Perspectives of algebraic surfaces with $p_{g}=0$

Ingrid Bauer, Bayreuth

September 7, 2010
(1) History and problems
(2) (Some) construction techniques

3 From examples to classification
(4) Burniat surfaces

Perspectives of algebraic surfaces with $p_{g}=0$
History and problems
(1) History and problems
(2) (Some) construction techniques
(3) From examples to classification
4. Burniat surfaces
S smooth projective surface over \mathbb{C};

- $p_{g}(S):=h^{0}\left(S, \Omega_{S}^{2}\right)$;
- $q(S):=\frac{1}{2} b_{1}(S)=h^{0}\left(S, \Omega_{S}^{1}\right)$.

120 years ago: M. Noether posed the following:

Question

Is a surface S with $p_{g}=q=0$ rational?

Negative answer: Enriques (1895), Campedelli, Godeaux ('30ies). Mumford, 1980 in Montreal: Can a computer classify surfaces with $p_{g}=0$?
(1) Let S be a minimal surface of general type. Then:

- $K_{S}^{2} \geq 1$;
- $\chi(S):=1-q(S)+p_{g}(S) \geq 1$.

In particular, $p_{g}=0 \Longrightarrow q=0$.
(2) If K_{S} is not ample, then there are rational curves C such that $K_{S} . C=0, C^{2}=-2$.
Contracting these curves one gets the canonical model X, having R.D.P.s as singularieties (i.e., locally \mathbb{C}^{2} / Γ, where $\Gamma \leq S L(2, \mathbb{C}))$.

Theorem (Bombieri, Gieseker)

For all $(x, y) \in \mathbb{N} \times \mathbb{N}$ there is a quasiprojective variety $\mathfrak{M}_{(x, y)}$, which is a coarse moduli space for canonical surfaces with $\left(\chi(X), K_{X}^{2}\right)=(x, y)$.

Theorem (Bogomolov-Miyaoka-Yau)

Let S be a surface of general type. Then:

- $K_{S}^{2} \leq 9 \chi(S)$;
- $K_{S}^{2}=9 \chi(S)$ iff the universal covering of S is the complex ball - $\mathbb{B}_{2}:=\left\{\left.(z, w) \in \mathbb{C}^{2}| | z\right|^{2}+|w|^{2}<1\right\}$.

This means: we need to understand the nine moduli spaces

$$
\mathfrak{M}_{(1, k)}, 1 \leq k \leq 9 .
$$

Remark

(1) It is not easy to decide whether two surfaces are in the same connected component of the moduli space.
(2) Easy observation: if S, S^{\prime} are in the same connected component of \mathfrak{M}, they are orientedly diffeomorphic, hence homeomorphic. In particular, $\pi_{1}(S)=\pi_{1}\left(S^{\prime}\right)$.

Some open problems:

(1) What are the π_{1} 's of surfaces of general type with $p_{g}=0$?
(2) Is $\pi_{1}(S)$ residually finite for $p_{g}(S)=0$?
(3) What are the best possible numbers a, b such that

- $K_{S}^{2} \leq a \Longrightarrow\left|\pi_{1}(S)\right|<\infty$,
- $K_{S}^{2} \geq b \Longrightarrow\left|\pi_{1}(S)\right|=\infty$.
(4) Are all surfaces with $p_{g}=0, K_{S}^{2}=8$ uniformized by $\mathbb{H} \times \mathbb{H}$?
(5) Conjecture (M. Reid): $\mathfrak{M}_{(1,1)}$ has exactly 5 irreducible components corresponding to $\pi_{1}(S)=\mathbb{Z} / m \mathbb{Z}, 1 \leq m \leq 5$.
(6) $K_{S}^{2}=2 \Longrightarrow\left|\pi_{1}(S)\right| \leq 9$?
(1) $K_{S}^{2}=3 \Longrightarrow\left|\pi_{1}(S)\right| \leq 16$?

Conjecture (Bloch)

Let S be a smooth surface with $p_{g}(S)=0$. Then

$$
T(S):=\operatorname{ker}\left(A_{0}^{0}(S) \rightarrow \operatorname{Alb}(S)\right)=0
$$

where $A_{0}^{0}(S)$ is the group of rational equivalence classes of zero cycles of degree zero.

Other reasons, why surfaces with $p_{g}=0$ are interesting:

- pluricanonical maps, in particular the bicanonical map;
- differential topology: simply connected surfaces of general type with $p_{g}=0$ are homeomorphic to Del Pezzo surfaces, but not diffeomorphic.

