Rational curves and bounds on the Picard number of Fano manifolds

Gianluca Occhetta (joint work with Carla Novelli)

Projective Algebraic Geometry in Milano, June 2009

X smooth complex projective variety

X smooth complex projective variety

X Fano manifold $\iff -K_X$ ample.

X smooth complex projective variety

X Fano manifold
$$\iff -K_X$$
 ample.

•
$$\rho_X = \dim N^1(X) = \dim N_1(X)$$
 Picard number of X

X smooth complex projective variety

X Fano manifold
$$\iff -K_X$$
 ample.

•
$$\rho_X = \dim N^1(X) = \dim N_1(X)$$
 Picard number of X

•
$$r_X = \max\{m \in \mathbb{N} \mid -K_X = mL \ L \in \operatorname{Pic}(X)\}$$
 index of X

X smooth complex projective variety

X Fano manifold
$$\iff -K_X$$
 ample.

• $\rho_X = \dim N^1(X) = \dim N_1(X)$ Picard number of X

•
$$r_X = \max\{m \in \mathbb{N} \mid -K_X = mL \ L \in \operatorname{Pic}(X)\}$$
 index of X

• $i_X = \min\{m \in \mathbb{N} \mid -K_X \cdot C = m \ C \text{ rational } \}$ pseudoindex of X

X smooth complex projective variety

X Fano manifold
$$\iff -K_X$$
 ample.

• $\rho_X = \dim N^1(X) = \dim N_1(X)$ Picard number of X

•
$$r_X = \max\{m \in \mathbb{N} \mid -K_X = mL \ L \in \operatorname{Pic}(X)\}$$
 index of X

• $i_X = \min\{m \in \mathbb{N} \mid -K_X \cdot C = m \ C \text{ rational } \}$ pseudoindex of X

 r_X and i_X positive integers, and r_X divides i_X .

X smooth complex projective variety

X Fano manifold
$$\iff -K_X$$
 ample.

• $\rho_X = \dim N^1(X) = \dim N_1(X)$ Picard number of X

•
$$r_X = \max\{m \in \mathbb{N} \mid -K_X = mL \ L \in \operatorname{Pic}(X)\}$$
 index of X

• $i_X = \min\{m \in \mathbb{N} \mid -K_X \cdot C = m \ C \text{ rational } \}$ pseudoindex of X

 r_X and i_X positive integers, and r_X divides i_X .

Both are $\leq \dim X + 1$, with equality iff X is the projective space

X smooth complex projective variety

X Fano manifold
$$\iff -K_X$$
 ample.

• $\rho_X = \dim N^1(X) = \dim N_1(X)$ Picard number of X

•
$$r_X = \max\{m \in \mathbb{N} \mid -K_X = mL \ L \in \operatorname{Pic}(X)\}$$
 index of X

• $i_X = \min\{m \in \mathbb{N} \mid -K_X \cdot C = m \mid C \text{ rational } \}$ pseudoindex of X

 r_X and i_X positive integers, and r_X divides i_X .

Both are $\leq \dim X + 1$, with equality iff X is the projective space (by Kobayashi-Ochiai for r_X , and Cho, Miyaoka, Shepherd-Barron and Kebekus for i_X).

X Fano manifold

X Fano manifold

Conjecture (Mukai 1988)

X Fano manifold

Conjecture (Mukai 1988)

Mukai

$$\rho_X(r_X-1) \leq \dim X$$

X Fano manifold

Conjecture (Mukai 1988)

Mukai $ho_X(r_X-1) \leq \dim X$ with equality iff $X \simeq (\mathbb{P}^{r_X-1})^{
ho_X}$

X Fano manifold

Mukai

Conjecture (Mukai 1988)

 $ho_X(r_X-1) \leq \dim X$ with equality iff $X \simeq (\mathbb{P}^{r_X-1})^{
ho_X}$

Generalized by Bonavero, Casagrande, Debarre, Druel (2002)

X Fano manifold

Conjecture (Mukai 1988)

Mukai

 $ho_X(r_X-1) \leq \dim X$ with equality iff $X \simeq (\mathbb{P}^{r_X-1})^{
ho_X}$

Generalized by Bonavero, Casagrande, Debarre, Druel (2002)

Generalized Mukai $ho_X(i_X-1) \leq \dim X$ with equality iff $X \simeq (\mathbb{P}^{i_X-1})^{
ho_X}$

Rational curves, and bounds on the Picard number, of Fano manifolds

3 / 28

1990 Wiśniewski

1990 Wiśniewski

•
$$i_X > \frac{\dim X+2}{2} \Rightarrow \rho_X = 1$$

1990 Wiśniewski

•
$$i_X > \frac{\dim X + 2}{2} \Rightarrow \rho_X = 1$$

• 2002 Bonavero, Casagrande, Debarre, Druel

• 1990 Wiśniewski

•
$$i_X > \frac{\dim X+2}{2} \Rightarrow \rho_X = 1$$

• 2002 Bonavero, Casagrande, Debarre, Druel

• dim X = 4;

• 1990 Wiśniewski

•
$$i_X > \frac{\dim X+2}{2} \Rightarrow \rho_X = 1$$

- 2002 Bonavero, Casagrande, Debarre, Druel
 - dim X = 4;
 - X homogeneous;

• 1990 Wiśniewski

•
$$i_X > \frac{\dim X + 2}{2} \Rightarrow \rho_X = 1$$

- 2002 Bonavero, Casagrande, Debarre, Druel
 - dim X = 4;
 - X homogeneous;
 - X toric and $i_X \ge \frac{\dim X+3}{3}$;

• 1990 Wiśniewski

•
$$i_X > \frac{\dim X + 2}{2} \Rightarrow \rho_X = 1$$

- 2002 Bonavero, Casagrande, Debarre, Druel
 - dim X = 4;
 - X homogeneous;
 - X toric and $i_X \ge \frac{\dim X+3}{3}$;
 - X toric and dim $X \leq 7$.

• 1990 Wiśniewski

•
$$i_X > \frac{\dim X + 2}{2} \Rightarrow \rho_X = 1$$

- 2002 Bonavero, Casagrande, Debarre, Druel
 - dim X = 4;
 - X homogeneous;
 - X toric and $i_X \ge \frac{\dim X+3}{3}$;
 - X toric and dim $X \leq 7$.
- 2003 Andreatta, Chierici, ___

• 1990 Wiśniewski

•
$$i_X > \frac{\dim X+2}{2} \Rightarrow \rho_X = 1$$

- 2002 Bonavero, Casagrande, Debarre, Druel
 - dim X = 4;
 - X homogeneous;
 - X toric and $i_X \ge \frac{\dim X+3}{3}$;
 - X toric and dim $X \leq 7$.
- 2003 Andreatta, Chierici, ____
 - X "special" with $i_X \ge \frac{\dim X+3}{3}$;

• 1990 Wiśniewski

•
$$i_X > \frac{\dim X+2}{2} \Rightarrow \rho_X = 1$$

- 2002 Bonavero, Casagrande, Debarre, Druel
 - dim X = 4;
 - X homogeneous;
 - X toric and $i_X \ge \frac{\dim X+3}{3}$;
 - X toric and dim $X \leq 7$.
- 2003 Andreatta, Chierici, ____
 - X "special" with $i_X \ge \frac{\dim X+3}{3}$;
 - dim X = 5.

