

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE CLASSIFICATION OF THE CONES TABLE OF THE CONES EFFECTIVE CLASSIFICATION CLASSIFICATION SO

FAR

FAMILIES OF RATIONAL CURVES AND CLASSIFICATION OF FANO MANIFOLDS

Gianluca Occhetta

Dipartimento di Matematica Università di Trento

AGaFe Conference 2005

DEFINITIONS

RATIONAL CURVES AND FANO MANIFOLDS

FANO MANIFOLDS FANO MANIFOLDS

CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE CLASSIFICATION OF THE CONES TABLE OF THE CONES EFFECTIVE CLASSIFICATION CLASSIFICATION SO FAR

X smooth complex projective variety of dimension nX Fano manifold $\iff -K_X$ ample.

• r_X index of X

$$r_X = \max\{m \in \mathbb{N} \mid -K_X = mL\}$$

• i_X , pseudoindex of X

$$K_X = \min\{m \in \mathbb{N} \mid -K_X \cdot C = m\}.$$

 r_X and i_X positive integers $\leq n+1$

1

RATIONAL CURVES AND FANO MANIFOLDS

X Fano variety of index r_X

$$\operatorname{Pic}(X) \simeq H^2(X, \mathbb{Z})$$

RATIONAL CURVES

FANO MANIFOLDS FANO MANIFOLDS

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

MUKAI CONJECTURE CLASSIFICATION OF THE CONES TABLE OF THE CONES EFFECTIVE CLASSIFICATION CLASSIFICATION SO and it is torsion free. Its rank ρ is called Picard number of X.

There is a unique line bundle $L \in Pic(X)$ such that

$$-K_X = r_X L$$

イロト 不得下 不足下 不足下

Sar

L is called fundamental divisor of X.

CLASSIFICATION: LOW DIMENSIONS

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

MUKAI CONJECTURE CLASSIFICATION OF THE CONES TABLE OF THE CONES EFFECTIVE CLASSIFICATION CLASSIFICATION SO FAR Fano manifolds of fixed dimension form a bounded family.

The classification is known in low dimensions

CURVES AND SURFACE	S

 $1 \mathbb{P}^1$

2 del Pezzo surfaces

THREEFOLDS

ho=1	Fano, Iskovskikh
$ ho \ge 2$	Mori & Mukai

The classification in case ho=1 is based on two facts:

• |L| contains a smooth S (del Pezzo or K3)

• X contains a line, i.e. a curve C such that $-K_X \cdot C = r_X$ The classification in case $\rho \ge 2$ is obtained via Mori theory, using that

• Either X is a blow up of a Fano X' or has a conic bundle structure over a smooth surface.

CLASSIFICATION: HIGH INDEX

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

Families of rational curves

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

MUKAI CONJECTURE CLASSIFICATION OF THE CONES TABLE OF THE CONES EFFECTIVE CLASSIFICATION CLASSIFICATION SO

THEOREM (KOBAYASHI & OCHIAI)

X Fano manifold of index r_X . Then $r_X \leq \dim X + 1$ and

- $r_X = \dim X + 1$ if and only if $X \simeq \mathbb{P}^n$;
- $r_X = \dim X$ if and only if $X \simeq \mathbb{Q}^n$.

The classification of Fano manifolds is also known in the two subsequent cases:

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー

Sac

HIGH INDEX

 $r_X = \dim X - 1$ del Pezzo manifolds; $r_X = \dim X - 2$ Mukai manifolds.

APOLLONIUS METHOD

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLD: CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES CHAINS OF RATIONA CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE CLASSIFICATION OF THE CONES TABLE OF THE CONES EFFECTIVE CLASSIFICATION CLASSIFICATION SO FAR X Fano variety of index dim X - k

$$-K_X = (\dim X - k)L$$

$$L$$
 fundamental divisor of X

If there exists a smooth $X' \in |L|$ (a good divisor) then

$$-\mathcal{K}_{X'} = (-\mathcal{K}_X - \mathcal{L})'_X = (\dim X' - k)\mathcal{L}_{X'}$$

X' is a Fano manifold of the same coindex.

del Pezzo and Mukai manifolds have good divisors, so there is a ladder going down to surfaces and threefolds, respectively.

Sac

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

MUKAI CONJECTURE CLASSIFICATION OF THE CONES TABLE OF THE CONES EFFECTIVE CLASSIFICATION CLASSIFICATION SO FAR

ho = 1

Good divisors $(\dim X = 4)$ Good divisors $(\dim X > 4)$ Lines |L| contains a (singular) Calabi-Yau Unknown Unknown;

$\rho \ge 2$

 $\dim X = 4$ Unknown

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

MUKAI CONJECTURE CLASSIFICATION OF THE CONES TABLE OF THE CONES EFFECTIVE CLASSIFICATION CLASSIFICATION SO FAR

ho = 1

Good divisors $(\dim X = 4)$ Good divisors $(\dim X > 4)$ Lines |L| contains a (singular) Calabi-Yau Unknown Unknown;

Sac

$ho \geq 2$ dim X=4 Unknown dim $X\geq 9$ None

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONA CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

MUKAI CONJECTURE CLASSIFICATION OF THE CONES TABLE OF THE CONES EFFECTIVE CLASSIFICATION CLASSIFICATION SO FAR

$\rho = 1$

Good divisors $(\dim X = 4)$ Good divisors $(\dim X > 4)$ Lines

|*L*| contains a (singular) Calabi-Yau Unknown Unknown;

Sac

$ ho \ge 2$	
$\dim X = 4$	Unknown
$\dim X = 8$ $\dim X \ge 9$	$\mathbb{P}^4 imes \mathbb{P}^4$ None

RATIONAL. CURVES AND FANO MANIFOLDS

 $\dim X = 8$ $\dim X \ge 9$

FANO MANIFOLDS

CLASSIFICATION

RATIONAL. CURVES

FANO FIVEFOLDS OF INDEX TWO

ho=1	
Good divisors $(\dim X = 4)$ Good divisors $(\dim X > 4)$ Lines	L contains a (singular) Calabi-Yau Unknown Unknown;
$o \ge 2$	
$\dim X = 4 \qquad \text{Unknown}$	THEOREM (WISNIEWSKI)

 $\mathbb{P}^4 \times \mathbb{P}^4$

None

If $r_X \ge (n+2)/2$ then $\rho \le 2$, equality iff $X \simeq \mathbb{P}^{n/2} \times \mathbb{P}^{n/2}$

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

=

Sac

RATIONAL CURVES AND FANO MANIFOLDS

ρ

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

MUKAI CONJECTURE CLASSIFICATION OF THE CONES TABLE OF THE CONES EFFECTIVE CLASSIFICATION CLASSIFICATION SO FAR

r = 1			
	s (dim $X = 4$) s (dim $X > 4$)	L contains a (singular) Calabi-Yau Unknown Unknown;	
≥ 2			
$\dim X = 4$	Unknown		THEOREM (WISNIEWSKI)
$\dim X = 8$ $\dim X \ge 9$	$\mathbb{P}^4 imes \mathbb{P}^4$ None		If $r_X \ge (n+2)/2$ then $\rho \le 2$, equality iff $X \simeq \mathbb{P}^{n/2} \times \mathbb{P}^{n/2}$

A classification of the border cases is known

MIDDLE INDEX AND $\rho_X \ge 2$

 $r_X = (n+1)/2$ Wiśniewski $r_X = n/2$ Wiśniewski, Ballico, Peternell, Szurek

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

Families of rational curves

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

MUKAI CONJECTURE CLASSIFICATION OF THE CONES TABLE OF THE CONES EFFECTIVE CLASSIFICATION CLASSIFICATION SO FAR

-		-1
n	_	
$\boldsymbol{\nu}$		_

> 2

Good divisors $(\dim X = 4)$ Good divisors $(\dim X > 4)$ Lines |L| contains a (singular) Calabi-Yau Unknown Unknown;

