X}.
- Expected-Known (for the 3 "pure" geometries) :

K_{X}	$\pi_{1}(X)$	d_{X}	$\overline{X(k)}$	birational $: \kappa$
<0	$\{1\}$	$\equiv 0$	$X ?$	$\kappa_{+}=-\infty \Leftarrow R C$
$\equiv 0$	$\widehat{A b}$	$\equiv 0 ?$	$X ?$	$\kappa=0$
>0	$? ?$	>0 (gen.) ?	Finite (gen.)?	$\kappa=n$

- When $\mathbf{n} \geq 2$: birational version needed; "mixed" signs.
- Decomposition problem : "split" X canonically into its "pure" parts by fibrations.

INTRODUCTION II : THE DECOMPOSITION.

- Only possible in the larger category of "geometric orbifolds".

INTRODUCTION II : THE DECOMPOSITION.

- Only possible in the larger category of "geometric orbifolds".
- Decomposition achieved in 2 steps :

INTRODUCTION II : THE DECOMPOSITION.

- Only possible in the larger category of "geometric orbifolds".
- Decomposition achieved in 2 steps :
- 1st step : "splits" canonically any geometric orbifold (X / Δ) by one fibration (the "core") into its antithetical parts : "Special" (the orbifold fibres), and : General Type (the "orbifold" base).

INTRODUCTION II : THE DECOMPOSITION.

- Only possible in the larger category of "geometric orbifolds".
- Decomposition achieved in 2 steps :
- 1st step : "splits" canonically any geometric orbifold (X / Δ) by one fibration (the "core") into its antithetical parts : "Special" (the orbifold fibres), and : General Type (the "orbifold" base).
- 2nd step :Special orbifolds are (conditionally) canonically towers of fibrations with fibres having alternatively either $\kappa_{+}=-\infty$ or $\kappa=0$.

INTRODUCTION II : THE DECOMPOSITION.

- Only possible in the larger category of "geometric orbifolds".
- Decomposition achieved in 2 steps :
- 1st step : "splits" canonically any geometric orbifold (X / Δ) by one fibration (the "core") into its antithetical parts : "Special" (the orbifold fibres), and : General Type (the "orbifold" base).
- 2nd step :Special orbifolds are (conditionally) canonically towers of fibrations with fibres having alternatively either $\kappa_{+}=-\infty$ or $\kappa=0$.
- Conjecturally, special orbifolds enjoy the same expected properties as manifolds with $\kappa_{+}=-\infty$ or $\kappa=0$. (Because of their expected stability under "orbifold extension").

INTRODUCTION III : MOTIVATION FOR ORBIFOLDS.

- Motivation : Eliminate multiple fibres by "virtual cover" of the base.

INTRODUCTION III : MOTIVATION FOR ORBIFOLDS.

- Motivation : Eliminate multiple fibres by "virtual cover" of the base.

INTRODUCTION III : MOTIVATION FOR ORBIFOLDS.

- Motivation : Eliminate multiple fibres by "virtual cover" of the base.
- Example : $C=$ hyperelliptic of genus $g \geq 2, \vartheta: C \rightarrow C$. $E=$ elliptic, $t: E \rightarrow E$ translation of order 2. $X^{\prime}:=E \times C \rightarrow X:=\left(X^{\prime} /<t \times \vartheta>\right)$ étale of degree 2. Let $f: X \rightarrow Y:=(C /<\vartheta>) \cong \mathbb{P}_{1}$.

INTRODUCTION III : MOTIVATION FOR ORBIFOLDS.

- Motivation : Eliminate multiple fibres by "virtual cover" of the base.
- Example : $C=$ hyperelliptic of genus $g \geq 2, \vartheta: C \rightarrow C$. $E=$ elliptic, $t: E \rightarrow E$ translation of order 2 . $X^{\prime}:=E \times C \rightarrow X:=\left(X^{\prime} /<t \times \vartheta>\right)$ étale of degree 2. Let $f: X \rightarrow Y:=(C /<\vartheta>) \cong \mathbb{P}_{1}$.
- $X_{y} \cong E, Y \cong \mathbb{P}_{1}$ don't "detect" the general type "quotient" C.

INTRODUCTION III : MOTIVATION FOR ORBIFOLDS.

- Motivation : Eliminate multiple fibres by "virtual cover" of the base.
- Example : $C=$ hyperelliptic of genus $g \geq 2, \vartheta: C \rightarrow C$. $E=$ elliptic, $t: E \rightarrow E$ translation of order 2. $X^{\prime}:=E \times C \rightarrow X:=\left(X^{\prime} /<t \times \vartheta>\right)$ étale of degree 2. Let $f: X \rightarrow Y:=(C /<\vartheta>) \cong \mathbb{P}_{1}$.
- $X_{y} \cong E, Y \cong \mathbb{P}_{1}$ don't "detect" the general type "quotient" C.
- "Revealed" by its orbifold base $\left(\mathbb{P}_{1} / \Delta_{f}\right)$,
$\Delta_{f}=(1 / 2) .\left(\sum_{1}^{2 g+2}\left\{a_{j}\right\}\right)$,
$K_{C}=v^{*}\left(K_{Y}+\Delta_{f}\right)$.

INTRODUCTION III : MOTIVATION FOR ORBIFOLDS.

- Motivation : Eliminate multiple fibres by "virtual cover" of the base.
- Example : $C=$ hyperelliptic of genus $g \geq 2, \vartheta: C \rightarrow C$. $E=$ elliptic, $t: E \rightarrow E$ translation of order 2. $X^{\prime}:=E \times C \rightarrow X:=\left(X^{\prime} /<t \times \vartheta>\right)$ étale of degree 2. Let $f: X \rightarrow Y:=(C /<\vartheta>) \cong \mathbb{P}_{1}$.
- $X_{y} \cong E, Y \cong \mathbb{P}_{1}$ don't "detect" the general type "quotient" C.
- "Revealed" by its orbifold base $\left(\mathbb{P}_{1} / \Delta_{f}\right)$,

$$
\begin{aligned}
& \Delta_{f}=(1 / 2) \cdot\left(\sum_{1}^{2 g+2}\left\{a_{j}\right\}\right), \\
& K_{C}=v^{*}\left(K_{Y}+\Delta_{f}\right) .
\end{aligned}
$$

- Geometric orbifolds generalise this construction.

GEOMETRIC ORBIFOLDS. OBJECTS

- Geometric orbifolds $=$ pairs $(X / \Delta), \Delta=\sum_{J} a_{j} \cdot D_{j}, J$ finite, $\left.\left.\left(1-1 / m_{j}\right)=a_{j} \in\right] 0,1\right] \cap \mathbb{Q}, D_{j}$ irreducible divisors, $\left.\left.m_{j} \in\right] 1,+\infty\right]:=$ multiplicities. (Same objects as in LMMP, but from (apparently) different motivations).

GEOMETRIC ORBIFOLDS. OBJECTS

- Geometric orbifolds $=$ pairs $(X / \Delta), \Delta=\sum_{J} a_{j} \cdot D_{j}, J$ finite, $\left.\left.\left(1-1 / m_{j}\right)=a_{j} \in\right] 0,1\right] \cap \mathbb{Q}, D_{j}$ irreducible divisors, $\left.\left.m_{j} \in\right] 1,+\infty\right]:=$ multiplicities. (Same objects as in LMMP, but from (apparently) different motivations).
- Interpolates between 2 extreme cases: "proper" $(\Delta=0)$ and "Logarithmic" ($\left.a_{j}=1, \forall j\right)$.

GEOMETRIC ORBIFOLDS. OBJECTS

- Geometric orbifolds $=$ pairs $(X / \Delta), \Delta=\sum_{J} a_{j} . D_{j}, J$ finite, $\left.\left.\left(1-1 / m_{j}\right)=a_{j} \in\right] 0,1\right] \cap \mathbb{Q}, D_{j}$ irreducible divisors, $\left.\left.m_{j} \in\right] 1,+\infty\right]:=$ multiplicities. (Same objects as in LMMP, but from (apparently) different motivations).
- Interpolates between 2 extreme cases: "proper" $(\Delta=0)$ and "Logarithmic" ($\left.a_{j}=1, \forall j\right)$.
- (X / Δ) is smooth if $\operatorname{Supp}(\Delta):=\cup D_{j}=$ n.c.

GEOMETRIC ORBIFOLDS. OBJECTS

- Geometric orbifolds $=$ pairs $(X / \Delta), \Delta=\sum_{J} a_{j} . D_{j}, J$ finite, $\left.\left.\left(1-1 / m_{j}\right)=a_{j} \in\right] 0,1\right] \cap \mathbb{Q}, D_{j}$ irreducible divisors, $\left.\left.m_{j} \in\right] 1,+\infty\right]:=$ multiplicities. (Same objects as in LMMP, but from (apparently) different motivations).
- Interpolates between 2 extreme cases: "proper" $(\Delta=0)$ and "Logarithmic" ($\left.a_{j}=1, \forall j\right)$.
- (X / Δ) is smooth if $\operatorname{Supp}(\Delta):=\cup D_{j}=$ n.c.
- (X / Δ) is integral if $\left.m_{j} \in \overline{\mathbb{Z}}, \forall j\right)$.

GEOMETRIC ORBIFOLDS. OBJECTS

- Geometric orbifolds $=$ pairs $(X / \Delta), \Delta=\sum_{J} a_{j} \cdot D_{j}, J$ finite, $\left.\left.\left(1-1 / m_{j}\right)=a_{j} \in\right] 0,1\right] \cap \mathbb{Q}, D_{j}$ irreducible divisors, $\left.\left.m_{j} \in\right] 1,+\infty\right]:=$ multiplicities. (Same objects as in LMMP, but from (apparently) different motivations).
- Interpolates between 2 extreme cases: "proper" $(\Delta=0)$ and "Logarithmic" ($\left.a_{j}=1, \forall j\right)$.
- (X / Δ) is smooth if $\operatorname{Supp}(\Delta):=\cup D_{j}=$ n.c.
- (X / Δ) is integral if $\left.m_{j} \in \overline{\mathbb{Z}}, \forall j\right)$.
- Smooth orbifolds $=$ orbifold resolutions of I.c orbifolds.

GEOMETRIC ORBIFOLDS. OBJECTS

- Geometric orbifolds $=$ pairs $(X / \Delta), \Delta=\sum_{J} a_{j} \cdot D_{j}, J$ finite, $\left.\left.\left(1-1 / m_{j}\right)=a_{j} \in\right] 0,1\right] \cap \mathbb{Q}, D_{j}$ irreducible divisors, $\left.\left.m_{j} \in\right] 1,+\infty\right]:=$ multiplicities. (Same objects as in LMMP, but from (apparently) different motivations).
- Interpolates between 2 extreme cases: "proper" $(\Delta=0)$ and "Logarithmic" ($\left.a_{j}=1, \forall j\right)$.
- (X / Δ) is smooth if $\operatorname{Supp}(\Delta):=\cup D_{j}=$ n.c.
- (X / Δ) is integral if $\left.m_{j} \in \overline{\mathbb{Z}}, \forall j\right)$.
- Smooth orbifolds $=$ orbifold resolutions of I.c orbifolds.
- Integral orbifolds $=$ Virtual coverings of $X \Delta$-ramified $=$ fully geometric objects, same properties as varieties.

GEOMETRIC ORBIFOLDS. OBJECTS

- Geometric orbifolds $=$ pairs $(X / \Delta), \Delta=\sum_{J} a_{j} \cdot D_{j}, J$ finite, $\left.\left.\left(1-1 / m_{j}\right)=a_{j} \in\right] 0,1\right] \cap \mathbb{Q}, D_{j}$ irreducible divisors, $\left.\left.m_{j} \in\right] 1,+\infty\right]:=$ multiplicities. (Same objects as in LMMP, but from (apparently) different motivations).
- Interpolates between 2 extreme cases: "proper" $(\Delta=0)$ and "Logarithmic" ($\left.a_{j}=1, \forall j\right)$.
- (X / Δ) is smooth if $\operatorname{Supp}(\Delta):=\cup D_{j}=$ n.c.
- (X / Δ) is integral if $\left.m_{j} \in \overline{\mathbb{Z}}, \forall j\right)$.
- Smooth orbifolds $=$ orbifold resolutions of I.c orbifolds.
- Integral orbifolds $=$ Virtual coverings of $X \Delta$-ramified $=$ fully geometric objects, same properties as varieties.
- $K_{(X / \Delta)}:=K_{X}+\Delta, \kappa(X / \Delta):=\kappa\left(X, K_{X}+\Delta\right)$.

