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S smooth projective surface over C;
o pe(S) = H(S, Q2);
o q(S):=1b1(S) = (S, Q).
120 years ago: M. Noether posed the following:

Is a surface S with pg = q = 0 rational?

Negative answer: Enriques (1895), Campedelli, Godeaux ('30ies).

Mumford, 1980 in Montreal: Can a computer classify surfaces with
pg =07
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O Let S be a minimal surface of general type. Then:
° Kg >1;
o X(S):=1—q(S)+ pg(S) > 1.
In particular, p, =0 = ¢ =0.

@ If Ks is not ample, then there are rational curves C such that
Ks.C =0, C?=—2.
Contracting these curves one gets the canonical model X,
having R.D.P.s as singularieties (i.e., locally C?/T, where
I <SL(2,C)).

Theorem (Bombieri, Gieseker)

For all (x,y) € N x N there is a quasiprojective variety M, y,
which is a coarse moduli space for canonical surfaces with

(x(X), K3) = (x,¥).
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Theorem (Bogomolov-Miyaoka-Yau)

Let S be a surface of general type. Then:
° Kg < 9x(S),
o K2 = 9x(S) iff the universal covering of S is the complex ball
o By :={(z,w) € C?||z|* + |w|*> < 1}.

This means: we need to understand the nine moduli spaces

Mpy, 1< k<0
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@ It is not easy to decide whether two surfaces are in the
same connected component of the moduli space.

@ Easy observation: if S, S’ are in the same connected
component of M, they are orientedly diffeomorphic, hence
homeomorphic. In particular, m1(S) = m1(S’).

Some open problems:

@ What are the m;'s of surfaces of general type with p, = 07
@ Is m1(S) residually finite for pg(S) = 07
© What are the best possible numbers a, b such that

o K2<a = |m(9)] < o0,
o K2>b = |m(S)| = <.
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Q Are all surfaces with p; =0, Kg = 8 uniformized by H x H?

© Conjecture (M. Reid): 9y 1) has exactly 5 irreducible
components corresponding to m1(S) =Z/mZ, 1 < m < 5.

@ K2=2 = |m(S)|<9?
Q@ K2=3 = |m(S) <167

Conjecture (Bloch)
Let S be a smooth surface with pg(S) = 0. Then

T(S) := ker(AJ(S) — Alb(S)) =0,

where AS(S) is the group of rational equivalence classes of zero
cycles of degree zero.
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Other reasons, why surfaces with p; = 0 are interesting:
@ pluricanonical maps, in particular the bicanonical map;

o differential topology: simply connected surfaces of general type
with pg = 0 are homeomorphic to Del Pezzo surfaces, but not
diffeomorphic.
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Ballquotients

S =By/I, where I < PSU(2,1) is a discrete, cocompact,
torsionfree subgroup.

1) S is rigid. In particular, 9y gy consists of isolated points.
2) Breakthrough 2003: T is arithmetic (Klingler).

Theorem (Prasad-Yeung)

9MN(1,9) consists of 100 isolated points, corresponding to 50 pairs of
complex conjugate surfaces.
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Product-quotient surfaces

We consider the following construction

o (i, G, projective curves of resp. genera g1, g» > 2;
e G finite group acting faithfully on C; and G;

@ S a minimal model of a minimal resolution of singularities

S = X:= (Cl X Cg)/G

1) The above surfaces are called PRODUCT-QUOTIENT
SURFACES.

2) The geometry of these surfaces is encoded in certain algebraic
data of G.

Therefore a systematic search of such surfaces can be carried
through with a computer algebra program.
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Product-quotient surfaces

Theorem (B., Catanese, Grunewald, Pignatelli)

@ Surfaces isogenous to a product, i.e., (G x (2)/G smooth,
form17 irreducible connected components of M, g).

@ Surfaces such that X := (C; x G3)/G have R.D.P.s form 27
irreducible families.

© S’ minimal and X does not have R.D.P.s form 32 families.

By a result of S. Kimura, all the above surfaces satisfy Bloch’s
conjecture.
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We can compute 7 of all these surfaces. More precisely, we have
the following structure theorem:

Theorem (-, Catanese, Grunewald, Pignatelli)

There is a normal subgroup N of finite index in w1(X), s. th.
N = g X g, for some g, g' > 0.
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Coverings

Systematic (computer aided) search for surfaces with pg = 0, which
are abelian covers of e.g. P2 branched in line configurations.
Work in progress (S. Coughlan).

Theorem (Coughlan)

There is a surface S with p; =0, KE = 8 not uniformized by
H x H.
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Large fundamental groups

Suppose 71(S) sits in an exact sequence
1— mg X ...xmg —m(S)— G — 1,

where g; > 1, G’ a finite group.

What can one say about S?

Theorem (Catanese)

S=(G x G)/G, G finite group acting freely —>
1 —m(G) xm(G) — m(S) — G —1,

and: if S' has the same w1, and the same topological Euler
characteristic as S, then S’ or S’ is in the same irreducible
connected component as S.
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Suppose S’ is homotopically equivalent to S. Under which
conditions is S’ in the same irreducible (connected) component as
S7

We have

S—=CG x...xC
‘|
S
where m1(5) = m1(C1) x ... x w1 (C)).