0 2 2	
$\dim X = 4$	Unknown
$\dim X = 6,7$ $\dim X = 8$	$Classified \mathbb{P}^4 imes \mathbb{P}^4$

 $\dim X = 8 \qquad \mathbb{P}^4 \times \mathbb{I}$ $\dim X \ge 9 \qquad \text{None}$

THEOREM (WISNIEWSKI)
$\begin{array}{l} \text{If } r_X \geq (n+2)/2 \text{ then } \rho \leq 2, \\ \text{equality iff } X \simeq \mathbb{P}^{n/2} \times \mathbb{P}^{n/2} \end{array}$

A classification of the border cases is known

MIDDLE INDEX AND $\rho_X \ge 2$

 $r_X = (n+1)/2$ Wiśniewski $r_X = n/2$ Wiśniewski, Ballico, Peternell, Szurek

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

MUKAI CONJECTURE CLASSIFICATION OF THE CONES TABLE OF THE CONES EFFECTIVE CLASSIFICATION CLASSIFICATION SO FAR

	-		- 1
- (_	_
)	_	

0

Good divisors $(\dim X = 4)$ Good divisors $(\dim X > 4)$ Lines |L| contains a (singular) Calabi-Yau Unknown Unknown;

$0 \ge 2$	
$\dim X = 4$	Unknown
$\dim X = 6,7$ $\dim X = 8$	$\begin{array}{c} Classified \\ \mathbb{P}^4 \times \mathbb{P}^4 \end{array}$
$\dim X \ge 9$	None

THEOREM (WISNIEWSKI)
$\begin{array}{l} \text{ If } r_X \geq (n+2)/2 \text{ then } \rho \leq 2, \\ \text{ equality iff } X \simeq \mathbb{P}^{n/2} \times \mathbb{P}^{n/2} \end{array}$

A classification of the border cases is known

IDEA

- Except for $\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2$ these varieties have $\rho = 2$;
- Study and compare the two extremal contractions.

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

MUKAI CONJECTURE CLASSIFICATION OF THE CONES TABLE OF THE CONES EFFECTIVE CLASSIFICATION CLASSIFICATION SO FAR

$\rho = 1$

Good divisors $(\dim X = 4)$ Good divisors $(\dim X > 4)$ Lines |L| contains a (singular) Calabi-Yau Unknown Unknown;

$\rho \ge 2$ $\dim X = 4 \qquad \text{Unknown}$ $\dim X = 5 \qquad \dots$ $\dim X = 6,7 \qquad \text{Classified}$ $\dim X = 8 \qquad \mathbb{P}^4 \times \mathbb{P}^4$ $\dim X > 9 \qquad \text{None}$

THEOREM (WISNIEWSKI)
$\begin{array}{l} \text{ If } r_X \geq (n+2)/2 \text{ then } \rho \leq 2, \\ \text{ equality iff } X \simeq \mathbb{P}^{n/2} \times \mathbb{P}^{n/2} \end{array}$

A classification of the border cases is known

IDEA

- Except for $\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2$ these varieties have $\rho = 2$;
- Study and compare the two extremal contractions.

FANO FIVEFOLDS OF INDEX TWO Towards a classification

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

MUKAI CONJECTURE Classification of the cones Table of the cones Effective classification

CLASSIFICATION SO FAR

Classify Fano fivefolds of index ≥ 2 and Picard number ≥ 2

Joint works with Andreatta, Chierici, Novelli (almost any possible subset)

Sac

STRATEGY

AIM

- Give a bound on ρ ;
- Classify the possible cones of curves;
- Olassify the varieties.

FAMILIES OF RATIONAL CURVES

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE CLASSIFICATION OF THE CONES TABLE OF THE CONES EFFECTIVE CLASSIFICATION CLASSIFICATION SO FAR $\begin{array}{ll} \mathsf{Hom}(\mathbb{P}^1,X) & \text{scheme parametrizing } f:\mathbb{P}^1\to X\\ \mathsf{Hom}_{bir}(\mathbb{P}^1,X)\subset \mathsf{Hom}(\mathbb{P}^1,X) \text{ open subset} \end{array}$ Ratcurvesⁿ(X) quotient of $\mathsf{Hom}_{bir}^n(\mathbb{P}^1,X)$ by $\mathsf{Aut}(\mathbb{P}^1)$

Family of rational curves: $V \subset \text{Ratcurves}^n(X)$ irreducible

$$\begin{array}{c} U \xrightarrow{i} X \\ \pi \downarrow \\ V \end{array}$$

$$\mathsf{Locus}(V) = i(U), \ V_x = \pi(i^{-1}(x))$$

- V unsplit if V is proper;
- V locally unsplit if V_x is proper for a general x in Locus(V).

CHOW FAMILIES

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE CLASSIFICATION OF THE CONES TABLE OF THE CONES EFFECTIVE CLASSIFICATION CLASSIFICATION SO

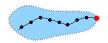
$$\mathsf{Ratcurves}^n(\mathsf{X}) \to \mathsf{Chow}(\mathsf{X})$$

$$V \rightsquigarrow \overline{V} = \mathscr{V} \subset \mathsf{Chow}(X)$$

Reducible cycles are parametrized by points in $\mathscr{V} \setminus V$

Chow family of rational curves: $\mathscr{V} \subset$ Chow(X) irreducible, parametrizing rational and connected 1-cycles.

If V is an unsplit family by abuse $V = \mathscr{V}$.



Sac

CHAINS OF RATIONAL CURVES

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

MUKAI CONJECTURE CLASSIFICATION OF THE CONES TABLE OF THE CONES EFFECTIVE CLASSIFICATION

CLASSIFICATION SO FAR

$Y \subset X$ closed, $\mathscr{V}^1, \ldots, \mathscr{V}^k$ Chow families

DEFINITION

 $Locus(\mathscr{V}^1,\ldots,\mathscr{V}^k)_Y$: points $x \in X$ s.t. there exists C_1,\ldots,C_k

- C_i belongs to \mathscr{V}^i
- $C_i \cap C_{i+1} \neq \emptyset$
- $C_1 \cap Y \neq \emptyset$ and $x \in C_k$

DEFINITION

 $ChLocus_m(\mathcal{V}^1, \dots, \mathcal{V}^k)_Y$: points $x \in X$ such that there exists C_1, \dots, C_m

◆□▶ ◆□▶ ★∃▶ ★∃▶ = ● ● ●

- C_i belongs to \mathscr{V}^j
- $C_i \cap C_{i+1} \neq \emptyset$
- $C_1 \cap Y \neq \emptyset$ e $x \in C_m$

GOOD PROPERTIES OF CHAINS - I

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVE

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

MUKAI CONJECTURE CLASSIFICATION OF THE CONES TABLE OF THE CONES EFFECTIVE CLASSIFICATION CLASSIFICATION SO EAD

X smooth \mathscr{V} unsplit family

- dim Locus(\mathscr{V}) + dim Locus(\mathscr{V}_{x}) \geq dim $X K_{X} \cdot \mathscr{V} 1$;
- dim Locus $(\mathscr{V}_x) \geq -K_X \cdot \mathscr{V} 1.$

 $Y \subset X$ closed $\mathscr V$ unsplit family numerically independent from curves in Y

• dim Locus(
$$\mathscr{V}$$
)_Y \geq dim Y - $K_X \cdot \mathscr{V} - 1$ (if $\neq \emptyset$)

 $\mathscr{V}^1, \ldots, \mathscr{V}^k$ numerically independent unsplit families, with $< [\mathscr{V}^1], \ldots, [\mathscr{V}^k] >$ independent from curves in Y

• dim Locus $(\mathscr{V}^1, \ldots, \mathscr{V}^k)_Y \ge \dim Y - \sum K_X \cdot \mathscr{V}^i - k$ (if $\neq \emptyset$)

GOOD PROPERTIES OF CHAINS - II

LEMMA (NUMERICAL EQUIVALENCE)

RATIONAL CURVES AND FANO MANIFOLDS

FANO MANIFOLDS

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVE

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE CLASSIFICATION OF THE CONES TABLE OF THE CONES EFFECTIVE CLASSIFICATION CLASSIFICATION SO FAR $Y \subset X$ closed, $\mathcal{V}^1, \ldots, \mathcal{V}^k$ Chow families, C curve contained in $ChLocus(\mathcal{V}^1, \ldots, \mathcal{V}^k)_Y$.