(1) History and problems

(2) (Some) construction techniques
(3) From examples to classification
(4) Burniat surfaces

Ballquotients

$S=\mathbb{B}_{2} / \Gamma$, where $\Gamma \leq \operatorname{PSU}(2,1)$ is a discrete, cocompact, torsionfree subgroup.

Remark

1) S is rigid. In particular, $\mathfrak{M}_{(1,9)}$ consists of isolated points.
2) Breakthrough 2003: Γ is arithmetic (Klingler).

Theorem (Prasad-Yeung)

$\mathfrak{M}_{(1,9)}$ consists of 100 isolated points, corresponding to 50 pairs of complex conjugate surfaces.

Product-quotient surfaces

We consider the following construction

- C_{1}, C_{2} projective curves of resp. genera $g_{1}, g_{2} \geq 2$;
- G finite group acting faithfully on C_{1} and C_{2};
- S a minimal model of a minimal resolution of singularities $S^{\prime} \rightarrow X:=\left(C_{1} \times C_{2}\right) / G$.

Remark

1) The above surfaces are called PRODUCT-QUOTIENT SURFACES.
2) The geometry of these surfaces is encoded in certain algebraic data of G.
Therefore a systematic search of such surfaces can be carried through with a computer algebra program.

Product-quotient surfaces

Theorem (B., Catanese, Grunewald, Pignatelli)

(1) Surfaces isogenous to a product, i.e., $\left(C_{1} \times C_{2}\right) / G$ smooth, form17 irreducible connected components of $\mathfrak{M}_{(1,8)}$.
(2) Surfaces such that $X:=\left(C_{1} \times C_{2}\right) / G$ have R.D.P.s form 27 irreducible families.

- S^{\prime} minimal and X does not have R.D.P.s form 32 families.

Remark

By a result of S. Kimura, all the above surfaces satisfy Bloch's conjecture.

We can compute π_{1} of all these surfaces. More precisely, we have the following structure theorem:

Theorem (-, Catanese, Grunewald, Pignatelli)

There is a normal subgroup \mathcal{N} of finite index in $\pi_{1}(X)$, s. th. $\mathcal{N} \cong \pi_{g} \times \pi_{g^{\prime}}$, for some $g, g^{\prime} \geq 0$.

Coverings

Systematic (computer aided) search for surfaces with $p_{g}=0$, which are abelian covers of e.g. \mathbb{P}^{2} branched in line configurations. Work in progress (S. Coughlan).

Theorem (Coughlan)

There is a surface S with $p_{g}=0, K_{S}^{2}=8$ not uniformized by $\mathbb{H} \times \mathbb{H}$.

Perspectives of algebraic surfaces with $p_{g}=0$ (Some) construction techniques

(1) History and problems

(2) (Some) construction techniques

(3) From examples to classification

4 Burniat surfaces

Large fundamental groups

Suppose $\pi_{1}(S)$ sits in an exact sequence

$$
1 \rightarrow \pi_{g_{1}} \times \ldots \times \pi_{g_{r}} \rightarrow \pi_{1}(S) \rightarrow G^{\prime} \rightarrow 1
$$

where $g_{i} \geq 1, G^{\prime}$ a finite group.

Question

What can one say about S?

Theorem (Catanese)

$S=\left(C_{1} \times C_{2}\right) / G, G$ finite group acting freely \Longrightarrow

$$
1 \rightarrow \pi_{1}\left(C_{1}\right) \times \pi_{1}\left(C_{2}\right) \rightarrow \pi_{1}(S) \rightarrow G \rightarrow 1
$$

and: if S^{\prime} has the same π_{1} and the same topological Euler characteristic as S, then S^{\prime} or \bar{S}^{\prime} is in the same irreducible connected component as S.

Question

Suppose S^{\prime} is homotopically equivalent to S. Under which conditions is S^{\prime} in the same irreducible (connected) component as S?

We have

$$
\begin{array}{r}
\hat{S} \longrightarrow C_{1} \times \ldots \times C_{r} \\
G^{\prime} \\
\vdots \\
S
\end{array}
$$

where $\pi_{1}(\hat{S})=\pi_{1}\left(C_{1}\right) \times \ldots \times \pi_{1}\left(C_{r}\right)$.
E.g., $r=2$: generically finite map $\hat{S} \rightarrow C_{1} \times C_{2}$, study this map; $r=3$: if e.g., $\hat{S} \hookrightarrow C_{1} \times C_{2} \times C_{3}$.

