Rational curves and bounds on the Picard number of Fano manifolds

Gianluca Occhetta
(joint work with Carla Novelli)

Projective Algebraic Geometry in Milano,
June 2009

Fano manifolds

X smooth complex projective variety

Fano manifolds

X smooth complex projective variety
X Fano manifold $\Longleftrightarrow-K_{X}$ ample.

Fano manifolds

X smooth complex projective variety
X Fano manifold $\Longleftrightarrow-K_{X}$ ample.

- $\rho_{X}=\operatorname{dim} N^{1}(X)=\operatorname{dim} N_{1}(X) \quad$ Picard number of X

Fano manifolds

X smooth complex projective variety X Fano manifold $\Longleftrightarrow-K_{X}$ ample.

- $\rho_{X}=\operatorname{dim} N^{1}(X)=\operatorname{dim} N_{1}(X) \quad$ Picard number of X
- $r_{X}=\max \left\{m \in \mathbb{N} \mid-K_{X}=m L \quad L \in \operatorname{Pic}(X)\right\} \quad$ index of X

Fano manifolds

X smooth complex projective variety
X Fano manifold $\Longleftrightarrow-K_{X}$ ample.

- $\rho_{X}=\operatorname{dim} N^{1}(X)=\operatorname{dim} N_{1}(X) \quad$ Picard number of X
- $r_{X}=\max \left\{m \in \mathbb{N} \mid-K_{X}=m L \quad L \in \operatorname{Pic}(X)\right\} \quad$ index of X
- $i_{X}=\min \left\{m \in \mathbb{N} \mid-K_{X} \cdot C=m \quad C\right.$ rational $\} \quad$ pseudoindex of X

Fano manifolds

X smooth complex projective variety
X Fano manifold $\Longleftrightarrow-K_{X}$ ample.

- $\rho_{X}=\operatorname{dim} N^{1}(X)=\operatorname{dim} N_{1}(X) \quad$ Picard number of X
- $r_{X}=\max \left\{m \in \mathbb{N} \mid-K_{X}=m L \quad L \in \operatorname{Pic}(X)\right\} \quad$ index of X
- $i_{X}=\min \left\{m \in \mathbb{N} \mid-K_{X} \cdot C=m \quad C\right.$ rational $\} \quad$ pseudoindex of X
r_{X} and i_{X} positive integers, and r_{X} divides i_{X}.

Fano manifolds

X smooth complex projective variety

$$
X \text { Fano manifold } \Longleftrightarrow-K_{X} \text { ample. }
$$

- $\rho_{X}=\operatorname{dim} N^{1}(X)=\operatorname{dim} N_{1}(X) \quad$ Picard number of X
- $r_{X}=\max \left\{m \in \mathbb{N} \mid-K_{X}=m L \quad L \in \operatorname{Pic}(X)\right\} \quad$ index of X
- $i_{X}=\min \left\{m \in \mathbb{N} \mid-K_{X} \cdot C=m \quad C\right.$ rational $\} \quad$ pseudoindex of X
r_{X} and i_{X} positive integers, and r_{X} divides i_{X}.
Both are $\leq \operatorname{dim} X+1$, with equality iff X is the projective space

Fano manifolds

X smooth complex projective variety

$$
X \text { Fano manifold } \Longleftrightarrow-K_{X} \text { ample. }
$$

- $\rho_{X}=\operatorname{dim} N^{1}(X)=\operatorname{dim} N_{1}(X) \quad$ Picard number of X
- $r_{X}=\max \left\{m \in \mathbb{N} \mid-K_{X}=m L \quad L \in \operatorname{Pic}(X)\right\} \quad$ index of X
- $i_{X}=\min \left\{m \in \mathbb{N} \mid-K_{X} \cdot C=m \quad C\right.$ rational $\} \quad$ pseudoindex of X
r_{X} and i_{X} positive integers, and r_{X} divides i_{X}.
Both are $\leq \operatorname{dim} X+1$, with equality iff X is the projective space (by Kobayashi-Ochiai for r_{X}, and Cho, Miyaoka, Shepherd-Barron and Kebekus for i_{X}).

(Generalized) Mukai conjecture

X Fano manifold

(Generalized) Mukai conjecture

X Fano manifold

Conjecture (Mukai 1988)

(Generalized) Mukai conjecture

X Fano manifold
Conjecture (Mukai 1988)
Mukai

$$
\rho_{X}\left(r_{X}-1\right) \leq \operatorname{dim} X
$$

(Generalized) Mukai conjecture

X Fano manifold
Conjecture (Mukai 1988)
Mukai
$\rho_{X}\left(r_{X}-1\right) \leq \operatorname{dim} X \quad$ with equality iff $X \simeq\left(\mathbb{P}^{r_{X}-1}\right)^{\rho_{X}}$

(Generalized) Mukai conjecture

X Fano manifold
Conjecture (Mukai 1988)

Mukai

$$
\rho_{X}\left(r_{X}-1\right) \leq \operatorname{dim} X \quad \text { with equality iff } X \simeq\left(\mathbb{P}^{r_{X}-1}\right)^{\rho_{X}}
$$

Generalized by Bonavero, Casagrande, Debarre, Druel (2002)

(Generalized) Mukai conjecture

X Fano manifold
Conjecture (Mukai 1988)
Mukai

$$
\rho_{X}\left(r_{X}-1\right) \leq \operatorname{dim} X \quad \text { with equality iff } X \simeq\left(\mathbb{P}^{r_{X}-1}\right)^{\rho_{X}}
$$

Generalized by Bonavero, Casagrande, Debarre, Druel (2002)
Generalized Mukai

$$
\rho_{X}\left(i_{X}-1\right) \leq \operatorname{dim} X \quad \text { with equality iff } X \simeq\left(\mathbb{P}^{i_{X}-1}\right)^{\rho_{X}}
$$

Mukai conjecture - history

- 1990 Wiśniewski

Mukai conjecture - history

- 1990 Wiśniewski
- $i_{X}>\frac{\operatorname{dim} X+2}{2} \Rightarrow \rho_{X}=1$

Mukai conjecture - history

- 1990 Wiśniewski
- $i_{X}>\frac{\operatorname{dim} X+2}{2} \Rightarrow \rho_{X}=1$
- 2002 Bonavero, Casagrande, Debarre, Druel

Mukai conjecture - history

- 1990 Wiśniewski
- $i_{X}>\frac{\operatorname{dim} X+2}{2} \Rightarrow \rho_{X}=1$
- 2002 Bonavero, Casagrande, Debarre, Druel
- $\operatorname{dim} X=4$;

Mukai conjecture - history

- 1990 Wiśniewski
- $i_{X}>\frac{\operatorname{dim} X+2}{2} \Rightarrow \rho_{X}=1$
- 2002 Bonavero, Casagrande, Debarre, Druel
- $\operatorname{dim} X=4$;
- X homogeneous;

Mukai conjecture - history

- 1990 Wiśniewski
- $i_{X}>\frac{\operatorname{dim} X+2}{2} \Rightarrow \rho_{X}=1$
- 2002 Bonavero, Casagrande, Debarre, Druel
- $\operatorname{dim} X=4$;
- X homogeneous;
- X toric and $i_{X} \geq \frac{\operatorname{dim} X+3}{3}$;

Mukai conjecture - history

- 1990 Wiśniewski
- $i_{X}>\frac{\operatorname{dim} X+2}{2} \Rightarrow \rho_{X}=1$
- 2002 Bonavero, Casagrande, Debarre, Druel
- $\operatorname{dim} X=4$;
- X homogeneous;
- X toric and $i_{X} \geq \frac{\operatorname{dim} X+3}{3}$;
- X toric and $\operatorname{dim} X \leq 7$.

Mukai conjecture - history

- 1990 Wiśniewski
- $i_{X}>\frac{\operatorname{dim} X+2}{2} \Rightarrow \rho_{X}=1$
- 2002 Bonavero, Casagrande, Debarre, Druel
- $\operatorname{dim} X=4$;
- X homogeneous;
- X toric and $i_{X} \geq \frac{\operatorname{dim} X+3}{3}$;
- X toric and $\operatorname{dim} X \leq \frac{3}{7}$.
- 2003 Andreatta, Chierici, \qquad

Mukai conjecture - history

- 1990 Wiśniewski
- $i_{X}>\frac{\operatorname{dim} X+2}{2} \Rightarrow \rho_{X}=1$
- 2002 Bonavero, Casagrande, Debarre, Druel
- $\operatorname{dim} X=4$;
- X homogeneous;
- X toric and $i_{X} \geq \frac{\operatorname{dim} X+3}{3}$;
- X toric and $\operatorname{dim} X \leq 7$.
- 2003 Andreatta, Chierici,
- X "special" with $i_{X} \geq \frac{\operatorname{dim} X+3}{3}$;

Mukai conjecture - history

- 1990 Wiśniewski
- $i_{X}>\frac{\operatorname{dim} X+2}{2} \Rightarrow \rho_{X}=1$
- 2002 Bonavero, Casagrande, Debarre, Druel
- $\operatorname{dim} X=4$;
- X homogeneous;
- X toric and $i_{X} \geq \frac{\operatorname{dim} X+3}{3}$;
- X toric and $\operatorname{dim} X \leq \frac{3}{7}$.
- 2003 Andreatta, Chierici,
- X "special" with $i_{X} \geq \frac{\operatorname{dim} X+3}{3}$;
- $\operatorname{dim} X=5$.