 $C \equiv aC_Y + \sum b_j C_{\gamma j}$

 $a, b \in \mathbb{Q}$, $C_Y \subset Y$ and $C_{\psi j}$ irreducible component of a cycle in ψ^j .

LEMMA (NUMERICAL EQUIVALENCE IMPROVED)

 $Y \subset X$ closed and "extremal", $\mathscr V$ unsplit family, $C \subset Locus(\mathscr V)_Y$ curve.

$$C \equiv aC_Y + bC_{\mathscr{V}}$$
 $a, b \in \mathbb{Q}_{\geq 0}$

Sac

RC FIBRATIONS

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVE

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

MUKAI CONJECTURE CLASSIFICATION OF THE CONES TABLE OF THE CONES EFFECTIVE CLASSIFICATION CLASSIFICATION SO

$\mathscr{V}^1,\ldots,\mathscr{V}^k$ Chow families

x and y are $rc(\mathscr{V}^1, \ldots, \mathscr{V}^k)$ equivalent if either x = y or there is a chain of curves in $\mathscr{V}^1, \ldots, \mathscr{V}^k$ joining x and y, i.e. for some m

$$y \in \mathsf{ChLocus}_m(\mathscr{V}^1, \ldots, \mathscr{V}^k)_x.$$

THEOREM (CAMPANA, KOLLÁR-MIYAOKA-MORI)

There exists $X^0 \subset X$ and a proper morphism with connected fibers $\pi: X^0 \to Z^0$ such that

- Fibers of π are equivalence classes
- ∀z ∈ Z⁰ two points in π⁻¹(z) are connected by at most 2^{dim X − dim Z} −1 cycles in 𝒴¹,...,𝒴^k

COROLLARY

X $rc(\mathscr{V}^1, \ldots, \mathscr{V}^k)$ connected; every curve in X is equivalent to a combination of classes of components of cycles in $\mathscr{V}^1, \ldots, \mathscr{V}^k$. If $\mathscr{V}^1, \ldots, \mathscr{V}^k$ are unsplit then $\rho \leq k$.

QUASI UNSPLIT FAMILIES

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE CLASSIFICATION OF THE CONES TABLE OF THE CONES EFFECTIVE CLASSIFICATION CLASSIFICATION SO FAR

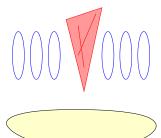
We don't need ${\mathscr V}$ unsplit.

A Chow family $\mathscr V$ is called quasi unsplit if the irreducible components of cicles in $\mathscr V$ are numerically proportional

 $\text{In } \mathbb{P}^2 \times \mathbb{P}^3$

$$X = \{x_0^2 y_0 + x_1^2 y_1 + x_2^2 y_2 = 0\},\$$

 \mathscr{V} family of conics given by the intersection of X with fibers of the first projection



イロト イポト イヨト イヨト

RATIONAL CURVES ON FANO MANIFOLDS

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE CLASSIFICATION OF THE CONES TABLE OF THE CONES EFFECTIVE CLASSIFICATION CLASSIFICATION SO FAR

THEOREM (MORI)

X Fano; $\forall x \in X$ there is a rational curve C through x with $-K_X \cdot C \leq \dim X + 1$.

THEOREM (KOLLÁR-MIYAOKA-MORI)

X Fano, $\pi: X^0 \to Z^0$ proper surjective morphism; for a general $z \in Z^0$ there is a rational curve C with $-K_X \cdot C \leq \dim X + 1$ s.t.

- $C \cap \pi^{-1}(z) \neq \emptyset$
- C is not contained in $\pi^{-1}(z)$

 $V^i \subset \text{Ratcurves}^n(X)$ of anticanonical degree $\leq \dim X + 1$ are a finite number \Rightarrow there exists *i* s.t. $\text{Locus}(V^i)$ dominates X (resp. Z^0). A family of minimal degree with this property is called a minimal dominating family (resp a minimal horizontal dominating family) and it is locally unsplit.

BOUNDING THE PICARD NUMBER

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES CHAINS OF RATION.

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE

CLASSIFICATION OF THE CONES TABLE OF THE CONT EFFECTIVE

CLASSIFICATION

FAR

STRATEGY

• Give a bound on ρ ;

Classify the possible cones of curves;

(日) (個) (目) (目) (目)

nac

Olassify the varieties.

MUKAI CONJECTURE

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES CHAINS OF BATION

CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE

CLASSIFICATION OF THE CONES TABLE OF THE CONE EFFECTIVE

CLASSIFICATION SO

MUKAI

$$\rho_X(r_X-1) \leq \dim X$$

GENERALIZED MUKAI - (BCDD) $\rho_X(i_X - 1) \leq \dim X,$ equality iff $X \simeq (\mathbb{P}^{i_X - 1})^{\rho_X}$

Sac

THEOREM

X Fano of dimension five. Then

$$\rho_X(i_X-1) \leq 5$$

equality holding iff $X \simeq (\mathbb{P}^1)^5$

IDEAL CASE There's always a quasi unsplit family when you need one

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

MUKAI CONJECTURE

CLASSIFICATION O THE CONES TABLE OF THE CON

CLASSIFICATION

CLASSIFICATION SO FAR Let V^1 be a minimal dominating family for X. Suppose that \mathscr{V}^1 is quasi unsplit and consider the rc \mathscr{V}^1 fibration $\pi^1: X^1 \to Z^1$.

If dim $Z^1 = 0$ then $\rho = 1$, else

IDEAL CASE There's always a quasi unsplit family when you need one

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES CHAINS OF RATIONA CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE

CLASSIFICATION OF THE CONES TABLE OF THE CONE EFFECTIVE CLASSIFICATION FAR Let V^1 be a minimal dominating family for X. Suppose that \mathscr{V}^1 is quasi unsplit and consider the $\operatorname{rc} \mathscr{V}^1$ fibration $\pi^1: X^1 \to Z^1$.

If dim $Z^1 = 0$ then $\rho = 1$, else

let V^2 be a minimal horizontal dominating family for π^1 . Suppose that \mathscr{V}^2 is quasi unsplit and consider the $rc(\mathscr{V}^1, \mathscr{V}^2)$ fibration $\pi^2: X^2 \to Z^2$.

If dim $Z^2 = 0$ then $\rho = 2$, else

IDEAL CASE There's always a quasi unsplit family when you need one

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES CHAINS OF RATIONA CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

MUKAI CONJECTURE CLASSIFICATION OF THE CONES TABLE OF THE CONES EFFECTIVE CLASSIFICATION CLASSIFICATION SO EAD

Let V^1 be a minimal dominating family for X. Suppose that \mathscr{V}^1 is quasi unsplit and consider the $\operatorname{rc} \mathscr{V}^1$ fibration $\pi^1: X^1 \to Z^1$.