• 1990 Wiśniewski

•
$$i_X > \frac{\dim X+2}{2} \Rightarrow \rho_X = 1$$

- 2002 Bonavero, Casagrande, Debarre, Druel
 - dim X = 4;
 - X homogeneous;
 - X toric and $i_X \ge \frac{\dim X+3}{3}$;
 - X toric and dim $X \leq 7$.
- 2003 Andreatta, Chierici, ____
 - X "special" with $i_X \ge \frac{\dim X+3}{3}$;
 - dim X = 5.
- 2004 Casagrande

• 1990 Wiśniewski

•
$$i_X > \frac{\dim X+2}{2} \Rightarrow \rho_X = 1$$

- 2002 Bonavero, Casagrande, Debarre, Druel
 - dim X = 4;
 - X homogeneous;
 - X toric and $i_X \ge \frac{\dim X+3}{3}$;
 - X toric and dim $X \leq 7$.
- 2003 Andreatta, Chierici, ____
 - X "special" with $i_X \ge \frac{\dim X+3}{3}$;
 - dim X = 5.
- 2004 Casagrande
 - X toric

Main theorem

Theorem

X Fano manifold with $i_X \ge (\dim X + 3)/3$.

Main theorem

Theorem

X Fano manifold with $i_X \ge (\dim X + 3)/3$. Then Generalized Mukai conjecture holds for X.

Main theorem

Theorem

X Fano manifold with $i_X \ge (\dim X + 3)/3$. Then Generalized Mukai conjecture holds for X. Moreover X has an elemenary fiber type contraction.

 $\begin{array}{l} \mathsf{Hom}(\mathbb{P}^1,X) \quad \text{scheme parametrizing } f:\mathbb{P}^1\to X \\ \mathsf{Hom}_{\textit{bir}}(\mathbb{P}^1,X)\subset \mathsf{Hom}(\mathbb{P}^1,X) \text{ open subset} \end{array}$

 $\begin{array}{l} \mathsf{Hom}(\mathbb{P}^1,X) \quad \text{scheme parametrizing } f:\mathbb{P}^1\to X\\ \mathsf{Hom}_{bir}(\mathbb{P}^1,X)\subset \mathsf{Hom}(\mathbb{P}^1,X) \text{ open subset} \end{array}$

Ratcurvesⁿ(X) quotient of Homⁿ_{bir}(\mathbb{P}^1 , X) by Aut(\mathbb{P}^1)

 $\begin{array}{ll} \operatorname{Hom}(\mathbb{P}^{1},X) & \text{scheme parametrizing } f:\mathbb{P}^{1}\to X\\ & \operatorname{Hom}_{bir}(\mathbb{P}^{1},X)\subset\operatorname{Hom}(\mathbb{P}^{1},X) \text{ open subset} \end{array}$ Ratcurvesⁿ(X) quotient of $\operatorname{Hom}_{bir}^{n}(\mathbb{P}^{1},X)$ by $\operatorname{Aut}(\mathbb{P}^{1})$ Family of rational curves: $V \subset \operatorname{Ratcurves}^{n}(X)$ irreducible

 $\begin{array}{ll} \operatorname{Hom}(\mathbb{P}^{1},X) & \text{scheme parametrizing } f: \mathbb{P}^{1} \to X \\ & \operatorname{Hom}_{bir}(\mathbb{P}^{1},X) \subset \operatorname{Hom}(\mathbb{P}^{1},X) \text{ open subset} \end{array}$ Ratcurvesⁿ(X) quotient of $\operatorname{Hom}_{bir}^{n}(\mathbb{P}^{1},X)$ by $\operatorname{Aut}(\mathbb{P}^{1})$ Family of rational curves: $V \subset \operatorname{Ratcurves}^{n}(X)$ irreducible

$$\begin{array}{c}
U \xrightarrow{i} X \\
\pi \\
\downarrow \\
V
\end{array}$$

Locus(V) =
$$i(U)$$
, $V_x = \pi(i^{-1}(x))$

• V unsplit if V is proper;

- *V* unsplit if *V* is proper;
- V locally unsplit if V_x is proper for a general x in Locus(V).
- V unsplit if V is proper;
- V locally unsplit if V_x is proper for a general x in Locus(V).

Given a rational curve we will call a family of deformations of the curve any irreducible component of $Ratcurves^n(X)$ containing the point parametrizing the curve.

- V unsplit if V is proper;
- V locally unsplit if V_x is proper for a general x in Locus(V).

Given a rational curve we will call a family of deformations of the curve any irreducible component of $Ratcurves^n(X)$ containing the point parametrizing the curve.

 $L \in Pic(X)$ line bundle, $L \cdot V$ is the intersection number $L \cdot C$, with C parametrized by V.

- V unsplit if V is proper;
- V locally unsplit if V_x is proper for a general x in Locus(V).

Given a rational curve we will call a family of deformations of the curve any irreducible component of $Ratcurves^n(X)$ containing the point parametrizing the curve.

 $L \in Pic(X)$ line bundle, $L \cdot V$ is the intersection number $L \cdot C$, with C parametrized by V.

[V] is the numerical class of a curve parametrized by V.

V locally unsplit family, $x \in Locus(V)$ general.

V locally unsplit family, $x \in Locus(V)$ general.

By Mori's Bend & Break arguments, we have, for every $y \in Locus(V_x)$ that

V locally unsplit family, $x \in Locus(V)$ general.

By Mori's Bend & Break arguments, we have, for every $y \in Locus(V_x)$ that

 $\dim V_{x,y}=0,$

V locally unsplit family, $x \in Locus(V)$ general.

By Mori's Bend & Break arguments, we have, for every $y \in Locus(V_x)$ that

 $\dim V_{x,y}=0,$

This is the key to dimensional estimates, starting from

V locally unsplit family, $x \in Locus(V)$ general.

By Mori's Bend & Break arguments, we have, for every $y \in Locus(V_x)$ that

 $\dim V_{x,y}=0,$

This is the key to dimensional estimates, starting from

Ionescu-Wiśniewski

• dim Locus(V) + dim Locus(V_x) \geq dim X - K_X · V - 1;

V locally unsplit family, $x \in Locus(V)$ general.

By Mori's Bend & Break arguments, we have, for every $y \in Locus(V_x)$ that

$$\dim V_{x,y}=0,$$

This is the key to dimensional estimates, starting from

Ionescu-Wiśniewski

- dim Locus(V) + dim Locus(V_x) \geq dim X K_X · V 1;
- dim Locus $(V_x) \ge -K_X \cdot V 1$.

Lemma

$x \in \text{Locus}(V)$ such that V_x is proper.

Lemma

 $x \in Locus(V)$ such that V_x is proper. Then the numerical class of every curve in $Locus(V_x)$ is proportional to [V].

Lemma

 $x \in \text{Locus}(V)$ such that V_x is proper. Then the numerical class of every curve in $\text{Locus}(V_x)$ is proportional to [V]. We write $N_1(\text{Locus}(V_x), X) = \langle [V] \rangle$.

Lemma

 $x \in \text{Locus}(V)$ such that V_x is proper. Then the numerical class of every curve in $\text{Locus}(V_x)$ is proportional to [V]. We write $N_1(\text{Locus}(V_x), X) = \langle [V] \rangle$.

 $\mathsf{Ratcurves}^n(\mathsf{X}) \to \mathsf{Chow}(\mathsf{X})$

 $\mathsf{Ratcurves}^n(\mathsf{X}) \to \mathsf{Chow}(\mathsf{X})$

 $V \rightsquigarrow \overline{V} = \mathscr{V} \subset \operatorname{Chow}(X)$

Reducible cycles are parametrized by points in $\mathscr{V} \setminus V$

 $\mathsf{Ratcurves}^n(\mathsf{X}) \to \mathsf{Chow}(\mathsf{X})$

 $V \rightsquigarrow \overline{V} = \mathscr{V} \subset \operatorname{Chow}(X)$

Reducible cycles are parametrized by points in $\mathscr{V} \setminus V$

 $\mathsf{Ratcurves}^n(\mathsf{X}) \to \mathsf{Chow}(\mathsf{X})$

 $V \rightsquigarrow \overline{V} = \mathscr{V} \subset \operatorname{Chow}(X)$

Reducible cycles are parametrized by points in $\mathscr{V} \setminus V$

Chow family of rational 1-cycles:

 $\mathcal{W} \subset \text{Chow}(X)$ irreducible, parametrizing rational and connected 1-cycles.