Mukai conjecture - history

- 1990 Wiśniewski
- $i_{X}>\frac{\operatorname{dim} X+2}{2} \Rightarrow \rho_{X}=1$
- 2002 Bonavero, Casagrande, Debarre, Druel
- $\operatorname{dim} X=4$;
- X homogeneous;
- X toric and $i_{X} \geq \frac{\operatorname{dim} X+3}{3}$;
- X toric and $\operatorname{dim} X \leq \frac{3}{7}$.
- 2003 Andreatta, Chierici,
- X "special" with $i_{X} \geq \frac{\operatorname{dim} X+3}{3}$;
- $\operatorname{dim} X=5$.
- 2004 Casagrande

Mukai conjecture - history

- 1990 Wiśniewski
- $i_{X}>\frac{\operatorname{dim} X+2}{2} \Rightarrow \rho_{X}=1$
- 2002 Bonavero, Casagrande, Debarre, Druel
- $\operatorname{dim} X=4$;
- X homogeneous;
- X toric and $i_{X} \geq \frac{\operatorname{dim} X+3}{3}$;
- X toric and $\operatorname{dim} X \leq \frac{3}{7}$.
- 2003 Andreatta, Chierici,
- X "special" with $i_{X} \geq \frac{\operatorname{dim} X+3}{3}$;
- $\operatorname{dim} X=5$.
- 2004 Casagrande
- X toric

Main theorem

Theorem

X Fano manifold with $i_{X} \geq(\operatorname{dim} X+3) / 3$.

Main theorem

Theorem

X Fano manifold with $i_{X} \geq(\operatorname{dim} X+3) / 3$.
Then Generalized Mukai conjecture holds for X.

Main theorem

Theorem
X Fano manifold with $i_{X} \geq(\operatorname{dim} X+3) / 3$.
Then Generalized Mukai conjecture holds for X.
Moreover X has an elemenary fiber type contraction.

Families of rational curves

$\operatorname{Hom}\left(\mathbb{P}^{1}, X\right) \quad$ scheme parametrizing $f: \mathbb{P}^{1} \rightarrow X$ $\operatorname{Hom}_{\text {bir }}\left(\mathbb{P}^{1}, X\right) \subset \operatorname{Hom}\left(\mathbb{P}^{1}, X\right)$ open subset

Families of rational curves

$\operatorname{Hom}\left(\mathbb{P}^{1}, X\right) \quad$ scheme parametrizing $f: \mathbb{P}^{1} \rightarrow X$ $\operatorname{Hom}_{b i r}\left(\mathbb{P}^{1}, X\right) \subset \operatorname{Hom}\left(\mathbb{P}^{1}, X\right)$ open subset Ratcurves ${ }^{n}(X)$ quotient of $\operatorname{Hom}_{\text {bir }}^{n}\left(\mathbb{P}^{1}, X\right)$ by $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$

Families of rational curves

$\operatorname{Hom}\left(\mathbb{P}^{1}, X\right) \quad$ scheme parametrizing $f: \mathbb{P}^{1} \rightarrow X$ $\operatorname{Hom}_{b i r}\left(\mathbb{P}^{1}, X\right) \subset \operatorname{Hom}\left(\mathbb{P}^{1}, X\right)$ open subset
Ratcurves ${ }^{\mathrm{n}}(\mathrm{X})$ quotient of $\operatorname{Hom}_{\text {bir }}^{n}\left(\mathbb{P}^{1}, X\right)$ by $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ Family of rational curves: $V \subset$ Ratcurves $^{n}(X)$ irreducible

Families of rational curves

$\operatorname{Hom}\left(\mathbb{P}^{1}, X\right) \quad$ scheme parametrizing $f: \mathbb{P}^{1} \rightarrow X$ $\operatorname{Hom}_{b i r}\left(\mathbb{P}^{1}, X\right) \subset \operatorname{Hom}\left(\mathbb{P}^{1}, X\right)$ open subset
Ratcurves ${ }^{\mathrm{n}}(\mathrm{X})$ quotient of $\operatorname{Hom}_{\text {bir }}^{n}\left(\mathbb{P}^{1}, X\right)$ by $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ Family of rational curves: $V \subset$ Ratcurves $^{n}(X)$ irreducible

$$
\operatorname{Locus}(V)=i(U), V_{x}=\pi\left(i^{-1}(x)\right)
$$

- V unsplit if V is proper;
- V unsplit if V is proper;
- V locally unsplit if V_{x} is proper for a general x in $\operatorname{Locus}(V)$.
- V unsplit if V is proper;
- V locally unsplit if V_{x} is proper for a general x in $\operatorname{Locus}(V)$.

Given a rational curve we will call a family of deformations of the curve any irreducible component of Ratcurves ${ }^{n}(X)$ containing the point parametrizing the curve.

- V unsplit if V is proper;
- V locally unsplit if V_{x} is proper for a general x in $\operatorname{Locus}(V)$.

Given a rational curve we will call a family of deformations of the curve any irreducible component of Ratcurves ${ }^{n}(X)$ containing the point parametrizing the curve.
$L \in \operatorname{Pic}(X)$ line bundle, $L \cdot V$ is the intersection number $L \cdot C$, with C parametrized by V.

- V unsplit if V is proper;
- V locally unsplit if V_{x} is proper for a general x in $\operatorname{Locus}(V)$.

Given a rational curve we will call a family of deformations of the curve any irreducible component of Ratcurves ${ }^{n}(X)$ containing the point parametrizing the curve.
$L \in \operatorname{Pic}(X)$ line bundle, $L \cdot V$ is the intersection number $L \cdot C$, with C parametrized by V.
[V] is the numerical class of a curve parametrized by V.

Dimensional estimates

V locally unsplit family, $x \in \operatorname{Locus}(V)$ general.

Dimensional estimates

V locally unsplit family, $x \in \operatorname{Locus}(V)$ general.
By Mori's Bend \& Break arguments, we have, for every $y \in \operatorname{Locus}\left(V_{x}\right)$ that

Dimensional estimates

V locally unsplit family, $x \in \operatorname{Locus}(V)$ general.
By Mori's Bend \& Break arguments, we have, for every $y \in \operatorname{Locus}\left(V_{x}\right)$ that

$$
\operatorname{dim} V_{x, y}=0
$$

Dimensional estimates

V locally unsplit family, $x \in \operatorname{Locus}(V)$ general.
By Mori's Bend \& Break arguments, we have, for every $y \in \operatorname{Locus}\left(V_{x}\right)$ that

$$
\operatorname{dim} V_{x, y}=0
$$

This is the key to dimensional estimates, starting from

Dimensional estimates

V locally unsplit family, $x \in \operatorname{Locus}(V)$ general.
By Mori's Bend \& Break arguments, we have, for every $y \in \operatorname{Locus}\left(V_{x}\right)$ that

$$
\operatorname{dim} V_{x, y}=0,
$$

This is the key to dimensional estimates, starting from
lonescu-Wiśniewski

- $\operatorname{dim} \operatorname{Locus}(V)+\operatorname{dim} \operatorname{Locus}\left(V_{x}\right) \geq \operatorname{dim} X-K_{X} \cdot V-1$;

Dimensional estimates

V locally unsplit family, $x \in \operatorname{Locus}(V)$ general.
By Mori's Bend \& Break arguments, we have, for every $y \in \operatorname{Locus}\left(V_{x}\right)$ that

$$
\operatorname{dim} V_{x, y}=0,
$$

This is the key to dimensional estimates, starting from
lonescu-Wiśniewski

- $\operatorname{dim} \operatorname{Locus}(V)+\operatorname{dim} \operatorname{Locus}\left(V_{x}\right) \geq \operatorname{dim} X-K_{X} \cdot V-1$;
- $\operatorname{dim} \operatorname{Locus}\left(V_{x}\right) \geq-K_{X} \cdot V-1$.

Numerical equivalence

Lemma
$x \in \operatorname{Locus}(V)$ such that V_{x} is proper.

Numerical equivalence

Lemma

$x \in \operatorname{Locus}(V)$ such that V_{x} is proper. Then the numerical class of every curve in $\operatorname{Locus}\left(V_{x}\right)$ is proportional to [V].

Numerical equivalence

Lemma

$x \in \operatorname{Locus}(V)$ such that V_{x} is proper. Then the numerical class of every curve in $\operatorname{Locus}\left(V_{x}\right)$ is proportional to [V]. We write $\mathrm{N}_{1}\left(\operatorname{Locus}\left(V_{x}\right), X\right)=\langle[V]\rangle$.

Numerical equivalence

Lemma

$x \in \operatorname{Locus}(V)$ such that V_{x} is proper. Then the numerical class of every curve in $\operatorname{Locus}\left(V_{x}\right)$ is proportional to [V]. We write $\mathrm{N}_{1}\left(\operatorname{Locus}\left(V_{x}\right), X\right)=\langle[V]\rangle$.

Families of rational 1-cycles

Ratcurves $^{\mathrm{n}}(\mathrm{X}) \rightarrow \operatorname{Chow}(X)$

Families of rational 1-cycles

Ratcurves $^{\mathrm{n}}(\mathrm{X}) \rightarrow \operatorname{Chow}(X)$

$$
V \rightsquigarrow \bar{V}=\mathscr{V} \subset \operatorname{Chow}(X)
$$

Reducible cycles are parametrized by points in $\mathscr{V} \backslash V$

Families of rational 1-cycles

Ratcurves $^{\mathrm{n}}(\mathrm{X}) \rightarrow \operatorname{Chow}(X)$

$$
V \rightsquigarrow \bar{V}=\mathscr{V} \subset \operatorname{Chow}(X)
$$

Reducible cycles are parametrized by points in $\mathscr{V} \backslash V$

Families of rational 1-cycles

Ratcurves $^{\mathrm{n}}(\mathrm{X}) \rightarrow \operatorname{Chow}(X)$

$$
V \rightsquigarrow \bar{V}=\mathscr{V} \subset \operatorname{Chow}(X)
$$

Reducible cycles are parametrized by points in $\mathscr{V} \backslash V$

Chow family of rational 1-cycles:
$\mathscr{W} \subset \operatorname{Chow}(X)$ irreducible, parametrizing rational and connected 1-cycles.