This has been carried through in the following cases:
(1) Keum-Naie surfaces (B.-Catanese):

$$
\begin{aligned}
& \hat{S} \longrightarrow E_{1} \times E_{2} \quad \text { d.c. } \\
&(\mathbb{Z} / 2 \mathbb{Z})^{2} \\
& \downarrow \\
& S
\end{aligned}
$$

(2) primary Burniat surfaces (B.-Catanese):

$$
\begin{array}{rlrl}
\hat{S} & \subset & E_{1} \times E_{2} \times E_{3} \quad(2,2,2) \text { h.s. } \\
(\mathbb{Z} / 2 \mathbb{Z})^{3} & & & \\
\downarrow & & & \\
S & &
\end{array}
$$

(3) Kulikov surfaces (Chan-Coughlan):

$$
\begin{array}{rlll}
\hat{S} & \subset & E_{1} \times E_{2} \times E_{3} \quad(3,3,3) \text { h.s. } \\
(\mathbb{Z} / 3 \mathbb{Z})^{3} & & & \\
\downarrow & &
\end{array}
$$

Theorem

Each surface homotopically equivalent to one of the above surfaces is a surface as above. In particular, Keum-Naie, primary Burniat and Kulikov surfaces form an irreducible connected component of resp. dimension 6,4,1 in the moduli space.

(1) History and problems

(2) (Some) construction techniques

3 From examples to classification
(4) Burniat surfaces

Burniat surfaces were constructed by P. Burniat in 1966 as singular bidouble covers of the projective plane.
$P_{1}, P_{2}, P_{3} \in \mathbb{P}^{2}$,

- $D_{1}:=\left\{\delta_{1}=0\right\}=P_{1} * P_{2}$ and two further lines containing P_{1},
- $D_{2}:=\left\{\delta_{2}=0\right\}=P_{2} * P_{3}$ and two further lines containing P_{2},
- $D_{3}:=\left\{\delta_{3}=0\right\}=P_{3} * P_{1}$ and two further lines containing P_{3}.

Definition

A minimal model S of a bidouble cover of \mathbb{P}^{2} branched in $\left(D_{1}, D_{2}, D_{3}\right)$ is called a Burniat surface.

Remark

Burniat surfaces are surfaces of general type with $p_{g}(S)=q(S)=0$ and $K_{S}^{2}=6-m, 1 \leq m \leq 4$.

Perspectives of algebraic surfaces with $p_{g}=0$
Burniat surfaces

Burniat configurations for $m=0,1$

Burniat configurations for $m=2$

Burniat configurations for $m=3,4$

We have the following results:

Theorem (B.-Catanese)

Burniat surfaces with $K_{S}^{2}=6,5$ and Burniat surfaces with $K_{S}^{2}=4$ of non nodal type form a rational, irreducible connected component of the moduli space $\mathfrak{M}_{\left(1, K^{2}\right)}$.

Theorem (B.-Catanese)

Burniat surfaces with $K_{S}^{2}=4$ of nodal type (resp. with $K_{S}^{2}=3$) deform to extended nodal Burniat surfaces, which form an irreducible connected (resp. irreducible) component of the moduli space $\mathfrak{M}_{\left(1, K^{2}\right)}$.

Limits

- $T=$ smooth affine curve, $0 \in T, f: \mathcal{X} \rightarrow T$ flat family of canonical surfaces and suppose that \mathcal{X}_{t} is the canonical model of a Burniat surface with $K_{\mathcal{X}_{t}}^{2} \geq 4, t \neq 0$.
- Then there is an action of $G:=(\mathbb{Z} / 2 \mathbb{Z})^{2}$ on \mathcal{X} yielding a 1-parameter family of finite G-covers $\mathcal{X}_{t} \rightarrow \mathcal{Y}_{t}$, where \mathcal{Y}_{t} is a Gorenstein Del Pezzo surface $\forall t$.
- The branch locus of $\mathcal{X}_{0} \rightarrow \mathcal{Y}_{0}$ is the limit of the branch loci of $\mathcal{X}_{t} \rightarrow \mathcal{Y}_{t}$, hence
- \mathcal{Y}_{0} cannot have worse singularities than \mathcal{Y}_{t}
- $\Longrightarrow \mathcal{X}_{0}$ is again a Burniat surface.