 $\mathsf{Ratcurves}^n(\mathsf{X}) \to \mathsf{Chow}(\mathsf{X})$

 $V \rightsquigarrow \overline{V} = \mathscr{V} \subset \operatorname{Chow}(X)$

Reducible cycles are parametrized by points in $\mathscr{V} \setminus V$

Chow family of rational 1-cycles:

 $\mathscr{W} \subset \operatorname{Chow}(X)$ irreducible, parametrizing rational and connected 1-cycles.

If V is an unsplit family by abuse $V = \mathscr{V}$.

 $\mathsf{Ratcurves}^n(\mathsf{X}) \to \mathsf{Chow}(\mathsf{X})$

 $V \rightsquigarrow \overline{V} = \mathscr{V} \subset \operatorname{Chow}(X)$

Reducible cycles are parametrized by points in $\mathscr{V} \setminus V$

Chow family of rational 1-cycles:

 $\mathscr{W} \subset \operatorname{Chow}(X)$ irreducible, parametrizing rational and connected 1-cycles.

If V is an unsplit family by abuse $V = \mathscr{V}$.

 $\mathsf{Ratcurves}^n(\mathsf{X}) \to \mathsf{Chow}(\mathsf{X})$

Chow family of rational 1-cycles:

nal and connected 1-cycles.

 $V \rightsquigarrow \overline{V} = \mathscr{V} \subset \operatorname{Chow}(X)$

Reducible cycles are parametrized by points in $\mathscr{V} \setminus V$

 $\mathcal{W} \subset \operatorname{Chow}(X)$ irreducible, parametrizing ratio-

If V is an unsplit family by abuse $V = \mathcal{V}$.

If all the irreducible components of reducible cycles are numerically proportional we say that \mathscr{V} is quasi-unsplit.

V family of rational curves, $Y \subset X$ closed.

Rational curves, and bounds on the Picard number, of Fano manifolds

11 / 28

V family of rational curves, $Y \subset X$ closed.

Locus $(V)_Y = \{x \in X \mid \exists C \text{ parametrized by } V \text{ with } C \cap Y \neq \emptyset \text{ and } x \in C \}.$

V family of rational curves, $Y \subset X$ closed.

Locus $(V)_Y = \{x \in X \mid \exists C \text{ parametrized by } V \text{ with } C \cap Y \neq \emptyset \text{ and } x \in C \}.$

V family of rational curves, $Y \subset X$ closed.

Locus $(V)_Y = \{x \in X \mid \exists C \text{ parametrized by } V \text{ with } C \cap Y \neq \emptyset \text{ and } x \in C \}.$

Inductively define Locus $(V^1, \dots, V^k)_Y :=$

V family of rational curves, $Y \subset X$ closed.

Locus $(V)_Y = \{x \in X \mid \exists C \text{ parametrized by } V \text{ with } C \cap Y \neq \emptyset \text{ and } x \in C \}.$

Inductively define $Locus(V^1, \dots, V^k)_Y := Locus(V^2, \dots, V^k)_{Locus(V^1)_Y}.$

V family of rational curves, $Y \subset X$ closed.

Locus $(V)_Y = \{x \in X \mid \exists C \text{ parametrized by } V \text{ with } C \cap Y \neq \emptyset \text{ and } x \in C \}.$

Inductively define $Locus(V^1, \dots, V^k)_Y := Locus(V^2, \dots, V^k)_{Locus(V^1)_Y}.$

V family of rational curves, $Y \subset X$ closed.

Locus $(V)_Y = \{x \in X \mid \exists C \text{ parametrized by } V \text{ with } C \cap Y \neq \emptyset \text{ and } x \in C \}.$

Inductively define $Locus(V^1, \dots, V^k)_Y := Locus(V^2, \dots, V^k)_{Locus(V^1)_Y}.$

Notice that $Locus(V)_x = Locus(V_x)$.

V family of rational curves, $Y \subset X$ closed.

Locus $(V)_Y = \{x \in X \mid \exists C \text{ parametrized by } V \text{ with } C \cap Y \neq \emptyset \text{ and } x \in C \}.$

Inductively define $Locus(V^1,...,V^k)_Y := Locus(V^2,...,V^k)_{Locus(V^1)_Y}.$

Notice that $Locus(V)_x = Locus(V_x)$.

Analogously we define $Locus(\mathscr{W}^1, \ldots, \mathscr{W}^k)_Y$ for Chow families $\mathscr{W}^1, \ldots, \mathscr{W}^k$ of rational 1-cycles.

 V_1, \ldots, V^k families of rational curves, $Y \subset X$.

 V_1, \ldots, V^k families of rational curves, $Y \subset X$. ChLocus_m $(V^1, \ldots, V^k)_Y$ the set of points such that $\exists C_1, \ldots, C_m$ with

 V_1, \ldots, V^k families of rational curves, $Y \subset X$. ChLocus_m $(V^1, \ldots, V^k)_Y$ the set of points such that $\exists C_1, \ldots, C_m$ with

• C_i belongs to a family V^j ;

 V_1, \ldots, V^k families of rational curves, $Y \subset X$. ChLocus_m $(V^1, \ldots, V^k)_Y$ the set of points such that $\exists C_1, \ldots, C_m$ with

- C_i belongs to a family V^j ;
- $C_i \cap C_{i+1} \neq \emptyset$;

 V_1, \ldots, V^k families of rational curves, $Y \subset X$. ChLocus_m $(V^1, \ldots, V^k)_Y$ the set of points such that $\exists C_1, \ldots, C_m$ with

- C_i belongs to a family V^j ;
- $C_i \cap C_{i+1} \neq \emptyset$;
- $C_1 \cap Y \neq \emptyset$ and $x \in C_m$.

 V_1, \ldots, V^k families of rational curves, $Y \subset X$. ChLocus_m $(V^1, \ldots, V^k)_Y$ the set of points such that $\exists C_1, \ldots, C_m$ with

- C_i belongs to a family V^j ;
- $C_i \cap C_{i+1} \neq \emptyset$;
- $C_1 \cap Y \neq \emptyset$ and $x \in C_m$.

 V_1, \ldots, V^k families of rational curves, $Y \subset X$. ChLocus_m $(V^1, \ldots, V^k)_Y$ the set of points such that $\exists C_1, \ldots, C_m$ with

- C_i belongs to a family V^j ;
- $C_i \cap C_{i+1} \neq \emptyset$;
- $C_1 \cap Y \neq \emptyset$ and $x \in C_m$.

Analogously we define $ChLocus_m(\mathcal{W}^1, \ldots, \mathcal{W}^k)_Y$ for Chow families $\mathcal{W}^1, \ldots, \mathcal{W}^k$ of rational 1-cycles.

\mathscr{V} -rational connectedness

 ${\mathscr V}$ Chow family of rational 1-cycles.
\mathscr{V} -rational connectedness

 ${\mathscr V}$ Chow family of rational 1-cycles.

x and y are in $rc(\mathcal{V})$ -relation if there exists a chain of cycles in \mathcal{V} which joins x and y, *i.e.* if $y \in ChLocus_m(\mathcal{V})_x$ for some m.

$\mathscr V$ -rational connectedness

 ${\mathscr V}$ Chow family of rational 1-cycles.

x and y are in $rc(\mathcal{V})$ -relation if there exists a chain of cycles in \mathcal{V} which joins x and y, *i.e.* if $y \in ChLocus_m(\mathcal{V})_x$ for some m.

X is $rc(\mathcal{V})$ -connected if for some m we have $X = ChLocus_m(\mathcal{V})_X$.

$\mathscr V$ -rational connectedness

 ${\mathscr V}$ Chow family of rational 1-cycles.

x and y are in $rc(\mathcal{V})$ -relation if there exists a chain of cycles in \mathcal{V} which joins x and y, *i.e.* if $y \in ChLocus_m(\mathcal{V})_x$ for some m.