If dim $Z^1 = 0$ then $\rho = 1$, else

let V^2 be a minimal horizontal dominating family for π^1 . Suppose that \mathscr{V}^2 is quasi unsplit and consider the $rc(\mathscr{V}^1, \mathscr{V}^2)$ fibration $\pi^2 : X^2 \to Z^2$. If dim $Z^2 = 0$ then $\rho = 2$, else

let V^3 be a minimal horizontal dominating family for π^2 \ldots

$$\dim \mathsf{Locus}(\mathscr{V}^1,\ldots,\mathscr{V}^k)_{\mathsf{X}} \geq -\sum \mathsf{K}_{\mathsf{X}} \cdot \mathscr{V}^i - k \geq k$$

うして ふゆ アメリア ショー ひゃう

so we finish in at most five steps.

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

MUKAI CONJECTURE

CLASSIFICATION O THE CONES TABLE OF THE CON

CLASSIFICATION

CLASSIFICATION SO FAR Let V^1 be a minimal dominating family for X. Suppose that \mathscr{V}^1 is quasi unsplit and consider the $\operatorname{rc} \mathscr{V}^1$ fibration $\pi^1: X^1 \to Z^1$.

If dim $Z^1 = 0$ then $\rho = 1$, else

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

MUKAI CONJECTURE

CLASSIFICATION OF THE CONES TABLE OF THE CON EFFECTIVE

CLASSIFICATION SO

Let V^1 be a minimal dominating family for X. Suppose that \mathscr{V}^1 is quasi unsplit and consider the $\operatorname{rc} \mathscr{V}^1$ fibration $\pi^1: X^1 \to Z^1$.

If dim $Z^1 = 0$ then $\rho = 1$, else

let V^2 be a minimal horizontal dominating family for π^1 .

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES CHAINS OF RATIONA CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE

CLASSIFICATION OF THE CONES TABLE OF THE CONES EFFECTIVE CLASSIFICATION CLASSIFICATION SO FAR Let V^1 be a minimal dominating family for X. Suppose that \mathscr{V}^1 is quasi unsplit and consider the $\operatorname{rc} \mathscr{V}^1$ fibration $\pi^1: X^1 \to Z^1$.

If dim $Z^1 = 0$ then $\rho = 1$, else

let V^2 be a minimal horizontal dominating family for π^1 . Suppose that \mathscr{V}^2 is not quasi unsplit.

In \mathscr{V}^2 there is a reducible cycle $C_1 + C_2$ with $[C_1] \neq \lambda[V^2]$.

$$-K_X \cdot V^2 = -K_X \cdot (C_1 + C_2) \ge 2i_X \ge 4$$

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES CHAINS OF RATIONA CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

MUKAI CONJECTURE

CLASSIFICATION OF THE CONES TABLE OF THE CONES EFFECTIVE CLASSIFICATION CLASSIFICATION SO FAR Let V^1 be a minimal dominating family for X. Suppose that \mathscr{V}^1 is quasi unsplit and consider the $\operatorname{rc} \mathscr{V}^1$ fibration $\pi^1: X^1 \to Z^1$.

If dim $Z^1 = 0$ then $\rho = 1$, else

let V^2 be a minimal horizontal dominating family for π^1 . Suppose that \mathscr{V}^2 is not quasi unsplit.

In \mathscr{V}^2 there is a reducible cycle $C_1 + C_2$ with $[C_1] \neq \lambda[V^2]$.

$$-K_X \cdot V^2 = -K_X \cdot (C_1 + C_2) \ge 2i_X \ge 4$$

pick a general $x \in \text{Locus}(V^2)$ and let $Y = \text{Locus}(V^2)_x$

- dim $Y \ge -K_X \cdot V^2 1 \ge 3$
- Every curve in Y is proportional to $[V^2]$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE

CLASSIFICATION OF THE CONES TABLE OF THE CON

EFFECTIVE CLASSIFICATION

CLASSIFICATION SO FAR

Let $D = \text{Locus}(\mathscr{V}^1)_Y$;

▲□▶ ▲□▶ ▲臣▶ ★臣▶ ―臣 … のへで

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE

CLASSIFICATION O THE CONES TABLE OF THE CON

EFFECTIVE CLASSIFICATION

CLASSIFICATION SO FAR

et
$$D = \text{Locus}(\mathscr{V}^1)_{Y}$$
; we have
• $N_1(D) = \langle \mathscr{V}^1, V^2 \rangle$;

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE

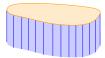
CLASSIFICATION OF THE CONES TABLE OF THE CON

EFFECTIVE CLASSIFICATION

CLASSIFICATION SO FAR

- Let $D = \text{Locus}(\mathscr{V}^1)_Y$; we have
 - $N_1(D) = \langle \mathscr{V}^1, V^2 \rangle;$

• dim
$$D \ge -K_X \cdot \mathscr{V}^1 - 1 + \dim Y \ge 4$$



イロト 不得 とうほう イヨト

3

Sac

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE

CLASSIFICATION OF THE CONES TABLE OF THE CON

CLASSIFICATION

CLASSIFICATION SO FAR

et
$$D = \text{Locus}(\mathscr{V}^1)_{Y}$$
; we have
• $N_1(D) = \langle \mathscr{V}^1, V^2 \rangle$;

• dim
$$D \ge -K_X \cdot \mathscr{V}^1 - 1 + \dim Y \ge 4$$

- 日本 - 4 日本 - 4 日本 - 日本

Sac

If $Locus(\mathcal{V}^1)_Y = X$ then $\rho = 2$, so D has dimension four.

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

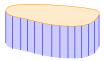
FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE

CLASSIFICATION OF THE CONES TABLE OF THE CONE EFFECTIVE CLASSIFICATION CLASSIFICATION SO

FAR

Let $D = \text{Locus}(\mathscr{V}^1)_Y$; we have • $N_1(D) = \langle \mathscr{V}^1, V^2 \rangle$; • $\dim D > -K_X \cdot \mathscr{V}^1 - 1 + \dim Y \ge 4$



If $Locus(\mathcal{V}^1)_Y = X$ then $\rho = 2$, so D has dimension four.

Let $\pi^2: X^2 \to Z^2$ be the $\operatorname{rc}(\mathscr{V}^1, \mathscr{V}^2)$ fibration.

If dim $Z^2 > 0$ then dim $Z^2 = 1$.

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

Families of rational curves

CHAINS OF RATIONAL CURVES

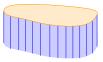
RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE

CLASSIFICATION OF THE CONES TABLE OF THE CONES EFFECTIVE CLASSIFICATION CLASSIFICATION SO

- Let $D = \text{Locus}(\mathscr{V}^1)_Y$; we have • $N_1(D) = \langle \mathscr{V}^1, V^2 \rangle$;
 - dim $D \ge -K_X \cdot \mathscr{V}^1 1 + \dim Y \ge 4$



If $Locus(\mathscr{V}^1)_Y = X$ then $\rho = 2$, so D has dimension four.

Let $\pi^2: X^2 \to Z^2$ be the $\operatorname{rc}(\mathscr{V}^1, \mathscr{V}^2)$ fibration.

If dim $Z^2 > 0$ then dim $Z^2 = 1$.

Let V^3 be a minimal horizontal dominating family for π^2 ; since V^3 is locally unsplit, for a general $z \in \text{Locus}(V^3)$ every curve in $\text{Locus}(V^3)_z$ is proportional to $[V^3]$, hence not contracted.

