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pseudoindex of X
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ρX (rX −1)≤ dimX

GENERALIZED MUKAI

ρX (iX −1)≤ dimX , equality
iff X ' (PiX−1)ρX
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2 ⇒ ρX = 1
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X homogeneous
X toric and iX ≥ dimX+3
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X ”special” with iX ≥ dimX+3

3
dimX = 5

2004 Casagrande
X toric
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WIŚNIEWSKI’S PROOF - INGREDIENTS

FAMILIES OF RATIONAL CURVES

Hom(P1,X ) scheme parametrizing f : P1 → X
Hombir (P1,X )⊂ Hom(P1,X ) open subset

Ratcurvesn(X) quotient of Homn
bir (P

1,X ) by Aut(P1)

Family of rational curves: V ⊂ Ratcurvesn(X) irreducible

U

π

��

i // X

V

Locus(V ) = i(U), Vx = π(i−1(x))

V unsplit if V is proper;

V locally unsplit if Vx is proper for a general x in Locus(V ).
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V unsplit family, C curve contained in Locus(V )x .

[C ] = a[V ]

DIMENSIONAL ESTIMATES - I

X smooth V unsplit family
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dimLocus(Vx)≥−KX ·V −1.
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EXISTENCE OF RATIONAL CURVES - I

∀x ∈ X Fano there is a rational curve C 3 x with
−KX ·C ≤ dimX +1.

V i ⊂ Ratcurvesn(X) of anticanonical degree ≤ dimX +1 are a
finite number ⇒ there exists i s.t. Locus(V i ) dominates X .

A family of minimal degree with this property is called a
minimal dominating family and it is locally unsplit.



MUKAI

CONJECTURE

MUKAI

CONJECTURE

STATEMENT
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PROOF

1 V minimal dominating family for X .

2 By the bound on iX the family V is unsplit.
3 dimLocus(Vx) > (dimX )/2 and N1(Locus(Vx)) = 〈[V ]〉.
4 Pick V ′ unsplit family independent from V (e.g. minimal

degree curves in an extremal ray).
5 dimLocus(V ′

x) > (dimX )/2 and N1(Locus(V ′
x)) = 〈[V ′]〉.

6 x ∈ Locus(V ′) =⇒ Locus(Vx)∩Locus(V ′
x) 6= /0.

7 dimLocus(Vx)∩Locus(V ′
x) > dimX −2((dimX )/2) > 0
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HOMOGENEOUS VARIETIES - PROOF

PROOF

1 V 1, . . . ,V ρX unsplit families associated to ρX independent
extremal rays.

2 By the transitivity of the group action Locus(V 1, . . . ,V ρX )x is
not empty.

3 dimX ≥ dimLocus(V 1, . . . ,V ρX )x ≥ ρX iX −ρX = ρX (iX −1).
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SPECIAL VARIETIES

X Fano, iX ≥ dimX+3
3 and

∃V unsplit and covering. True if

X has at least a fiber type contraction (not required
elementary).
X has no small contractions.

There exists a face of NE(X ) containing two extremal rays
with meeting exceptional loci.
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SPECIAL VARIETIES - INGREDIENTS

CHOW FAMILIES

Ratcurvesn(X)→ Chow(X )

V  V = V ⊂ Chow(X )

Reducible cycles are parametrized
by points in V \V

Chow family of rational curves: V ⊂
Chow(X ) irreducible, parametrizing ra-
tional and connected 1-cycles.

If V is an unsplit family by abuse V = V .
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CHAINS OF RATIONAL CURVES

Y ⊂ X closed, V 1, . . . ,V k Chow families
ChLocusm(V 1, . . . ,V k)x : points y ∈ X such that there ∃ C1, . . . ,Cm

Ci belongs to V j

Ci ∩Ci+1 6= /0
C1∩x 6= /0 e y ∈ Cm

x and y are rc(V 1, . . . ,V k) equivalent if either x = y or there is a
chain of curves in V 1, . . . ,V k joining x and y .