Families of rational 1-cycles

Ratcurves $^{\mathrm{n}}(\mathrm{X}) \rightarrow \operatorname{Chow}(X)$

$$
V \rightsquigarrow \bar{V}=\mathscr{V} \subset \operatorname{Chow}(X)
$$

Reducible cycles are parametrized by points in $\mathscr{V} \backslash V$

Chow family of rational 1-cycles:
$\mathscr{W} \subset \operatorname{Chow}(X)$ irreducible, parametrizing rational and connected 1-cycles.

If V is an unsplit family by abuse $V=\mathscr{V}$.

Families of rational 1-cycles

Ratcurves $^{\mathrm{n}}(\mathrm{X}) \rightarrow \operatorname{Chow}(X)$

$$
V \rightsquigarrow \bar{V}=\mathscr{V} \subset \operatorname{Chow}(X)
$$

Reducible cycles are parametrized by points in $\mathscr{V} \backslash V$

Chow family of rational 1-cycles:
$\mathscr{W} \subset \operatorname{Chow}(X)$ irreducible, parametrizing rational and connected 1-cycles.

If V is an unsplit family by abuse $V=\mathscr{V}$.

Families of rational 1-cycles

Ratcurves $^{\mathrm{n}}(\mathrm{X}) \rightarrow \operatorname{Chow}(X)$

$$
V \rightsquigarrow \bar{V}=\mathscr{V} \subset \operatorname{Chow}(X)
$$

Reducible cycles are parametrized by points in $\mathscr{V} \backslash V$

Chow family of rational 1-cycles:
$\mathscr{W} \subset \operatorname{Chow}(X)$ irreducible, parametrizing rational and connected 1-cycles.

If V is an unsplit family by abuse $V=\mathscr{V}$.

If all the irreducible components of reducible cycles are numerically proportional we say that \mathscr{V} is quasi-unsplit.

Chains

V family of rational curves, $Y \subset X$ closed.

Chains

V family of rational curves, $Y \subset X$ closed.
$\operatorname{Locus}(V)_{Y}=\{x \in X \mid \exists C$ parametrized by V with $C \cap Y \neq \emptyset$ and $x \in C\}$.

Chains

V family of rational curves, $Y \subset X$ closed.
$\operatorname{Locus}(V)_{Y}=\{x \in X \mid \exists C$ parametrized by V with $C \cap Y \neq \emptyset$ and $x \in C\}$.

Chains

V family of rational curves, $Y \subset X$ closed.
$\operatorname{Locus}(V)_{Y}=\{x \in X \mid \exists C$ parametrized by V with $C \cap Y \neq \emptyset$ and $x \in C\}$.

Inductively define
$\operatorname{Locus}\left(V^{1}, \ldots, V^{k}\right)_{Y}:=$

Chains

V family of rational curves, $Y \subset X$ closed.
$\operatorname{Locus}(V)_{Y}=\{x \in X \mid \exists C$ parametrized by V with $C \cap Y \neq \emptyset$ and $x \in C\}$.

Inductively define
$\operatorname{Locus}\left(V^{1}, \ldots, V^{k}\right)_{Y}:=$
$\operatorname{Locus}\left(V^{2}, \ldots, V^{k}\right)_{\operatorname{Locus}\left(V^{1}\right)_{Y}}$.

Chains

V family of rational curves, $Y \subset X$ closed.
$\operatorname{Locus}(V)_{Y}=\{x \in X \mid \exists C$ parametrized by V with $C \cap Y \neq \emptyset$ and $x \in C\}$.

Inductively define
$\operatorname{Locus}\left(V^{1}, \ldots, V^{k}\right)_{Y}:=$
$\operatorname{Locus}\left(V^{2}, \ldots, V^{k}\right)_{\text {Locus }\left(V^{1}\right)_{\gamma}}$.

Chains

V family of rational curves, $Y \subset X$ closed.
$\operatorname{Locus}(V)_{Y}=\{x \in X \mid \exists C$ parametrized by V with $C \cap Y \neq \emptyset$ and $x \in C\}$.

Inductively define
$\operatorname{Locus}\left(V^{1}, \ldots, V^{k}\right)_{Y}:=$
$\operatorname{Locus}\left(V^{2}, \ldots, V^{k}\right)_{\operatorname{Locus}\left(V^{1}\right)_{Y}}$.

Notice that $\operatorname{Locus}(V)_{x}=\operatorname{Locus}\left(V_{x}\right)$.

Chains

V family of rational curves, $Y \subset X$ closed.
$\operatorname{Locus}(V)_{Y}=\{x \in X \mid \exists C$ parametrized by V with $C \cap Y \neq \emptyset$ and $x \in C\}$.

Inductively define
$\operatorname{Locus}\left(V^{1}, \ldots, V^{k}\right)_{Y}:=$
$\operatorname{Locus}\left(V^{2}, \ldots, V^{k}\right)_{\operatorname{Locus}\left(V^{1}\right)_{Y}}$.

Notice that $\operatorname{Locus}(V)_{x}=\operatorname{Locus}\left(V_{x}\right)$.
Analogously we define $\operatorname{Locus}\left(\mathscr{W}^{1}, \ldots, \mathscr{W}^{k}\right)_{Y}$ for Chow families $\mathscr{W}^{1}, \ldots, \mathscr{W}^{k}$ of rational 1 -cycles.

Chains

V_{1}, \ldots, V^{k} families of rational curves, $Y \subset X$.

Chains

V_{1}, \ldots, V^{k} families of rational curves, $Y \subset X$.
$\operatorname{ChLocus}_{m}\left(V^{1}, \ldots, V^{k}\right)_{Y}$ the set of points such that $\exists C_{1}, \ldots, C_{m}$ with

Chains

V_{1}, \ldots, V^{k} families of rational curves, $Y \subset X$.
$\operatorname{ChLocus}_{m}\left(V^{1}, \ldots, V^{k}\right)_{Y}$ the set of points such that $\exists C_{1}, \ldots, C_{m}$ with

- C_{i} belongs to a family V^{j};

Chains

V_{1}, \ldots, V^{k} families of rational curves, $Y \subset X$.
ChLocus $_{m}\left(V^{1}, \ldots, V^{k}\right)_{Y}$ the set of points such that $\exists C_{1}, \ldots, C_{m}$ with

- C_{i} belongs to a family V^{j};
- $C_{i} \cap C_{i+1} \neq \emptyset$;

Chains

V_{1}, \ldots, V^{k} families of rational curves, $Y \subset X$.
$\operatorname{ChLocus}_{m}\left(V^{1}, \ldots, V^{k}\right)_{Y}$ the set of points such that $\exists C_{1}, \ldots, C_{m}$ with

- C_{i} belongs to a family V^{j};
- $C_{i} \cap C_{i+1} \neq \emptyset$;
- $C_{1} \cap Y \neq \emptyset$ and $x \in C_{m}$.

Chains

V_{1}, \ldots, V^{k} families of rational curves, $Y \subset X$.
$\operatorname{ChLocus}_{m}\left(V^{1}, \ldots, V^{k}\right)_{Y}$ the set of points such that $\exists C_{1}, \ldots, C_{m}$ with

- C_{i} belongs to a family V^{j};
- $C_{i} \cap C_{i+1} \neq \emptyset$;
- $C_{1} \cap Y \neq \emptyset$ and $x \in C_{m}$.

Chains

V_{1}, \ldots, V^{k} families of rational curves, $Y \subset X$.
$\operatorname{ChLocus}_{m}\left(V^{1}, \ldots, V^{k}\right)_{Y}$ the set of points such that $\exists C_{1}, \ldots, C_{m}$ with

- C_{i} belongs to a family V^{j};
- $C_{i} \cap C_{i+1} \neq \emptyset$;
- $C_{1} \cap Y \neq \emptyset$ and $x \in C_{m}$.

Analogously we define $\operatorname{ChLocus}_{m}\left(\mathscr{W}^{1}, \ldots \mathscr{W}^{k}\right)_{Y}$ for Chow families $\mathscr{W}^{1}, \ldots, \mathscr{W}^{k}$ of rational 1 -cycles.

\mathscr{V}-rational connectedness

\mathscr{V} Chow family of rational 1-cycles.

\mathscr{V}-rational connectedness

\mathscr{V} Chow family of rational 1-cycles.
x and y are in $\operatorname{rc}(\mathscr{V})$-relation if there exists a chain of cycles in \mathscr{V} which joins x and y, i.e. if $y \in \operatorname{ChLocus}_{m}(\mathscr{V})_{x}$ for some m.

\mathscr{V}-rational connectedness

\mathscr{V} Chow family of rational 1-cycles.
x and y are in $\operatorname{rc}(\mathscr{V})$-relation if there exists a chain of cycles in \mathscr{V} which joins x and y, i.e. if $y \in \operatorname{ChLocus}_{m}(\mathscr{V})_{x}$ for some m.
X is $r c(\mathscr{V})$-connected if for some m we have $X=\operatorname{ChLocus}_{m}(\mathscr{V})_{x}$.

\mathscr{V}-rational connectedness

\mathscr{V} Chow family of rational 1-cycles.
x and y are in $\operatorname{rc}(\mathscr{V})$-relation if there exists a chain of cycles in \mathscr{V} which joins x and y, i.e. if $y \in \operatorname{ChLocus}_{m}(\mathscr{V})_{x}$ for some m. X is $r c(\mathscr{V})$-connected if for some m we have $X=\operatorname{ChLocus}_{m}(\mathscr{V})_{x}$.