RATIONAL CURVES AND FANO MANIFOLDS

FANO MANIFOLDS

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

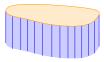
FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE CLASSIFICATION OF THE CONES TABLE OF THE CONES EFFECTIVE CLASSIFICATION CLASSIFICATION SO Let $D = \text{Locus}(\mathscr{V}^1)_Y$; we have • $N_1(D) = \langle \mathscr{V}^1, V^2 \rangle$; • $\dim D \ge -K_X \cdot \mathscr{V}^1 - 1 + \dim Y \ge 4$



If $Locus(\mathscr{V}^1)_Y = X$ then $\rho = 2$, so D has dimension four.

Let $\pi^2: X^2 \to Z^2$ be the $\mathsf{rc}(\mathscr{V}^1, \mathscr{V}^2)$ fibration.

If dim $Z^2 > 0$ then dim $Z^2 = 1$.

Let V^3 be a minimal horizontal dominating family for π^2 ; since V^3 is locally unsplit, for a general $z \in \text{Locus}(V^3)$ every curve in $\text{Locus}(V^3)_z$ is proportional to $[V^3]$, hence not contracted. Therefore

 $\dim \operatorname{Locus}(V_3)_z = 1$

which implies

- $-K_X \cdot V^3 = 2$
- dim Locus $(V^3) = 5$

against the minimality of V^2 .

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE

CLASSIFICATION OF THE CONES TABLE OF THE CON EFFECTIVE

CLASSIFICATION SO FAR

So X is $rc(\mathcal{V}^1, \mathcal{V}^2)$ connected and every curve in X is numerically proportional to a combination of components of cycles in \mathcal{V}^1 and \mathcal{V}^2 .

- 「「 (「 」 (」) (」) (」) (」)

Sac

Aim: bound the number of independent components in \mathscr{V}^2 .

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

MUKAI CONJECTURE

CLASSIFICATION OF THE CONES TABLE OF THE CON

CLASSIFICATION

CLASSIFICATION SO FAR So X is $rc(\mathcal{V}^1, \mathcal{V}^2)$ connected and every curve in X is numerically proportional to a combination of components of cycles in \mathcal{V}^1 and \mathcal{V}^2 .

Aim: bound the number of independent components in \mathscr{V}^2 .

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE

CLASSIFICATION OF THE CONES TABLE OF THE CON EFFECTIVE

CLASSIFICATION SO FAR So X is $rc(\mathcal{V}^1, \mathcal{V}^2)$ connected and every curve in X is numerically proportional to a combination of components of cycles in \mathcal{V}^1 and \mathcal{V}^2 .

Aim: bound the number of independent components in \mathscr{V}^2 .

 $D \cdot V^1 = 0$

otherwise
$$X = ChLocus_2(\mathcal{V}^1)_Y$$
.

(

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES CHAINS OF RATIONA

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

MUKAI CONJECTURE

CLASSIFICATION OF THE CONES TABLE OF THE CONI EFFECTIVE CLASSIFICATION CLASSIFICATION SO So X is $rc(\mathcal{V}^1, \mathcal{V}^2)$ connected and every curve in X is numerically proportional to a combination of components of cycles in \mathcal{V}^1 and \mathcal{V}^2 .

Aim: bound the number of independent components in \mathscr{V}^2 .

$$D \cdot V^1 = 0$$

otherwise
$$X = \mathsf{ChLocus}_2(\mathscr{V}^1)_Y$$
.

- 日本 - 4 日本 - 4 日本 - 日本

Sac

Let $C_1 + C_2$ be a reducible cycle in \mathscr{V}^2 with components independent from $\langle \mathscr{V}^1, V^2 \rangle$ and let W^i be the associated families.

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE

CLASSIFICATION OF THE CONES TABLE OF THE CONI EFFECTIVE CLASSIFICATION CLASSIFICATION SO

FAR

So X is $rc(\mathcal{V}^1, \mathcal{V}^2)$ connected and every curve in X is numerically proportional to a combination of components of cycles in \mathcal{V}^1 and \mathcal{V}^2 .

Aim: bound the number of independent components in \mathscr{V}^2 .

$$D \cdot V^1 = 0$$

otherwise
$$X = ChLocus_2(\mathscr{V}^1)_Y$$
.

- 「「 (「 」 (」) (」) (」) (」)

Sac

Let $C_1 + C_2$ be a reducible cycle in \mathscr{V}^2 with components independent from $\langle \mathscr{V}^1, V^2 \rangle$ and let W^i be the associated families.

 $D \cdot W^i = 0$

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE

CLASSIFICATION OF THE CONES TABLE OF THE CONE EFFECTIVE CLASSIFICATION CLASSIFICATION SO FAR So X is $rc(\mathcal{V}^1, \mathcal{V}^2)$ connected and every curve in X is numerically proportional to a combination of components of cycles in \mathcal{V}^1 and \mathcal{V}^2 .

Aim: bound the number of independent components in \mathscr{V}^2 .

$$\cdot V^1 = 0$$

D

otherwise
$$X = \mathsf{ChLocus}_2(\mathscr{V}^1)_Y$$
.

Let $C_1 + C_2$ be a reducible cycle in \mathscr{V}^2 with components independent from $\langle \mathscr{V}^1, V^2 \rangle$ and let W^i be the associated families.

 $D \cdot W^i = 0$ W^i is not covering by the minimality of V^2 , so

$$\dim \operatorname{Locus}(W^i)_X \geq \dim X - \dim \operatorname{Locus}(W^i) + i_X - 1 \geq 2$$

any $\Gamma \subset \text{Locus}(W^i)_x$ is proportional to $W^i \Rightarrow D \cap \text{Locus}(W^i)_x = \emptyset$.

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES CHAINS OF BATION

RATIONAL CURVES ON FANO MANIEOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE

CLASSIFICATION OF THE CONES TABLE OF THE CON EFFECTIVE CLASSIFICATION

CLASSIFICATION SO FAR So X is $rc(\mathcal{V}^1, \mathcal{V}^2)$ connected and every curve in X is numerically proportional to a combination of components of cycles in \mathcal{V}^1 and \mathcal{V}^2 .

Aim: bound the number of independent components in \mathscr{V}^2 .

$$\cdot V^1 = 0$$

D

otherwise
$$X = ChLocus_2(\mathscr{V}^1)_Y$$
.

Let $C_1 + C_2$ be a reducible cycle in \mathscr{V}^2 with components independent from $\langle \mathscr{V}^1, V^2 \rangle$ and let W^i be the associated families.

 $D \cdot W^i = 0$ W^i is not covering by the minimality of V^2 , so

$$\dim \operatorname{Locus}(W^i)_{\mathsf{x}} \geq \dim X - \dim \operatorname{Locus}(W^i) + i_{\mathsf{X}} - 1 \geq 2$$

any $\Gamma \subset \text{Locus}(W^i)_x$ is proportional to $W^i \Rightarrow D \cap \text{Locus}(W^i)_x = \emptyset$. $D \cdot V^2 = 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 $D \cdot V^1 = 0$

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES CHAINS OF RATION

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE

CLASSIFICATION OF THE CONES TABLE OF THE CON EFFECTIVE CLASSIFICATION

CLASSIFICATION SO FAR So X is $rc(\mathcal{V}^1, \mathcal{V}^2)$ connected and every curve in X is numerically proportional to a combination of components of cycles in \mathcal{V}^1 and \mathcal{V}^2 .

Aim: bound the number of independent components in \mathscr{V}^2 .

otherwise
$$X = ChLocus_2(\mathcal{V}^1)_Y$$
.

Let $C_1 + C_2$ be a reducible cycle in \mathscr{V}^2 with components independent from $\langle \mathscr{V}^1, V^2 \rangle$ and let W^i be the associated families.