ORBIFOLD BASE OF A FIBRATION.I

- Fibration : Any regular surjective map with connected fibres $f: X \rightarrow Y$, with Y normal.

ORBIFOLD BASE OF A FIBRATION.I

- Fibration : Any regular surjective map with connected fibres $f: X \rightarrow Y$, with Y normal.
- $\forall E$ any irreducible divisor on Y, let : $f^{*}(E)=\sum_{k} t_{k} \cdot D_{k}+R$, with : $f\left(D_{k}\right)=E, \forall k$, and $R f$-exceptional.
- Multiplicities: Define : $m_{f}(E):=\inf _{k}\left\{t_{k}\right\}$.

ORBIFOLD BASE OF A FIBRATION.I

- Fibration : Any regular surjective map with connected fibres $f: X \rightarrow Y$, with Y normal.
- $\forall E$ any irreducible divisor on Y, let : $f^{*}(E)=\sum_{k} t_{k} \cdot D_{k}+R$, with : $f\left(D_{k}\right)=E, \forall k$, and $R f$-exceptional.
- Multiplicities: Define : $m_{f}(E):=\inf _{k}\left\{t_{k}\right\}$.
- "classical" (integral) multiplicities : $\mathbf{g c d}_{k}$ instead of inf $_{k}$.
- Orbifold base (of f) $:=\left(Y / \Delta_{f}\right)$, with :

$$
\Delta_{f}:=\sum_{E}\left(1-\frac{1}{m_{f}(E)}\right) \cdot E
$$

ORBIFOLD BASE OF A FIBRATION.I

- Fibration : Any regular surjective map with connected fibres $f: X \rightarrow Y$, with Y normal.
- $\forall E$ any irreducible divisor on Y, let : $f^{*}(E)=\sum_{k} t_{k} \cdot D_{k}+R$, with : $f\left(D_{k}\right)=E, \forall k$, and $R f$-exceptional.
- Multiplicities: Define : $m_{f}(E):=\inf _{k}\left\{t_{k}\right\}$.
- "classical" (integral) multiplicities: $\mathbf{g c d}_{k}$ instead of $i n f_{k}$.
- Orbifold base (of f) $:=\left(Y / \Delta_{f}\right)$, with : $\Delta_{f}:=\sum_{E}\left(1-\frac{1}{m_{f}(E)}\right) \cdot E$
- Fundamental invariant : $\kappa\left(Y / \Delta_{f}\right)$. Not birational.

ORBIFOLD BASE OF A FIBRATION.I

- Fibration : Any regular surjective map with connected fibres $f: X \rightarrow Y$, with Y normal.
- $\forall E$ any irreducible divisor on Y, let : $f^{*}(E)=\sum_{k} t_{k} \cdot D_{k}+R$, with : $f\left(D_{k}\right)=E, \forall k$, and $R f$-exceptional.
- Multiplicities: Define : $m_{f}(E):=\inf _{k}\left\{t_{k}\right\}$.
- "classical" (integral) multiplicities : $\mathbf{g c d}_{k}$ instead of inf $_{k}$.
- Orbifold base (of f) $:=\left(Y / \Delta_{f}\right)$, with : $\Delta_{f}:=\sum_{E}\left(1-\frac{1}{m_{f}(E)}\right) \cdot E$
- Fundamental invariant : $\kappa\left(Y / \Delta_{f}\right)$. Not birational.
- Let $\kappa(f):=\kappa\left(Y^{\prime} / \Delta_{f^{\prime}}\right)$, for $f^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ obtained by flattening and smoothing of f. (Not needed if $\kappa(Y) \geq 0$)

(WEAK) SPECIALNESS : GEOMETRY

- X special $: \Longleftrightarrow$
$(\nexists f: X \rightarrow Y$ dominant, with $: \kappa(f)=\operatorname{dim}(Y)>0)$

(WEAK) SPECIALNESS : GEOMETRY

- X special $: \Longleftrightarrow$
$(\nexists f: X \rightarrow Y$ dominant, with $: \kappa(f)=\operatorname{dim}(Y)>0)$
- Birational, étale (surprisingly hard).

(WEAK) SPECIALNESS : GEOMETRY

- X special $: \Longleftrightarrow$
$(\nexists f: X \rightarrow Y$ dominant, with : $\kappa(f)=\operatorname{dim}(Y)>0)$
- Birational, étale (surprisingly hard).
- X very weakly special (VWS) $: \Longleftrightarrow \nexists f: X \rightarrow Y$ with $\kappa(Y)=\operatorname{dim}(Y)>0$

(WEAK) SPECIALNESS : GEOMETRY

- X special $: \Longleftrightarrow$
$(\nexists f: X \rightarrow Y$ dominant, with : $\kappa(f)=\operatorname{dim}(Y)>0)$
- Birational, étale (surprisingly hard).
- X very weakly special (VWS) $: \Longleftrightarrow \nexists f: X \rightarrow Y$ with
$\kappa(Y)=\operatorname{dim}(Y)>0$
- X weakly special (WS) $: \Longleftrightarrow X^{\prime}$ is $V W S, \forall X^{\prime} \rightarrow X$ étale.

(WEAK) SPECIALNESS : GEOMETRY

- X special $: \Longleftrightarrow$
$(\nexists f: X \rightarrow Y$ dominant, with : $\kappa(f)=\operatorname{dim}(Y)>0)$
- Birational, étale (surprisingly hard).
- X very weakly special (VWS) $: \Longleftrightarrow \nexists f: X \rightarrow Y$ with
$\kappa(Y)=\operatorname{dim}(Y)>0$
- X weakly special (WS) : $\Longleftrightarrow X^{\prime}$ is $V W S, \forall X^{\prime} \rightarrow X$ étale.
- $S \Longrightarrow W S \Longrightarrow V W S$

(WEAK) SPECIALNESS : GEOMETRY

- X special $: \Longleftrightarrow$
$(\nexists f: X \rightarrow Y$ dominant, with : $\kappa(f)=\operatorname{dim}(Y)>0)$
- Birational, étale (surprisingly hard).
- X very weakly special (VWS) $: \Longleftrightarrow \nexists f: X \rightarrow Y$ with
$\kappa(Y)=\operatorname{dim}(Y)>0$
- X weakly special (WS) : $\Longleftrightarrow X^{\prime}$ is $V W S, \forall X^{\prime} \rightarrow X$ étale.
- $S \Longrightarrow W S \Longrightarrow V W S$
- Curves $: S \Longleftrightarrow W S \Longrightarrow V W S \Longleftrightarrow g=0,1$

(WEAK) SPECIALNESS : GEOMETRY

- X special $: \Longleftrightarrow$
$(\nexists f: X \rightarrow Y$ dominant, with : $\kappa(f)=\operatorname{dim}(Y)>0)$
- Birational, étale (surprisingly hard).
- X very weakly special (VWS) $: \Longleftrightarrow \nexists f: X \rightarrow Y$ with $\kappa(Y)=\operatorname{dim}(Y)>0$
- X weakly special (WS) : $\Longleftrightarrow X^{\prime}$ is $V W S, \forall X^{\prime} \rightarrow X$ étale.
- $S \Longrightarrow W S \Longrightarrow V W S$
- Curves : $S \Longleftrightarrow W S \Longrightarrow V W S \Longleftrightarrow g=0,1$
- Surfaces : $S \Longleftrightarrow W S$, but $W S \neq V W S$ (Elliptic surfaces).

(WEAK) SPECIALNESS : GEOMETRY

- X special $: \Longleftrightarrow$
$(\nexists f: X \rightarrow Y$ dominant, with $: \kappa(f)=\operatorname{dim}(Y)>0)$
- Birational, étale (surprisingly hard).
- X very weakly special (VWS) $: \Longleftrightarrow \nexists f: X \rightarrow Y$ with $\kappa(Y)=\operatorname{dim}(Y)>0$
- X weakly special (WS) : $\Longleftrightarrow X^{\prime}$ is $V W S, \forall X^{\prime} \rightarrow X$ étale.
- $S \Longrightarrow W S \Longrightarrow V W S$
- Curves $: S \Longleftrightarrow W S \Longrightarrow V W S \Longleftrightarrow g=0,1$
- Surfaces : $S \Longleftrightarrow W S$, but $W S \neq V W S$ (Elliptic surfaces).
- Threefolds : $S \neq W S$ (Examples of Bogomolov-Tschinkel : \exists simply-connected threefolds VWS, but not Special).

(WEAK) SPECIALNESS : GEOMETRY

- X special :
$(\nexists f: X \rightarrow Y$ dominant, with : $\kappa(f)=\operatorname{dim}(Y)>0)$
- Birational, étale (surprisingly hard).
- X very weakly special (VWS) $: \Longleftrightarrow \nexists f: X \rightarrow Y$ with $\kappa(Y)=\operatorname{dim}(Y)>0$
- X weakly special (WS) : $\Longleftrightarrow X^{\prime}$ is $V W S, \forall X^{\prime} \rightarrow X$ étale.
- $S \Longrightarrow W S \Longrightarrow V W S$
- Curves $: S \Longleftrightarrow W S \Longrightarrow V W S \Longleftrightarrow g=0,1$
- Surfaces : $S \Longleftrightarrow W S$, but $W S \neq V W S$ (Elliptic surfaces).
- Threefolds : $S \neq W S$ (Examples of Bogomolov-Tschinkel : \exists simply-connected threefolds VWS, but not Special).
- Multiple fibres not always eliminated by étale covers.
- Surfaces : The surface $X=(X / 0)$ is special \Longleftrightarrow either :

1. $\kappa(X)=-\infty$, and : $X \sim \mathbb{P}_{1} \times C, g(C)=0$, 1 , or :
2. $\kappa(X)=0$ (ie : $\sim K 3$, Abelian, or undercover of these), or :
3. $\kappa(X)=1$, and $q\left(X^{\prime}\right) \leq 1, \forall X^{\prime}$, étale cover of X
$\Longleftrightarrow\left(\kappa(X) \neq 2\right.$ and $\pi_{1}(X)$ virtually abelien $)$
$\Longleftrightarrow \exists f: \mathbb{C}^{2} \rightarrow X$ nondegenerate (up to general $K 3$'s).

- Surfaces : The surface $X=(X / 0)$ is special \Longleftrightarrow either :

1. $\kappa(X)=-\infty$, and : $X \sim \mathbb{P}_{1} \times C, g(C)=0$, 1 , or:
2. $\kappa(X)=0$ (ie : $\sim K 3$, Abelian, or undercover of these), or :
3. $\kappa(X)=1$, and $q\left(X^{\prime}\right) \leq 1, \forall X^{\prime}$, étale cover of X
$\Longleftrightarrow\left(\kappa(X) \neq 2\right.$ and $\pi_{1}(X)$ virtually abelien $)$
$\Longleftrightarrow \exists f: \mathbb{C}^{2} \rightarrow X$ nondegenerate (up to general $K 3$'s).

- $\mathbf{n} \geq 3$: No such simple characterisation.
- Surfaces : The surface $X=(X / 0)$ is special \Longleftrightarrow either :

1. $\kappa(X)=-\infty$, and : $X \sim \mathbb{P}_{1} \times C, g(C)=0$, 1 , or :
2. $\kappa(X)=0$ (ie : $\sim K 3$, Abelian, or undercover of these), or :
3. $\kappa(X)=1$, and $q\left(X^{\prime}\right) \leq 1, \forall X^{\prime}$, étale cover of X
$\Longleftrightarrow\left(\kappa(X) \neq 2\right.$ and $\pi_{1}(X)$ virtually abelien $)$
$\Longleftrightarrow \exists f: \mathbb{C}^{2} \rightarrow X$ nondegenerate (up to general $K 3$'s).

- $\mathbf{n} \geq 3$: No such simple characterisation.
- Deformation invariance of specialness when $n \geq 3$?
- Surfaces : The surface $X=(X / 0)$ is special \Longleftrightarrow either :

1. $\kappa(X)=-\infty$, and : $X \sim \mathbb{P}_{1} \times C, g(C)=0$, 1 , or:
2. $\kappa(X)=0$ (ie : $\sim K 3$, Abelian, or undercover of these), or :
3. $\kappa(X)=1$, and $q\left(X^{\prime}\right) \leq 1, \forall X^{\prime}$, étale cover of X
$\Longleftrightarrow\left(\kappa(X) \neq 2\right.$ and $\pi_{1}(X)$ virtually abelien $)$
$\Longleftrightarrow \exists f: \mathbb{C}^{2} \rightarrow X$ nondegenerate (up to general $K 3$'s).