THEOREM (CAMPANA, KOLLÁR-MIYAOKA-MORI)

There exists X 0 ⊂ X and a proper morphism with connected fibers
π : X 0 → Z 0 such that fibers of π are equivalence classes and
∀z ∈ Z 0 two points in π−1(z) are connected by at most
2dimX−dimZ −1 cycles in V 1, . . . ,V k
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NUMERICAL EQUIVALENCE - III

V 1, . . . ,V k Chow families, C curve contained in
ChLocus(V 1, . . . ,V k)x .

C ≡ ∑bjCV j

bj ∈Q and CV j irreducible component of a cycle in V j .

COROLLARY

X rc(V 1, . . . ,V k) connected; every curve in X is equivalent to a
combination of classes of components of cycles in V 1, . . . ,V k .
If V 1, . . . ,V k are unsplit then ρX ≤ k.
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EXISTENCE OF RATIONAL CURVES - II

X Fano, π : X 0 → Z 0 proper surjective morphism; for a general
z ∈ Z 0 there is a rational curve C with −KX ·C ≤ dimX +1 s.t.

C ∩π−1(z) 6= /0
C is not contained in π−1(z)

V i ⊂ Ratcurvesn(X) of anticanonical degree ≤ dimX +1 are a finite
number ⇒ there exists i s.t. Locus(V i ) dominates Z 0.

A family of minimal degree with this property is called a minimal
horizontal dominating family

V i is locally unsplit
if x is a general point in Locus(V i ) and F is the fiber
containing x , then dim(F ∩Locus(V i

x)) = 0.
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PROOF

1 π : X 0 → Z 0 rcV -fibration.

2 dimZ 0 > 0.

3 V ′ minimal horizontal dominating family for π

4 x general in Locus(V ′), F fiber of π through x ,
dim(Locus(V ′

x)∩F ) = 0.
5 dimX ≥ dimF +dimLocus(V ′

x)≥−KX ·V −KX ·V ′−2
6 −KX ·V ′ ≤ 2iX −1 and V ′ is unsplit
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We conclude by the following

THEOREM

A smooth complex projective variety X of dimension n is
isomorphic to Pn(1)×·· ·×Pn(k)

if and only if

∃V 1, . . . ,V k unsplit and covering with ∑−KX ·V k = n + k
such that dim〈[V 1], . . . , [V k ]〉= k in N1(X ).
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PROOF

1 V minimal dominating family.

2 V not unsplit

3 V Chow family, π : X 0 → Z 0 rcV fibration.
4 If dimZ 0 > 0 then V ′ minimal horizontal dominating family
5 x general in Locus(V ′), F fiber of π through x ,

dim(Locus(V ′
x)∩F ) = 0.

6 dimX ≥ dimF +dimLocus(V ′
x)≥−KX ·V −KX ·V ′−2 > n

7 dimZ = 0: X is rcV connected.
8 N1(X ) is generated by classes of irreducible components of

cycles in V .
9 [V ] is not on an extremal face.
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PROOF

1 V 1, V 2 unsplit families in R1 and R2

2 dimLocus(V 1,V 2)y ≥ (2dimX )/3.
3 x general point of X . Connect it to Locus(V 1,V 2)y .
4 Γ first cycle meeting Locus(V 1,V 2)y in z .
5 We can assume Γ reducible.
6 In fact, if Γ ∈ V then z ∈ Locus(V ).
7 Vz cannot be unsplit since

dimLocus(Vz)∩Locus(V 1,V 2)y > 0.
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PROOF

1 There is a component of a reducible cycle Γ3 +Γ4 in V
meeting Locus(V 1,V 2)y and not contained in it.

2 W 1 family of this component.
3 If [W 1] 6⊂ 〈R1,R2〉
4 dimLocus(V 1,V 2,W 1)y ≥ n. Contradiction
5 If [W 1]⊂ 〈R1,R2〉
6 dimLocus(V i ,W 1,W 2)y ≥ n. Contradiction
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NON SPECIAL VARIETIES - PROBLEMS

The idea of the previous proof was:

find two unsplit families V 1 and V 2 such that
Locus(V 1)∩Locus(V 2) 6= /0.
For any reducible cycle Γ3 +Γ4 in V at least one
component is independent from 〈V 1,V 2〉.