Deformations of nodal Burniat surfaces

$\mathrm{m}=2$:
$W:=\hat{\mathbb{P}}^{2}\left(P_{1}, \ldots, P_{5}\right)$ weak Del Pezzo surface, $N:=L-E_{1}-E_{4}-E_{5}$ nodal curve.
Extended nodal Burniat surface:
bidouble cover branched on $\Delta_{1}+\Delta_{2}+\Delta_{3}$ on W, where:

- $D_{1}=\left(L-E_{1}-E_{2}\right)+\left(L-E_{1}\right)+\left(L-E_{1}-E_{4}-E_{5}\right)+E_{3}(B)$;
- $\Delta_{1}=D_{1}-N=\left(L-E_{1}-E_{2}\right)+\left(L-E_{1}\right)+E_{3}$ (extended B);
- $D_{2}=\left(L-E_{2}-E_{3}\right)+\left(L-E_{2}-E_{4}\right)+\left(L-E_{2}-E_{5}\right)+E_{1}(B)$;
- $\Delta_{2} \equiv$
$D_{2}+N=\left(2 L-E_{2}-E_{3}-E_{4}-E_{5}\right)+\left(L-E_{2}-E_{4}\right)+\left(L-E_{2}-E_{5}\right)$ (extended B);
- $D_{3}=\left(L-E_{1}-E_{3}\right)+\left(L-E_{3}-E_{4}\right)+\left(L-E_{3}-E_{5}\right)+E_{2}(\mathrm{~B})$;
- $\Delta_{3}=D_{3}+N$ (extended B).

Remark

Extended Burniat surfaces are bidouble covers of weak Del Pezzo surfaces, but the branch locus varies discontinuously.
S minimal model of a nodal Burniat surface with $K_{S}^{2}=4, X$ its canonical model.

$$
\begin{gathered}
S \longrightarrow X \\
(\mathbb{Z} / 2 \mathbb{Z})^{2} \\
W:=\hat{\mathbb{P}}^{2}\left(P_{1}, \ldots, P_{5}\right) \longrightarrow Y \subset \mathbb{P}^{4}
\end{gathered}
$$

Consider:

- $\operatorname{Def}(S):=$ base of the Kuranishi family of S;
- $\operatorname{Def}(X):=$ base of the Kuranishi family of X;

Theorem (Burns-Wahl)

There is a fibre product

where \mathcal{L}_{X} is the space of local deformations of $\operatorname{Sing}(X), \nu:=$ number of (-2)-curves on S.

Corollary

1) $\operatorname{Def}(S) \rightarrow \operatorname{Def}(X)$ is finite;
2) if $\operatorname{Def}(X) \rightarrow \mathcal{L}_{X}$ is not surjective, then $\operatorname{Def}(S)$ is singular.

Assume $G \leq \operatorname{Aut}(S)=\operatorname{Aut}(X)$, then
$\operatorname{Def}(S, G)=\operatorname{Def}(S)^{G}=\left\{J_{t} \mid g \in G\right.$ is J_{t} - holomorphic $\}$.

Theorem (B.-Catanese)

The deformations of nodal Burniat surfaces to extended nodal Burniat surfaces exist and yield examples where $\operatorname{Def}(S, G) \rightarrow \operatorname{Def}(X, G)=\operatorname{Def}(X)$ is not surjective.

But each deformation of a nodal Burniat surface has a $G=(\mathbb{Z} / 2 \mathbb{Z})^{2}$-action.

The reason is local

$G=(\mathbb{Z} / 2 \mathbb{Z})^{2}=\left\{1, \sigma_{1}, \sigma_{2}, \sigma_{3}=\sigma_{1}+\sigma_{2}\right\}$ acts on the family $\left\{X_{t}\right\}$,

$$
X_{t}:=\left\{w^{2}=u v+t\right\}
$$

by $\sigma_{1}(u, v, w)=(u, v,-w), \sigma_{2}(u, v, w)=(-u,-v, w)$,
with quotient

$$
Y:=\left\{z^{2}=x y\right\}
$$

$\left\{X_{t}\right\}$ admits a simultaneous resolution only after the base change $\tau^{2}=t:$

$$
\mathcal{X}:=\left\{w^{2}-\tau^{2}=u v\right\} .
$$

2 small resolutions:

$$
\begin{aligned}
\mathcal{S} & :=\left\{((u, v, w, \tau), \xi) \in \mathcal{X} \times \mathbb{P}^{1}: \frac{w-\tau}{u}=\frac{v}{w+\tau}=\xi\right\} \\
\mathcal{S}^{\prime} & :=\left\{((u, v, w, \tau), \eta) \in \mathcal{X} \times \mathbb{P}^{1}: \frac{w+\tau}{u}=\frac{v}{w-\tau}=\eta\right\}
\end{aligned}
$$

G has several liftings to \mathcal{S}, but

- either it acts not biregularly (only birationally),
- or it acts biregularly, but does not leave τ fixed.
E.g., σ_{2} acts biregularly on \mathcal{S}, but σ_{1}, σ_{3} act only birationally.

