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X smooth complex projective variety

X Fano manifold <= —Kx ample.

@ px =dimN*(X)=dimNy(X) Picard number of X

@ rx=max{meN |—-Kx=mL LePic(X)} index of X

@ ix=min{meN |-Kx-C=m C rational }  pseudoindex of X
rx and ix positive integers, and rx divides ix.

Both are < dim X + 1, with equality iff X is the projective space
(by Kobayashi-Ochiai for rx, and Cho, Miyaoka, Shepherd-Barron
and Kebekus for ix).
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Hom(P!,X) scheme parametrizing f : P! — X
Homp,; (P, X) C Hom (P!, X) open subset

Ratcurves"(X) quotient of Hom{, (P!, X) by Aut(P!)

Family of rational curves: V C Ratcurves"(X) irreducible

Locus(V) = i(U), Vi = n(i"}(x))
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Given a rational curve we will call a family of deformations of the
curve any irreducible component of Ratcurves"(X) containing the
point parametrizing the curve.

L € Pic(X) line bundle, L-V is the intersection number L- C, with
C parametrized by V.

[V] is the numerical class of a curve parametrized by V.
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Ratcurves"(X) — Chow(X) < >>>>>><

V ~s V=7 C Chow(X)

Reducible cycles are parametrized Nﬂ
by points in ¥\ V

Chow family of rational 1-cycles:
# C Chow(X) irreducible, parametrizing ratio-

nal and connected 1-cycles.

If V is an unsplit family by abuse V =¥, @

If all the irreducible components of reducible cycles are numerically proportional

we say that ¥ is quasi-unsplit.
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V family of rational curves, Y C X closed.

Locus(V)y = {x € X | 3 C parametrized by V
with CNY #0 and x € C}.

Inductively define

Locus(V1,...,VK)y := l’
Locus(V2,...,Vk)Locus(vl)Y.

Notice that Locus(V)x = Locus( V).

Analogously we define Locus(#1,...,#%)y for Chow families
WL, WK of rational 1-cycles.
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¥ Chow family of rational 1-cycles.

x and y are in rc()-relation if there exists a chain of cycles in ¥
which joins x and y, i.e. if y € ChLocusp,(¥')x for some m.

X is rc(¥')-connected if for some m we have X = ChLocus,(¥)x.

Campana, Kollar-Miyaoka-Mori

X is rc(¥)-connected if and only if dim Z% = 0.
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Y C X closed, ¥ Chow family of rational 1-cycles.

Every curve contained in Locus(¥)y is numerically equivalent to a linear
combination with rational coefficients of a curve in Y and of irreducible
components of cycles parametrized by ¥ which meet Y.

If X is rc(#1,..., 7 )-connected, then N1 (X) is generated by the classes
of irreducible components of cycles in #?1,... 7k,
In particular, if #1,..., 7k are quasi-unsplit families, then px < k
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{ Mori
There is a rational curve C 3 x with —Kx - C <dimX +1.
{V' C Ratcurves"(X) s.t. —Kx-V/ <dimX +1} is finite
)

there exists i s.t. Locus(V') dominates X.

A family V with this property s.t. —Kx -V is minimal is called a
minimal dominating family. Such a family is locally unsplit.
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X Fano manifold, 7 : X — Z9 proper surjective, z € Z0 general
| Kollar, Miyaoka, Mori
There is a rational curve C 5 x with —Kx - C <dimX +1 s.t.
o Cnnl(z)#0;

@ C is not contained in 77 1(z2).

{V/ C Ratcurves"(X) s.t. —Kx - V' <dimX +1} is finite
4

there exists i s.t. Locus(V’) dominates Z°.

A family V with this property s.t. —Kx -V is minimal is called a minimal
horizontal dominating family with respect to 7.

@ V is locally unsplit;

@ curves parametrized by V are numerically independent from curves
in a general fiber of 7.
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m: X ——> ZY  rc(¥?1)-fibration.

If dim Z! >0, V2 minimal horizontal dominating family wrt 7,
#'2 associated Chow family.

T X ——> Z% rc(¥1,¥?)fibration.

If dim Z2 >0, V3 minimal horizontal dominating family wrt 75,
#'3 associated Chow family.

Since dim Z'*! < dim Z', X is rc(#1,...,#*)-connected for k < dim X.

The families V1,..., V¥ are locally unsplit and numerically independent.
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X Fano manifold, ix > 2, Vl,...,Vk families as in Basic Construction. Then
k )
Y (-Kx-V'—1) <dimX.
i=1
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Locus(V'), the dimension of the quotient drops at least by dim Locus(V')y;,
which, by lonescu-Wisniewski inequality is > —Kx - V' — 1.

The last assertion follows from

Theorem (_)
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By the Lemma k(ix —1) <dim X.

If all the families V' are unsplit, we have px = k by the Corollary,
hence px(ix —1) < dim X, with equality iff X = (Px~1)Px.

By the Lemma
k

Y (—Kx-V'—1)<dimX.
i=1

If for some j the family V7 is not unsplit we have —Kx - VJ/ > 2ix
so this can happen for at most one j and implies k = 1.

21 /28



Assume V := V1 not unsplit and X is rc(#')-connected.

22 /28



Assume V := V1 not unsplit and X is rc(#')-connected.

x a general point;

22 /28



Assume V := V1 not unsplit and X is rc(#')-connected.

x a general point;

mg and Ci(x) for i=1,...,mg as before.

22 /28



Assume V := V1 not unsplit and X is rc(#')-connected.

x a general point;

mg and Ci(x) for i=1,...,mg as before.

22 /28



Assume V := V1 not unsplit and X is rc(#')-connected.

x a general point;

mg and Ci(x) for i=1,...,mg as before.

x general and V minimal

22 /28



Assume V := V1 not unsplit and X is rc(#')-connected.

x a general point;

mg and Ci(x) for i=1,...,mg as before.

x general and V minimal =V, is proper, hence

22 /28



Assume V := V1 not unsplit and X is rc(#')-connected.

x a general point;

mg and Ci(x) for i=1,...,mg as before.

x general and V minimal =V, is proper, hence

G(x)=G(x) and  Ni(G(x),X)=([V])

22 /28



Assume V := V1 not unsplit and X is rc(#')-connected.

x a general point;

mg and Ci(x) for i=1,...,mg as before.

x general and V minimal =V, is proper, hence

G(x)=G(x) and Ni(Gi(x),X) = ([V])
By lonescu-Wisniewski inequality

dim Cl(X) >—Kx-V—-1>2ix—1>dimX—ix;

22 /28



Assume V := V1 not unsplit and X is rc(#')-connected.
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mg and Ci(x) for i=1,...,mg as before.

x general and V minimal =V, is proper, hence

G(x)=G(x) and Ni(Gi(x),X) = ([V])
By lonescu-Wisniewski inequality
dim Cl(X) >—Kx-V—-1>2ix—1>dimX—ix;

We can assume —Kx - V < 3ix, otherwise Ci(x) = X.
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W family of deformations of y. W is unsplit, hence
N1 (Locus(W),,X) = ((W])
W is not dominating, by the minimality of V/, so by lonescu-Wisniewski

inequality
dimLocus(W), > —Kx - W > ix

It follows that
dim Gy (x) NLocus(W), > 2ix +ix —dimX >0,

hence [W] and [V] are proportional, hence also [¥] is proportional to [V].
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By the following

Casagrande

it is enough to prove that there is a divisor D in X with
dim N1 (D, X) <5.

Rational curves, and bounds on the Picard number, of Fano manifolds
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