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Introduction Families of rational curves Sketch of proof

Fano manifolds

X smooth complex projective variety

X Fano manifold ⇐⇒ −KX ample.

ρX = dimN1(X ) = dimN1(X ) Picard number of X

rX = max{m ∈ N |−KX = mL L ∈ Pic(X )} index of X

iX = min{m ∈ N |−KX ·C = m C rational } pseudoindex of X

rX and iX positive integers, and rX divides iX .

Both are ≤ dimX +1, with equality iff X is the projective space
(by Kobayashi-Ochiai for rX , and Cho, Miyaoka, Shepherd-Barron
and Kebekus for iX ).
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(Generalized) Mukai conjecture

X Fano manifold

Conjecture (Mukai 1988)

Mukai

ρX (rX −1)≤ dimX with equality iff X ' (PrX−1)ρX

Generalized by Bonavero, Casagrande, Debarre, Druel (2002)

Generalized Mukai

ρX (iX −1)≤ dimX with equality iff X ' (PiX−1)ρX
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Mukai conjecture - history

1990 Wiśniewski

iX > dimX+2
2 ⇒ ρX = 1

2002 Bonavero, Casagrande, Debarre, Druel

dimX = 4;
X homogeneous;
X toric and iX ≥ dimX+3

3 ;
X toric and dimX ≤ 7.

2003 Andreatta, Chierici,

X “special” with iX ≥ dimX+3
3 ;

dimX = 5.

2004 Casagrande

X toric
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Main theorem

Theorem
X Fano manifold with iX ≥ (dimX +3)/3.

Then Generalized Mukai conjecture holds for X .
Moreover X has an elemenary fiber type contraction.
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Families of rational curves

Hom(P1,X ) scheme parametrizing f : P1→ X
Hombir (P1,X )⊂ Hom(P1,X ) open subset

Ratcurvesn(X) quotient of Homn
bir (P1,X ) by Aut(P1)

Family of rational curves: V ⊂ Ratcurvesn(X) irreducible

U

π

��

i // X

V

Locus(V ) = i(U), Vx = π(i−1(x))
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V unsplit if V is proper;

V locally unsplit if Vx is proper for a general x in Locus(V ).

Given a rational curve we will call a family of deformations of the
curve any irreducible component of Ratcurvesn(X) containing the
point parametrizing the curve.

L ∈ Pic(X ) line bundle, L ·V is the intersection number L ·C , with
C parametrized by V .

[V ] is the numerical class of a curve parametrized by V .
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Dimensional estimates

V locally unsplit family, x ∈ Locus(V ) general.

By Mori’s Bend & Break arguments, we have, for every
y ∈ Locus(Vx) that

dimVx ,y = 0,

This is the key to dimensional estimates, starting from

Ionescu-Wiśniewski

dimLocus(V ) +dimLocus(Vx)≥ dimX −KX ·V −1;

dimLocus(Vx)≥−KX ·V −1.
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Numerical equivalence

Lemma
x ∈ Locus(V ) such that Vx is proper.

Then the numerical class of
every curve in Locus(Vx) is proportional to [V ].
We write N1(Locus(Vx),X ) = 〈[V ]〉.
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Families of rational 1-cycles

Ratcurvesn(X)→ Chow(X )

V  V = V ⊂ Chow(X )

Reducible cycles are parametrized
by points in V \V

Chow family of rational 1-cycles:
W ⊂ Chow(X ) irreducible, parametrizing ratio-
nal and connected 1-cycles.

If V is an unsplit family by abuse V = V .

If all the irreducible components of reducible cycles are numerically proportional
we say that V is quasi-unsplit.
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Introduction Families of rational curves Sketch of proof

Chains

V family of rational curves, Y ⊂ X closed.

Locus(V )Y = {x ∈ X | ∃ C parametrized by V
with C ∩Y 6= /0 and x ∈ C}.

Inductively define
Locus(V 1, . . . ,V k)Y :=
Locus(V 2, . . . ,V k)Locus(V 1)Y .

Notice that Locus(V )x = Locus(Vx).

Analogously we define Locus(W 1, . . . ,W k)Y for Chow families
W 1, . . . ,W k of rational 1-cycles.
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Chains

V1, . . . ,V k families of rational curves, Y ⊂ X .