X is $rc(\mathcal{V})$ -connected if for some m we have $X = ChLocus_m(\mathcal{V})_X$.

Campana, Kollár-Miyaoka-Mori

There exists an open subvariety $X^0 \subset X$ and a proper morphism with connected fibers $\pi \colon X^0 \to Z^0$ such that

•
$$rc(\mathscr{V})$$
 restricts to an equivalence relation on X^0 ;

•
$$\pi^{-1}(z)$$
 is a rc(\mathscr{V})-equivalence class for every $z \in Z^0$;

•
$$\exists m \text{ s.t. } \forall z \in Z^0 \text{ and } \forall x, y \in \pi^{-1}(z), x \in \text{ChLocus}_m(\mathscr{V})_y$$

${\mathscr V}$ -rational connectedness

 ${\mathscr V}$ Chow family of rational 1-cycles.

x and y are in $rc(\mathcal{V})$ -relation if there exists a chain of cycles in \mathcal{V} which joins x and y, *i.e.* if $y \in ChLocus_m(\mathcal{V})_x$ for some m.

X is $rc(\mathcal{V})$ -connected if for some m we have $X = ChLocus_m(\mathcal{V})_X$.

Campana, Kollár-Miyaoka-Mori

There exists an open subvariety $X^0 \subset X$ and a proper morphism with connected fibers $\pi \colon X^0 \to Z^0$ such that

•
$$rc(\mathscr{V})$$
 restricts to an equivalence relation on X^0 ;

•
$$\pi^{-1}(z)$$
 is a rc(\mathscr{V})-equivalence class for every $z\in Z^0$;

•
$$\exists m \text{ s.t. } \forall z \in Z^0 \text{ and } \forall x, y \in \pi^{-1}(z), x \in \text{ChLocus}_m(\mathscr{V})_v$$

X is $rc(\mathcal{V})$ -connected if and only if dim $Z^0 = 0$.

V family of rational curves, $\mathscr V$ associated Chow family.

Rational curves, and bounds on the Picard number, of Fano manifolds

14 / 28

 $x \in X$ general; there exists m_0 and irreducible components $C_i(x)$ of $ChLocus_i(V)_x$, with $i = 1, ..., m_0$, such that

 $x \in X$ general; there exists m_0 and irreducible components $C_i(x)$ of $ChLocus_i(V)_x$, with $i = 1, ..., m_0$, such that

- $C_i(x) \subset C_{i+1}(x)$,
- $\dim C_i(x) < \dim C_{i+1}(x)$,
- $\overline{C_{m_0}(x)} = X.$

 $x \in X$ general; there exists m_0 and irreducible components $C_i(x)$ of $ChLocus_i(V)_x$, with $i = 1, ..., m_0$, such that

- $C_i(x) \subset C_{i+1}(x)$,
- dim $C_i(x) < \dim C_{i+1}(x)$,
- $\overline{C_{m_0}(x)} = X.$

Numerical equivalence - II

Lemma

 $Y \subset X$ closed, \mathscr{V} Chow family of rational 1-cycles. Every curve contained in $Locus(\mathscr{V})_Y$ is numerically equivalent to a linear combination with rational coefficients of a curve in Y and of irreducible components of cycles parametrized by \mathscr{V} which meet Y.

Numerical equivalence - II

Lemma

 $Y \subset X$ closed, \mathscr{V} Chow family of rational 1-cycles. Every curve contained in $Locus(\mathscr{V})_Y$ is numerically equivalent to a linear combination with rational coefficients of a curve in Y and of irreducible components of cycles parametrized by \mathscr{V} which meet Y.

Corollary

If X is $rc(\mathcal{V}^1, \ldots, \mathcal{V}^k)$ -connected, then $N_1(X)$ is generated by the classes of irreducible components of cycles in $\mathcal{V}^1, \ldots, \mathcal{V}^k$.

Numerical equivalence - II

Lemma

 $Y \subset X$ closed, \mathscr{V} Chow family of rational 1-cycles. Every curve contained in $Locus(\mathscr{V})_Y$ is numerically equivalent to a linear combination with rational coefficients of a curve in Y and of irreducible components of cycles parametrized by \mathscr{V} which meet Y.

Corollary

If X is $\operatorname{rc}(\mathscr{V}^1,\ldots,\mathscr{V}^k)$ -connected, then $N_1(X)$ is generated by the classes of irreducible components of cycles in $\mathscr{V}^1,\ldots,\mathscr{V}^k$. In particular, if $\mathscr{V}^1,\ldots,\mathscr{V}^k$ are quasi-unsplit families, then $\rho_X \leq k$

X Fano manifold, $x \in X$ any point

X Fano manifold, $x \in X$ any point

↓ Mori

There is a rational curve $C \ni x$ with $-K_X \cdot C \leq \dim X + 1$.

X Fano manifold,
$$x \in X$$
 any point

↓ Mori

There is a rational curve $C \ni x$ with $-K_X \cdot C \leq \dim X + 1$.

 $\{V^i \subset \mathsf{Ratcurves}^n(\mathsf{X}) \text{ s.t. } -K_{\mathsf{X}} \cdot V^i \leq \dim \mathsf{X} + 1\}$ is finite

X Fano manifold,
$$x \in X$$
 any point

↓ Mori

There is a rational curve $C \ni x$ with $-K_X \cdot C \leq \dim X + 1$.

$$\{V^i \subset \mathsf{Ratcurves}^\mathsf{n}(\mathsf{X}) \text{ s.t. } -\mathcal{K}_{\mathsf{X}} \cdot V^i \leq \dim \mathsf{X} + 1\} \text{ is finite}$$

there exists *i* s.t. $Locus(V^i)$ dominates X.

X Fano manifold,
$$x \in X$$
 any point
 \Downarrow Mori
There is a rational curve $C \ni x$ with $-K_X \cdot C \le \dim X + 1$.
 $\{V^i \subset \text{Ratcurves}^n(X) \text{ s.t. } -K_X \cdot V^i \le \dim X + 1\}$ is finite
 \Downarrow
there exists *i* s.t. Locus(V^i) dominates *X*.

A family V with this property s.t. $-K_X \cdot V$ is minimal is called a minimal dominating family. Such a family is locally unsplit.

X Fano manifold, $\pi: X^0 \to Z^0$ proper surjective, $z \in Z^0$ general

X Fano manifold, $\pi: X^0 \to Z^0$ proper surjective, $z \in Z^0$ general \Downarrow Kollár, Miyaoka, Mori

There is a rational curve $C \ni x$ with $-K_X \cdot C \leq \dim X + 1$ s.t.

X Fano manifold, $\pi: X^0 \to Z^0$ proper surjective, $z \in Z^0$ general \Downarrow Kollár, Miyaoka, Mori

There is a rational curve $C \ni x$ with $-K_X \cdot C \leq \dim X + 1$ s.t.

• $C \cap \pi^{-1}(z) \neq \emptyset$;

X Fano manifold, $\pi: X^0 \to Z^0$ proper surjective, $z \in Z^0$ general \Downarrow Kollár, Miyaoka, Mori

There is a rational curve $C \ni x$ with $-K_X \cdot C \leq \dim X + 1$ s.t.

- $C \cap \pi^{-1}(z) \neq \emptyset$;
- C is not contained in $\pi^{-1}(z)$.

X Fano manifold, $\pi: X^0 \to Z^0$ proper surjective, $z \in Z^0$ general \Downarrow Kollár, Miyaoka, Mori

There is a rational curve $C \ni x$ with $-K_X \cdot C \leq \dim X + 1$ s.t.

- $C \cap \pi^{-1}(z) \neq \emptyset$;
- C is not contained in $\pi^{-1}(z)$.

$$\{V^i \subset \mathsf{Ratcurves}^\mathsf{n}(\mathsf{X}) ext{ s.t. } -\mathcal{K}_{\mathsf{X}} \cdot V^i \leq \dim \mathsf{X}+1\}$$
 is finite

X Fano manifold, $\pi: X^0 \to Z^0$ proper surjective, $z \in Z^0$ general \Downarrow Kollár, Miyaoka, Mori

There is a rational curve $C \ni x$ with $-K_X \cdot C \leq \dim X + 1$ s.t.