Campana, Kollár-Miyaoka-Mori

There exists an open subvariety $X^{0} \subset X$ and a proper morphism with connected fibers $\pi: X^{0} \rightarrow Z^{0}$ such that

- $\mathrm{rc}(\mathscr{V})$ restricts to an equivalence relation on X^{0};
- $\pi^{-1}(z)$ is a $\mathrm{rc}(\mathscr{V})$-equivalence class for every $z \in Z^{0}$;
- $\exists m$ s.t. $\forall z \in Z^{0}$ and $\forall x, y \in \pi^{-1}(z), x \in \operatorname{ChLocus}_{m}(\mathscr{V})_{y}$

\mathscr{V}-rational connectedness

\mathscr{V} Chow family of rational 1-cycles.
x and y are in $\operatorname{rc}(\mathscr{V})$-relation if there exists a chain of cycles in \mathscr{V} which joins x and y, i.e. if $y \in \operatorname{ChLocus}_{m}(\mathscr{V})_{x}$ for some m. X is $r c(\mathscr{V})$-connected if for some m we have $X=\operatorname{ChLocus}_{m}(\mathscr{V})_{x}$.

Campana, Kollár-Miyaoka-Mori

There exists an open subvariety $X^{0} \subset X$ and a proper morphism with connected fibers $\pi: X^{0} \rightarrow Z^{0}$ such that

- $\mathrm{rc}(\mathscr{V})$ restricts to an equivalence relation on X^{0};
- $\pi^{-1}(z)$ is a $\mathrm{rc}(\mathscr{V})$-equivalence class for every $z \in Z^{0}$;
- $\exists m$ s.t. $\forall z \in Z^{0}$ and $\forall x, y \in \pi^{-1}(z), x \in \operatorname{ChLocus}_{m}(\mathscr{V})_{y}$
X is $\mathrm{rc}(\mathscr{V})$-connected if and only if $\operatorname{dim} Z^{0}=0$.
V family of rational curves, \mathscr{V} associated Chow family.
V family of rational curves, \mathscr{V} associated Chow family. Assume $X \operatorname{rc}(\mathscr{V})$-connected.
V family of rational curves, \mathscr{V} associated Chow family. Assume $X \operatorname{rc}(\mathscr{V})$-connected.
$x \in X$ general; there exists m_{0} and irreducible components $C_{i}(x)$ of ChLocus $_{i}(V)_{x}$, with $i=1, \ldots, m_{0}$, such that
V family of rational curves, \mathscr{V} associated Chow family. Assume $X \operatorname{rc}(\mathscr{V})$-connected.
$x \in X$ general; there exists m_{0} and irreducible components $C_{i}(x)$ of $\operatorname{ChLocus}_{i}(V)_{x}$, with $i=1, \ldots, m_{0}$, such that
- $C_{i}(x) \subset C_{i+1}(x)$,
- $\operatorname{dim} C_{i}(x)<\operatorname{dim} C_{i+1}(x)$,
- $\overline{C_{m_{0}}(x)}=X$.
V family of rational curves, \mathscr{V} associated Chow family. Assume $X \operatorname{rc}(\mathscr{V})$-connected.
$x \in X$ general; there exists m_{0} and irreducible components $C_{i}(x)$ of $\operatorname{ChLocus}_{i}(V)_{x}$, with $i=1, \ldots, m_{0}$, such that
- $C_{i}(x) \subset C_{i+1}(x)$,
- $\operatorname{dim} C_{i}(x)<\operatorname{dim} C_{i+1}(x)$,
- $\overline{C_{m_{0}}(x)}=X$.

Numerical equivalence - II

Lemma

$Y \subset X$ closed, \mathscr{V} Chow family of rational 1-cycles.
Every curve contained in Locus $(\mathscr{V})_{Y}$ is numerically equivalent to a linear combination with rational coefficients of a curve in Y and of irreducible components of cycles parametrized by \mathscr{V} which meet Y.

Numerical equivalence - II

Lemma

$Y \subset X$ closed, \mathscr{V} Chow family of rational 1-cycles. Every curve contained in Locus $(\mathscr{V})_{Y}$ is numerically equivalent to a linear combination with rational coefficients of a curve in Y and of irreducible components of cycles parametrized by \mathscr{V} which meet Y.

Corollary

If X is $\mathrm{rc}\left(\mathscr{V}^{1}, \ldots, \mathscr{V}^{k}\right)$-connected, then $\mathrm{N}_{1}(X)$ is generated by the classes of irreducible components of cycles in $\mathscr{V}^{1}, \ldots, \mathscr{V}^{k}$.

Numerical equivalence - II

Lemma

$Y \subset X$ closed, \mathscr{V} Chow family of rational 1-cycles. Every curve contained in Locus $(\mathscr{V})_{Y}$ is numerically equivalent to a linear combination with rational coefficients of a curve in Y and of irreducible components of cycles parametrized by \mathscr{V} which meet Y.

Corollary

If X is $\mathrm{rc}\left(\mathscr{V}^{1}, \ldots, \mathscr{V}^{k}\right)$-connected, then $\mathrm{N}_{1}(X)$ is generated by the classes of irreducible components of cycles in $\mathscr{V}^{1}, \ldots, \mathscr{V}^{k}$.
In particular, if $\mathscr{V}^{1}, \ldots, \mathscr{V}^{k}$ are quasi-unsplit families, then $\rho_{X} \leq k$

Rational curves on Fano manifolds

X Fano manifold, $\quad x \in X$ any point

Rational curves on Fano manifolds

$$
\begin{gathered}
X \text { Fano manifold, } \quad x \in X \text { any point } \\
\Downarrow \text { Mori }
\end{gathered}
$$

There is a rational curve $C \ni x$ with $-K_{X} \cdot C \leq \operatorname{dim} X+1$.

Rational curves on Fano manifolds

X Fano manifold, $\quad x \in X$ any point

\Downarrow Mori
There is a rational curve $C \ni x$ with $-K_{X} \cdot C \leq \operatorname{dim} X+1$.
$\left\{V^{i} \subset\right.$ Ratcurves $^{n}(X)$ s.t. $\left.-K_{X} \cdot V^{i} \leq \operatorname{dim} X+1\right\}$ is finite

Rational curves on Fano manifolds

X Fano manifold, $\quad x \in X$ any point
\Downarrow Mori
There is a rational curve $C \ni x$ with $-K_{X} \cdot C \leq \operatorname{dim} X+1$.
$\left\{V^{i} \subset\right.$ Ratcurves $^{n}(X)$ s.t. $\left.-K_{X} \cdot V^{i} \leq \operatorname{dim} X+1\right\}$ is finite
\Downarrow
there exists i s.t. $\operatorname{Locus}\left(V^{i}\right)$ dominates X.

Rational curves on Fano manifolds

X Fano manifold, $\quad x \in X$ any point
\Downarrow Mori
There is a rational curve $C \ni x$ with $-K_{X} \cdot C \leq \operatorname{dim} X+1$. $\left\{V^{i} \subset\right.$ Ratcurves $^{n}(X)$ s.t. $\left.-K_{X} \cdot V^{i} \leq \operatorname{dim} X+1\right\}$ is finite \Downarrow there exists i s.t. Locus $\left(V^{i}\right)$ dominates X.

A family V with this property s.t. $-K_{X} \cdot V$ is minimal is called a minimal dominating family. Such a family is locally unsplit.

Rational curves on Fano manifolds

X Fano manifold, $\pi: X^{0} \rightarrow Z^{0}$ proper surjective, $z \in Z^{0}$ general

Rational curves on Fano manifolds

X Fano manifold, $\pi: X^{0} \rightarrow Z^{0}$ proper surjective, $z \in Z^{0}$ general
\Downarrow Kollár, Miyaoka, Mori
There is a rational curve $C \ni x$ with $-K_{X} \cdot C \leq \operatorname{dim} X+1$ s.t.

Rational curves on Fano manifolds

X Fano manifold, $\pi: X^{0} \rightarrow Z^{0}$ proper surjective, $z \in Z^{0}$ general
\Downarrow Kollár, Miyaoka, Mori
There is a rational curve $C \ni x$ with $-K_{X} \cdot C \leq \operatorname{dim} X+1$ s.t.

- $C \cap \pi^{-1}(z) \neq \emptyset$;

Rational curves on Fano manifolds

X Fano manifold, $\pi: X^{0} \rightarrow Z^{0}$ proper surjective, $z \in Z^{0}$ general
\Downarrow Kollár, Miyaoka, Mori
There is a rational curve $C \ni x$ with $-K_{X} \cdot C \leq \operatorname{dim} X+1$ s.t.

- $C \cap \pi^{-1}(z) \neq \emptyset$;
- C is not contained in $\pi^{-1}(z)$.

Rational curves on Fano manifolds

X Fano manifold, $\pi: X^{0} \rightarrow Z^{0}$ proper surjective, $z \in Z^{0}$ general
\Downarrow Kollár, Miyaoka, Mori
There is a rational curve $C \ni x$ with $-K_{X} \cdot C \leq \operatorname{dim} X+1$ s.t.

- $C \cap \pi^{-1}(z) \neq \emptyset$;
- C is not contained in $\pi^{-1}(z)$.

$$
\left\{V^{i} \subset \operatorname{Ratcurves}^{\mathrm{n}}(X) \text { s.t. }-K_{X} \cdot V^{i} \leq \operatorname{dim} X+1\right\} \text { is finite }
$$

Rational curves on Fano manifolds

X Fano manifold, $\pi: X^{0} \rightarrow Z^{0}$ proper surjective, $z \in Z^{0}$ general
\Downarrow Kollár, Miyaoka, Mori
There is a rational curve $C \ni x$ with $-K_{X} \cdot C \leq \operatorname{dim} X+1$ s.t.