ChLocusm(V 1, . . . ,V k)Y the set of points such that ∃C1, . . . ,Cm
with

Ci belongs to a family V j ;

Ci ∩Ci+1 6= /0;

C1∩Y 6= /0 and x ∈ Cm.

Analogously we define ChLocusm(W 1, . . .W k)Y for Chow families
W 1, . . . ,W k of rational 1-cycles.
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V -rational connectedness

V Chow family of rational 1-cycles.

x and y are in rc(V )-relation if there exists a chain of cycles in V
which joins x and y , i.e. if y ∈ ChLocusm(V )x for some m.

X is rc(V )-connected if for some m we have X = ChLocusm(V )x .

Campana, Kollár-Miyaoka-Mori

There exists an open subvariety X 0 ⊂ X and a proper
morphism with connected fibers π : X 0→ Z 0 such that

rc(V ) restricts to an equivalence relation on X 0;

π−1(z) is a rc(V )-equivalence class for every z ∈ Z 0;

∃m s.t. ∀z ∈ Z 0 and ∀x ,y ∈ π−1(z), x ∈ ChLocusm(V )y

X is rc(V )-connected if and only if dimZ 0 = 0.
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V family of rational curves, V associated Chow family.

Assume X rc(V )-connected.

x ∈ X general; there exists m0 and irreducible components Ci (x) of
ChLocusi (V )x , with i = 1, . . . ,m0, such that

Ci (x)⊂ Ci+1(x),

dimCi (x) < dimCi+1(x),

Cm0(x) = X .
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Numerical equivalence - II

Lemma
Y ⊂ X closed, V Chow family of rational 1-cycles.
Every curve contained in Locus(V )Y is numerically equivalent to a linear
combination with rational coefficients of a curve in Y and of irreducible
components of cycles parametrized by V which meet Y .

Corollary

If X is rc(V 1, . . . ,V k)-connected, then N1(X ) is generated by the classes
of irreducible components of cycles in V 1, . . . ,V k .
In particular, if V 1, . . . ,V k are quasi-unsplit families, then ρX ≤ k
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Rational curves on Fano manifolds

X Fano manifold, x ∈ X any point

⇓ Mori

There is a rational curve C 3 x with −KX ·C ≤ dimX +1.

{V i ⊂ Ratcurvesn(X) s.t. −KX ·V i ≤ dimX +1} is finite

⇓

there exists i s.t. Locus(V i ) dominates X .

A family V with this property s.t. −KX ·V is minimal is called a
minimal dominating family. Such a family is locally unsplit.
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Introduction Families of rational curves Sketch of proof

Rational curves on Fano manifolds
X Fano manifold, π : X 0→ Z0 proper surjective, z ∈ Z0 general

⇓ Kollár, Miyaoka, Mori

There is a rational curve C 3 x with −KX ·C ≤ dimX +1 s.t.

C ∩π−1(z) 6= /0;

C is not contained in π−1(z).

{V i ⊂ Ratcurvesn(X) s.t. −KX ·V i ≤ dimX +1} is finite

⇓
there exists i s.t. Locus(V i ) dominates Z0.

A family V with this property s.t. −KX ·V is minimal is called a minimal
horizontal dominating family with respect to π.

V is locally unsplit;

curves parametrized by V are numerically independent from curves
in a general fiber of π.

17 / 28
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Introduction Families of rational curves Sketch of proof

Main theorem

Theorem
X Fano manifold with iX ≥ (dimX +3)/3.

Then Generalized Mukai conjecture holds for X .
Moreover X has an elemenary fiber type contraction.
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Introduction Families of rational curves Sketch of proof

Basic construction
X Fano manifold.

V 1 minimal dominating family, V 1 associated Chow family.

π1 : X //___ Z 1 rc(V 1)-fibration.

If dimZ 1 > 0, V 2 minimal horizontal dominating family wrt π1,
V 2 associated Chow family.

π2 : X //___ Z 2 rc(V 1,V 2)-fibration.

If dimZ 2 > 0, V 3 minimal horizontal dominating family wrt π2,
V 3 associated Chow family.

. . . . . .

Since dimZ i+1 < dimZ i , X is rc(V 1, . . . ,V k)-connected for k ≤ dimX .