• $C \cap \pi^{-1}(z) \neq \emptyset$;

• C is not contained in $\pi^{-1}(z)$.

X Fano manifold, $\pi: X^0 \to Z^0$ proper surjective, $z \in Z^0$ general \Downarrow Kollár, Miyaoka, Mori

There is a rational curve $C \ni x$ with $-K_X \cdot C \leq \dim X + 1$ s.t.

• $C \cap \pi^{-1}(z) \neq \emptyset$;

• C is not contained in $\pi^{-1}(z)$.

$$\{V^i \subset \mathsf{Ratcurves}^n(\mathsf{X}) \text{ s.t. } -K_{\mathsf{X}} \cdot V^i \leq \dim \mathsf{X} + 1\}$$
 is finite
 \Downarrow
there exists *i* s.t. $\mathsf{Locus}(V^i)$ dominates Z^0 .

A family V with this property s.t. $-K_X \cdot V$ is minimal is called a minimal horizontal dominating family with respect to π .

X Fano manifold, $\pi: X^0 \to Z^0$ proper surjective, $z \in Z^0$ general \Downarrow Kollár, Miyaoka, Mori

There is a rational curve $C \ni x$ with $-K_X \cdot C \leq \dim X + 1$ s.t.

- $C \cap \pi^{-1}(z) \neq \emptyset$;
- C is not contained in $\pi^{-1}(z)$.

$$\{V^i \subset \mathsf{Ratcurves}^n(\mathsf{X}) \text{ s.t. } -K_{\mathsf{X}} \cdot V^i \leq \dim \mathsf{X} + 1\}$$
 is finite
 \Downarrow
there exists *i* s.t. $\mathsf{Locus}(V^i)$ dominates Z^0 .

A family V with this property s.t. $-K_X \cdot V$ is minimal is called a minimal horizontal dominating family with respect to π .

• V is locally unsplit;

X Fano manifold, $\pi: X^0 \to Z^0$ proper surjective, $z \in Z^0$ general \Downarrow Kollár, Miyaoka, Mori

There is a rational curve $C \ni x$ with $-K_X \cdot C \leq \dim X + 1$ s.t.

- $C \cap \pi^{-1}(z) \neq \emptyset$;
- C is not contained in $\pi^{-1}(z)$.

$$\{V^i \subset \mathsf{Ratcurves}^n(\mathsf{X}) \text{ s.t. } -\mathcal{K}_{\mathsf{X}} \cdot V^i \leq \dim \mathsf{X}+1\}$$
 is finite
 \Downarrow
there exists *i* s.t. $\mathsf{Locus}(V^i)$ dominates Z^0 .

A family V with this property s.t. $-K_X \cdot V$ is minimal is called a minimal horizontal dominating family with respect to π .

- V is locally unsplit;
- curves parametrized by V are numerically independent from curves in a general fiber of π .

Sketch of proof

Main theorem

Theorem

X Fano manifold with $i_X \ge (\dim X + 3)/3$.

Sketch of proof

Main theorem

Theorem

X Fano manifold with $i_X \ge (\dim X + 3)/3$. Then Generalized Mukai conjecture holds for X.

Sketch of proof

Main theorem

Theorem

X Fano manifold with $i_X \ge (\dim X + 3)/3$. Then Generalized Mukai conjecture holds for X. Moreover X has an elemenary fiber type contraction.

Rational curves, and bounds on the Picard number, of Fano manifolds

18 / 28

X Fano manifold.

 V^1 minimal dominating family, \mathscr{V}^1 associated Chow family.

X Fano manifold.

 V^1 minimal dominating family, \mathscr{V}^1 associated Chow family.

$$\pi_1: X - \rightarrow Z^1 \quad \operatorname{rc}(\mathscr{V}^1)$$
-fibration.

X Fano manifold.

 V^1 minimal dominating family, \mathscr{V}^1 associated Chow family.

$$\pi_1: X - \rightarrow Z^1 \quad \operatorname{rc}(\mathscr{V}^1)$$
-fibration.

If dim $Z^1 > 0$, V^2 minimal horizontal dominating family wrt π_1 , \mathscr{V}^2 associated Chow family.

X Fano manifold.

 V^1 minimal dominating family, \mathscr{V}^1 associated Chow family.

$$\pi_1: X - \rightarrow Z^1 \quad \operatorname{rc}(\mathscr{V}^1)$$
-fibration.

If dim $Z^1 > 0$, V^2 minimal horizontal dominating family wrt π_1 , \mathscr{V}^2 associated Chow family.

$$\pi_2: X \longrightarrow Z^2 \operatorname{rc}(\mathscr{V}^1, \mathscr{V}^2)$$
-fibration.

X Fano manifold.

 V^1 minimal dominating family, \mathscr{V}^1 associated Chow family.

$$\pi_1: X - \rightarrow Z^1$$
 rc(\mathscr{V}^1)-fibration.

If dim $Z^1 > 0$, V^2 minimal horizontal dominating family wrt π_1 , \mathscr{V}^2 associated Chow family.

$$\pi_2: X \longrightarrow Z^2 \operatorname{rc}(\mathscr{V}^1, \mathscr{V}^2)$$
-fibration.

If dim $Z^2 > 0$, V^3 minimal horizontal dominating family wrt π_2 , \mathscr{V}^3 associated Chow family.

X Fano manifold.

 V^1 minimal dominating family, \mathscr{V}^1 associated Chow family.

$$\pi_1: X - \rightarrow Z^1$$
 rc(\mathscr{V}^1)-fibration.

If dim $Z^1 > 0$, V^2 minimal horizontal dominating family wrt π_1 , \mathscr{V}^2 associated Chow family.

$$\pi_2: X \longrightarrow Z^2 \operatorname{rc}(\mathscr{V}^1, \mathscr{V}^2)$$
-fibration.

.

If dim $Z^2 > 0$, V^3 minimal horizontal dominating family wrt π_2 , \mathscr{V}^3 associated Chow family.

X Fano manifold.

 V^1 minimal dominating family, \mathscr{V}^1 associated Chow family.

$$\pi_1: X - \rightarrow Z^1$$
 rc (\mathscr{V}^1) -fibration.

If dim $Z^1 > 0$, V^2 minimal horizontal dominating family wrt π_1 , \mathscr{V}^2 associated Chow family.

$$\pi_2: X \longrightarrow Z^2 \operatorname{rc}(\mathscr{V}^1, \mathscr{V}^2)$$
-fibration.

If dim $Z^2 > 0$, V^3 minimal horizontal dominating family wrt π_2 , \mathcal{V}^3 associated Chow family.

Since dim $Z^{i+1} < \dim Z^i$, X is $rc(\mathcal{V}^1, \ldots, \mathcal{V}^k)$ -connected for $k \leq \dim X$.

Basic construction

X Fano manifold.

 V^1 minimal dominating family, \mathscr{V}^1 associated Chow family.

$$\pi_1: X - \rightarrow Z^1 \quad \operatorname{rc}(\mathscr{V}^1)$$
-fibration.

If dim $Z^1 > 0$, V^2 minimal horizontal dominating family wrt π_1 , \mathscr{V}^2 associated Chow family.

$$\pi_2: X \longrightarrow Z^2 \operatorname{rc}(\mathscr{V}^1, \mathscr{V}^2)$$
-fibration.

If dim $Z^2 > 0$, V^3 minimal horizontal dominating family wrt π_2 , \mathcal{V}^3 associated Chow family.

Since dim $Z^{i+1} < \dim Z^i$, X is rc $(\mathcal{V}^1, \dots, \mathcal{V}^k)$ -connected for $k \le \dim X$. The families V^1, \dots, V^k are locally unsplit and numerically independent.