- $\mathbf{n} \geq 3$: No such simple characterisation.
- Deformation invariance of specialness when $n \geq 3$?
- Orbifold Kobayashi-Ochiai :
$\left[\exists \varphi: \mathbb{C}^{n} \rightarrow X\right.$ meromorphic non-degenerate $] \Longrightarrow X$ special.

(WEAK) SPECIALNESS : ARITHMETICS

- X potentially dense (P.D) means : X / k, a number field, and $X\left(k^{\prime}\right)$ Zariski dense, for some larger number field k^{\prime}.

(WEAK) SPECIALNESS : ARITHMETICS

- X potentially dense (P.D) means : X / k, a number field, and $X\left(k^{\prime}\right)$ Zariski dense, for some larger number field k^{\prime}.
- Potential density is birational, preserved by étale covers (Chevalley-Weil), products and rational images.

(WEAK) SPECIALNESS : ARITHMETICS

- X potentially dense (P.D) means : X / k, a number field, and $X\left(k^{\prime}\right)$ Zariski dense, for some larger number field k^{\prime}.
- Potential density is birational, preserved by étale covers (Chevalley-Weil), products and rational images.
- Basic examples : unirational (RC?), Abelian Var. $(\kappa=0$? $)$

(WEAK) SPECIALNESS : ARITHMETICS

- X potentially dense (P.D) means : X / k, a number field, and $X\left(k^{\prime}\right)$ Zariski dense, for some larger number field k^{\prime}.
- Potential density is birational, preserved by étale covers (Chevalley-Weil), products and rational images.
- Basic examples : unirational (RC?), Abelian Var. ($\kappa=0$?)
- Harris Conjecture : VWS \Longleftrightarrow Potential Density ? (Wrong)

(WEAK) SPECIALNESS : ARITHMETICS

- X potentially dense (P.D) means : X / k, a number field, and $X\left(k^{\prime}\right)$ Zariski dense, for some larger number field k^{\prime}.
- Potential density is birational, preserved by étale covers (Chevalley-Weil), products and rational images.
- Basic examples : unirational (RC?), Abelian Var. ($\kappa=0$?)
- Harris Conjecture : VWS \Longleftrightarrow Potential Density? (Wrong)
- A-CT Conjecture : $W S \Longleftrightarrow$ Potential Density?

(WEAK) SPECIALNESS : ARITHMETICS

- X potentially dense (P.D) means : X / k, a number field, and $X\left(k^{\prime}\right)$ Zariski dense, for some larger number field k^{\prime}.
- Potential density is birational, preserved by étale covers (Chevalley-Weil), products and rational images.
- Basic examples : unirational (RC?), Abelian Var. ($\kappa=0$?)
- Harris Conjecture : VWS \Longleftrightarrow Potential Density? (Wrong)
- A-CT Conjecture : $W S \Longleftrightarrow$ Potential Density?
- C Conjecture : Specialness \Longleftrightarrow Potential Density?

(WEAK) SPECIALNESS : ARITHMETICS

- X potentially dense (P.D) means : X / k, a number field, and $X\left(k^{\prime}\right)$ Zariski dense, for some larger number field k^{\prime}.
- Potential density is birational, preserved by étale covers (Chevalley-Weil), products and rational images.
- Basic examples : unirational (RC ?), Abelian Var. ($\kappa=0$?)
- Harris Conjecture : VWS \Longleftrightarrow Potential Density? (Wrong)
- A-CT Conjecture : $W S \Longleftrightarrow$ Potential Density?
- C Conjecture : Specialness \Longleftrightarrow Potential Density?
- A-CT contradicts C (On Bogomolov-Tschinkel examples)

(WEAK) SPECIALNESS : ARITHMETICS

- X potentially dense (P.D) means : X / k, a number field, and $X\left(k^{\prime}\right)$ Zariski dense, for some larger number field k^{\prime}.
- Potential density is birational, preserved by étale covers (Chevalley-Weil), products and rational images.
- Basic examples : unirational (RC ?), Abelian Var. ($\kappa=0$?)
- Harris Conjecture : VWS \Longleftrightarrow Potential Density? (Wrong)
- A-CT Conjecture : WS \Longleftrightarrow Potential Density?
- C Conjecture : Specialness \Longleftrightarrow Potential Density?
- A-CT contradicts C (On Bogomolov-Tschinkel examples)
- (A-CT vs C Undecided). But hyperbolic analogue of C known for some B-T's.

(WEAK) SPECIALNESS : HYPERBOLICITY

- Expected Hyperbolic analogue of P.D : $d_{X} \equiv 0$.

(WEAK) SPECIALNESS : HYPERBOLICITY

- Expected Hyperbolic analogue of P.D : $d_{X} \equiv 0$.
- $d_{X} \equiv 0 \Longleftarrow \mathbb{C}$-connected. $(\Longrightarrow$?)
- $d \equiv 0$: birational, preserved by étale covers, products, rational images. And chain-connectedness.

(WEAK) SPECIALNESS : HYPERBOLICITY

- Expected Hyperbolic analogue of P.D : $d_{X} \equiv 0$.
- $d_{X} \equiv 0 \Longleftarrow \mathbb{C}$-connected. $(\Longrightarrow$?)
- $d \equiv 0$: birational, preserved by étale covers, products, rational images. And chain-connectedness.
- Basic examples : R.C, Abelian varieties ($\kappa=0$?). All Special surfaces, too.

(WEAK) SPECIALNESS : HYPERBOLICITY

- Expected Hyperbolic analogue of P.D : $d_{X} \equiv 0$.
- $d_{X} \equiv 0 \Longleftarrow \mathbb{C}$-connected. $(\Longrightarrow$?)
- $d \equiv 0$: birational, preserved by étale covers, products, rational images. And chain-connectedness.
- Basic examples : R.C, Abelian varieties ($\kappa=0$?). All Special surfaces, too.
- (Harris Conjecture) ${ }^{*}$: VWS $\Longleftrightarrow d_{X} \equiv 0$? (Wrong)

(WEAK) SPECIALNESS : HYPERBOLICITY

- Expected Hyperbolic analogue of P.D : $d_{X} \equiv 0$.
- $d_{X} \equiv 0 \Longleftarrow \mathbb{C}$-connected. $(\Longrightarrow$?)
- $d \equiv 0$: birational, preserved by étale covers, products, rational images. And chain-connectedness.
- Basic examples : R.C, Abelian varieties ($\kappa=0$?). All Special surfaces, too.
- (Harris Conjecture)* : VWS $\Longleftrightarrow d_{X} \equiv 0$? (Wrong)
- (A-CT Conjecture) ${ }^{*}: W S \Longleftrightarrow d_{X} \equiv 0$? (Wrong) (On some Bogomolov-Tschinkel examples).

(WEAK) SPECIALNESS : HYPERBOLICITY

- Expected Hyperbolic analogue of P.D : $d_{X} \equiv 0$.
- $d_{X} \equiv 0 \Longleftarrow \mathbb{C}$-connected. $(\Longrightarrow$?)
- $d \equiv 0$: birational, preserved by étale covers, products, rational images. And chain-connectedness.
- Basic examples : R.C, Abelian varieties ($\kappa=0$?). All Special surfaces, too.
- (Harris Conjecture)* $: V W S \Longleftrightarrow d_{X} \equiv 0$? (Wrong)
- (A-CT Conjecture) ${ }^{*}: W S \Longleftrightarrow d_{X} \equiv 0$? (Wrong)
(On some Bogomolov-Tschinkel examples).
- (C Conjecture) ${ }^{*}: S \Longleftrightarrow d_{X} \equiv 0$?
(True on these same Bogomolov-Tschinkel examples).

SPECIAL vs WEAKLY SPECIAL I

- There exists $f: X \rightarrow S$ an elliptic fibration (defined $/ \mathbb{Q}$) with X, S smooth projective of dimension 3,2 , s.t :

1. $\pi_{1}(X)=\{1\}$
2. $\kappa(S)=1$.
3. $\kappa\left(S, K_{S}+\Delta(f)\right)=2$.

SPECIAL vs WEAKLY SPECIAL I

- There exists $f: X \rightarrow S$ an elliptic fibration (defined $/ \mathbb{Q}$) with X, S smooth projective of dimension 3,2 , s.t :

1. $\pi_{1}(X)=\{1\}$
2. $\kappa(S)=1$.
3. $\kappa\left(S, K_{S}+\Delta(f)\right)=2$.

- Thus X is WS, but not Special.
- There exists $f: X \rightarrow S$ an elliptic fibration (defined $/ \mathbb{Q}$) with X, S smooth projective of dimension 3,2 , s.t :

1. $\pi_{1}(X)=\{1\}$
2. $\kappa(S)=1$.
3. $\kappa\left(S, K_{S}+\Delta(f)\right)=2$.

- Thus X is WS, but not Special.
- After A-CT, X is P.D. After C, it is not. (More precisely : after C, $f(X(k)) \subset S$ Mordellic, $\forall k$ a nb field).
- There exists $f: X \rightarrow S$ an elliptic fibration (defined $/ \mathbb{Q}$) with X, S smooth projective of dimension 3,2 , s.t :

1. $\pi_{1}(X)=\{1\}$
2. $\kappa(S)=1$.
3. $\kappa\left(S, K_{S}+\Delta(f)\right)=2$.

- Thus X is WS, but not Special.
- After A-CT, X is P.D. After C, it is not. (More precisely : after C, $f(X(k)) \subset S$ Mordellic, $\forall k$ a nb field).
- (w. M. Paun :) X a B-T threefold s.t $\left(c_{1}^{2}-c_{2}\right)\left(S / \Delta_{f}\right)>0$.

There exists a projective curve $C \subset S$ s.t : $\forall h: \mathbb{C} \rightarrow X$, either $f \circ h: \mathbb{C} \rightarrow S$ is constant, or maps into C.

- There exists $f: X \rightarrow S$ an elliptic fibration (defined $/ \mathbb{Q}$) with X, S smooth projective of dimension 3, 2, s.t :

1. $\pi_{1}(X)=\{1\}$
2. $\kappa(S)=1$.
3. $\kappa\left(S, K_{S}+\Delta(f)\right)=2$.

- Thus X is WS, but not Special.
- After A-CT, X is P.D. After C, it is not. (More precisely : after C, $f(X(k)) \subset S$ Mordellic, $\forall k$ a nb field).
- (w. M. Paun :) X a B-T threefold s.t $\left(c_{1}^{2}-c_{2}\right)\left(S / \Delta_{f}\right)>0$. There exists a projective curve $C \subset S$ s.t : $\forall h: \mathbb{C} \rightarrow X$, either $f \circ h: \mathbb{C} \rightarrow S$ is constant, or maps into C.
- Either A-CT, or the expected link arithmetics-hyperbolicity fails.

SPECIAL vs WEAKLY SPECIAL II

- Sketch : $\Delta_{f}=(1-1 / m) \cdot D, D \subset S$ smooth $\Longrightarrow f \circ h(\mathbb{C})$ is m-tangent to D, ie : $f \circ h: \mathbb{C} \rightarrow\left(S / \Delta_{f}\right)$ is an orbifold morphism.

SPECIAL vs WEAKLY SPECIAL II

- Sketch : $\Delta_{f}=(1-1 / m) \cdot D, D \subset S$ smooth $\Longrightarrow f \circ h(\mathbb{C})$ is m-tangent to D, ie : $f \circ h: \mathbb{C} \rightarrow\left(S / \Delta_{f}\right)$ is an orbifold morphism.
- 1st step : $\left(f \circ h(\mathbb{C})\right.$ is m-tangent to D, and $\kappa\left(S / \Delta_{f}\right)=2$ with $\left.\left(c_{1}^{2}-c_{2}\right)\left(S / \Delta_{f}\right)>0\right) \Longrightarrow(f \circ h(\mathbb{C})$ is algebraically degenerate. (Orbifold Mc-Quillan).
Rests on the consideration of pluri-differential orbifold 1-forms.

SPECIAL vs WEAKLY SPECIAL II

- Sketch : $\Delta_{f}=(1-1 / m) \cdot D, D \subset S$ smooth $\Longrightarrow f \circ h(\mathbb{C})$ is m-tangent to D, ie : $f \circ h: \mathbb{C} \rightarrow\left(S / \Delta_{f}\right)$ is an orbifold morphism.
- 1st step : $\left(f \circ h(\mathbb{C})\right.$ is m-tangent to D, and $\kappa\left(S / \Delta_{f}\right)=2$ with $\left.\left(c_{1}^{2}-c_{2}\right)\left(S / \Delta_{f}\right)>0\right) \Longrightarrow(f \circ h(\mathbb{C})$ is algebraically degenerate. (Orbifold Mc-Quillan). Rests on the consideration of pluri-differential orbifold 1-forms.
- 2nd step : For a general choice of D : the number of rational or elliptic curves m-tangent to D is finite. (Since $\kappa\left(S / \Delta_{f}\right)=2$ with $\left.\left(c_{1}^{2}-c_{2}\right)\left(S / \Delta_{f}\right)>0\right)$: orbifold Bogomolov).