 $D \cdot W^i = 0$ W^i is not covering by the minimality of V^2 , so

$$\dim \operatorname{Locus}(W^i)_{\mathsf{X}} \geq \dim X - \dim \operatorname{Locus}(W^i) + i_{\mathsf{X}} - 1 \geq 2$$

any $\Gamma \subset \text{Locus}(W^i)_x$ is proportional to $W^i \Rightarrow D \cap \text{Locus}(W^i)_x = \emptyset$. $D \cdot V^2 = 0$ $D \cdot V^2 = D \cdot (C_1 + C_2) = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 $D \cdot V^1 = 0$

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES CHAINS OF RATION.

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE

CLASSIFICATION OF THE CONES TABLE OF THE CONE EFFECTIVE CLASSIFICATION CLASSIFICATION SO EAR So X is $rc(\mathcal{V}^1, \mathcal{V}^2)$ connected and every curve in X is numerically proportional to a combination of components of cycles in \mathcal{V}^1 and \mathcal{V}^2 .

Aim: bound the number of independent components in \mathscr{V}^2 .

otherwise
$$X = ChLocus_2(\mathcal{V}^1)_Y$$
.

Let $C_1 + C_2$ be a reducible cycle in \mathscr{V}^2 with components independent from $\langle \mathscr{V}^1, V^2 \rangle$ and let W^i be the associated families.

 $D \cdot W^i = 0$ W^i is not covering by the minimality of V^2 , so

$$\dim \operatorname{Locus}(W^i)_X \ge \dim X - \dim \operatorname{Locus}(W^i) + i_X - 1 \ge 2$$

any $\Gamma \subset \text{Locus}(W^i)_x$ is proportional to $W^i \Rightarrow D \cap \text{Locus}(W^i)_x = \emptyset$. $D \cdot V^2 = 0$ $D \cdot V^2 = D \cdot (C_1 + C_2) = 0$.

Conclusion: $D \equiv 0$, a contradiction.

DESCRIPTION OF THE MORI CONE

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE

CLASSIFICATION OF THE CONES

TABLE OF THE CONES

EFFECTIVE CLASSIFICATION

CLASSIFICATION SO FAR

STRATEGY

() Give a bound on ρ ;

2 Classify the possible cones of curves;

(日) (個) (目) (目) (目)

Sac

Olassify the varieties.

DESCRIPTION OF THE MORI CONE

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

Families of rational curves Chains of rational curves

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

MUKAI CONJECTURE

CLASSIFICATION OF THE CONES

TABLE OF THE CONES

EFFECTIVE CLASSIFICATION

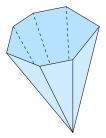
CLASSIFICATION SO FAR The cone of curves of a Fano manifold X is closed and polyhedral, spanned by a finite number of rays, in the vector space $N_1(X) \simeq \mathbb{R}^{\rho}$.

Every ray corresponds to a contraction, i.e. to a morphism with connected fiber onto a normal variety W such that the relative Picard number is one.

Kinds of contractions

- Fiber type contractions
- Divisorial contractions
- Small contractions

Description of the cone: find the number and type of the extremal rays.



Sac

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE

CLASSIFICATION OF THE CONES

TABLE OF THE CONES

EFFECTIVE CLASSIFICATION

CLASSIFICATION SO FAR Suppose that $\rho_X = 3$, two rays R_1 and R_2 are of fiber type and that the contraction associated to another ray, R_3 has a three dimensional fiber G.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

MUKAI CONJECTURE

CLASSIFICATION OF THE CONES

TABLE OF THE CONES

EFFECTIVE CLASSIFICATION

CLASSIFICATION SO FAR Suppose that $\rho_X = 3$, two rays R_1 and R_2 are of fiber type and that the contraction associated to another ray, R_3 has a three dimensional fiber G.

$$D_1 = \operatorname{Locus}(R^1)_G$$
 $D_2 = \operatorname{Locus}(R^2)_G$

・ロト ・四ト ・ヨト ・ヨト ・ヨー

Sar

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE

CLASSIFICATION OF THE CONES

TABLE OF THE CONES

EFFECTIVE CLASSIFICATION

CLASSIFICATION SO FAR Suppose that $\rho_X = 3$, two rays R_1 and R_2 are of fiber type and that the contraction associated to another ray, R_3 has a three dimensional fiber G.

$$D_1 = \operatorname{Locus}(R^1)_G$$
 $D_2 = \operatorname{Locus}(R^2)_G$

イロト 不得 トイヨト イヨト 二声

Sac

By the lemma on numerical equivalence (improved)

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE

CLASSIFICATION OF THE CONES

TABLE OF THE CONES

EFFECTIVE CLASSIFICATION

CLASSIFICATION SO FAR Suppose that $\rho_X = 3$, two rays R_1 and R_2 are of fiber type and that the contraction associated to another ray, R_3 has a three dimensional fiber G.

$$D_1 = \operatorname{Locus}(R^1)_G$$
 $D_2 = \operatorname{Locus}(R^2)_G$

By the lemma on numerical equivalence (improved)

$$\mathsf{NE}(D_1) = \langle R_1, R_3 \rangle \qquad \qquad \mathsf{NE}(D_2) = \langle R_2, R_3 \rangle$$

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONA CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE

CLASSIFICATION OF THE CONES

TABLE OF THE CONES

EFFECTIVE CLASSIFICATION

CLASSIFICATION SO FAR Suppose that $\rho_X = 3$, two rays R_1 and R_2 are of fiber type and that the contraction associated to another ray, R_3 has a three dimensional fiber G.

$$D_1 = \operatorname{Locus}(R^1)_G$$
 $D_2 = \operatorname{Locus}(R^2)_G$

By the lemma on numerical equivalence (improved)

$$\mathsf{NE}(D_1) = \langle R_1, R_3 \rangle \qquad \qquad \mathsf{NE}(D_2) = \langle R_2, R_3 \rangle$$

(日本)(市)(日本)(日本)(日本)(日本)

We can write

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONA CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE

CLASSIFICATION OF THE CONES

TABLE OF THE CONES

EFFECTIVE CLASSIFICATION

CLASSIFICATION SO FAR Suppose that $\rho_X = 3$, two rays R_1 and R_2 are of fiber type and that the contraction associated to another ray, R_3 has a three dimensional fiber G.

$$D_1 = \operatorname{Locus}(R^1)_G$$
 $D_2 = \operatorname{Locus}(R^2)_G$

By the lemma on numerical equivalence (improved)

$$\mathsf{NE}(D_1) = \langle R_1, R_3 \rangle \qquad \qquad \mathsf{NE}(D_2) = \langle R_2, R_3 \rangle$$

We can write

$$X = \operatorname{Locus}(R^2)_{D_1} \qquad \qquad X = \operatorname{Locus}(R^1)_{D_2}$$

(日本)(市)(日本)(日本)(日本)(日本)

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONA CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE

CLASSIFICATION OF THE CONES

TABLE OF THE CONES

EFFECTIVE CLASSIFICATION

CLASSIFICATION SO FAR Suppose that $\rho_X = 3$, two rays R_1 and R_2 are of fiber type and that the contraction associated to another ray, R_3 has a three dimensional fiber G.

$$D_1 = \operatorname{Locus}(R^1)_G$$
 $D_2 = \operatorname{Locus}(R^2)_G$

By the lemma on numerical equivalence (improved)

$$\mathsf{NE}(D_1) = \langle R_1, R_3 \rangle \qquad \qquad \mathsf{NE}(D_2) = \langle R_2, R_3 \rangle$$

We can write

$$X = \operatorname{Locus}(R^2)_{D_1} \qquad \qquad X = \operatorname{Locus}(R^1)_{D_2}$$