- $C \cap \pi^{-1}(z) \neq \emptyset$;
- C is not contained in $\pi^{-1}(z)$.

$$
\begin{gathered}
\left\{V^{i} \subset \operatorname{Ratcurves}^{n}(X) \text { s.t. }-K_{X} \cdot V^{i} \leq \operatorname{dim} X+1\right\} \text { is finite } \\
\Downarrow
\end{gathered}
$$

there exists i s.t. Locus $\left(V^{i}\right)$ dominates Z^{0}.

Rational curves on Fano manifolds

X Fano manifold, $\pi: X^{0} \rightarrow Z^{0}$ proper surjective, $z \in Z^{0}$ general
\Downarrow Kollár, Miyaoka, Mori
There is a rational curve $C \ni x$ with $-K_{X} \cdot C \leq \operatorname{dim} X+1$ s.t.

- $C \cap \pi^{-1}(z) \neq \emptyset$;
- C is not contained in $\pi^{-1}(z)$.

$$
\begin{gathered}
\left\{V^{i} \subset \operatorname{Ratcurves}^{\mathrm{n}}(X) \text { s.t. }-K_{X} \cdot V^{i} \leq \operatorname{dim} X+1\right\} \text { is finite } \\
\Downarrow
\end{gathered}
$$

there exists i s.t. $\operatorname{Locus}\left(V^{i}\right)$ dominates Z^{0}.
A family V with this property s.t. $-K_{X} \cdot V$ is minimal is called a minimal horizontal dominating family with respect to π.

Rational curves on Fano manifolds

X Fano manifold, $\pi: X^{0} \rightarrow Z^{0}$ proper surjective, $z \in Z^{0}$ general
\Downarrow Kollár, Miyaoka, Mori
There is a rational curve $C \ni x$ with $-K_{X} \cdot C \leq \operatorname{dim} X+1$ s.t.

- $C \cap \pi^{-1}(z) \neq \emptyset$;
- C is not contained in $\pi^{-1}(z)$.

$$
\begin{gathered}
\left\{V^{i} \subset \operatorname{Ratcurves}^{\mathrm{n}}(X) \text { s.t. }-K_{X} \cdot V^{i} \leq \operatorname{dim} X+1\right\} \text { is finite } \\
\Downarrow
\end{gathered}
$$

there exists i s.t. $\operatorname{Locus}\left(V^{i}\right)$ dominates Z^{0}.
A family V with this property s.t. $-K_{X} \cdot V$ is minimal is called a minimal horizontal dominating family with respect to π.

- V is locally unsplit;

Rational curves on Fano manifolds

X Fano manifold, $\pi: X^{0} \rightarrow Z^{0}$ proper surjective, $z \in Z^{0}$ general
\Downarrow Kollár, Miyaoka, Mori
There is a rational curve $C \ni x$ with $-K_{X} \cdot C \leq \operatorname{dim} X+1$ s.t.

- $C \cap \pi^{-1}(z) \neq \emptyset$;
- C is not contained in $\pi^{-1}(z)$.

$$
\begin{gathered}
\left\{V^{i} \subset \operatorname{Ratcurves}^{\mathrm{n}}(X) \text { s.t. }-K_{X} \cdot V^{i} \leq \operatorname{dim} X+1\right\} \text { is finite } \\
\Downarrow
\end{gathered}
$$

there exists i s.t. $\operatorname{Locus}\left(V^{i}\right)$ dominates Z^{0}.
A family V with this property s.t. $-K_{X} \cdot V$ is minimal is called a minimal horizontal dominating family with respect to π.

- V is locally unsplit;
- curves parametrized by V are numerically independent from curves in a general fiber of π.

Main theorem

Theorem

X Fano manifold with $i_{X} \geq(\operatorname{dim} X+3) / 3$.

Main theorem

Theorem
X Fano manifold with $i_{X} \geq(\operatorname{dim} X+3) / 3$.
Then Generalized Mukai conjecture holds for X.

Main theorem

Theorem
X Fano manifold with $i_{X} \geq(\operatorname{dim} X+3) / 3$.
Then Generalized Mukai conjecture holds for X.
Moreover X has an elemenary fiber type contraction.

Basic construction

X Fano manifold.
V^{1} minimal dominating family, \mathscr{V}^{1} associated Chow family.

Basic construction

X Fano manifold.
V^{1} minimal dominating family, \mathscr{V}^{1} associated Chow family.

$$
\pi_{1}: X-->Z^{1} \quad \mathrm{rc}\left(\mathscr{V}^{1}\right) \text {-fibration. }
$$

Basic construction

X Fano manifold.
V^{1} minimal dominating family, \mathscr{V}^{1} associated Chow family.

$$
\pi_{1}: X-->Z^{1} \quad r c\left(\mathscr{V}^{1}\right) \text {-fibration. }
$$

If $\operatorname{dim} Z^{1}>0, V^{2}$ minimal horizontal dominating family wrt π_{1}, \mathscr{V}^{2} associated Chow family.

Basic construction

X Fano manifold.
V^{1} minimal dominating family, \mathscr{V}^{1} associated Chow family.

$$
\pi_{1}: X-->Z^{1} \quad r c\left(\mathscr{V}^{1}\right) \text {-fibration. }
$$

If $\operatorname{dim} Z^{1}>0, V^{2}$ minimal horizontal dominating family wrt π_{1}, V^{2} associated Chow family.

$$
\pi_{2}: X-->Z^{2} \quad \mathrm{rc}\left(\mathscr{V}^{1}, \mathscr{V}^{2}\right) \text {-fibration. }
$$

Basic construction

X Fano manifold.
V^{1} minimal dominating family, \mathscr{V}^{1} associated Chow family.

$$
\pi_{1}: X-->Z^{1} \quad r c\left(\mathscr{V}^{1}\right) \text {-fibration. }
$$

If $\operatorname{dim} Z^{1}>0, V^{2}$ minimal horizontal dominating family wrt π_{1}, \mathscr{V}^{2} associated Chow family.

$$
\pi_{2}: X-->Z^{2} \quad \operatorname{rc}\left(\mathscr{V}^{1}, \mathscr{V}^{2}\right) \text {-fibration. }
$$

If $\operatorname{dim} Z^{2}>0, V^{3}$ minimal horizontal dominating family wrt π_{2}, V^{3} associated Chow family.

Basic construction

X Fano manifold.
V^{1} minimal dominating family, \mathscr{V}^{1} associated Chow family.

$$
\pi_{1}: X-->Z^{1} \quad r c\left(\mathscr{V}^{1}\right) \text {-fibration. }
$$

If $\operatorname{dim} Z^{1}>0, V^{2}$ minimal horizontal dominating family wrt π_{1}, \mathscr{V}^{2} associated Chow family.

$$
\pi_{2}: X-->Z^{2} \quad \operatorname{rc}\left(\mathscr{V}^{1}, \mathscr{V}^{2}\right) \text {-fibration. }
$$

If $\operatorname{dim} Z^{2}>0, V^{3}$ minimal horizontal dominating family wrt π_{2}, V^{3} associated Chow family.

Basic construction

X Fano manifold.
V^{1} minimal dominating family, \mathscr{V}^{1} associated Chow family.

$$
\pi_{1}: X-->Z^{1} \quad \mathrm{rc}\left(\mathscr{V}^{1}\right) \text {-fibration. }
$$

If $\operatorname{dim} Z^{1}>0, V^{2}$ minimal horizontal dominating family wrt π_{1}, \mathscr{V}^{2} associated Chow family.

$$
\pi_{2}: X-->Z^{2} \quad \mathrm{rc}\left(\mathscr{V}^{1}, \mathscr{V}^{2}\right) \text {-fibration. }
$$

If $\operatorname{dim} Z^{2}>0, V^{3}$ minimal horizontal dominating family wrt π_{2}, \mathscr{V}^{3} associated Chow family.

Since $\operatorname{dim} Z^{i+1}<\operatorname{dim} Z^{i}, X$ is $r c\left(\mathscr{V}^{1}, \ldots, \mathscr{V}^{k}\right)$-connected for $k \leq \operatorname{dim} X$.

Basic construction

X Fano manifold.
V^{1} minimal dominating family, \mathscr{V}^{1} associated Chow family.

$$
\pi_{1}: X-->Z^{1} \quad r c\left(\mathscr{V}^{1}\right) \text {-fibration. }
$$

If $\operatorname{dim} Z^{1}>0, V^{2}$ minimal horizontal dominating family wrt π_{1}, \mathscr{V}^{2} associated Chow family.

$$
\pi_{2}: X-->Z^{2} \quad \operatorname{rc}\left(\mathscr{V}^{1}, \mathscr{V}^{2}\right) \text {-fibration. }
$$

If $\operatorname{dim} Z^{2}>0, V^{3}$ minimal horizontal dominating family wrt π_{2}, \mathscr{V}^{3} associated Chow family.

Since $\operatorname{dim} Z^{i+1}<\operatorname{dim} Z^{i}, X$ is $r c\left(\mathscr{V}^{1}, \ldots, \mathscr{V}^{k}\right)$-connected for $k \leq \operatorname{dim} X$.
The families V^{1}, \ldots, V^{k} are locally unsplit and numerically independent.

Lemma

X Fano manifold, ix $\geq 2, V^{1}, \ldots, V^{k}$ families as in Basic Construction.