GEOMETRIC ORBIFOLDS : INVARIANTS

- Canonical Bundle $: K_{X}+\Delta:=K_{(X / \Delta)}$.

GEOMETRIC ORBIFOLDS : INVARIANTS

- Canonical Bundle : $K_{X}+\Delta:=K_{(X / \Delta)}$.
- Canonical (or "Kodaira") Dimension : $\kappa(X / \Delta):=\kappa\left(X, K_{X}+\Delta\right) \geq \kappa(X)$.

GEOMETRIC ORBIFOLDS : INVARIANTS

- Canonical Bundle : $K_{X}+\Delta:=K_{(X / \Delta)}$.
- Canonical (or "Kodaira") Dimension : $\kappa(X / \Delta):=\kappa\left(X, K_{X}+\Delta\right) \geq \kappa(X)$.
- If (X / Δ) smooth, one defines $\forall p, N \geq 0: S^{N}\left(\Omega_{(X / \Delta)}^{p}\right)$: lies between $\operatorname{Sym}^{N}\left(\Omega_{X}^{p}\right)$ and $\operatorname{Sym}^{N}\left(\Omega_{X}^{p}(\log (\operatorname{Supp}(\Delta)))\right.$.

GEOMETRIC ORBIFOLDS : INVARIANTS

- Canonical Bundle : $K_{X}+\Delta:=K_{(X / \Delta)}$.
- Canonical (or "Kodaira") Dimension : $\kappa(X / \Delta):=\kappa\left(X, K_{X}+\Delta\right) \geq \kappa(X)$.
- If (X / Δ) smooth, one defines $\forall p, N \geq 0: S^{N}\left(\Omega_{(X / \Delta)}^{p}\right)$: lies between $\operatorname{Sym}^{N}\left(\Omega_{X}^{p}\right)$ and $\operatorname{Sym}^{N}\left(\Omega_{X}^{p}(\log (\operatorname{Supp}(\Delta)))\right.$.
- For $p=1$, in local analytic coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$ s.t : Δ has local equation $\Pi_{j=1}^{j=n} x_{j}^{\left(1-1 / m_{j}\right)}, S^{N}\left(\Omega_{(X / \Delta)}^{1}\right)$ is the (locally free) sheaf of \mathcal{O}_{x}-modules generated by all
$u_{J}:=\otimes_{j} x_{j}^{\left\lceil k_{j} / m_{j}\right\rceil}\left(\frac{d x_{j}}{x_{j}}\right)^{\otimes k_{j}}$, s.t : $\sum_{j} k_{j}=N$.

GEOMETRIC ORBIFOLDS : INVARIANTS

- Canonical Bundle : $K_{X}+\Delta:=K_{(X / \Delta)}$.
- Canonical (or "Kodaira") Dimension : $\kappa(X / \Delta):=\kappa\left(X, K_{X}+\Delta\right) \geq \kappa(X)$.
- If (X / Δ) smooth, one defines $\forall p, N \geq 0: S^{N}\left(\Omega_{(X / \Delta)}^{p}\right)$: lies between $\operatorname{Sym}^{N}\left(\Omega_{X}^{p}\right)$ and $\operatorname{Sym}^{N}\left(\Omega_{X}^{p}(\log (\operatorname{Supp}(\Delta)))\right.$.
- For $p=1$, in local analytic coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$ s.t : Δ has local equation $\Pi_{j=1}^{j=n} x_{j}^{\left(1-1 / m_{j}\right)}, S^{N}\left(\Omega_{(X / \Delta)}^{1}\right)$ is the (locally free) sheaf of \mathcal{O}_{x}-modules generated by all

$$
u_{J}:=\otimes_{j} x_{j}^{\left\lceil k_{j} / m_{j}\right\rceil}\left(\frac{d x_{j}}{x_{j}}\right)^{\otimes k_{j}} \text {, s.t }: \sum_{j} k_{j}=N .
$$

- If (X / Δ) integral, one can define also : $\pi_{1}(X / \Delta), d_{(X / \Delta)}$, integral points if (X / Δ) defined over a number field.

GEOMETRIC ORBIFOLDS : MORPHISMS. I

- A morphism is a regular map $f:\left(X / \Delta_{X}\right) \rightarrow\left(Y / \Delta_{Y}\right)$ s.t: $f(X) \subsetneq \operatorname{Supp}\left(\Delta_{Y}\right)$, and $: t_{E, D} \cdot m_{X}(D) \geq m_{Y}(E), \forall E, D$ s.t : $t_{E, D}>0$, where $f^{*}(E)=t_{E, D} \cdot D+\ldots$ (with Y smooth).

GEOMETRIC ORBIFOLDS : MORPHISMS. I

- A morphism is a regular map $f:\left(X / \Delta_{X}\right) \rightarrow\left(Y / \Delta_{Y}\right)$ s.t: $f(X) \subsetneq \operatorname{Supp}\left(\Delta_{Y}\right)$, and $: t_{E, D} \cdot m_{X}(D) \geq m_{Y}(E), \forall E, D$ s.t : $t_{E, D}>0$, where $f^{*}(E)=t_{E, D} \cdot D+\ldots$ (with Y smooth).
- If $\left(X / \Delta_{X}\right)$ and $\left(Y / \Delta_{Y}\right)$ are smooth, then f is an orb.morph. iff $f^{*}\left(S^{N}\left(\Omega^{p}\left(Y / \Delta_{Y}\right)\right)\right) \subset\left(S^{N}\left(\Omega^{p}\left(X / \Delta_{X}\right)\right)\right), \forall N, p$.

GEOMETRIC ORBIFOLDS : MORPHISMS. I

- A morphism is a regular map $f:\left(X / \Delta_{X}\right) \rightarrow\left(Y / \Delta_{Y}\right)$ s.t: $f(X) \subsetneq \operatorname{Supp}\left(\Delta_{Y}\right)$, and $: t_{E, D} \cdot m_{X}(D) \geq m_{Y}(E), \forall E, D$ s.t : $t_{E, D}>0$, where $f^{*}(E)=t_{E, D} \cdot D+\ldots$ (with Y smooth).
- If $\left(X / \Delta_{X}\right)$ and $\left(Y / \Delta_{Y}\right)$ are smooth, then f is an orb.morph. iff $f^{*}\left(S^{N}\left(\Omega^{p}\left(Y / \Delta_{Y}\right)\right)\right) \subset\left(S^{N}\left(\Omega^{p}\left(X / \Delta_{X}\right)\right)\right), \forall N, p$.
- If $\left(Y / \Delta_{Y}\right)$ is integral, then f is an orb.morph. iff $f_{*}\left(\operatorname{Hol}\left(\mathbb{D},\left(X / \Delta_{X}\right)\right)\right) \subset H o l\left(\mathbb{D},\left(Y / \Delta_{Y}\right)\right)$.

GEOMETRIC ORBIFOLDS: MORPHISMS. I

- A morphism is a regular map $f:\left(X / \Delta_{X}\right) \rightarrow\left(Y / \Delta_{Y}\right)$ s.t: $f(X) \subsetneq \operatorname{Supp}\left(\Delta_{Y}\right)$, and $: t_{E, D} \cdot m_{X}(D) \geq m_{Y}(E), \forall E, D$ s.t : $t_{E, D}>0$, where $f^{*}(E)=t_{E, D} \cdot D+\ldots$ (with Y smooth).
- If $\left(X / \Delta_{X}\right)$ and $\left(Y / \Delta_{Y}\right)$ are smooth, then f is an orb.morph. iff $f^{*}\left(S^{N}\left(\Omega^{p}\left(Y / \Delta_{Y}\right)\right)\right) \subset\left(S^{N}\left(\Omega^{p}\left(X / \Delta_{X}\right)\right)\right), \forall N, p$.
- If $\left(Y / \Delta_{Y}\right)$ is integral, then f is an orb.morph. iff $f_{*}\left(\operatorname{Hol}\left(\mathbb{D},\left(X / \Delta_{X}\right)\right)\right) \subset H o l\left(\mathbb{D},\left(Y / \Delta_{Y}\right)\right)$.
- If X a smooth curve, $\Delta_{X}=0$, then f is an orb. morph. iff $\forall x \in X$ s.t : $f(x) \in E \subset \operatorname{Supp}\left(\Delta_{Y}\right), t_{E, x} \geq m_{Y}(E)$. (If $m_{Y}(E)=+\infty, f(X)$ must avoid E).

GEOMETRIC ORBIFOLDS : MORPHISMS. I

- A morphism is a regular map $f:\left(X / \Delta_{X}\right) \rightarrow\left(Y / \Delta_{Y}\right)$ s.t: $f(X) \subsetneq \operatorname{Supp}\left(\Delta_{Y}\right)$, and $: t_{E, D} \cdot m_{X}(D) \geq m_{Y}(E), \forall E, D$ s.t : $t_{E, D}>0$, where $f^{*}(E)=t_{E, D} \cdot D+\ldots$ (with Y smooth).
- If $\left(X / \Delta_{X}\right)$ and $\left(Y / \Delta_{Y}\right)$ are smooth, then f is an orb.morph. iff $f^{*}\left(S^{N}\left(\Omega^{p}\left(Y / \Delta_{Y}\right)\right)\right) \subset\left(S^{N}\left(\Omega^{p}\left(X / \Delta_{X}\right)\right)\right), \forall N, p$.
- If $\left(Y / \Delta_{Y}\right)$ is integral, then f is an orb.morph. iff $f_{*}\left(\operatorname{Hol}\left(\mathbb{D},\left(X / \Delta_{X}\right)\right)\right) \subset H o l\left(\mathbb{D},\left(Y / \Delta_{Y}\right)\right)$.
- If X a smooth curve, $\Delta_{X}=0$, then f is an orb. morph. iff $\forall x \in X$ s.t : $f(x) \in E \subset \operatorname{Supp}\left(\Delta_{Y}\right), t_{E, x} \geq m_{Y}(E)$. (If $m_{Y}(E)=+\infty, f(X)$ must avoid E).
- Orbifold rational curves are $f:\left(\mathbb{P}_{1} / \Delta\right) \rightarrow\left(X / \Delta_{X}\right)$, orbifold morphisms birational on image, and s.t : $\operatorname{deg}\left(K_{\mathbb{P}_{1}}+\Delta\right)<0$.

GEOMETRIC ORBIFOLDS : MORPHISMS. I

- A morphism is a regular map $f:\left(X / \Delta_{X}\right) \rightarrow\left(Y / \Delta_{Y}\right)$ s.t: $f(X) \subsetneq \operatorname{Supp}\left(\Delta_{Y}\right)$, and $: t_{E, D} \cdot m_{X}(D) \geq m_{Y}(E), \forall E, D$ s.t : $t_{E, D}>0$, where $f^{*}(E)=t_{E, D} \cdot D+\ldots$ (with Y smooth).
- If $\left(X / \Delta_{X}\right)$ and $\left(Y / \Delta_{Y}\right)$ are smooth, then f is an orb.morph. iff $f^{*}\left(S^{N}\left(\Omega^{p}\left(Y / \Delta_{Y}\right)\right)\right) \subset\left(S^{N}\left(\Omega^{p}\left(X / \Delta_{X}\right)\right)\right), \forall N, p$.
- If $\left(Y / \Delta_{Y}\right)$ is integral, then f is an orb.morph. iff $f_{*}\left(\operatorname{Hol}\left(\mathbb{D},\left(X / \Delta_{X}\right)\right)\right) \subset H o l\left(\mathbb{D},\left(Y / \Delta_{Y}\right)\right)$.
- If X a smooth curve, $\Delta_{X}=0$, then f is an orb. morph. iff $\forall x \in X$ s.t : $f(x) \in E \subset \operatorname{Supp}\left(\Delta_{Y}\right), t_{E, x} \geq m_{Y}(E)$. (If $m_{Y}(E)=+\infty, f(X)$ must avoid E).
- Orbifold rational curves are $f:\left(\mathbb{P}_{1} / \Delta\right) \rightarrow\left(X / \Delta_{X}\right)$, orbifold morphisms birational on image, and s.t : $\operatorname{deg}\left(K_{\mathbb{P}_{1}}+\Delta\right)<0$.
- "Classical" (integral) morphisms : $m(E)$ divides $t . m(D)$.