X Fano manifold, $i_X \ge 2$, V^1, \ldots, V^k families as in Basic Construction.

Rational curves, and bounds on the Picard number, of Fano manifolds

20 / 28

X Fano manifold, $i_X \ge 2$, V^1, \dots, V^k families as in Basic Construction. Then $\sum_{i=1}^k (-K_X \cdot V^i - 1) \le \dim X.$

X Fano manifold, $i_X \ge 2$, V^1, \dots, V^k families as in Basic Construction. Then $\sum_{i=1}^k (-K_X \cdot V^i - 1) \le \dim X.$ In particular, $k(i_X - 1) \le \dim X$, with equality iff $X = (\mathbb{P}^{i_X - 1})^k$.

X Fano manifold, $i_X \ge 2$, V^1, \dots, V^k families as in Basic Construction. Then $\sum_{i=1}^k (-K_X \cdot V^i - 1) \le \dim X.$ In particular, $k(i_X - 1) \le \dim X$, with equality iff $X = (\mathbb{P}^{i_X - 1})^k$.

In the Basic Construction at the *i*-th step, denoted by x_i a general point in $Locus(V^i)$, the dimension of the quotient drops at least by dim $Locus(V^i)_{x_i}$, which, by lonescu-Wiśniewski inequality is $\geq -K_X \cdot V^i - 1$.

X Fano manifold, $i_X \ge 2$, V^1, \ldots, V^k families as in Basic Construction. Then $\sum_{i=1}^k (-K_X \cdot V^i - 1) \le \dim X.$ In particular, $k(i_X - 1) \le \dim X$, with equality iff $X = (\mathbb{P}^{i_X - 1})^k$.

In the Basic Construction at the *i*-th step, denoted by x_i a general point in $Locus(V^i)$, the dimension of the quotient drops at least by $\dim Locus(V^i)_{x_i}$, which, by lonescu-Wiśniewski inequality is $\geq -K_X \cdot V^i - 1$.

The last assertion follows from

Theorem (_) A smooth complex projective variety X of dimension n is isomorphic to $\mathbb{P}^{n(1)} \times \cdots \times \mathbb{P}^{n(k)}$ iff $\exists V^1, \dots, V^k$ unsplit and covering with $\sum -K_X \cdot V^k = n+k$ such that dim $\langle [V^1], \dots, [V^k] \rangle = k$ in $N_1(X)$.

 V^1, \ldots, V^k families of rational curves as in Basic Construction.

 V^1, \ldots, V^k families of rational curves as in Basic Construction. By the Lemma $k(i_X - 1) \le \dim X$.

 V^1, \ldots, V^k families of rational curves as in Basic Construction.

By the Lemma $k(i_X - 1) \leq \dim X$.

If all the families V^i are unsplit, we have $\rho_X = k$ by the Corollary,

 V^1, \ldots, V^k families of rational curves as in Basic Construction.

By the Lemma $k(i_X - 1) \leq \dim X$.

If all the families V^i are unsplit, we have $\rho_X = k$ by the Corollary, hence $\rho_X(i_X - 1) \leq \dim X$, with equality iff $X = (\mathbb{P}^{i_X - 1})^{\rho_X}$.

 V^1, \ldots, V^k families of rational curves as in Basic Construction.

By the Lemma $k(i_X - 1) \leq \dim X$.

If all the families V^i are unsplit, we have $\rho_X = k$ by the Corollary, hence $\rho_X(i_X - 1) \leq \dim X$, with equality iff $X = (\mathbb{P}^{i_X - 1})^{\rho_X}$.

By the Lemma

$$\sum_{i=1}^k (-K_X \cdot V^i - 1) \leq \dim X.$$

 V^1, \ldots, V^k families of rational curves as in Basic Construction.

By the Lemma $k(i_X - 1) \leq \dim X$.

If all the families V^i are unsplit, we have $\rho_X = k$ by the Corollary, hence $\rho_X(i_X - 1) \leq \dim X$, with equality iff $X = (\mathbb{P}^{i_X - 1})^{\rho_X}$.

By the Lemma

$$\sum_{i=1}^k (-K_X \cdot V^i - 1) \leq \dim X.$$

If for some j the family V^j is not unsplit we have $-K_X \cdot V^j \ge 2i_X$ so this can happen for at most one j and implies k = 1.

Sketch of proof

Assume $V := V^1$ not unsplit and X is $rc(\mathcal{V})$ -connected.

Sketch of proof

Assume $V := V^1$ not unsplit and X is $rc(\mathcal{V})$ -connected.

x a general point;

Sketch of proof

Assume $V := V^1$ not unsplit and X is $rc(\mathcal{V})$ -connected.

x a general point;

 m_0 and $C_i(x)$ for $i = 1, \ldots, m_0$ as before.

Sketch of proof

Assume $V := V^1$ not unsplit and X is $rc(\mathcal{V})$ -connected.

x a general point;

 m_0 and $C_i(x)$ for $i = 1, \ldots, m_0$ as before.

Sketch of proof

Assume $V := V^1$ not unsplit and X is $rc(\mathcal{V})$ -connected.

x a general point;

 m_0 and $C_i(x)$ for $i = 1, \ldots, m_0$ as before.

x general and V minimal

Sketch of proof

Assume $V := V^1$ not unsplit and X is $rc(\mathcal{V})$ -connected.

x a general point;

 m_0 and $C_i(x)$ for $i = 1, \ldots, m_0$ as before.

x general and V minimal \Rightarrow V_x is proper, hence

Sketch of proof

Assume $V := V^1$ not unsplit and X is $rc(\mathcal{V})$ -connected.

x a general point;

 m_0 and $C_i(x)$ for $i = 1, \ldots, m_0$ as before.

x general and V minimal \Rightarrow V_x is proper, hence

 $\overline{C_1(x)} = C_1(x)$ and $N_1(C_1(x), X) = \langle [V] \rangle$

Sketch of proof

Assume $V := V^1$ not unsplit and X is $rc(\mathcal{V})$ -connected.

x a general point;

 m_0 and $C_i(x)$ for $i = 1, \ldots, m_0$ as before.

x general and V minimal \Rightarrow V_x is proper, hence

 $\overline{C_1(x)} = C_1(x)$ and $N_1(C_1(x), X) = \langle [V] \rangle$

By lonescu-Wiśniewski inequality

$$\dim C_1(x) \geq -K_X \cdot V - 1 > 2i_X - 1 \geq \dim X - i_X;$$

Sketch of proof

Assume $V := V^1$ not unsplit and X is $rc(\mathcal{V})$ -connected.

x a general point;

 m_0 and $C_i(x)$ for $i = 1, \ldots, m_0$ as before.

x general and V minimal \Rightarrow V_x is proper, hence

 $\overline{C_1(x)} = C_1(x)$ and $N_1(C_1(x), X) = \langle [V] \rangle$

By lonescu-Wiśniewski inequality

$$\dim C_1(x) \geq -K_X \cdot V - 1 > 2i_X - 1 \geq \dim X - i_X;$$

We can assume $-K_X \cdot V < 3i_X$, otherwise $C_1(x) = X$.

Sketch of proof

 Γ reducible cycle parametrized by \mathscr{V} meeting $C_1(x)$;

Γ reducible cycle parametrized by \mathscr{V} meeting $C_1(x)$; Γ has two irreducible components, γ and $\overline{\gamma}$; assume $\gamma \cap C_1(x) \ni y$.

 Γ reducible cycle parametrized by \mathscr{V} meeting $C_1(x)$; Γ has two irreducible components, γ and $\overline{\gamma}$; assume $\gamma \cap C_1(x) \ni y$.

W family of deformations of γ . W is unsplit, hence

 $N_1(Locus(W)_y, X) = \langle [W] \rangle$

 Γ reducible cycle parametrized by \mathscr{V} meeting $C_1(x)$; Γ has two irreducible components, γ and $\overline{\gamma}$; assume $\gamma \cap C_1(x) \ni y$.