The families V 1, . . . ,V k are locally unsplit and numerically independent.
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Introduction Families of rational curves Sketch of proof

Lemma

X Fano manifold, iX ≥ 2, V 1, . . . ,V k families as in Basic Construction.

Then
k

∑
i=1

(−KX ·V i −1)≤ dimX .

In particular, k(iX −1)≤ dimX, with equality iff X = (PiX−1)k .

In the Basic Construction at the i-th step, denoted by xi a general point in
Locus(V i ), the dimension of the quotient drops at least by dimLocus(V i )xi ,
which, by Ionescu-Wiśniewski inequality is ≥−KX ·V i −1.

The last assertion follows from

Theorem ( )

A smooth complex projective variety X of dimension n is isomorphic to
Pn(1)×·· ·×Pn(k) iff ∃V 1, . . . ,V k unsplit and covering with ∑−KX ·V k = n+k
such that dim〈[V 1], . . . , [V k ]〉= k in N1(X ).
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Introduction Families of rational curves Sketch of proof

Sketch of proof

V 1, . . . ,V k families of rational curves as in Basic Construction.

By the Lemma k(iX −1)≤ dimX .

If all the families V i are unsplit, we have ρX = k by the Corollary,
hence ρX (iX −1)≤ dimX , with equality iff X = (PiX−1)ρX .

By the Lemma
k

∑
i=1

(−KX ·V i −1)≤ dimX .

If for some j the family V j is not unsplit we have −KX ·V j ≥ 2iX
so this can happen for at most one j and implies k = 1.

21 / 28
Rational curves, and bounds on the Picard number, of Fano manifolds



Introduction Families of rational curves Sketch of proof

Sketch of proof

V 1, . . . ,V k families of rational curves as in Basic Construction.

By the Lemma k(iX −1)≤ dimX .

If all the families V i are unsplit, we have ρX = k by the Corollary,
hence ρX (iX −1)≤ dimX , with equality iff X = (PiX−1)ρX .

By the Lemma
k

∑
i=1

(−KX ·V i −1)≤ dimX .

If for some j the family V j is not unsplit we have −KX ·V j ≥ 2iX
so this can happen for at most one j and implies k = 1.

21 / 28
Rational curves, and bounds on the Picard number, of Fano manifolds



Introduction Families of rational curves Sketch of proof

Sketch of proof

V 1, . . . ,V k families of rational curves as in Basic Construction.

By the Lemma k(iX −1)≤ dimX .

If all the families V i are unsplit, we have ρX = k by the Corollary,

hence ρX (iX −1)≤ dimX , with equality iff X = (PiX−1)ρX .

By the Lemma
k

∑
i=1

(−KX ·V i −1)≤ dimX .

If for some j the family V j is not unsplit we have −KX ·V j ≥ 2iX
so this can happen for at most one j and implies k = 1.

21 / 28
Rational curves, and bounds on the Picard number, of Fano manifolds



Introduction Families of rational curves Sketch of proof

Sketch of proof

V 1, . . . ,V k families of rational curves as in Basic Construction.

By the Lemma k(iX −1)≤ dimX .

If all the families V i are unsplit, we have ρX = k by the Corollary,
hence ρX (iX −1)≤ dimX , with equality iff X = (PiX−1)ρX .

By the Lemma
k

∑
i=1

(−KX ·V i −1)≤ dimX .

If for some j the family V j is not unsplit we have −KX ·V j ≥ 2iX
so this can happen for at most one j and implies k = 1.

21 / 28
Rational curves, and bounds on the Picard number, of Fano manifolds



Introduction Families of rational curves Sketch of proof

Sketch of proof

V 1, . . . ,V k families of rational curves as in Basic Construction.

By the Lemma k(iX −1)≤ dimX .

If all the families V i are unsplit, we have ρX = k by the Corollary,
hence ρX (iX −1)≤ dimX , with equality iff X = (PiX−1)ρX .

By the Lemma
k

∑
i=1

(−KX ·V i −1)≤ dimX .

If for some j the family V j is not unsplit we have −KX ·V j ≥ 2iX
so this can happen for at most one j and implies k = 1.

21 / 28
Rational curves, and bounds on the Picard number, of Fano manifolds



Introduction Families of rational curves Sketch of proof

Sketch of proof

V 1, . . . ,V k families of rational curves as in Basic Construction.