BIRATIONAL EQUIVALENCE

- Elementary modifications : $f:\left(X / \Delta_{X}\right) \rightarrow\left(Y / \Delta_{Y}\right)$ s.t : birational, morphism, and $f_{*}\left(\Delta_{X}\right)=\Delta_{Y}$.

BIRATIONAL EQUIVALENCE

- Elementary modifications : $f:\left(X / \Delta_{X}\right) \rightarrow\left(Y / \Delta_{Y}\right)$ s.t : birational, morphism, and $f_{*}\left(\Delta_{X}\right)=\Delta_{Y}$.
- Birational equivalence : generated by (chains of) elementary modifications between smooth orbifolds. Denoted \sim.

BIRATIONAL EQUIVALENCE

- Elementary modifications : $f:\left(X / \Delta_{X}\right) \rightarrow\left(Y / \Delta_{Y}\right)$ s.t : birational, morphism, and $f_{*}\left(\Delta_{X}\right)=\Delta_{Y}$.
- Birational equivalence : generated by (chains of) elementary modifications between smooth orbifolds. Denoted \sim.
- Caution : $\left(X / \Delta_{X}\right) \sim\left(Y / \Delta_{Y}\right)$ may not be dominated by a third one. (Ex: Cremona transformation on \mathbb{P}_{2}).

BIRATIONAL EQUIVALENCE

- Elementary modifications : $f:\left(X / \Delta_{X}\right) \rightarrow\left(Y / \Delta_{Y}\right)$ s.t : birational, morphism, and $f_{*}\left(\Delta_{X}\right)=\Delta_{Y}$.
- Birational equivalence : generated by (chains of) elementary modifications between smooth orbifolds. Denoted \sim.
- Caution : $\left(X / \Delta_{X}\right) \sim\left(Y / \Delta_{Y}\right)$ may not be dominated by a third one. (Ex: Cremona transformation on \mathbb{P}_{2}).
- $\forall f:\left(X / \Delta_{X}\right) \rightarrow\left(Y / \Delta_{Y}\right)$ a birational equivalence $\Longrightarrow f_{*}\left(H^{0}\left(X, S^{N}\left(\Omega^{p}\left(X / \Delta_{X}\right)\right) \rightarrow H^{0}\left(Y, S^{N}\left(\Omega^{p}\left(Y / \Delta_{Y}\right)\right)\right.\right.\right.$ isomorphic, well-defined, $\forall N, p$.

BIRATIONAL EQUIVALENCE

- Elementary modifications : $f:\left(X / \Delta_{X}\right) \rightarrow\left(Y / \Delta_{Y}\right)$ s.t : birational, morphism, and $f_{*}\left(\Delta_{X}\right)=\Delta_{Y}$.
- Birational equivalence : generated by (chains of) elementary modifications between smooth orbifolds. Denoted \sim.
- Caution : $\left(X / \Delta_{X}\right) \sim\left(Y / \Delta_{Y}\right)$ may not be dominated by a third one. (Ex: Cremona transformation on \mathbb{P}_{2}).
- $\forall f:\left(X / \Delta_{X}\right) \rightarrow\left(Y / \Delta_{Y}\right)$ a birational equivalence $\Longrightarrow f_{*}\left(H^{0}\left(X, S^{N}\left(\Omega^{p}\left(X / \Delta_{X}\right)\right) \rightarrow H^{0}\left(Y, S^{N}\left(\Omega^{p}\left(Y / \Delta_{Y}\right)\right)\right.\right.\right.$ isomorphic, well-defined, $\forall N, p$.
- In particular : $\kappa\left(X / \Delta_{X}\right)=\kappa\left(Y / \Delta_{Y}\right)$.

ORBIFOLD BASE OF A FIBRATION. II

- Fibration : Any regular surjective map with connected fibres $f: X \rightarrow Y$, with Y normal.

ORBIFOLD BASE OF A FIBRATION. II

- Fibration : Any regular surjective map with connected fibres $f: X \rightarrow Y$, with Y normal.
- $\forall E$ any irreducible divisor on Y, let : $f^{*}(E)=\sum_{k} t_{k} \cdot D_{k}+R$, with : $f\left(D_{k}\right)=E, \forall k$, and $R f$-exceptional.
- Multiplicities : Let Δ_{X} be an orbifold structure on X. Define : $m\left(f, \Delta_{X}\right)(E):=\inf _{k}\left\{t_{k} \cdot m_{X}\left(D_{k}\right)\right\}$ (\exists "classical" $)$.

ORBIFOLD BASE OF A FIBRATION. II

- Fibration : Any regular surjective map with connected fibres $f: X \rightarrow Y$, with Y normal.
- $\forall E$ any irreducible divisor on Y, let : $f^{*}(E)=\sum_{k} t_{k} \cdot D_{k}+R$, with : $f\left(D_{k}\right)=E, \forall k$, and $R f$-exceptional.
- Multiplicities : Let Δ_{X} be an orbifold structure on X. Define : $m\left(f, \Delta_{X}\right)(E):=\inf _{k}\left\{t_{k} \cdot m_{X}\left(D_{k}\right)\right\}$ (\exists "classical" $)$.
- Orbifold base of $\left(\mathbf{f}, \Delta_{X}\right):=\left(Y / \Delta_{f, \Delta_{X}}\right)$, with: $\Delta_{f, \Delta_{X}}:=\sum_{E}\left(1-\frac{1}{m\left(f, \Delta_{X}\right)(E)}\right) . E=$ largest orbifold on Y s.t : f is an orbifold morphism in codimension 1.

ORBIFOLD BASE OF A FIBRATION. II

- Fibration : Any regular surjective map with connected fibres $f: X \rightarrow Y$, with Y normal.
- $\forall E$ any irreducible divisor on Y, let : $f^{*}(E)=\sum_{k} t_{k} \cdot D_{k}+R$, with : $f\left(D_{k}\right)=E, \forall k$, and $R f$-exceptional.
- Multiplicities : Let Δ_{X} be an orbifold structure on X. Define : $m\left(f, \Delta_{X}\right)(E):=\inf _{k}\left\{t_{k} \cdot m_{X}\left(D_{k}\right)\right\}$ (\exists "classical" $)$.
- Orbifold base of $\left(\mathbf{f}, \Delta_{X}\right):=\left(Y / \Delta_{f, \Delta_{X}}\right)$, with : $\Delta_{f, \Delta_{X}}:=\sum_{E}\left(1-\frac{1}{m\left(f, \Delta_{X}\right)(E)}\right) \cdot E=$ largest orbifold on Y s.t : f is an orbifold morphism in codimension 1.
- Fundamental invariant : $\kappa\left(Y / \Delta_{f, \Delta_{X}}\right)$. Not birational, but :

ORBIFOLD BASE OF A FIBRATION. II

- Fibration : Any regular surjective map with connected fibres $f: X \rightarrow Y$, with Y normal.
- $\forall E$ any irreducible divisor on Y, let : $f^{*}(E)=\sum_{k} t_{k} \cdot D_{k}+R$, with : $f\left(D_{k}\right)=E, \forall k$, and $R f$-exceptional.
- Multiplicities : Let Δ_{X} be an orbifold structure on X. Define : $m\left(f, \Delta_{X}\right)(E):=\inf _{k}\left\{t_{k} \cdot m_{X}\left(D_{k}\right)\right\}$ (\exists "classical" $)$.
- Orbifold base of $\left(\mathbf{f}, \Delta_{X}\right):=\left(Y / \Delta_{f, \Delta_{X}}\right)$, with : $\Delta_{f, \Delta_{X}}:=\sum_{E}\left(1-\frac{1}{m\left(f, \Delta_{X}\right)(E)}\right) \cdot E=$ largest orbifold on Y s.t : f is an orbifold morphism in codimension 1.
- Fundamental invariant : $\kappa\left(Y / \Delta_{f, \Delta_{X}}\right)$. Not birational, but :
- Becomes birational on suitable ("neat") models, obtained by flattening and then smoothing. Denoted $\kappa\left(f / \Delta_{X}\right)$.

ORBIFOLD BASE OF A FIBRATION. II

- Fibration : Any regular surjective map with connected fibres $f: X \rightarrow Y$, with Y normal.
- $\forall E$ any irreducible divisor on Y, let : $f^{*}(E)=\sum_{k} t_{k} \cdot D_{k}+R$, with : $f\left(D_{k}\right)=E, \forall k$, and $R f$-exceptional.
- Multiplicities : Let Δ_{X} be an orbifold structure on X. Define : $m\left(f, \Delta_{X}\right)(E):=\inf _{k}\left\{t_{k} \cdot m_{X}\left(D_{k}\right)\right\}$ (\exists "classical" $)$.
- Orbifold base of $\left(\mathbf{f}, \Delta_{X}\right):=\left(Y / \Delta_{f, \Delta_{X}}\right)$, with : $\Delta_{f, \Delta_{X}}:=\sum_{E}\left(1-\frac{1}{m\left(f, \Delta_{x}\right)(E)}\right) . E=$ largest orbifold on Y s.t : f is an orbifold morphism in codimension 1.
- Fundamental invariant : $\kappa\left(Y / \Delta_{f, \Delta_{X}}\right)$. Not birational, but :
- Becomes birational on suitable ("neat") models, obtained by flattening and then smoothing. Denoted $\kappa\left(f / \Delta_{X}\right)$.
- $f:(X / \Delta) \rightarrow Y$ of general type if $\kappa(f / \Delta)=\operatorname{dim}(Y)>0$.

BOGOMOLOV SHEAVES

- Let (X / Δ) smooth, $L \subset \Omega_{X}^{p}$ rank one, coherent, L^{m} the saturation in $S^{N}\left(\Omega_{(X / \Delta)}^{p}\right)$ of $L^{\otimes m}$, for $m>0$.

BOGOMOLOV SHEAVES

- Let (X / Δ) smooth, $L \subset \Omega_{X}^{p}$ rank one, coherent, L^{m} the saturation in $S^{N}\left(\Omega_{(X / \Delta)}^{p}\right)$ of $L^{\otimes m}$, for $m>0$.
- Define : $\kappa(X / \Delta, L):=\overline{\lim }_{m>0}\left\{\frac{\log \left(h^{0}\left(X, L^{m}\right)\right)}{\log (m)}\right\}$

BOGOMOLOV SHEAVES

- Let (X / Δ) smooth, $L \subset \Omega_{X}^{p}$ rank one, coherent, L^{m} the saturation in $S^{N}\left(\Omega_{(X / \Delta)}^{p}\right)$ of $L^{\otimes m}$, for $m>0$.
- Define : $\kappa(X / \Delta, L):=\overline{\lim }_{m>0}\left\{\frac{\log \left(h^{0}\left(X, L^{m}\right)\right)}{\log (m)}\right\}$
- Then : $\kappa(X / \Delta, L) \in\{-\infty, 0,1, \ldots, n\}$. Birational invariant.

BOGOMOLOV SHEAVES

- Let (X / Δ) smooth, $L \subset \Omega_{X}^{p}$ rank one, coherent, L^{m} the saturation in $S^{N}\left(\Omega_{(X / \Delta)}^{p}\right)$ of $L^{\otimes m}$, for $m>0$.
- Define : $\kappa(X / \Delta, L):=\overline{\lim }_{m>0}\left\{\frac{\log \left(h^{0}\left(X, L^{m}\right)\right)}{\log (m)}\right\}$
- Then : $\kappa(X / \Delta, L) \in\{-\infty, 0,1, \ldots, n\}$. Birational invariant.
- Let $f: X \rightarrow Y$ be a fibration, and $L_{f}:=f^{*}\left(K_{Y}\right)$. Then : $\kappa\left(X / \Delta, L_{f}\right)=\kappa(f / \Delta)$. (On any model).

BOGOMOLOV SHEAVES

- Let (X / Δ) smooth, $L \subset \Omega_{X}^{p}$ rank one, coherent, L^{m} the saturation in $S^{N}\left(\Omega_{(X / \Delta)}^{p}\right)$ of $L^{\otimes m}$, for $m>0$.
- Define : $\kappa(X / \Delta, L):=\overline{\lim }_{m>0}\left\{\frac{\log \left(h^{0}\left(X, L^{m}\right)\right)}{\log (m)}\right\}$
- Then : $\kappa(X / \Delta, L) \in\{-\infty, 0,1, \ldots, n\}$. Birational invariant.
- Let $f: X \rightarrow Y$ be a fibration, and $L_{f}:=f^{*}\left(K_{Y}\right)$. Then : $\kappa\left(X / \Delta, L_{f}\right)=\kappa(f / \Delta)$. (On any model).
- Theorem : (Orbifold variant of Bogomolov (1978)) $L \subset \Omega_{X}^{p}, p>0$ rank one coherent. Then: 1. $\kappa(X / \Delta, L) \leq p$. ($L:=$ Bogomolov iff equality $)$. 2. $\kappa(X / \Delta, L)=p \Longleftrightarrow \exists f: X \rightarrow Y$ s.t : $L=f^{*}\left(K_{Y}\right)$ generically over Y, with : $\kappa(f / \Delta)=\operatorname{dim}(Y)=p)$.