Lemma

X Fano manifold, $i_{X} \geq 2, V^{1}, \ldots, V^{k}$ families as in Basic Construction. Then

$$
\sum_{i=1}^{k}\left(-K_{X} \cdot V^{i}-1\right) \leq \operatorname{dim} X
$$

Lemma

X Fano manifold, $i_{X} \geq 2, V^{1}, \ldots, V^{k}$ families as in Basic Construction. Then

$$
\sum_{i=1}^{k}\left(-K_{X} \cdot V^{i}-1\right) \leq \operatorname{dim} X
$$

In particular, $k\left(i_{X}-1\right) \leq \operatorname{dim} X$, with equality iff $X=\left(\mathbb{P}^{i x-1}\right)^{k}$.

Lemma

X Fano manifold, $i_{x} \geq 2, V^{1}, \ldots, V^{k}$ families as in Basic Construction. Then

$$
\sum_{i=1}^{k}\left(-K_{X} \cdot V^{i}-1\right) \leq \operatorname{dim} X
$$

In particular, $k\left(i_{X}-1\right) \leq \operatorname{dim} X$, with equality iff $X=\left(\mathbb{P}^{i x-1}\right)^{k}$.
In the Basic Construction at the i-th step, denoted by x_{i} a general point in $\operatorname{Locus}\left(V^{i}\right)$, the dimension of the quotient drops at least by dim Locus $\left(V^{i}\right)_{x_{i}}$, which, by lonescu-Wiśniewski inequality is $\geq-K_{X} \cdot V^{i}-1$.

Lemma

X Fano manifold, ix $\geq 2, V^{1}, \ldots, V^{k}$ families as in Basic Construction. Then

$$
\sum_{i=1}^{k}\left(-K_{X} \cdot V^{i}-1\right) \leq \operatorname{dim} X
$$

In particular, $k\left(i_{X}-1\right) \leq \operatorname{dim} X$, with equality iff $X=\left(\mathbb{P}^{i x-1}\right)^{k}$.
In the Basic Construction at the i-th step, denoted by x_{i} a general point in $\operatorname{Locus}\left(V^{i}\right)$, the dimension of the quotient drops at least by dim Locus $\left(V^{i}\right)_{x_{i}}$, which, by lonescu-Wiśniewski inequality is $\geq-K_{X} \cdot V^{i}-1$.

The last assertion follows from

Theorem (_)

A smooth complex projective variety X of dimension n is isomorphic to $\mathbb{P}^{n(1)} \times \cdots \times \mathbb{P}^{n(k)}$ iff $\exists V^{1}, \ldots, V^{k}$ unsplit and covering with $\Sigma-K_{X} \cdot V^{k}=n+k$ such that $\operatorname{dim}\left\langle\left[V^{1}\right], \ldots,\left[V^{k}\right]\right\rangle=k$ in $N_{1}(X)$.

Sketch of proof

V^{1}, \ldots, V^{k} families of rational curves as in Basic Construction.

Sketch of proof

V^{1}, \ldots, V^{k} families of rational curves as in Basic Construction.
By the Lemma $k\left(i_{X}-1\right) \leq \operatorname{dim} X$.

Sketch of proof

V^{1}, \ldots, V^{k} families of rational curves as in Basic Construction.
By the Lemma $k\left(i_{X}-1\right) \leq \operatorname{dim} X$.
If all the families V^{i} are unsplit, we have $\rho_{X}=k$ by the Corollary,

Sketch of proof

V^{1}, \ldots, V^{k} families of rational curves as in Basic Construction.
By the Lemma $k\left(i_{X}-1\right) \leq \operatorname{dim} X$.
If all the families V^{i} are unsplit, we have $\rho_{X}=k$ by the Corollary, hence $\rho_{X}\left(i_{X}-1\right) \leq \operatorname{dim} X$, with equality iff $X=\left(\mathbb{P}^{i x}-1\right)^{\rho_{X}}$.

Sketch of proof

V^{1}, \ldots, V^{k} families of rational curves as in Basic Construction.
By the Lemma $k\left(i_{X}-1\right) \leq \operatorname{dim} X$.
If all the families V^{i} are unsplit, we have $\rho_{X}=k$ by the Corollary, hence $\rho_{X}\left(i_{X}-1\right) \leq \operatorname{dim} X$, with equality iff $X=\left(\mathbb{P}^{i_{X}-1}\right)^{\rho_{X}}$.

By the Lemma

$$
\sum_{i=1}^{k}\left(-K_{X} \cdot V^{i}-1\right) \leq \operatorname{dim} X
$$

Sketch of proof

V^{1}, \ldots, V^{k} families of rational curves as in Basic Construction.
By the Lemma $k\left(i_{X}-1\right) \leq \operatorname{dim} X$.
If all the families V^{i} are unsplit, we have $\rho_{X}=k$ by the Corollary, hence $\rho_{X}\left(i_{X}-1\right) \leq \operatorname{dim} X$, with equality iff $X=\left(\mathbb{P}^{i_{X}-1}\right)^{\rho_{X}}$.
By the Lemma

$$
\sum_{i=1}^{k}\left(-K_{X} \cdot V^{i}-1\right) \leq \operatorname{dim} X
$$

If for some j the family V^{j} is not unsplit we have $-K_{X} \cdot V^{j} \geq 2 i_{X}$ so this can happen for at most one j and implies $k=1$.

Sketch of proof

Assume $V:=V^{1}$ not unsplit and X is $\mathrm{rc}(\mathscr{V})$-connected.

Sketch of proof

Assume $V:=V^{1}$ not unsplit and X is $\mathrm{rc}(\mathscr{V})$-connected.
x a general point;

Sketch of proof

Assume $V:=V^{1}$ not unsplit and X is $\mathrm{rc}(\mathscr{V})$-connected.
x a general point; m_{0} and $C_{i}(x)$ for $i=1, \ldots, m_{0}$ as before.

Sketch of proof

Assume $V:=V^{1}$ not unsplit and X is $\mathrm{rc}(\mathscr{V})$-connected.
x a general point; m_{0} and $C_{i}(x)$ for $i=1, \ldots, m_{0}$ as before.

Sketch of proof

Assume $V:=V^{1}$ not unsplit and X is $\mathrm{rc}(\mathscr{V})$-connected.
x a general point; m_{0} and $C_{i}(x)$ for $i=1, \ldots, m_{0}$ as before.

x general and V minimal

Sketch of proof

Assume $V:=V^{1}$ not unsplit and X is $\mathrm{rc}(\mathscr{V})$-connected.
x a general point; m_{0} and $C_{i}(x)$ for $i=1, \ldots, m_{0}$ as before.

x general and V minimal $\Rightarrow V_{x}$ is proper, hence

Sketch of proof

Assume $V:=V^{1}$ not unsplit and X is $\mathrm{rc}(\mathscr{V})$-connected.
x a general point; m_{0} and $C_{i}(x)$ for $i=1, \ldots, m_{0}$ as before.

x general and V minimal $\Rightarrow V_{x}$ is proper, hence

$$
\overline{C_{1}(x)}=C_{1}(x) \quad \text { and } \quad \mathrm{N}_{1}\left(C_{1}(x), X\right)=\langle[V]\rangle
$$

Sketch of proof

Assume $V:=V^{1}$ not unsplit and X is $\mathrm{rc}(\mathscr{V})$-connected.
x a general point; m_{0} and $C_{i}(x)$ for $i=1, \ldots, m_{0}$ as before.

x general and V minimal $\Rightarrow V_{x}$ is proper, hence

$$
\overline{C_{1}(x)}=C_{1}(x) \quad \text { and } \quad \mathrm{N}_{1}\left(C_{1}(x), X\right)=\langle[V]\rangle
$$

By Ionescu-Wiśniewski inequality

$$
\operatorname{dim} C_{1}(x) \geq-K_{X} \cdot V-1>2 i_{X}-1 \geq \operatorname{dim} X-i_{X}
$$

Sketch of proof

Assume $V:=V^{1}$ not unsplit and X is $\mathrm{rc}(\mathscr{V})$-connected.
x a general point;
m_{0} and $C_{i}(x)$ for $i=1, \ldots, m_{0}$ as before.

x general and V minimal $\Rightarrow V_{x}$ is proper, hence

$$
\overline{C_{1}(x)}=C_{1}(x) \quad \text { and } \quad N_{1}\left(C_{1}(x), X\right)=\langle[V]\rangle
$$

By Ionescu-Wiśniewski inequality

$$
\operatorname{dim} C_{1}(x) \geq-K_{X} \cdot V-1>2 i_{X}-1 \geq \operatorname{dim} X-i_{X}
$$

We can assume $-K_{X} \cdot V<3 i_{X}$, otherwise $C_{1}(x)=X$.

Sketch of proof

Γ reducible cycle parametrized by \mathscr{V} meeting $C_{1}(x)$;

Sketch of proof

Γ reducible cycle parametrized by \mathscr{V} meeting $C_{1}(x)$; Γ has two irreducible components, γ and $\bar{\gamma}$; assume $\gamma \cap C_{1}(x) \ni y$.