So a curve $C \subset X$ is numerically equivalent to a combination

$$a_1R_1 + a_2R_2 + a_3R_3$$

- 日本 - 4 日本 - 4 日本 - 日本

Sac

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONA CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE

CLASSIFICATION OF THE CONES

TABLE OF THE CONES

EFFECTIVE CLASSIFICATION

CLASSIFICATION SO FAR Suppose that $\rho_X = 3$, two rays R_1 and R_2 are of fiber type and that the contraction associated to another ray, R_3 has a three dimensional fiber G.

$$D_1 = \operatorname{Locus}(R^1)_G$$
 $D_2 = \operatorname{Locus}(R^2)_G$

By the lemma on numerical equivalence (improved)

$$\mathsf{NE}(D_1) = \langle R_1, R_3 \rangle \qquad \qquad \mathsf{NE}(D_2) = \langle R_2, R_3 \rangle$$

We can write

$$X = \operatorname{Locus}(R^2)_{D_1} \qquad \qquad X = \operatorname{Locus}(R^1)_{D_2}$$

So a curve $C \subset X$ is numerically equivalent to a combination

$$a_1R_1 + a_2R_2 + a_3R_3$$

 $a_1, a_3 \ge 0$ $a_2, a_3 \ge 0$

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONA CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

MUKAI CONJECTURE

CLASSIFICATION OF THE CONES

TABLE OF THE CONES

EFFECTIVE CLASSIFICATION

CLASSIFICATION SO FAR Suppose that $\rho_X = 3$, two rays R_1 and R_2 are of fiber type and that the contraction associated to another ray, R_3 has a three dimensional fiber G.

$$D_1 = \operatorname{Locus}(R^1)_G$$
 $D_2 = \operatorname{Locus}(R^2)_G$

By the lemma on numerical equivalence (improved)

$$\mathsf{NE}(D_1) = \langle R_1, R_3 \rangle$$
 $\mathsf{NE}(D_2) = \langle R_2, R_3 \rangle$

We can write

$$X = \operatorname{Locus}(R^2)_{D_1} \qquad \qquad X = \operatorname{Locus}(R^1)_{D_2}$$

So a curve $C \subset X$ is numerically equivalent to a combination

$$a_1R_1 + a_2R_2 + a_3R_3$$
$$a_1, a_3 \ge 0 \qquad \qquad a_2, a_3 \ge 0$$
$$\mathsf{NE}(X) = \langle R_1, R_2, R_3 \rangle$$

CLASSIFICATION OF THE CONES

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVE

CHAINS OF RATIONAI CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURI Classification of the cones

TABLE OF THE CONES

EFFECTIVE CLASSIFICATION

CLASSIFICATION SO FAR

ρ_X	R ₁	R ₂	R ₃	R ₄	R ₅
2	F	F			
	F	D_0			
	F	D_1			
	F	D_2			
	F	S			
	D ₂	D_2			
	D ₂	5			
3	F	F	F		
	F	F	5		
	F	F	D_1		
	F	F	D ₂		
	F	D ₂	D ₂		
4	F	F	F	F	
	F	F	F	D_2	
5	F	F	F	F	F

F fiber type

D_i divisor to i -dim subvariety

S small

-

Sac

イロト イポト イヨト イヨト

EFFECTIVE CLASSIFICATION

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE Classification of the cones Table of the cone

EFFECTIVE CLASSIFICATION

CLASSIFICATION SO FAR

STRATEGY

() Give a bound on ρ ;

Classify the possible cones of curves;

(日) (個) (目) (目) (目)

nac

Classify the varieties.

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

MUKAI CONJECTURE Classification of the cones Table of the cones **Refective**

CLASSIFICATION

CLASSIFICATION FAR

ρχ	<i>R</i> ₁	R ₂	R ₃	R ₄	R ₅
2					
	D ₂	D ₂			
	D ₂	S			

- Prove that the D₂ contractions are smooth blow-ups (easy);
- 2 Prove that X is the blow up of \mathbb{P}^5 along a smooth surface;

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

- Fix a minimal dominating family in the target;
- Compare its pullback with the families on X;
- Show that the family has degree 6.
- Olassify the possible surfaces.

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

MUKAI CONJECTURE Classification of the cones Table of the cones

EFFECTIVE CLASSIFICATION

CLASSIFICATION SC FAR

ρχ	<i>R</i> ₁	R ₂	R ₃	R ₄	R ₅
2					
	D ₂	D ₂			
	D ₂	S			

Prove that the D₂ contractions are smooth blow-ups (easy);

2 Prove that X is the blow up of \mathbb{P}^5 along a smooth surface;

Sac

• Fix a minimal dominating family in the target;

- Compare its pullback with the families on X;
- Show that the family has degree 6.

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

Mukai conjecture Classification of the cones Table of the cones

EFFECTIVE CLASSIFICATION

CLASSIFICATION SO FAR

ρχ	<i>R</i> ₁	R ₂	R ₃	R ₄	R ₅
2					
	D ₂	D ₂			
	D ₂	S			

- Prove that the D₂ contractions are smooth blow-ups (easy);
- **2** Prove that X is the blow up of \mathbb{P}^5 along a smooth surface;

Sac

• Fix a minimal dominating family in the target;

- Compare its pullback with the families on X;
- Show that the family has degree 6.

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

MUKAI CONJECTURE Classification of the cones Table of the cones

EFFECTIVE CLASSIFICATION

CLASSIFICATION SO FAR

2				-
2				
	D ₂	D_2		
	D ₂	S		

- Prove that the D₂ contractions are smooth blow-ups (easy);
- **2** Prove that X is the blow up of \mathbb{P}^5 along a smooth surface;

Sac

- Fix a minimal dominating family in the target;
- Compare its pullback with the families on X;
- Show that the family has degree 6.

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

Mukai conjecture Classification of the cones Table of the cones

EFFECTIVE CLASSIFICATION

CLASSIFICATION SO FAR

2				-
2				
	D ₂	D_2		
	D ₂	S		

- Prove that the D₂ contractions are smooth blow-ups (easy);
- **2** Prove that X is the blow up of \mathbb{P}^5 along a smooth surface;

Sac

- Fix a minimal dominating family in the target;
- Compare its pullback with the families on X;
- Show that the family has degree 6.

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

Mukai conjecture Classification of the cones Table of the cones

EFFECTIVE CLASSIFICATION

CLASSIFICATION SO FAR

ρχ	<i>R</i> ₁	R ₂	R ₃	R ₄	R ₅
2					
	D ₂	D ₂			
	D ₂	S			

- Prove that the D₂ contractions are smooth blow-ups (easy);
- **2** Prove that X is the blow up of \mathbb{P}^5 along a smooth surface;

Sac

- Fix a minimal dominating family in the target;
- Compare its pullback with the families on X;
- Show that the family has degree 6.

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

MUKAI CONJECTURE Classification of the cones Table of the cone

EFFECTIVE CLASSIFICATION

CLASSIFICATION SO FAR

ρχ	<i>R</i> ₁	R ₂	R ₃	R ₄	R ₅
2					
	D ₂	D ₂			
	D ₂	S			

- Prove that the D₂ contractions are smooth blow-ups (easy);
- **2** Prove that X is the blow up of \mathbb{P}^5 along a smooth surface;

- 「「 (「 」 (」) (」) (」) (」)

Sac

- Fix a minimal dominating family in the target;
- Compare its pullback with the families on X;
- Show that the family has degree 6.
- Olassify the possible surfaces.