BOGOMOLOV SHEAVES

- Let (X / Δ) smooth, $L \subset \Omega_{X}^{p}$ rank one, coherent, L^{m} the saturation in $S^{N}\left(\Omega_{(X / \Delta)}^{p}\right)$ of $L^{\otimes m}$, for $m>0$.
- Define : $\kappa(X / \Delta, L):=\overline{\lim }_{m>0}\left\{\frac{\log \left(h^{0}\left(X, L^{m}\right)\right)}{\log (m)}\right\}$
- Then : $\kappa(X / \Delta, L) \in\{-\infty, 0,1, \ldots, n\}$. Birational invariant.
- Let $f: X \rightarrow Y$ be a fibration, and $L_{f}:=f^{*}\left(K_{Y}\right)$. Then : $\kappa\left(X / \Delta, L_{f}\right)=\kappa(f / \Delta)$. (On any model).
- Theorem : (Orbifold variant of Bogomolov (1978)) $L \subset \Omega_{X}^{p}, p>0$ rank one coherent. Then :

1. $\kappa(X / \Delta, L) \leq p$. ($L:=$ Bogomolov iff equality $)$.
2. $\kappa(X / \Delta, L)=p \Longleftrightarrow \exists f: X \rightarrow Y$ s.t : $L=f^{*}\left(K_{Y}\right)$
generically over Y, with : $\kappa(f / \Delta)=\operatorname{dim}(Y)=p)$.

- $f \rightarrow L_{f}$ induces natural bijection :
[f of Δ-general type] $\rightarrow \Delta$-Bogomolov-sheaves.

BOGOMOLOV SHEAVES

- Let (X / Δ) smooth, $L \subset \Omega_{X}^{p}$ rank one, coherent, L^{m} the saturation in $S^{N}\left(\Omega_{(X / \Delta)}^{p}\right)$ of $L^{\otimes m}$, for $m>0$.
- Define : $\kappa(X / \Delta, L):=\overline{\lim }_{m>0}\left\{\frac{\log \left(h^{0}\left(X, L^{m}\right)\right)}{\log (m)}\right\}$
- Then : $\kappa(X / \Delta, L) \in\{-\infty, 0,1, \ldots, n\}$. Birational invariant.
- Let $f: X \rightarrow Y$ be a fibration, and $L_{f}:=f^{*}\left(K_{Y}\right)$. Then : $\kappa\left(X / \Delta, L_{f}\right)=\kappa(f / \Delta)$. (On any model).
- Theorem : (Orbifold variant of Bogomolov (1978)) $L \subset \Omega_{X}^{p}, p>0$ rank one coherent. Then :

1. $\kappa(X / \Delta, L) \leq p$. $(L:=$ Bogomolov iff equality $)$.
2. $\kappa(X / \Delta, L)=p \Longleftrightarrow \exists f: X \rightarrow Y$ s.t : $L=f^{*}\left(K_{Y}\right)$ generically over Y, with : $\kappa(f / \Delta)=\operatorname{dim}(Y)=p)$.

- $f \rightarrow L_{f}$ induces natural bijection :
[f of Δ-general type] $\rightarrow \Delta$-Bogomolov-sheaves.
- Needs non-classical multiplicities (a major motivation).

ORBIFOLD ADDITIVITY

- $\mathbf{C}_{n, m}^{o r b}$ Conjecture : $f:(X / \Delta) \rightarrow Y$ a fibration, (X / Δ) smooth. Then : $\kappa(X / \Delta) \geq \kappa\left(X_{y} / \Delta_{y}\right)+\kappa(f / \Delta)$?

ORBIFOLD ADDITIVITY

- $\mathbf{C}_{n, m}^{o r b}$ Conjecture : $f:(X / \Delta) \rightarrow Y$ a fibration, (X / Δ) smooth. Then : $\kappa(X / \Delta) \geq \kappa\left(X_{y} / \Delta_{y}\right)+\kappa(f / \Delta)$?
- Without Δ 's : due to S. litaka (1972).

ORBIFOLD ADDITIVITY

- $\mathbf{C}_{n, m}^{o r b}$ Conjecture : $f:(X / \Delta) \rightarrow Y$ a fibration, (X / Δ) smooth. Then : $\kappa(X / \Delta) \geq \kappa\left(X_{y} / \Delta_{y}\right)+\kappa(f / \Delta)$?
- Without Δ 's : due to S. litaka (1972).
- Theorem : $C_{n, m}^{o r b}$ if $f:(X / \Delta) \rightarrow Y$ is of general type : $\kappa(X / \Delta)=\kappa\left(X_{y} / \Delta_{y}\right)+\operatorname{dim}(Y)$ if $\kappa(f / \Delta)=\operatorname{dim}(Y)$.

ORBIFOLD ADDITIVITY

- $\mathbf{C}_{n, m}^{o r b}$ Conjecture $: f:(X / \Delta) \rightarrow Y$ a fibration, (X / Δ) smooth. Then : $\kappa(X / \Delta) \geq \kappa\left(X_{y} / \Delta_{y}\right)+\kappa(f / \Delta)$?
- Without Δ 's : due to S. litaka (1972).
- Theorem : $C_{n, m}^{o r b}$ if $f:(X / \Delta) \rightarrow Y$ is of general type : $\kappa(X / \Delta)=\kappa\left(X_{y} / \Delta_{y}\right)+\operatorname{dim}(Y)$ if $\kappa(f / \Delta)=\operatorname{dim}(Y)$.
- Without Δ 's : due to E.Viehweg, Y. Kawamata, T. Fujita. Proof : orbifold adaptation of theirs.

ORBIFOLD ADDITIVITY

- $\mathbf{C}_{n, m}^{o r b}$ Conjecture : $f:(X / \Delta) \rightarrow Y$ a fibration, (X / Δ) smooth. Then : $\kappa(X / \Delta) \geq \kappa\left(X_{y} / \Delta_{y}\right)+\kappa(f / \Delta)$?
- Without Δ 's : due to S. litaka (1972).
- Theorem : $C_{n, m}^{o r b}$ if $f:(X / \Delta) \rightarrow Y$ is of general type : $\kappa(X / \Delta)=\kappa\left(X_{y} / \Delta_{y}\right)+\operatorname{dim}(Y)$ if $\kappa(f / \Delta)=\operatorname{dim}(Y)$.
- Without Δ 's : due to E.Viehweg, Y. Kawamata, T. Fujita. Proof : orbifold adaptation of theirs.
- Corollary : If $\kappa(X / \Delta)=0$, there does not exist $f:(X / \Delta) \rightarrow Y$ of general type.

ORBIFOLD ADDITIVITY

- $\mathbf{C}_{n, m}^{o r b}$ Conjecture : $f:(X / \Delta) \rightarrow Y$ a fibration, (X / Δ) smooth. Then : $\kappa(X / \Delta) \geq \kappa\left(X_{y} / \Delta_{y}\right)+\kappa(f / \Delta)$?
- Without Δ 's : due to S. litaka (1972).
- Theorem : $C_{n, m}^{o r b}$ if $f:(X / \Delta) \rightarrow Y$ is of general type : $\kappa(X / \Delta)=\kappa\left(X_{y} / \Delta_{y}\right)+\operatorname{dim}(Y)$ if $\kappa(f / \Delta)=\operatorname{dim}(Y)$.
- Without Δ 's : due to E.Viehweg, Y. Kawamata, T. Fujita. Proof : orbifold adaptation of theirs.
- Corollary : If $\kappa(X / \Delta)=0$, there does not exist $f:(X / \Delta) \rightarrow Y$ of general type.
- (X / Δ) special $\Longleftrightarrow[\nexists f:(X / \Delta) \rightarrow Y$ of general type $]$.

SPECIAL ORBIFOLDS. II

- $\kappa(X / \Delta)=0 \Longrightarrow X$ special. (Uses $\left.C_{n, m}^{o r b}\right)$. (Toric examples).

SPECIAL ORBIFOLDS. II

- $\kappa(X / \Delta)=0 \Longrightarrow X$ special. (Uses $\left.C_{n, m}^{o r b}\right)$. (Toric examples).
- (X / Δ) Fano $\Longrightarrow X$ special.

SPECIAL ORBIFOLDS. II

- $\kappa(X / \Delta)=0 \Longrightarrow X$ special. (Uses $\left.C_{n, m}^{o r b}\right)$. (Toric examples).
- (X / Δ) Fano $\Longrightarrow X$ special.
- $(X / \Delta)=\mathrm{R}^{\text {orb }} \Longrightarrow X$ special.

SPECIAL ORBIFOLDS. II

- $\kappa(X / \Delta)=0 \Longrightarrow X$ special. (Uses $\left.C_{n, m}^{o r b}\right)$. (Toric examples).
- (X / Δ) Fano $\Longrightarrow X$ special.
- $(X / \Delta)=\mathrm{RC}^{\text {orb }} \Longrightarrow X$ special.
- $\kappa_{+}(X / \Delta)=-\infty: \Longleftrightarrow \kappa(f / \Delta)=-\infty, \forall f:(X / \Delta) \rightarrow Y$.

SPECIAL ORBIFOLDS. II

- $\kappa(X / \Delta)=0 \Longrightarrow X$ special. (Uses $\left.C_{n, m}^{o r b}\right)$. (Toric examples).
- (X / Δ) Fano $\Longrightarrow X$ special.
- $(X / \Delta)=\mathrm{RC}^{\text {orb }} \Longrightarrow X$ special.
- $\kappa_{+}(X / \Delta)=-\infty: \Longleftrightarrow \kappa(f / \Delta)=-\infty, \forall f:(X / \Delta) \rightarrow Y$.
- $\kappa_{+}(X / \Delta)=-\infty: \Longrightarrow(X / \Delta)=$ special ; (Obvious).

SPECIAL ORBIFOLDS. II

- $\kappa(X / \Delta)=0 \Longrightarrow X$ special. (Uses $\left.C_{n, m}^{o r b}\right)$. (Toric examples).
- (X / Δ) Fano $\Longrightarrow X$ special.
- $(X / \Delta)=\mathrm{RC}^{\text {orb }} \Longrightarrow X$ special.
- $\kappa_{+}(X / \Delta)=-\infty: \Longleftrightarrow \kappa(f / \Delta)=-\infty, \forall f:(X / \Delta) \rightarrow Y$.
- $\kappa_{+}(X / \Delta)=-\infty: \Longrightarrow(X / \Delta)=$ special ; (Obvious).
- $\kappa_{+}(X / \Delta)=-\infty: \Longleftrightarrow X=R C^{\text {orb }}$? (Standard without Δ 's).
- $\kappa(X / \Delta)=0 \Longrightarrow X$ special. (Uses $\left.C_{n, m}^{o r b}\right)$. (Toric examples).
- (X / Δ) Fano $\Longrightarrow X$ special.
- $(X / \Delta)=\mathrm{RC}^{\text {orb }} \Longrightarrow X$ special.
- $\kappa_{+}(X / \Delta)=-\infty: \Longleftrightarrow \kappa(f / \Delta)=-\infty, \forall f:(X / \Delta) \rightarrow Y$.
- $\kappa_{+}(X / \Delta)=-\infty: \Longrightarrow(X / \Delta)=$ special ; (Obvious).
- $\kappa_{+}(X / \Delta)=-\infty: \Longleftrightarrow X=R C^{\text {orb }}$? (Standard without Δ 's).
- Special \Longleftrightarrow connected by chaines of special suborbifolds.
- $\kappa(X / \Delta)=0 \Longrightarrow X$ special. (Uses $\left.C_{n, m}^{o r b}\right)$. (Toric examples).
- (X / Δ) Fano $\Longrightarrow X$ special.
- $(X / \Delta)=\mathrm{RC}^{\text {orb }} \Longrightarrow X$ special.
- $\kappa_{+}(X / \Delta)=-\infty: \Longleftrightarrow \kappa(f / \Delta)=-\infty, \forall f:(X / \Delta) \rightarrow Y$.
- $\kappa_{+}(X / \Delta)=-\infty: \Longrightarrow(X / \Delta)=$ special ; (Obvious).
- $\kappa_{+}(X / \Delta)=-\infty: \Longleftrightarrow X=R C^{\text {orb }}$? (Standard without Δ 's).
- Special \Longleftrightarrow connected by chaines of special suborbifolds.
- Stable by "orbifold extension" $\left(X_{y} / \Delta_{y}\right)$ and $\left(Y / \Delta_{f, \Delta_{x}}\right)$ special $\Longrightarrow(X / \Delta)$ special. (Very false without Δ 's).
- $\kappa(X / \Delta)=0 \Longrightarrow X$ special. (Uses $\left.C_{n, m}^{o r b}\right)$. (Toric examples).
- (X / Δ) Fano $\Longrightarrow X$ special.
- $(X / \Delta)=\mathrm{R}^{\text {orb }} \Longrightarrow X$ special.
- $\kappa_{+}(X / \Delta)=-\infty: \Longleftrightarrow \kappa(f / \Delta)=-\infty, \forall f:(X / \Delta) \rightarrow Y$.
- $\kappa_{+}(X / \Delta)=-\infty: \Longrightarrow(X / \Delta)=$ special ; (Obvious).
- $\kappa_{+}(X / \Delta)=-\infty: \Longleftrightarrow X=R C^{\text {orb }}$? (Standard without Δ 's).
- Special \Longleftrightarrow connected by chaines of special suborbifolds.
- Stable by "orbifold extension" $\left(X_{y} / \Delta_{y}\right)$ and $\left(Y / \Delta_{f, \Delta_{x}}\right)$ special $\Longrightarrow(X / \Delta)$ special. (Very false without Δ 's).
- Special \Longleftrightarrow (canonical) tower of fibrations with orbifold fibres having either $\kappa=0$, or $\kappa_{+}=-\infty$. (Conditionally in $C_{n, m}^{o r b}$)
- Theorem : Let (X / Δ) smooth. There exists a unique fibration $c=c_{(X / \Delta)}:(X / \Delta) \rightarrow C=C(X / \Delta)$ s.t :