E.g., r = 2: generically finite map 5 — C; x Gy, study this map;
r=3ifeg,S— (G x G x G.
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This has been carried through in the following cases:
@ Keum-Naie surfaces (B.-Catanese):

S—E xE d.c.

(Z/2Z)2l
S

@ primary Burniat surfaces (B.-Catanese):

C Ei x Ex x E; (2,2,2) h.s.
(2/22)°

nNnN=<—>0Uy
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@ Kulikov surfaces (Chan-Coughlan):

C Ei x Ex x E3 (3,3, 3) h.s.

(z/3z)°

nNnN=<—0Uy

Each surface homotopically equivalent to one of the above surfaces
is a surface as above. In particular, Keum-Naie, primary Burniat
and Kulikov surfaces form an irreducible connected component of
resp. dimension 6,4, 1 in the moduli space.
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Burniat surfaces were constructed by P. Burniat in 1966 as singular
bidouble covers of the projective plane.
P1, Py, P3 € P2,
°
@ Dy :={dy =0} = P, * P3 and two further lines containing Px,
@ D3 :={d3 =0} = P3* P; and two further lines containing Ps.

Definition

A minimal model S of a bidouble cover of P? branched in
(D1, Dy, D3) is called a Burniat surface.

Burniat surfaces are surfaces of general type with
pe(S)=q(S)=0and K2=6—-—m, 1< m<4,
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Burniat configurations for m =0, 1
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Burniat configurations for m = 2
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Burniat configurations for m = 3,4

K3

P3
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We have the following results:

Theorem (B.-Catanese)

Burniat surfaces with Kg = 6,5 and Burniat surfaces with K_g =4
of non nodal type form a rational, irreducible connected component
of the moduli space My k2).

Theorem (B.-Catanese)

Burniat surfaces with K2 = 4 of nodal type (resp. with K2 =3)
deform to extended nodal Burniat surfaces, which form an
irreducible connected (resp. irreducible) component of the moduli
space My k2).




Perspectives of algebraic surfaces with pg = 0
Burniat surfaces

Limits

@ T = smooth affine curve, 0 € T, f: X — T flat family of
canonical surfaces and suppose that X} is the canonical model
of a Burniat surface with KQZG >4, t#£0.

@ Then there is an action of G := (Z/2Z)? on X yielding a
1-parameter family of finite G-covers Xy — ):, where ) is a
Gorenstein Del Pezzo surface Vt.

@ The branch locus of Xy — ) is the limit of the branch loci of
X: — Vs, hence

Vo cannot have worse singularities than )

= X is again a Burniat surface.
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Deformations of nodal Burniat surfaces

m=2:

W :=B2(Py, ..., Ps) weak Del Pezzo surface,

N := [ — E; — E; — Es nodal curve.

Extended nodal Burniat surface:

bidouble cover branched on A1 + A> + A3z on W, where:

) D1:(L*E1*E2)+(L*E1)+(L*E1*E4*E5)+E3 (B);

e N1 —=D1—N :(L — E — EQ) + (L — El) + E3 (extended B),

] D2:(L—EQ—E3)+(L—E2—E4)+(I_—E2—E5)—|—E1 (B),

L AQE
D2+N:(2L—EQ—E3—E4—E5)+(L—E2—E4)+(L—E2—E5)
(extended B);

] D3:(L—E1—E3)+(L—E3—E4)+(L—E3—E5)+E2 (B),

@ A3 = D3+ N (extended B).
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Extended Burniat surfaces are bidouble covers of weak Del
Pezzo surfaces, but the branch locus varies discontinuously.

S minimal model of a nodal Burniat surface with K52 =4, X its
canonical model.

S X
(Z/2Z)2l (Z/zz)2l
W =B2(Py,...,Ps)—=Y CP*
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Consider:
o Def(S) := base of the Kuranishi family of §;
@ Def(X) := base of the Kuranishi family of X;

Theorem (Burns-Wahl)
There is a fibre product

Def(S) — = L = C¥

-

Def(X) —= Lx = C,

where Lx is the space of local deformations of Sing(X), v :=
number of (—2)-curves on S.
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1) Def(S) — Def(X) is finite;
2) if Def(X) — Lx is not surjective, then Def(S) is singular.

Assume G < Aut(S) Aut(X), then
Def(S, G) = Def(S)® = {J;|g € G is Jy — holomorphic}.

Theorem (B.-Catanese)

The deformations of nodal Burniat surfaces to extended nodal
Burniat surfaces exist and yield examples where
Def(S, G) — Def(X, G) = Def(X) is not surjective.

But each deformation of a nodal Burniat surface has a
G = (Z/2Z)?-action.
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The reason is local

G = (Z/2Z)? = {1,01,02,03 = 01 + 02} acts on the family {X;},
Xe = {w? = uv + t},

by o1(u, v, w) = (u, v, —w), oa2(u,v,w) = (—u,—v,w),
with quotient
Y = {2 = xy}.

{X¢} admits a simultaneous resolution only after the base change

=t

X = {w? -1 =uw}.
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2 small resolutions:

S :={((u,v,w,7),6) € X x P*: A—4

u _W+T:£}’

+ T v
S = {((u,v,w,7),n) e x xpt: YT _ — ).
{((u,v,w,7),m) X y =

G has several liftings to S, but
e either it acts not biregularly (only birationally),
@ or it acts biregularly, but does not leave 7 fixed.

E.g., oo acts biregularly on S, but o1, o3 act only birationally.