Sketch of proof

Γ reducible cycle parametrized by \mathscr{V} meeting $C_{1}(x)$; Γ has two irreducible components, γ and $\bar{\gamma}$; assume $\gamma \cap C_{1}(x) \ni y$.
W family of deformations of $\gamma . W$ is unsplit, hence

$$
\mathrm{N}_{1}\left(\operatorname{Locus}(W)_{y}, X\right)=\langle[W]\rangle
$$

Sketch of proof

Γ reducible cycle parametrized by \mathscr{V} meeting $C_{1}(x)$; Γ has two irreducible components, γ and $\bar{\gamma}$; assume $\gamma \cap C_{1}(x) \ni y$.
W family of deformations of $\gamma . W$ is unsplit, hence

$$
\mathrm{N}_{1}\left(\operatorname{Locus}(W)_{y}, X\right)=\langle[W]\rangle
$$

W is not dominating, by the minimality of V, so by lonescu-Wiśniewski inequality

$$
\operatorname{dim} \operatorname{Locus}(W)_{y} \geq-K_{x} \cdot W \geq i_{x}
$$

Sketch of proof

Γ reducible cycle parametrized by \mathscr{V} meeting $C_{1}(x)$; Γ has two irreducible components, γ and $\bar{\gamma}$; assume $\gamma \cap C_{1}(x) \ni y$.
W family of deformations of $\gamma . W$ is unsplit, hence

$$
\mathrm{N}_{1}\left(\operatorname{Locus}(W)_{y}, X\right)=\langle[W]\rangle
$$

W is not dominating, by the minimality of V, so by lonescu-Wiśniewski inequality

$$
\operatorname{dim} \operatorname{Locus}(W)_{y} \geq-K_{x} \cdot W \geq i_{x}
$$

It follows that

Sketch of proof

Γ reducible cycle parametrized by \mathscr{V} meeting $C_{1}(x)$; Γ has two irreducible components, γ and $\bar{\gamma}$; assume $\gamma \cap C_{1}(x) \ni y$.
W family of deformations of $\gamma . W$ is unsplit, hence

$$
\mathrm{N}_{1}\left(\operatorname{Locus}(W)_{y}, X\right)=\langle[W]\rangle
$$

W is not dominating, by the minimality of V, so by lonescu-Wiśniewski inequality

$$
\operatorname{dim} \operatorname{Locus}(W)_{y} \geq-K_{X} \cdot W \geq i_{X}
$$

It follows that

$$
\operatorname{dim} C_{1}(x) \cap \operatorname{Locus}(W)_{y}>2 i_{X}+i_{X}-\operatorname{dim} X \geq 0,
$$

Sketch of proof

Γ reducible cycle parametrized by \mathscr{V} meeting $C_{1}(x)$; Γ has two irreducible components, γ and $\bar{\gamma}$; assume $\gamma \cap C_{1}(x) \ni y$.
W family of deformations of $\gamma . W$ is unsplit, hence

$$
\mathrm{N}_{1}\left(\operatorname{Locus}(W)_{y}, X\right)=\langle[W]\rangle
$$

W is not dominating, by the minimality of V, so by lonescu-Wiśniewski inequality

$$
\operatorname{dim} \operatorname{Locus}(W)_{y} \geq-K_{x} \cdot W \geq i_{x}
$$

It follows that

$$
\operatorname{dim} C_{1}(x) \cap \operatorname{Locus}(W)_{y}>2 i_{X}+i_{X}-\operatorname{dim} X \geq 0,
$$

hence $[W]$ and $[V]$ are proportional, hence also $[\bar{\gamma}]$ is proportional to $[V]$.

Sketch of proof

Every component of every cycle in \mathscr{V} meeting $C_{1}(x)$ has numerical class proportional to $[V]$, hence,

Sketch of proof

Every component of every cycle in \mathscr{V} meeting $C_{1}(x)$ has numerical class proportional to $[V]$, hence,

$$
\mathrm{N}_{1}\left(\operatorname{Locus}(\mathscr{V})_{C_{1}(x)}, X\right)=\langle[V]\rangle .
$$

Sketch of proof

Every component of every cycle in \mathscr{V} meeting $C_{1}(x)$ has numerical class proportional to $[V]$, hence,

$$
\mathrm{N}_{1}\left(\operatorname{Locus}(\mathscr{V})_{C_{1}(x)}, X\right)=\langle[V]\rangle
$$

In particular, since $\overline{C_{2}(x)} \subseteq \operatorname{Locus}(\mathscr{V})_{C_{1}(x)}$, we have that

$$
\mathrm{N}_{1}\left(\overline{C_{2}(x)}, X\right)=\langle[V]\rangle
$$

Sketch of proof

Every component of every cycle in \mathscr{V} meeting $C_{1}(x)$ has numerical class proportional to $[V]$, hence,

$$
\mathrm{N}_{1}\left(\operatorname{Locus}(\mathscr{V})_{C_{1}(x)}, X\right)=\langle[V]\rangle
$$

In particular, since $\overline{C_{2}(x)} \subseteq \operatorname{Locus}(\mathscr{V})_{C_{1}(x)}$, we have that

$$
\mathrm{N}_{1}\left(\overline{C_{2}(x)}, X\right)=\langle[V]\rangle
$$

Sketch of proof

Every component of every cycle in \mathscr{V} meeting $C_{1}(x)$ has numerical class proportional to $[V]$, hence,

$$
\mathrm{N}_{1}\left(\operatorname{Locus}(\mathscr{V})_{C_{1}(x)}, X\right)=\langle[V]\rangle
$$

In particular, since $\overline{C_{2}(x)} \subseteq \operatorname{Locus}(\mathscr{V})_{C_{1}(x)}$, we have that

$$
\mathrm{N}_{1}\left(\overline{C_{2}(x)}, X\right)=\langle[V]\rangle
$$

Iterating the argument we get

Sketch of proof

Every component of every cycle in \mathscr{V} meeting $C_{1}(x)$ has numerical class proportional to $[V]$, hence,

$$
\mathrm{N}_{1}\left(\operatorname{Locus}(\mathscr{V})_{C_{1}(x)}, X\right)=\langle[V]\rangle
$$

In particular, since $\overline{C_{2}(x)} \subseteq \operatorname{Locus}(\mathscr{V})_{C_{1}(x)}$, we have that

$$
\mathrm{N}_{1}\left(\overline{C_{2}(x)}, X\right)=\langle[V]\rangle
$$

Iterating the argument we get $\mathrm{N}_{1}(X)=\mathrm{N}_{1}\left(\overline{C_{m_{0}}(x)}, X\right)=\langle[V]\rangle$,

Sketch of proof

Every component of every cycle in \mathscr{V} meeting $C_{1}(x)$ has numerical class proportional to $[V]$, hence,

$$
\mathrm{N}_{1}\left(\operatorname{Locus}(\mathscr{V})_{C_{1}(x)}, X\right)=\langle[V]\rangle
$$

In particular, since $\overline{C_{2}(x)} \subseteq \operatorname{Locus}(\mathscr{V})_{C_{1}(x)}$, we have that

$$
\mathrm{N}_{1}\left(\overline{C_{2}(x)}, X\right)=\langle[V]\rangle
$$

Iterating the argument we get $\mathrm{N}_{1}(X)=\mathrm{N}_{1}\left(\overline{C_{m_{0}}(x)}, X\right)=\langle[V]\rangle$, hence $\rho_{X}=1$.

Sketch of proof

Every component of every cycle in \mathscr{V} meeting $C_{1}(x)$ has numerical class proportional to $[V]$, hence,

$$
\mathrm{N}_{1}\left(\operatorname{Locus}(\mathscr{V})_{C_{1}(x)}, X\right)=\langle[V]\rangle
$$

In particular, since $\overline{C_{2}(x)} \subseteq \operatorname{Locus}(\mathscr{V})_{C_{1}(x)}$, we have that

$$
\mathrm{N}_{1}\left(\overline{C_{2}(x)}, X\right)=\langle[V]\rangle
$$

Iterating the argument we get $\mathrm{N}_{1}(X)=\mathrm{N}_{1}\left(\overline{C_{m_{0}}(x)}, X\right)=\langle[V]\rangle$, hence $\rho_{X}=1$.

Sketch of proof

Every component of every cycle in \mathscr{V} meeting $C_{1}(x)$ has numerical class proportional to $[V]$, hence,

$$
\mathrm{N}_{1}\left(\operatorname{Locus}(\mathscr{V})_{C_{1}(x)}, X\right)=\langle[V]\rangle
$$

In particular, since $\overline{C_{2}(x)} \subseteq \operatorname{Locus}(\mathscr{V})_{C_{1}(x)}$, we have that

$$
\mathrm{N}_{1}\left(\overline{C_{2}(x)}, X\right)=\langle[V]\rangle
$$

Iterating the argument we get $\mathrm{N}_{1}(X)=\mathrm{N}_{1}\left(\overline{C_{m_{0}}(x)}, X\right)=\langle[V]\rangle$, hence $\rho_{X}=1$.

Fivefolds revisited

$\operatorname{dim} X=5$. We can confine to $i_{X}=2$.
V^{1}, \ldots, V^{k} families of rational curves as in Basic Construction.

Fivefolds revisited

$\operatorname{dim} X=5$. We can confine to $i_{X}=2$.
V^{1}, \ldots, V^{k} families of rational curves as in Basic Construction. By the Lemma $k\left(i_{X}-1\right) \leq \operatorname{dim} X$.

Fivefolds revisited

$\operatorname{dim} X=5$. We can confine to $i_{X}=2$.
V^{1}, \ldots, V^{k} families of rational curves as in Basic Construction.
By the Lemma $k\left(i_{X}-1\right) \leq \operatorname{dim} X$.
If all the families V^{i} are unsplit, we have $\rho_{X}=k$ by the Corollary,

Fivefolds revisited

$\operatorname{dim} X=5$. We can confine to $i_{X}=2$.
V^{1}, \ldots, V^{k} families of rational curves as in Basic Construction.
By the Lemma $k\left(i_{X}-1\right) \leq \operatorname{dim} X$.
If all the families V^{i} are unsplit, we have $\rho_{X}=k$ by the Corollary, hence $\rho_{X}\left(i_{X}-1\right) \leq \operatorname{dim} X$, with equality iff $X=\left(\mathbb{P}^{i_{X}-1}\right)^{\rho_{X}}$.