1. Its general orbifold fibres are special.
2. $c_{(X / \Delta)}$ is either a fibration of general type (or the constant map iff (X / Δ) is special).

- Theorem : Let (X / Δ) smooth. There exists a unique fibration $c=c_{(X / \Delta)}:(X / \Delta) \rightarrow C=C(X / \Delta)$ s.t :

1. Its general orbifold fibres are special.
2. $c_{(X / \Delta)}$ is either a fibration of general type (or the constant map iff (X / Δ) is special).

- $c_{(X / \Delta)}$ is called the core of (X / Δ), it is almost holomorphic.
- Theorem : Let (X / Δ) smooth. There exists a unique fibration $c=c_{(X / \Delta)}:(X / \Delta) \rightarrow C=C(X / \Delta)$ s.t :

1. Its general orbifold fibres are special.
2. $c_{(X / \Delta)}$ is either a fibration of general type (or the constant map iff (X / Δ) is special).

- $c_{(X / \Delta)}$ is called the core of (X / Δ), it is almost holomorphic.
- $c_{(X / \Delta)}$ canonically "splits" (X / Δ) into its antithetical "parts" : special (the fibres) vs general type (the base) in the orbifold category.
- Theorem : Let (X / Δ) smooth. There exists a unique fibration $c=c_{(X / \Delta)}:(X / \Delta) \rightarrow C=C(X / \Delta)$ s.t :

1. Its general orbifold fibres are special.
2. $c_{(X / \Delta)}$ is either a fibration of general type (or the constant map iff (X / Δ) is special).

- $c_{(X / \Delta)}$ is called the core of (X / Δ), it is almost holomorphic.
- $c_{(X / \Delta)}$ canonically "splits" (X / Δ) into its antithetical "parts" : special (the fibres) vs general type (the base) in the orbifold category.
- Even when $\Delta=0$, in general $\Delta(c) \neq 0$. So the orbifold base is needed also in this case. ($\mathrm{Ex}:[\mathrm{B}-\mathrm{T}]$).
- Theorem : Let (X / Δ) smooth. There exists a unique fibration $c=c_{(X / \Delta)}:(X / \Delta) \rightarrow C=C(X / \Delta)$ s.t :

1. Its general orbifold fibres are special.
2. $c_{(X / \Delta)}$ is either a fibration of general type (or the constant map iff (X / Δ) is special).

- $c_{(X / \Delta)}$ is called the core of (X / Δ), it is almost holomorphic.
- $c_{(X / \Delta)}$ canonically "splits" (X / Δ) into its antithetical "parts" : special (the fibres) vs general type (the base) in the orbifold category.
- Even when $\Delta=0$, in general $\Delta(c) \neq 0$. So the orbifold base is needed also in this case. ($\mathrm{Ex}:[\mathrm{B}-\mathrm{T}]$).
- Conjecturally, c splits arithmetics and hyperbolicity as well.

DECOMPOSITION OF THE CORE

- Assume $C_{n, m}^{o r b}$. Then : $\exists!r:(X / \Delta) \rightarrow R$ s.t :

1. Its general orbifold fibres have $\kappa_{+}=-\infty$.
2. $\kappa(r / \Delta) \geq 0$.

DECOMPOSITION OF THE CORE

- Assume $C_{n, m}^{o r b}$. Then : $\exists!r:(X / \Delta) \rightarrow R$ s.t :

1. Its general orbifold fibres have $\kappa_{+}=-\infty$.
2. $\kappa(r / \Delta) \geq 0$.

- Weak (orbifold) substitute of "rational quotient" (or MRC).

DECOMPOSITION OF THE CORE

- Assume $C_{n, m}^{o r b}$. Then : $\exists!r:(X / \Delta) \rightarrow R$ s.t :

1. Its general orbifold fibres have $\kappa_{+}=-\infty$.
2. $\kappa(r / \Delta) \geq 0$.

- Weak (orbifold) substitute of "rational quotient" (or MRC).
- Assume $\kappa(X / \Delta) \geq 0$. Then : $\exists!J:(X / \Delta) \rightarrow J(X / \Delta)$ s.t : 1. Its general orbifold fibres have $\kappa=0$.

2. $\operatorname{dim}(J(X / \Delta))=\kappa(X / \Delta)$.

DECOMPOSITION OF THE CORE

- Assume $C_{n, m}^{o r b}$. Then : $\exists!r:(X / \Delta) \rightarrow R$ s.t :

1. Its general orbifold fibres have $\kappa_{+}=-\infty$.
2. $\kappa(r / \Delta) \geq 0$.

- Weak (orbifold) substitute of "rational quotient" (or MRC).
- Assume $\kappa(X / \Delta) \geq 0$. Then : $\exists!J:(X / \Delta) \rightarrow J(X / \Delta)$ s.t : 1. Its general orbifold fibres have $\kappa=0$.

2. $\operatorname{dim}(J(X / \Delta))=\kappa(X / \Delta)$.

- $J=$ Orbifold litaka-Moishezon fibration.

DECOMPOSITION OF THE CORE

- Assume $C_{n, m}^{o r b}$. Then : \exists ! $r:(X / \Delta) \rightarrow R$ s.t :

1. Its general orbifold fibres have $\kappa_{+}=-\infty$.
2. $\kappa(r / \Delta) \geq 0$.

- Weak (orbifold) substitute of "rational quotient" (or MRC).
- Assume $\kappa(X / \Delta) \geq 0$. Then : $\exists!J:(X / \Delta) \rightarrow J(X / \Delta)$ s.t : 1. Its general orbifold fibres have $\kappa=0$.

2. $\operatorname{dim}(J(X / \Delta))=\kappa(X / \Delta)$.

- $J=$ Orbifold litaka-Moishezon fibration.
- Theorem : Assume $C_{n, m}^{o r b}$. Then : $c_{(X / \Delta)}=(J \circ r)^{n}$.

DECOMPOSITION OF THE CORE

- Assume $C_{n, m}^{o r b}$. Then : \exists ! $r:(X / \Delta) \rightarrow R$ s.t :

1. Its general orbifold fibres have $\kappa_{+}=-\infty$.
2. $\kappa(r / \Delta) \geq 0$.

- Weak (orbifold) substitute of "rational quotient" (or MRC).
- Assume $\kappa(X / \Delta) \geq 0$. Then : $\exists!J:(X / \Delta) \rightarrow J(X / \Delta)$ s.t : 1. Its general orbifold fibres have $\kappa=0$.

2. $\operatorname{dim}(J(X / \Delta))=\kappa(X / \Delta)$.

- $J=$ Orbifold litaka-Moishezon fibration.
- Theorem : Assume $C_{n, m}^{o r b}$. Then : $c_{(X / \Delta)}=(J \circ r)^{n}$.
- Corollary : (X / Δ) special $\Longleftrightarrow(J \circ r)^{n}=$ constant map.

LIFTING PROPERTIES

- Corollary : Assume $C_{n, m}^{o r b}$.

Let \mathcal{P} be a class of smooth orbifolds which :

1. is birationally stable.
2. contains all orbifolds with either $\kappa_{+}=-\infty$ or $\kappa=0$.
3. is stable by extensions.

- Then : $\mathcal{P} \supset \mathcal{S}$ (the class of special orbifolds).
- And $\mathcal{P}=\mathcal{S}$ if, moreover :

4. \mathcal{P} does not contain any orbifold of general type.
5. \mathcal{P} is stable by image.

CONJECTURES

- Conjectures :

CONJECTURES

- Conjectures :
- (X / Δ) special $\Longrightarrow \pi_{1}(X / \Delta) \in \widehat{\text { Abelian } ? ~}$
$1+3$ true. But 2. unknown already if $n=2$ and either : $K<0$, or $K \equiv 0$.

CONJECTURES

- Conjectures :
- (X / Δ) special $\Longrightarrow \pi_{1}(X / \Delta) \in \widehat{\text { Abelian }}$
$1+3$ true. But 2. unknown already if $n=2$ and either :
$K<0$, or $K \equiv 0$.
- (X / Δ) special $\Longleftrightarrow d_{(X / \Delta)} \equiv 0$?

CONJECTURES

- Conjectures :
- (X / Δ) special $\Longrightarrow \pi_{1}(X / \Delta) \in \widetilde{\text { Abelian }}$?
$1+3$ true. But 2. unknown already if $n=2$ and either : $K<0$, or $K \equiv 0$.
- (X / Δ) special $\Longleftrightarrow d_{(X / \Delta)} \equiv 0$?
- (X / Δ) special $\Longleftrightarrow(X / \Delta)$ potentially dense ? (/nb field).

CONJECTURES

- Conjectures :
- (X / Δ) special $\Longrightarrow \pi_{1}(X / \Delta) \in \widetilde{\text { Abelian }}$?
$1+3$ true. But 2 . unknown already if $n=2$ and either : $K<0$, or $K \equiv 0$.
- (X / Δ) special $\Longleftrightarrow d_{(X / \Delta)} \equiv 0$?
- (X / Δ) special $\Longleftrightarrow(X / \Delta)$ potentially dense ? (/nb field).
- In these last two cases, only 1 . is known.

For 3., the local obstructions vanish.
Expectations : global obstructions do not exist.
And 2. is the orbifold extension of standard conjectures.

NON-CLASSICAL MULTIPLE FIBRES

- X a smooth surface, $f: X \rightarrow \mathbb{P}_{1}$ a fibration : Δ_{f}^{*} divides Δ_{f}. $\left(\Delta_{f}^{*} \neq \Delta_{f}\right.$ and $\left.\kappa(f)=1\right) \Longrightarrow \kappa(X)=2$.

NON-CLASSICAL MULTIPLE FIBRES

- X a smooth surface, $f: X \rightarrow \mathbb{P}_{1}$ a fibration : Δ_{f}^{*} divides Δ_{f}. $\left(\Delta_{f}^{*} \neq \Delta_{f}\right.$ and $\left.\kappa(f)=1\right) \Longrightarrow \kappa(X)=2$.
- Classical multiple fibres : $\kappa\left(\mathbb{P}_{1} / \Delta_{f}^{*}\right)=1 \Longleftrightarrow \pi_{1}(X)$ contains a "surface group" (or F_{2}). $\kappa(X)=2$ and $\kappa\left(\mathbb{P}_{1} / \Delta_{f}^{*}\right)=1 \Longrightarrow d_{X}>0$ generically, and X "Mordellic" (Falting's and Chevalley-Weil).