If we start from the families W 1 and W 2 of the component of
a reducible cycle Γ1 +Γ2 we have the first property,
but not the second, because there can exist reducible cycles in
V whose components are proportional to [V ].
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WHY FIVEFOLDS?

The ”worst” pseudoindex for which we have to prove the
conjecture is iX = 2 < (dimX +3)/3.

The good news is that 2iX = dimX −1 and this allows us
to construct divisors using non covering families of rational
curves.
These divisors can contain only curves in some region of
the cone.
We can play with intersection numbers.
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FIVEFOLDS - INGREDIENTS

NUMERICAL EQUIVALENCE - IV

Y ⊂ X closed, V unsplit family, C ⊂ Locus(V )Y curve.

C ≡ aCY +bCV a≥ 0

If moreover Y is ”extremal” also b ≥ 0.

DIMENSIONAL ESTIMATES - III

Y ⊂ X closed V unsplit family with NE(Y )
⋂

< [V ] >= 0
dimLocus(V )Y ≥ dimY −KX ·V −1 (if 6= /0)

V 1, . . . ,V k unsplit with dim < [V 1], . . . , [V k ] >= k and
NE(Y )∩< [V 1], . . . , [V k ] >= 0

dimLocus(V 1, . . . ,V k)Y ≥ dimY −∑KX ·V i −k (if 6= /0)
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FIVEFOLDS - INGREDIENTS

QUASI UNSPLIT FAMILIES

A Chow family V is called quasi unsplit if all the irreducible
components of cycles in V are numerically proportional

In P2×P3

X = {x0
2y0 + x1

2y1 + x2
2y2 = 0},

V family of conics given by the inter-
section of X with fibers of the first
projection
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FIVEFOLDS - A CASE OF THE PROOF

PROOF

1 V minimal dominating family. Assume V quasi-unsplit.

2 π : X → Z rcV -fibration.
3 dimZ > 0.

4 V ′ minimal horizontal dominating family for π.
5 V ′ not quasi unsplit.
6 In V ′ there is a reducible cycle C1 +C2 with [C1] 6= λ [V ′].
7 −KX ·V ′ =−KX · (C1 +C2)≥ 2iX ≥ 4.
8 x ∈ Locus(V ′) general, Y = Locus(V ′)x .
9 dimY ≥−KX ·V ′−1≥ 3.

10 Every curve in Y is numerically proportional to [V ′].
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FIVEFOLDS - A CASE OF THE PROOF

PROOF

1 Fx = Locus(V )Y = Locus(V ′,V )x = Locus(V ′,V )x

2 dimFx ≥−KX ·V −1+dimY ≥ 4
3 π ′ : X ′→ Z ′ rc(V ,V ′) fibration.
4 If dimZ ′ > 0 then dimZ ′ = 1.
5 V ′′ minimal horizontal dominating family for π ′.
6 for a general z ∈ Locus(V ′′) curves in Locus(V ′′)z are not

contracted.
7 dimLocus(V ′′)z = 1.
8 −KX ·V ′′ = 2 and dimLocus(V ′′) = 5.
9 Hence V ′′ unsplit and covering, against the minimality of V ′.

10 X is rc(V ,V ′) connected.
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FIVEFOLDS - A CASE OF THE PROOF

PROOF

1 W i families of irreducible components of reducible cycles in V ′.

2 W i is not covering by the minimality of V ′.
3 dimLocus(W i )x ≥ dimX −dimLocus(W i )+ iX −1≥ 2
4 N1(X ) = 〈[V ], [V ′], [W 1], . . . , [W k ]〉 with [W j ] 6∈ 〈[V ], [V ′]〉.
5 Fx = Locus(V )Y = Locus(V ′,V )x .
6 dimFx ≥ 4 and N1(Fx) = 〈[V ], [V ′]〉.
7 If dimFx = 5 then ρX = 2.
8 D irreducible component of Fx of dimension four.
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FIVEFOLDS - A CASE OF THE PROOF

PROOF

1 D ·V = 0

otherwise X = ChLocus2(V 1)Y .