Fivefolds revisited

$\operatorname{dim} X=5$. We can confine to $i_{X}=2$.
V^{1}, \ldots, V^{k} families of rational curves as in Basic Construction.
By the Lemma $k\left(i_{X}-1\right) \leq \operatorname{dim} X$.
If all the families V^{i} are unsplit, we have $\rho_{X}=k$ by the Corollary, hence $\rho_{X}\left(i_{X}-1\right) \leq \operatorname{dim} X$, with equality iff $X=\left(\mathbb{P}^{i_{X}-1}\right)^{\rho_{X}}$.

By the Lemma

$$
\sum_{i=1}^{k}\left(-K_{X} \cdot V^{i}-1\right) \leq \operatorname{dim} X
$$

Fivefolds revisited

$\operatorname{dim} X=5$. We can confine to $i_{X}=2$.
V^{1}, \ldots, V^{k} families of rational curves as in Basic Construction.
By the Lemma $k\left(i_{X}-1\right) \leq \operatorname{dim} X$.
If all the families V^{i} are unsplit, we have $\rho_{X}=k$ by the Corollary, hence $\rho_{X}\left(i_{X}-1\right) \leq \operatorname{dim} X$, with equality iff $X=\left(\mathbb{P}^{i_{X}-1}\right)^{\rho_{X}}$.

By the Lemma

$$
\sum_{i=1}^{k}\left(-K_{X} \cdot V^{i}-1\right) \leq \operatorname{dim} X
$$

If for some j the family V^{j} is not unsplit we have $-K_{X} \cdot V^{j} \geq 2 i_{X}$ so this can happen for at most one j.

Fivefolds revisited

By the following

Fivefolds revisited

By the following
Casagrande
Let X be a Fano manifold with pseudo-index $i_{X}>1$. Then one of the following holds:

Fivefolds revisited

By the following

Casagrande

Let X be a Fano manifold with pseudo-index $i_{X}>1$. Then one of the following holds:
(1) $i_{X}=2$ and there exists a smooth morphism $\varphi: X \rightarrow Y$ with fiber \mathbb{P}^{1}, where Y is a Fano manifold with $i_{Y}>1$;

Fivefolds revisited

By the following

Casagrande
Let X be a Fano manifold with pseudo-index $i_{x}>1$. Then one of the following holds:
(1) $i_{X}=2$ and there exists a smooth morphism $\varphi: X \rightarrow Y$ with fiber \mathbb{P}^{1}, where Y is a Fano manifold with $i_{Y}>1$;
(2) for every prime divisor $D \subset X$, we have $\mathrm{N}_{1}(D, X)=\mathrm{N}_{1}(X)$ and...

Fivefolds revisited

By the following
Casagrande
Let X be a Fano manifold with pseudo-index $i_{X}>1$. Then one of the following holds:
(1) $i_{X}=2$ and there exists a smooth morphism $\varphi: X \rightarrow Y$ with fiber \mathbb{P}^{1}, where Y is a Fano manifold with $i_{Y}>1$;
(2) for every prime divisor $D \subset X$, we have $\mathrm{N}_{1}(D, X)=\mathrm{N}_{1}(X)$ and...
it is enough to prove that there is a divisor D in X with $\operatorname{dim} N_{1}(D, X) \leq 5$.

Fivefolds revisited

Let V^{j} be the not unsplit family in the basic construction;

Fivefolds revisited

Let V^{j} be the not unsplit family in the basic construction; if $k \geq 1$ there is another (unsplit) family V^{i} such that, for a general $x \in \operatorname{Locus}\left(V^{j}\right)$ we have $\operatorname{Locus}\left(V^{j}, V^{i}\right)_{x}$ is not empty.

Fivefolds revisited

Let V^{j} be the not unsplit family in the basic construction; if $k \geq 1$ there is another (unsplit) family V^{i} such that, for a general $x \in \operatorname{Locus}\left(V^{j}\right)$ we have $\operatorname{Locus}\left(V^{j}, V^{i}\right)_{x}$ is not empty.

By (more refined) dimensional estimates

$$
\operatorname{dim} \operatorname{Locus}\left(V^{j}, V^{i}\right)_{x} \geq 4
$$

Fivefolds revisited

Let V^{j} be the not unsplit family in the basic construction; if $k \geq 1$ there is another (unsplit) family V^{i} such that, for a general $x \in \operatorname{Locus}\left(V^{j}\right)$ we have $\operatorname{Locus}\left(V^{j}, V^{i}\right)_{x}$ is not empty.

By (more refined) dimensional estimates

$$
\operatorname{dim} \operatorname{Locus}\left(V^{j}, V^{i}\right)_{x} \geq 4
$$

and moreover

$$
\mathrm{N}_{1}\left(\operatorname{Locus}\left(V^{j}, V^{i}\right)_{x}, X\right)=\left\langle\left[V^{i}\right],\left[V^{j}\right]\right\rangle
$$

Fivefolds revisited

Let V^{j} be the not unsplit family in the basic construction; if $k \geq 1$ there is another (unsplit) family V^{i} such that, for a general $x \in \operatorname{Locus}\left(V^{j}\right)$ we have $\operatorname{Locus}\left(V^{j}, V^{i}\right)_{x}$ is not empty.

By (more refined) dimensional estimates

$$
\operatorname{dim} \operatorname{Locus}\left(V^{j}, V^{i}\right)_{x} \geq 4
$$

and moreover

$$
\mathrm{N}_{1}\left(\operatorname{Locus}\left(V^{j}, V^{i}\right)_{x}, X\right)=\left\langle\left[V^{i}\right],\left[V^{j}\right]\right\rangle
$$

so $\rho_{X}=2$.

Fivefolds revisited

Assume that $j=k=1$.

Fivefolds revisited

Assume that $j=k=1$.
Start as in the proof of the main theorem: take x general and consider $C_{1}(x)$.

Fivefolds revisited

Assume that $j=k=1$.
Start as in the proof of the main theorem: take x general and consider $C_{1}(x)$.
Either we are in the same situation or there exists a reducible cycle $\Gamma=\gamma+\bar{\gamma}$ in \mathscr{V}^{1}, which meets $C_{1}(x)$ and whose components are not proportional to $\left[V^{1}\right]$.

Fivefolds revisited

Assume that $j=k=1$.
Start as in the proof of the main theorem: take x general and consider $C_{1}(x)$.

Either we are in the same situation or there exists a reducible cycle $\Gamma=\gamma+\bar{\gamma}$ in \mathscr{V}^{1}, which meets $C_{1}(x)$ and whose components are not proportional to $\left[V^{1}\right]$. Assume $\gamma \cap C_{1}(x) \ni y$.

Fivefolds revisited

Assume that $j=k=1$.
Start as in the proof of the main theorem: take x general and consider $C_{1}(x)$.

Either we are in the same situation or there exists a reducible cycle $\Gamma=\gamma+\bar{\gamma}$ in \mathscr{V}^{1}, which meets $C_{1}(x)$ and whose components are not proportional to $\left[V^{1}\right]$. Assume $\gamma \cap C_{1}(x) \ni y$.

Fivefolds revisited

Assume that $j=k=1$.
Start as in the proof of the main theorem: take x general and consider $C_{1}(x)$.
Either we are in the same situation or there exists a reducible cycle $\Gamma=\gamma+\bar{\gamma}$ in \mathscr{V}^{1}, which meets $C_{1}(x)$ and whose components are not proportional to $\left[V^{1}\right]$. Assume $\gamma \cap C_{1}(x) \ni y$.
W family of deformations of γ; then

Fivefolds revisited

Assume that $j=k=1$.
Start as in the proof of the main theorem: take x general and consider $C_{1}(x)$.
Either we are in the same situation or there exists a reducible cycle $\Gamma=\gamma+\bar{\gamma}$ in \mathscr{V}^{1}, which meets $C_{1}(x)$ and whose components are not proportional to $\left[V^{1}\right]$. Assume $\gamma \cap C_{1}(x) \ni y$.
W family of deformations of γ; then

$$
\operatorname{dim} \operatorname{Locus}\left(V^{1}, W\right)_{x} \geq 4
$$

Fivefolds revisited

Assume that $j=k=1$.
Start as in the proof of the main theorem: take x general and consider $C_{1}(x)$.

Either we are in the same situation or there exists a reducible cycle $\Gamma=\gamma+\bar{\gamma}$ in \mathscr{V}^{1}, which meets $C_{1}(x)$ and whose components are not proportional to $\left[V^{1}\right]$. Assume $\gamma \cap C_{1}(x) \ni y$.
W family of deformations of γ; then

$$
\operatorname{dim} \operatorname{Locus}\left(V^{1}, W\right)_{x} \geq 4
$$

and moreover

$$
\mathrm{N}_{1}\left(\operatorname{Locus}\left(V^{1}, W\right)_{x}, X\right)=\left\langle\left[V^{1}\right],[W]\right\rangle,
$$

Fivefolds revisited

Assume that $j=k=1$.
Start as in the proof of the main theorem: take x general and consider $C_{1}(x)$.

Either we are in the same situation or there exists a reducible cycle $\Gamma=\gamma+\bar{\gamma}$ in \mathscr{V}^{1}, which meets $C_{1}(x)$ and whose components are not proportional to $\left[V^{1}\right]$. Assume $\gamma \cap C_{1}(x) \ni y$.
W family of deformations of γ; then

$$
\operatorname{dim} \operatorname{Locus}\left(V^{1}, W\right)_{x} \geq 4
$$

and moreover

$$
\mathrm{N}_{1}\left(\operatorname{Locus}\left(V^{1}, W\right)_{x}, X\right)=\left\langle\left[V^{1}\right],[W]\right\rangle,
$$

so $\rho_{X}=2$.