By the Lemma k(iX −1)≤ dimX .

If all the families V i are unsplit, we have ρX = k by the Corollary,
hence ρX (iX −1)≤ dimX , with equality iff X = (PiX−1)ρX .

By the Lemma
k

∑
i=1

(−KX ·V i −1)≤ dimX .

If for some j the family V j is not unsplit we have −KX ·V j ≥ 2iX
so this can happen for at most one j and implies k = 1.

21 / 28
Rational curves, and bounds on the Picard number, of Fano manifolds



Introduction Families of rational curves Sketch of proof

Sketch of proof
Assume V := V 1 not unsplit and X is rc(V )-connected.

x a general point;

m0 and Ci (x) for i = 1, . . . ,m0 as before.

x general and V minimal ⇒ Vx is proper, hence

C1(x) = C1(x) and N1(C1(x),X ) = 〈[V ]〉

By Ionescu-Wiśniewski inequality

dimC1(x)≥−KX ·V −1 > 2iX −1≥ dimX − iX ;

We can assume −KX ·V < 3iX , otherwise C1(x) = X .
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Sketch of proof

Γ reducible cycle parametrized by V meeting C1(x);

Γ has two irreducible
components, γ and γ; assume γ ∩C1(x) 3 y .

W family of deformations of γ. W is unsplit, hence

N1(Locus(W )y ,X ) = 〈[W ]〉

W is not dominating, by the minimality of V , so by Ionescu-Wiśniewski
inequality

dimLocus(W )y ≥−KX ·W ≥ iX

It follows that

dimC1(x)∩Locus(W )y > 2iX + iX −dimX ≥ 0,

hence [W ] and [V ] are proportional, hence also [γ̄] is proportional to [V ].
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Sketch of proof

Every component of every cycle in V meeting C1(x) has numerical
class proportional to [V ], hence,

N1(Locus(V )C1(x),X ) = 〈[V ]〉.

In particular, since C2(x)⊆ Locus(V )C1(x), we have that

N1(C2(x),X ) = 〈[V ]〉.

Iterating the argument we get

N1(X ) = N1(Cm0(x),X ) = 〈[V ]〉,

hence ρX = 1.
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Fivefolds revisited

dimX = 5. We can confine to iX = 2.

V 1, . . . ,V k families of rational curves as in Basic Construction.

By the Lemma k(iX −1)≤ dimX .

If all the families V i are unsplit, we have ρX = k by the Corollary,
hence ρX (iX −1)≤ dimX , with equality iff X = (PiX−1)ρX .

By the Lemma
k

∑
i=1

(−KX ·V i −1)≤ dimX .

If for some j the family V j is not unsplit we have −KX ·V j ≥ 2iX
so this can happen for at most one j .
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Fivefolds revisited

By the following

Casagrande
Let X be a Fano manifold with pseudo-index iX > 1. Then one of
the following holds:

1 iX = 2 and there exists a smooth morphism ϕ : X → Y with fiber
P1, where Y is a Fano manifold with iY > 1;

2 for every prime divisor D ⊂ X , we have N1(D,X ) = N1(X ) and. . .

it is enough to prove that there is a divisor D in X with
dimN1(D,X )≤ 5.
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Fivefolds revisited

Let V j be the not unsplit family in the basic construction;

if k ≥ 1
there is another (unsplit) family V i such that, for a general
x ∈ Locus(V j) we have Locus(V j ,V i )x is not empty.

By (more refined) dimensional estimates

dimLocus(V j ,V i )x ≥ 4,

and moreover

N1(Locus(V j ,V i )x ,X ) = 〈[V i ], [V j ]〉,

so ρX = 2.
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Fivefolds revisited
Assume that j = k = 1.

Start as in the proof of the main theorem: take x general and
consider C1(x).

Either we are in the same situation or there exists a reducible cycle
Γ = γ + γ in V 1, which meets C1(x) and whose components are not
proportional to [V 1]. Assume γ ∩C1(x) 3 y .

W family of deformations of γ ; then

dimLocus(V 1,W )x ≥ 4,

and moreover

N1(Locus(V 1,W )x ,X ) = 〈[V 1], [W ]〉,

so ρX = 2.
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