2 D ·W j = 0. In fact Γ⊂ Locus(W j)x ⇒ [Γ] = λ [W j ],
hence D ∩Locus(W j)x = /0.

3 D ·V ′ = D · (C1 +C2) = 0.
4 Conclusion: D ≡ 0, a contradiction.
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FANO FIVEFOLDS OF INDEX TWO

In proving Mukai conjecture for Fano fivefolds we realized that
the proof gave something more:

Indications about the structure of the cone of X .

We classified the cone of curves of Fano fivefolds of
pseudoindex ≥ 2.

We are now working to reach a classification of Fano fivefolds
of Picard number ≥ 1 and index two.

ρX ≥ 2 to have the interplay of independent families.
iX ≥ 2 to have lower bounds on the dimension of the loci
of chains.
rX instead of iX to use known descriptions of the
contractions.
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DESCRIPTION OF THE MORI CONE

The cone of curves of a Fano manifold X is
closed and polyhedral, spanned by a finite
number of rays, in the vector space
N1(X )' Rρ .

Every ray corresponds to a contraction, i.e.
to a morphism with connected fiber onto a
normal variety such that the relative Picard
number is one.

Kinds of contractions

Fiber type contractions
Divisorial contractions
Small contractions

Aim: find the number and type of the extremal rays.
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AN (EASY ) EXAMPLE

Suppose that ρX = 3, two rays R1 and R2 are of fiber type and that
the contraction associated to another ray, R3 has a three dimensional
fiber G .

D1 = Locus(R1)G D2 = Locus(R2)G

By the lemma on numerical equivalence IV

NE(D1) = 〈R1,R3〉 NE(D2) = 〈R2,R3〉

We can write

X = Locus(R2)D1 X = Locus(R1)D2

So a curve C ⊂ X is numerically equivalent to a combination

a1R1 +a2R2 +a3R3

a1,a3 ≥ 0 a2,a3 ≥ 0

NE(X ) = 〈R1,R2,R3〉
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NE(D1) = 〈R1,R3〉 NE(D2) = 〈R2,R3〉

We can write

X = Locus(R2)D1 X = Locus(R1)D2

So a curve C ⊂ X is numerically equivalent to a combination

a1R1 +a2R2 +a3R3

a1,a3 ≥ 0 a2,a3 ≥ 0

NE(X ) = 〈R1,R2,R3〉
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CLASSIFICATION OF THE CONES

Classification of the cones

ρX R1 R2 R3 R4 R5

2 F F

F S

F D0

F D1

F D2

D2 D2

D2 S

3 F F F

F F S

F F D1

F F D2

F D2 D2

4 F F F F

F F F D2

5 F F F F F

F fiber type

Di divisor to

i-dim

subvariety

S small
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CLASSIFICATION SO FAR

ρX R1 R2 R3 R4 R5

2 F F

F D0

F D1

F S

Cones with complete classification

F D2

D2 D2

D2 S

3 F F F

F F S

F F D1

F F D2

F D2 D2

4 F F F F

F F F D2

5 F F F F F
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CLASSIFICATION SO FAR

Non trivial cases - I

〈D2 ,S〉 Blow up of P5 along a two dimensional quadric

〈D2 ,D2〉 Blow up of P5 along a Veronese surface

Blow up of P5 along a cubic scroll ⊂ P4

〈F ,F ,F 〉 A general member of O(1,1,1)⊂ P2 ×P2 ×P2

The intersection of two general members of

O(1,0,1) and O(0,1,1) in P2 ×P2 ×P3

〈F ,F ,S〉 Blp(P4)×P3 Blp(P4)