W family of deformations of γ . W is unsplit, hence

$$N_1(Locus(W)_y, X) = \langle [W] \rangle$$

 ${\cal W}$ is not dominating, by the minimality of ${\cal V},$ so by lonescu-Wiśniewski inequality

$$\dim \operatorname{Locus}(W)_{y} \geq -K_{X} \cdot W \geq i_{X}$$

 Γ reducible cycle parametrized by \mathscr{V} meeting $C_1(x)$; Γ has two irreducible components, γ and $\overline{\gamma}$; assume $\gamma \cap C_1(x) \ni y$.

W family of deformations of γ . W is unsplit, hence

$$\mathsf{N}_1(\mathsf{Locus}(W)_y, X) = \langle [W] \rangle$$

 ${\cal W}$ is not dominating, by the minimality of ${\cal V},$ so by lonescu-Wiśniewski inequality

$$\dim \operatorname{Locus}(W)_y \geq -K_X \cdot W \geq i_X$$

It follows that

 Γ reducible cycle parametrized by \mathscr{V} meeting $C_1(x)$; Γ has two irreducible components, γ and $\overline{\gamma}$; assume $\gamma \cap C_1(x) \ni y$.

W family of deformations of γ . W is unsplit, hence

$$N_1(Locus(W)_y, X) = \langle [W] \rangle$$

 ${\cal W}$ is not dominating, by the minimality of ${\cal V},$ so by lonescu-Wiśniewski inequality

$$\dim \operatorname{Locus}(W)_{y} \geq -K_{X} \cdot W \geq i_{X}$$

It follows that

$$\dim C_1(x) \cap \operatorname{Locus}(W)_y > 2i_X + i_X - \dim X \ge 0,$$

 Γ reducible cycle parametrized by \mathscr{V} meeting $C_1(x)$; Γ has two irreducible components, γ and $\overline{\gamma}$; assume $\gamma \cap C_1(x) \ni y$.

W family of deformations of γ . W is unsplit, hence

$$N_1(Locus(W)_y, X) = \langle [W] \rangle$$

 ${\cal W}$ is not dominating, by the minimality of ${\cal V},$ so by lonescu-Wiśniewski inequality

$$\dim \operatorname{Locus}(W)_{y} \geq -K_{X} \cdot W \geq i_{X}$$

It follows that

$$\dim C_1(x) \cap \operatorname{Locus}(W)_{Y} > 2i_X + i_X - \dim X \ge 0,$$

hence [W] and [V] are proportional, hence also $[\overline{\gamma}]$ is proportional to [V].

Every component of every cycle in \mathscr{V} meeting $C_1(x)$ has numerical class proportional to [V], hence,

Every component of every cycle in \mathscr{V} meeting $C_1(x)$ has numerical class proportional to [V], hence,

 $\mathsf{N}_1(\mathsf{Locus}(\mathscr{V})_{C_1(x)}, X) = \langle [V] \rangle.$

Every component of every cycle in \mathscr{V} meeting $C_1(x)$ has numerical class proportional to [V], hence,

$$\mathsf{N}_1(\mathsf{Locus}(\mathscr{V})_{C_1(x)}, X) = \langle [V] \rangle.$$

In particular, since $\overline{C_2(x)} \subseteq \text{Locus}(\mathscr{V})_{C_1(x)}$, we have that

 $\mathsf{N}_1(\overline{C_2(x)},X)=\langle [V]\rangle.$

Every component of every cycle in \mathscr{V} meeting $C_1(x)$ has numerical class proportional to [V], hence,

 $\mathsf{N}_1(\mathsf{Locus}(\mathscr{V})_{C_1(x)}, X) = \langle [V] \rangle.$

In particular, since $\overline{C_2(x)} \subseteq \text{Locus}(\mathscr{V})_{C_1(x)}$, we have that

 $\mathsf{N}_1(\overline{C_2(x)},X) = \langle [V] \rangle.$

Every component of every cycle in \mathscr{V} meeting $C_1(x)$ has numerical class proportional to [V], hence,

 $\mathsf{N}_1(\mathsf{Locus}(\mathscr{V})_{C_1(x)}, X) = \langle [V] \rangle.$

In particular, since $\overline{C_2(x)} \subseteq \text{Locus}(\mathscr{V})_{C_1(x)}$, we have that

$$\mathsf{N}_1(\overline{C_2(x)},X)=\langle [V]\rangle.$$

Iterating the argument we get

Every component of every cycle in \mathscr{V} meeting $C_1(x)$ has numerical class proportional to [V], hence,

 $\mathsf{N}_1(\mathsf{Locus}(\mathscr{V})_{C_1(x)}, X) = \langle [V] \rangle.$

In particular, since $\overline{C_2(x)} \subseteq \text{Locus}(\mathscr{V})_{C_1(x)}$, we have that

$$\mathsf{N}_1(\overline{C_2(x)},X)=\langle [V]\rangle.$$

Iterating the argument we get $N_1(X) = N_1(\overline{C_{m_0}(x)}, X) = \langle [V] \rangle$,

Every component of every cycle in \mathscr{V} meeting $C_1(x)$ has numerical class proportional to [V], hence,

 $\mathsf{N}_1(\mathsf{Locus}(\mathscr{V})_{C_1(x)}, X) = \langle [V] \rangle.$

In particular, since $\overline{C_2(x)} \subseteq \text{Locus}(\mathscr{V})_{C_1(x)}$, we have that

$$\mathsf{N}_1(\overline{C_2(x)},X)=\langle [V]\rangle.$$

Iterating the argument we get $N_1(X) = N_1(\overline{C_{m_0}(x)}, X) = \langle [V] \rangle$, hence $\rho_X = 1$.

Every component of every cycle in \mathscr{V} meeting $C_1(x)$ has numerical class proportional to [V], hence,

 $\mathsf{N}_1(\mathsf{Locus}(\mathscr{V})_{C_1(x)}, X) = \langle [V] \rangle.$

In particular, since $\overline{C_2(x)} \subseteq \text{Locus}(\mathscr{V})_{C_1(x)}$, we have that

$$\mathsf{N}_1(\overline{C_2(x)},X)=\langle [V]\rangle.$$

Iterating the argument we get $N_1(X) = N_1(\overline{C_{m_0}(x)}, X) = \langle [V] \rangle$, hence $\rho_X = 1$.

Sketch of proof

Every component of every cycle in \mathscr{V} meeting $C_1(x)$ has numerical class proportional to [V], hence,

 $\mathsf{N}_1(\mathsf{Locus}(\mathscr{V})_{C_1(x)}, X) = \langle [V] \rangle.$

In particular, since $\overline{C_2(x)} \subseteq \text{Locus}(\mathscr{V})_{C_1(x)}$, we have that

$$\mathsf{N}_1(\overline{C_2(x)},X)=\langle [V]\rangle.$$

Iterating the argument we get $N_1(X) = N_1(\overline{C_{m_0}(x)}, X) = \langle [V] \rangle$, hence $\rho_X = 1$.

dim X = 5. We can confine to $i_X = 2$.

 V^1, \ldots, V^k families of rational curves as in Basic Construction.

dim X = 5. We can confine to $i_X = 2$.

 V^1, \ldots, V^k families of rational curves as in Basic Construction.

By the Lemma $k(i_X - 1) \leq \dim X$.

dim X = 5. We can confine to $i_X = 2$.

 V^1, \ldots, V^k families of rational curves as in Basic Construction.

By the Lemma $k(i_X - 1) \leq \dim X$.

If all the families V^i are unsplit, we have $\rho_X = k$ by the Corollary,

dim X = 5. We can confine to $i_X = 2$.

 V^1, \ldots, V^k families of rational curves as in Basic Construction.

By the Lemma $k(i_X - 1) \leq \dim X$.