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

MUKAI CONJECTURE CLASSIFICATION OF THE CONES TABLE OF THE CONES EFFECTIVE CLASSIFICATION

CLASSIFICATION SO FAR $S \subset \mathbb{P}^5$ center of the blow-up, Γ *k*-secant line of *S*, $\widetilde{\Gamma}$ proper transform of Γ ; then

$$-K_X \cdot \widetilde{\Gamma} = -K_{\mathbb{P}^5} \cdot \Gamma - 2E \cdot \widetilde{\Gamma} = 6 - 2k$$

Sac

• S has no trisecants;

•
$$Sec(S) \neq \mathbb{P}^5$$
.

2 $S \subset \mathbb{P}^4 + \widetilde{\mathbb{P}^4}$ is exceptional $\Longrightarrow S$ cubic scroll

$$S \subset \mathbb{P}^3 \Longrightarrow S \simeq \mathbb{Q}^2$$

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

MUKAI CONJECTURE CLASSIFICATION OF THE CONES TABLE OF THE CONES EFFECTIVE

CLASSIFICATION

CLASSIFICATION FAR $S \subset \mathbb{P}^5$ center of the blow-up, Γ *k*-secant line of *S*, $\widetilde{\Gamma}$ proper transform of Γ ; then

$$-K_X \cdot \widetilde{\Gamma} = -K_{\mathbb{P}^5} \cdot \Gamma - 2E \cdot \widetilde{\Gamma} = 6 - 2k$$

• S has no trisecants;

•
$$Sec(S) \neq \mathbb{P}^5$$
.

2 $S \subset \mathbb{P}^4 + \mathbb{P}^4$ is exceptional $\Longrightarrow S$ cubic scroll

$$S \subset \mathbb{P}^3 \Longrightarrow S \simeq \mathbb{Q}^2$$

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

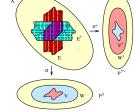
MUKAI CONJECTURE Classification of the cones Table of the cones Effective

CLASSIFICATION CLASSIFICATION SC $S\subset \mathbb{P}^5$ center of the blow-up, Γ k-secant line of S, $\widetilde{\Gamma}$ proper transform of $\Gamma;$ then

$$-K_X \cdot \widetilde{\Gamma} = -K_{\mathbb{P}^5} \cdot \Gamma - 2E \cdot \widetilde{\Gamma} = 6 - 2k$$

• S has no trisecants;

• $Sec(S) \neq \mathbb{P}^5$.



 $\ \ @ \ \ S \subset \mathbb{P}^4 + \mathbb{P}^4 \text{ is exceptional} \Longrightarrow S \text{ cubic scroll}$

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

Mukai conjecturi Classification of the cones Table of the cone

EFFECTIVE CLASSIFICATION

CLASSIFICATION SO FAR $S\subset \mathbb{P}^5$ center of the blow-up, Γ k-secant line of S, $\widetilde{\Gamma}$ proper transform of $\Gamma;$ then

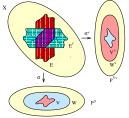
$$-K_X \cdot \widetilde{\Gamma} = -K_{\mathbb{P}^5} \cdot \Gamma - 2E \cdot \widetilde{\Gamma} = 6 - 2K$$

• S has no trisecants;

•
$$Sec(S) \neq \mathbb{P}^5$$
.

$$S \subset \mathbb{P}^4 + \widetilde{\mathbb{P}^4}$$
 is exceptional $\Longrightarrow S$ cubic scroll

$$S \subset \mathbb{P}^3 \Longrightarrow S \simeq \mathbb{Q}^2$$



イロト 不留下 不良下 不良下 三級

Sar

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

Fano fivefolds of index two

MUKAI CONJECTUR Classification of the cones Table of the conj

EFFECTIVE CLASSIFICATION

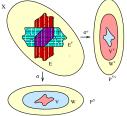
CLASSIFICATION SO FAR $S\subset \mathbb{P}^5$ center of the blow-up, Γ k-secant line of S, $\widetilde{\Gamma}$ proper transform of $\Gamma;$ then

$$-\mathcal{K}_{X}\cdot\widetilde{\Gamma}=-\mathcal{K}_{\mathbb{P}^{5}}\cdot\Gamma-2E\cdot\widetilde{\Gamma}=6-2k$$

• S has no trisecants;

•
$$Sec(S) \neq \mathbb{P}^5$$
.

$$S \subset \mathbb{P}^3 \Longrightarrow S \simeq \mathbb{Q}^2$$



CLASSIFICATION SO FAR

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVE

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE Classification of the cones Table of the cones Effective

CLASSIFICATION SO FAR

ρχ	R ₁	R ₂	R ₃	R ₄	R ₅
2	F	F			
	F	D ₀			
	F	D_1			
	F	D_2			
	F	5			
	D ₂	D ₂			
	D ₂	5 5			
3	F	F	F		
	F	F	S		
	F	F	D_1		
	F	F	D ₂		
	F	D ₂	D ₂		
4	F	F	F	F	
	F	F	F	D ₂	
5	F	F	F	F	F

▶ = 𝒴𝔄<</p>

CLASSIFICATION SO FAR

RATIONAL CURVES AND FANO MANIFOLDS

Fano manifolds

FANO MANIFOLDS CLASSIFICATION

RATIONAL CURVES

FAMILIES OF RATIONAL CURVES

CHAINS OF RATIONAL CURVES

RATIONAL CURVES ON FANO MANIFOLDS

FANO FIVEFOLDS OF INDEX TWO

MUKAI CONJECTURE Classification of the cones Table of the cones Effective

CLASSIFICATION SO FAR

$\langle D_2, S \rangle$	Blow up of \mathbb{P}^5 along a two dimensional quadric
$\langle D_2, D_2 \rangle$	Blow up of \mathbb{P}^5 along a Veronese surface
	Blow up of \mathbb{P}^5 along a cubic scroll $\subset \mathbb{P}^4$
$\langle F, F, F \rangle$	A general member of $\mathscr{O}(1,1,1) \subset \mathbb{P}^2 imes \mathbb{P}^2 imes \mathbb{P}^2$
	The intersection of two general members of
	$\mathscr{O}(1,0,1)$ and $\mathscr{O}(0,1,1)$ in $\mathbb{P}^2 imes \mathbb{P}^2 imes \mathbb{P}^3$
	$\mathbb{P}^{1} imes Y$ (No. 1-9, 11, 14)
$\langle F, F, S \rangle$	$Bl_{ m p}(\mathbb{P}^4) imes_{\mathbb{P}^3}Bl_{ m p}(\mathbb{P}^4)$
$\langle F, F, D_1 \rangle$	$\mathbb{P}^1 imes Y$ (No. 13, 15)
$\langle F, F, D_2 \rangle$	Blow up of a general member of $\mathscr{O}(1,1)\subset\mathbb{P}^2 imes\mathbb{P}^4$
$\langle I, I, D_2 \rangle$	along a section of the first projection
	$\mathbb{P}^1 imes Y$ (No. 10, 12)
$\langle F, D_2, D_2 \rangle$	${\it Bl}_S({\it Bl}_p(\mathbb{P}^5))$ with ${\it S}$ the strict trasform of a $\mathbb{P}^2 i p$
	Blow up of a cone in \mathbb{P}^9 over the Segre
	embedding $\mathbb{P}^2\times\mathbb{P}^2\subset\mathbb{P}^8$ along its vertex
	Blow up of \mathbb{P}^5 in two non meeting 2-planes
$\langle F, F, F, F \rangle$	$\mathbb{P}^1 imes \mathbb{P}^1 imes \mathbb{P}_{\mathbb{P}^2}(\mathcal{T}\mathbb{P}^2)$
$\langle F, F, F, D_2 \rangle$	$\mathbb{P}^1 \times \mathbb{P}^1 \times \mathcal{Bl}_p(\mathbb{P}^3)$
$\langle F, F, F, F, F \rangle$	$\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$