〈F ,F ,D2〉
Blow up of a general member of O(1,1)⊂ P2 ×P4

along a section of the first projection

〈F ,D2 ,D2〉 BlS(Blp(P5)) with S the strict trasform of a P2 3 p

Blow up of a cone in P9 over the Segre

embedding P2 ×P2 ⊂ P8 along its vertex

Blow up of P5 in two non meeting 2-planes
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CLASSIFICATION SO FAR

Non trivial cases - II

〈F ,D2〉 Blow up of P5 along a point

Blow up of P5 along the complete intersection of three quadrics

Blow up of P5 along S ' P1×P1 embedded by O(1,2)

Blow up of P5 along S ' F2 embedded by C0 +3f

Blow up of P5 along the blow-up of P2 in four points

x1 , . . . ,x4 embedded by O2
P (3)−∑xi

Blow up of P5 along the blow-up of P2 in seven points

x0 , . . . ,x6 embedded by O2
P (3)−2x0−∑

6
i=1 xi

Blow up of a del Pezzo fivefold Vd of degree d ≤ 5

along a del Pezzo surface of degree d

Blow up of V 3 along a plane

Blow up of V 4 along a plane

Blow up of V 4 along a quadric

Blow up of V 5 along a σ-plane

Blow up of V 5 along a quadric
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A BOUND ON THE LENGTH

Another related problem is the following: which is the maximal
length of an extremal ray of a Fano manifold X of Picard number
ρX ≥ 2 and pseudoindex iX ?

iX + l(R)≤ dimExc(R)+2

This inequality can be thougth of as a generalized version of Mukai
conjecture for ρX = 2.

The proof is based on the following

LEMMA

X Fano with ρX ≥ 2, R extremal ray, Exc(R) exceptional locus.
Then ∃V , [V ] 6∈ R such that Exc(R)∩Locus(V ) 6= /0 and, for some
x ∈ Exc(R)∩Locus(V ), Vx is proper.
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Skip proof
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A BOUND ON THE LENGTH

PROOF

1 If R is a nef V minimal curves in R1 6= R.

2 Otherwise W minimal covering family for X .
3 If there exists x ∈ Exc(R) such that Wx is unsplit OK.
4 Else ∀x ∈ Exc(R) there exists in W a reducible cycle ∑

mx
ix=1 Cix .

5 Families T 1, . . . ,T l of these cycles.
6 For one index j Exc(R)⊂ Locus(T j).
7 If T j is independent from R then W 1 = T j .
8 Else there exists a Ck independent from R which meets

Exc(R).
9 Set W 1 = T k .

10 If W 1
x1 is unsplit we set V = W 1, else repeat the argument.
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FANO MANIFOLDS WITH LONG RAYS - I

THEOREM

If equality holds and R is of fiber type or divisorial then
X ' Pk ×Pn−k

X ' BlPt (Pn) with 0≤ t ≤ n−3
2 .

Replacing the pseudoindex with the index we have a complete
description of equality

THEOREM

If rX + l(R) = dimExc(R)+2 then, if e = dimExc(R)
X = PPk (O⊕e−k+1⊕O(1)⊕n−e), with k = n− r +1.
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FANO MANIFOLDS WITH LONG RAYS - II

We also have some results in the case

iX + l(R) = dimExc(R)+1

The best one is for blow-ups:

THEOREM

X Fano; ϕR : X →Y blow up of a smooth Y along a smooth T ⊂Y , such
that iX ≥ dimT +1. Then X is

BlPt (Pn), with Pt a linear subspace of dimension ≤ n
2 −1,

BlPt (Qn), with Pt a linear subspace of dimension ≤ n
2 −1,

BlQt (Qn), with Qt a smooth quadric of dimension ≤ n
2 −1 not

contained in a linear subspace of Qn,

Blp(V ) with V ' BlY (Pn) and Y submanifold of dimension n−2
and deg ≤ n contained in an hyperplane H s.t. p 6∈ H,

BlP1×{p}(P1×Pn−1).
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