NON-CLASSICAL MULTIPLE FIBRES

- X a smooth surface, $f: X \rightarrow \mathbb{P}_{1}$ a fibration : Δ_{f}^{*} divides Δ_{f}. $\left(\Delta_{f}^{*} \neq \Delta_{f}\right.$ and $\left.\kappa(f)=1\right) \Longrightarrow \kappa(X)=2$.
- Classical multiple fibres :
$\kappa\left(\mathbb{P}_{1} / \Delta_{f}^{*}\right)=1 \Longleftrightarrow \pi_{1}(X)$ contains a "surface group" (or F_{2}).
$\kappa(X)=2$ and $\kappa\left(\mathbb{P}_{1} / \Delta_{f}^{*}\right)=1 \Longrightarrow d_{X}>0$ generically, and X "Mordellic" (Falting's and Chevalley-Weil).
- Non-classical multiple fibres: $\mathbf{(*)}^{*}: \exists f: X \rightarrow \mathbb{P}_{1}$ s.t :
$\kappa(f)=1$ and $\pi_{1}(X)=\{1\}$. (Thus $\kappa(X)=2$).
\Longrightarrow no restriction on π_{1}.

NON-CLASSICAL MULTIPLE FIBRES

- X a smooth surface, $f: X \rightarrow \mathbb{P}_{1}$ a fibration : Δ_{f}^{*} divides Δ_{f}. $\left(\Delta_{f}^{*} \neq \Delta_{f}\right.$ and $\left.\kappa(f)=1\right) \Longrightarrow \kappa(X)=2$.
- Classical multiple fibres :
$\kappa\left(\mathbb{P}_{1} / \Delta_{f}^{*}\right)=1 \Longleftrightarrow \pi_{1}(X)$ contains a "surface group" (or F_{2}).
$\kappa(X)=2$ and $\kappa\left(\mathbb{P}_{1} / \Delta_{f}^{*}\right)=1 \Longrightarrow d_{X}>0$ generically, and X "Mordellic" (Falting's and Chevalley-Weil).
- Non-classical multiple fibres: $\mathbf{(*)}^{*}: \exists f: X \rightarrow \mathbb{P}_{1}$ s.t :
$\kappa(f)=1$ and $\pi_{1}(X)=\{1\}$. (Thus $\kappa(X)=2$).
\Longrightarrow no restriction on π_{1}.
- In situation $\left(^{*}\right), d_{X}>0$ still true generically. (Since $d_{X} \geq f^{*}\left(d_{\left.\left(\mathbb{P}_{1} / \Delta_{f}^{*}\right)\right)}>0\right)$.

NON-CLASSICAL MULTIPLE FIBRES

- X a smooth surface, $f: X \rightarrow \mathbb{P}_{1}$ a fibration : Δ_{f}^{*} divides Δ_{f}. $\left(\Delta_{f}^{*} \neq \Delta_{f}\right.$ and $\left.\kappa(f)=1\right) \Longrightarrow \kappa(X)=2$.
- Classical multiple fibres :
$\kappa\left(\mathbb{P}_{1} / \Delta_{f}^{*}\right)=1 \Longleftrightarrow \pi_{1}(X)$ contains a "surface group" (or F_{2}).
$\kappa(X)=2$ and $\kappa\left(\mathbb{P}_{1} / \Delta_{f}^{*}\right)=1 \Longrightarrow d_{X}>0$ generically, and X
"Mordellic" (Falting's and Chevalley-Weil).
- Non-classical multiple fibres : $\left.{ }^{*}\right): \exists f: X \rightarrow \mathbb{P}_{1}$ s.t :
$\kappa(f)=1$ and $\pi_{1}(X)=\{1\}$. (Thus $\kappa(X)=2$).
\Longrightarrow no restriction on π_{1}.
- In situation $\left(^{*}\right), d_{X}>0$ still true generically. (Since $d_{X} \geq f^{*}\left(d_{\left.\left(\mathbb{P}_{1} / \Delta_{f}^{*}\right)\right)}>0\right)$.
- Conjecture : "Mordellicity" of X (in situation (*)) ?

NON-CLASSICAL MULTIPLE FIBRES

- X a smooth surface, $f: X \rightarrow \mathbb{P}_{1}$ a fibration : Δ_{f}^{*} divides Δ_{f}. $\left(\Delta_{f}^{*} \neq \Delta_{f}\right.$ and $\left.\kappa(f)=1\right) \Longrightarrow \kappa(X)=2$.
- Classical multiple fibres :
$\kappa\left(\mathbb{P}_{1} / \Delta_{f}^{*}\right)=1 \Longleftrightarrow \pi_{1}(X)$ contains a "surface group" (or F_{2}).
$\kappa(X)=2$ and $\kappa\left(\mathbb{P}_{1} / \Delta_{f}^{*}\right)=1 \Longrightarrow d_{X}>0$ generically, and X
"Mordellic" (Falting's and Chevalley-Weil).
- Non-classical multiple fibres : $\left.{ }^{*}\right): \exists f: X \rightarrow \mathbb{P}_{1}$ s.t :
$\kappa(f)=1$ and $\pi_{1}(X)=\{1\}$. (Thus $\kappa(X)=2$).
\Longrightarrow no restriction on π_{1}.
- In situation $\left(^{*}\right), d_{X}>0$ still true generically. (Since $d_{X} \geq f^{*}\left(d_{\left.\left(\mathbb{P}_{1} / \Delta_{f}^{*}\right)\right)}>0\right)$.
- Conjecture : "Mordellicity" of X (in situation (*)) ?
- $a b c \Longrightarrow$ Orbifold Mordell \Longrightarrow yes. $\left(f(X(k)) \subset\left(\mathbb{P}_{1} / \Delta_{f}\right)(k)\right)$

ORBIFOLD MORDELL AND abc

- Let $\left(\mathbb{P}_{1} / \Delta\right)$, let $p, q, r>1$ be integers, and :

$$
\begin{aligned}
& \Delta:=(1-1 / p) \cdot\{0\}+(1-1 / q) \cdot\{1\}+(1-1 / r) \cdot\{\infty\} . \\
& \kappa(X / \Delta)=1 \Longleftrightarrow(1 / p+1 / q+1 / r)<1 .(\text { Over } k=\mathbb{Q}) .
\end{aligned}
$$

ORBIFOLD MORDELL AND abc

- Let $\left(\mathbb{P}_{1} / \Delta\right)$, let $p, q, r>1$ be integers, and :

$$
\begin{aligned}
& \Delta:=(1-1 / p) \cdot\{0\}+(1-1 / q) \cdot\{1\}+(1-1 / r) \cdot\{\infty\} . \\
& \kappa(X / \Delta)=1 \Longleftrightarrow(1 / p+1 / q+1 / r)<1 .(\text { Over } k=\mathbb{Q}) .
\end{aligned}
$$

- Classical \mathbb{Q}-rational points : $(X / \Delta)^{*}(\mathbb{Q}):=$ $\left\{x=a^{p} / b^{r}:(a, b, c) \in \mathbb{Z},(a, b)=1, a^{p}+b^{r}=c^{q}\right\}$.

ORBIFOLD MORDELL AND abc

- Let $\left(\mathbb{P}_{1} / \Delta\right)$, let $p, q, r>1$ be integers, and :

$$
\begin{aligned}
& \Delta:=(1-1 / p) \cdot\{0\}+(1-1 / q) \cdot\{1\}+(1-1 / r) \cdot\{\infty\} . \\
& \kappa(X / \Delta)=1 \Longleftrightarrow(1 / p+1 / q+1 / r)<1 .(\text { Over } k=\mathbb{Q}) .
\end{aligned}
$$

- Classical \mathbb{Q}-rational points : $(X / \Delta)^{*}(\mathbb{Q}):=$ $\left\{x=a^{p} / b^{r}:(a, b, c) \in \mathbb{Z},(a, b)=1, a^{p}+b^{r}=c^{q}\right\}$.
- "Faltings $+\varepsilon$ " $(\mathrm{D}-\mathrm{G}):\left|(X / \Delta)^{*}(\mathbb{Q})\right|<+\infty$ if $\kappa(X / \Delta)=1$.

ORBIFOLD MORDELL AND abc

- Let $\left(\mathbb{P}_{1} / \Delta\right)$, let $p, q, r>1$ be integers, and :

$$
\begin{aligned}
& \Delta:=(1-1 / p) \cdot\{0\}+(1-1 / q) \cdot\{1\}+(1-1 / r) \cdot\{\infty\} . \\
& \kappa(X / \Delta)=1 \Longleftrightarrow(1 / p+1 / q+1 / r)<1 .(\text { Over } k=\mathbb{Q}) .
\end{aligned}
$$

- Classical \mathbb{Q}-rational points : $(X / \Delta)^{*}(\mathbb{Q}):=$ $\left\{x=a^{p} / b^{r}:(a, b, c) \in \mathbb{Z},(a, b)=1, a^{p}+b^{r}=c^{q}\right\}$.
- "Faltings $+\varepsilon$ " $(\mathrm{D}-\mathrm{G}):\left|(X / \Delta)^{*}(\mathbb{Q})\right|<+\infty$ if $\kappa(X / \Delta)=1$.
- Non-classical \mathbb{Q}-rational points : $(X / \Delta)(\mathbb{Q}):=$ $\{x=a / b:(a, b, c) \in \mathbb{Z},(a, b)=1, a+b=c$, s.t: a is p-full, b is r-full, and c is q-full\}, where :
a \mathbf{p}-full means: m prime divides a, then : m^{p} divides a. $\operatorname{Card}\{a \leq N, a=p-f u l l\} \sim_{N \rightarrow+\infty} C_{p} . N^{1 / p}$.

ORBIFOLD MORDELL AND abc

- Let $\left(\mathbb{P}_{1} / \Delta\right)$, let $p, q, r>1$ be integers, and :

$$
\begin{aligned}
& \Delta:=(1-1 / p) \cdot\{0\}+(1-1 / q) \cdot\{1\}+(1-1 / r) \cdot\{\infty\} . \\
& \kappa(X / \Delta)=1 \Longleftrightarrow(1 / p+1 / q+1 / r)<1 .(\text { Over } k=\mathbb{Q}) .
\end{aligned}
$$

- Classical \mathbb{Q}-rational points : $(X / \Delta)^{*}(\mathbb{Q}):=$ $\left\{x=a^{p} / b^{r}:(a, b, c) \in \mathbb{Z},(a, b)=1, a^{p}+b^{r}=c^{q}\right\}$.
- "Faltings $+\varepsilon$ " $(\mathrm{D}-\mathrm{G}):\left|(X / \Delta)^{*}(\mathbb{Q})\right|<+\infty$ if $\kappa(X / \Delta)=1$.
- Non-classical \mathbb{Q}-rational points : $(X / \Delta)(\mathbb{Q}):=$ $\{x=a / b:(a, b, c) \in \mathbb{Z},(a, b)=1, a+b=c$, s.t : a is p-full, b is r-full, and c is q-full\}, where :
a p-full means: m prime divides a, then : m^{p} divides a. Card $\{a \leq N, a=p-f u l l\} \sim_{N \rightarrow+\infty} C_{p} \cdot N^{1 / p}$.
- Orbifold Mordell : $|(X / \Delta)(\mathbb{Q})|<+\infty$ if $\kappa(X / \Delta)=1$?

ORBIFOLD MORDELL AND abc

- Let $\left(\mathbb{P}_{1} / \Delta\right)$, let $p, q, r>1$ be integers, and :

$$
\begin{aligned}
& \Delta:=(1-1 / p) \cdot\{0\}+(1-1 / q) \cdot\{1\}+(1-1 / r) \cdot\{\infty\} . \\
& \kappa(X / \Delta)=1 \Longleftrightarrow(1 / p+1 / q+1 / r)<1 .(\text { Over } k=\mathbb{Q}) .
\end{aligned}
$$

- Classical \mathbb{Q}-rational points : $(X / \Delta)^{*}(\mathbb{Q}):=$ $\left\{x=a^{p} / b^{r}:(a, b, c) \in \mathbb{Z},(a, b)=1, a^{p}+b^{r}=c^{q}\right\}$.
- "Faltings $+\varepsilon$ " $(\mathrm{D}-\mathrm{G}):\left|(X / \Delta)^{*}(\mathbb{Q})\right|<+\infty$ if $\kappa(X / \Delta)=1$.
- Non-classical \mathbb{Q}-rational points : $(X / \Delta)(\mathbb{Q}):=$ $\{x=a / b:(a, b, c) \in \mathbb{Z},(a, b)=1, a+b=c$, s.t : a is p-full, b is r-full, and c is q-full\}, where :
a \mathbf{p}-full means: m prime divides a, then : m^{p} divides a. Card $\{a \leq N, a=p-f u l l\} \sim_{N \rightarrow+\infty} C_{p} \cdot N^{1 / p}$.
- Orbifold Mordell : $|(X / \Delta)(\mathbb{Q})|<+\infty$ if $\kappa(X / \Delta)=1$?
- $a b c \Longrightarrow$ Orbifold Mordell (Open. True over function fields)