If all the families V^i are unsplit, we have $\rho_X = k$ by the Corollary, hence $\rho_X(i_X - 1) \leq \dim X$, with equality iff $X = (\mathbb{P}^{i_X - 1})^{\rho_X}$.

dim X = 5. We can confine to $i_X = 2$.

 V^1, \ldots, V^k families of rational curves as in Basic Construction.

By the Lemma $k(i_X - 1) \leq \dim X$.

If all the families V^i are unsplit, we have $\rho_X = k$ by the Corollary, hence $\rho_X(i_X - 1) \leq \dim X$, with equality iff $X = (\mathbb{P}^{i_X - 1})^{\rho_X}$.

By the Lemma

$$\sum_{i=1}^k (-K_X \cdot V^i - 1) \leq \dim X.$$

dim X = 5. We can confine to $i_X = 2$.

 V^1, \ldots, V^k families of rational curves as in Basic Construction.

By the Lemma $k(i_X - 1) \leq \dim X$.

If all the families V^i are unsplit, we have $\rho_X = k$ by the Corollary, hence $\rho_X(i_X - 1) \leq \dim X$, with equality iff $X = (\mathbb{P}^{i_X - 1})^{\rho_X}$.

By the Lemma

$$\sum_{i=1}^k (-K_X \cdot V^i - 1) \leq \dim X.$$

If for some j the family V^j is not unsplit we have $-K_X \cdot V^j \ge 2i_X$ so this can happen for at most one j.

Sketch of proof

Fivefolds revisited

By the following

By the following

Casagrande

Let X be a Fano manifold with pseudo-index $i_X > 1$. Then one of the following holds:

By the following

Casagrande

Let X be a Fano manifold with pseudo-index $i_X > 1$. Then one of the following holds:

• $i_X = 2$ and there exists a smooth morphism $\varphi : X \to Y$ with fiber \mathbb{P}^1 , where Y is a Fano manifold with $i_Y > 1$;

By the following

Casagrande

Let X be a Fano manifold with pseudo-index $i_X > 1$. Then one of the following holds:

- $i_X = 2$ and there exists a smooth morphism $\varphi : X \to Y$ with fiber \mathbb{P}^1 , where Y is a Fano manifold with $i_Y > 1$;
- 2 for every prime divisor $D \subset X$, we have $N_1(D,X) = N_1(X)$ and...

By the following

Casagrande

Let X be a Fano manifold with pseudo-index $i_X > 1$. Then one of the following holds:

• $i_X = 2$ and there exists a smooth morphism $\varphi : X \to Y$ with fiber \mathbb{P}^1 , where Y is a Fano manifold with $i_Y > 1$;

2 for every prime divisor $D \subset X$, we have $N_1(D,X) = N_1(X)$ and...

it is enough to prove that there is a divisor D in X with dim $N_1(D, X) \le 5$.

Let V^{j} be the not unsplit family in the basic construction;

Let V^j be the not unsplit family in the basic construction; if $k \ge 1$ there is another (unsplit) family V^i such that, for a general $x \in \text{Locus}(V^j)$ we have $\text{Locus}(V^j, V^i)_x$ is not empty.

Let V^j be the not unsplit family in the basic construction; if $k \ge 1$ there is another (unsplit) family V^i such that, for a general $x \in \text{Locus}(V^j)$ we have $\text{Locus}(V^j, V^i)_x$ is not empty.

By (more refined) dimensional estimates

 $\dim \operatorname{Locus}(V^j, V^i)_x \geq 4,$

Let V^j be the not unsplit family in the basic construction; if $k \ge 1$ there is another (unsplit) family V^i such that, for a general $x \in \text{Locus}(V^j)$ we have $\text{Locus}(V^j, V^i)_x$ is not empty.

By (more refined) dimensional estimates

 $\dim \operatorname{Locus}(V^j, V^i)_x \geq 4,$

and moreover

$$\mathsf{N}_1(\mathsf{Locus}(V^j,V^i)_x,X) = \langle [V^i], [V^j] \rangle,$$

Let V^j be the not unsplit family in the basic construction; if $k \ge 1$ there is another (unsplit) family V^i such that, for a general $x \in \text{Locus}(V^j)$ we have $\text{Locus}(V^j, V^i)_x$ is not empty.

By (more refined) dimensional estimates

 $\dim \operatorname{Locus}(V^j, V^i)_x \geq 4,$

and moreover

$$\mathsf{N}_1(\mathsf{Locus}(V^j,V^i)_x,X) = \langle [V^i],[V^j]\rangle,$$
 so $\rho_X = 2.$

Assume that j = k = 1.

Assume that j = k = 1.

Start as in the proof of the main theorem: take x general and consider $C_1(x)$.

Assume that j = k = 1.

Start as in the proof of the main theorem: take x general and consider $C_1(x)$.

Either we are in the same situation or there exists a reducible cycle $\Gamma = \gamma + \overline{\gamma}$ in \mathscr{V}^1 , which meets $C_1(x)$ and whose components are not proportional to $[V^1]$.

Assume that j = k = 1.

Start as in the proof of the main theorem: take x general and consider $C_1(x)$.

Either we are in the same situation or there exists a reducible cycle $\Gamma = \gamma + \overline{\gamma}$ in \mathscr{V}^1 , which meets $C_1(x)$ and whose components are not proportional to $[V^1]$. Assume $\gamma \cap C_1(x) \ni y$.

Assume that j = k = 1.

Start as in the proof of the main theorem: take x general and consider $C_1(x)$.

Either we are in the same situation or there exists a reducible cycle $\Gamma = \gamma + \overline{\gamma}$ in \mathscr{V}^1 , which meets $C_1(x)$ and whose components are not proportional to $[V^1]$. Assume $\gamma \cap C_1(x) \ni y$.

Assume that j = k = 1.

Start as in the proof of the main theorem: take x general and consider $C_1(x)$.

Either we are in the same situation or there exists a reducible cycle $\Gamma = \gamma + \overline{\gamma}$ in \mathscr{V}^1 , which meets $C_1(x)$ and whose components are not proportional to $[V^1]$. Assume $\gamma \cap C_1(x) \ni y$.

W family of deformations of γ ; then

Assume that j = k = 1.

Start as in the proof of the main theorem: take x general and consider $C_1(x)$.

Either we are in the same situation or there exists a reducible cycle $\Gamma = \gamma + \overline{\gamma}$ in \mathscr{V}^1 , which meets $C_1(x)$ and whose components are not proportional to $[V^1]$. Assume $\gamma \cap C_1(x) \ni y$.

W family of deformations of $\gamma;$ then

$$\dim \operatorname{Locus}(V^1,W)_x \geq 4,$$

Assume that j = k = 1.

Start as in the proof of the main theorem: take x general and consider $C_1(x)$.

Either we are in the same situation or there exists a reducible cycle $\Gamma = \gamma + \overline{\gamma}$ in \mathscr{V}^1 , which meets $C_1(x)$ and whose components are not proportional to $[V^1]$. Assume $\gamma \cap C_1(x) \ni y$.

W family of deformations of $\gamma;$ then

$$\dim \operatorname{Locus}(V^1,W)_x \geq 4,$$

and moreover

$$\mathsf{N}_1(\mathsf{Locus}(V^1,W)_x,X) = \langle [V^1],[W] \rangle,$$

Assume that j = k = 1.

Start as in the proof of the main theorem: take x general and consider $C_1(x)$.

Either we are in the same situation or there exists a reducible cycle $\Gamma = \gamma + \overline{\gamma}$ in \mathscr{V}^1 , which meets $C_1(x)$ and whose components are not proportional to $[V^1]$. Assume $\gamma \cap C_1(x) \ni y$.

W family of deformations of $\gamma;$ then

$$\dim \operatorname{Locus}(V^1,W)_x \geq 4,$$

and moreover

$$\mathsf{N}_1(\mathsf{Locus}(V^1,W)_x,X) = \langle [V^1],[W]\rangle,$$

so $\rho_X = 2$.