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The general problem

The general problem

A rather general problem is the understanding of Galois
coverings of complex projective schemes

X → Y = X/G

where G is a finite group.

This understanding is useful in order to construct new
interesting varieties X starting from a given variety Y .
From the point of view of moduli it is very important to
understand flat families of such covers.
We shall concentrate here only on special cases where

G is cyclic
G is abelian
G is dihedral.
Y is a stable curve
Y is a factorial variety of higher dimension.
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The general problem

From fields to schemes

Assume that X and Y are normal varieties: then, once Y is
fixed, the Galois covering

f : X → Y = X/G

is completely determined by the field extension

C(Y ) ⊂ C(X ).

However, making the normalization process explicit is important
for two reasons:

to calculate the invariants of X
to determine the direct image of basic sheaves on X
(f∗(OX ), f∗(Ω1

X ), f∗(ΘX ),..)
to write explicit flat families of such coverings.
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The general problem

The interplay of algebra and topology.

An important transcendental method is the
(Grauert- Remmert’s version of Riemann’s existence theorem)

Theorem
There is a bijection between
1) the set isomorphism classes of finite coverings f : X → Y
between normal varieties X ,Y and
2) classes of maximal connected unramified coverings V → U,
where U is a Zariski open set in Y .
f is Galois if and only if V → U is associated to the class of a
surjection φ : π1(U)→ G (class for the action of Aut(G)).

If U = Y , then one says that f is étale (or unramified).
The complement B := Y \ U of the maximal set U over which f
is unramified is called the branch locus of f .
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The general problem

Very simple covers

Let us illustrate the simplest examples.

Definition
A simple cyclic cover of a scheme Y is the hypersurface X of a
geometric line bundle L over Y which is defined by

X = {(y , z)|zd = F (y)}, F ∈ H0(Y ,OY (dL)).

Here, L is the Cartier divisor whose associated sheaf of
sections OY (L) is the sheaf of regular sections of L→ Y .
The branch locus is the Cartier divisor D := div(F ), i.e.,
B = {y |F (y) = 0}.
The cyclic Galois group G

G ∼= Z/d ∼= µd := {ζ ∈ C|ζd = 1}

operates by z 7→ ζz.
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The general problem

Very simple dihedral covers

The following new construction was discovered in the course of
a very general investigation of dihedral covers, in progress
together with Fabio Perroni.

Definition
A very simple dihedral cover of a scheme Y is the subscheme
X of a geometric line bundle L⊕ L over Y defined by

un + vn = 2a, a ∈ H0(Y ,OY (nL)),

uv = F ,F ∈ H0(Y ,OY (2L)).

The action of the Galois group Dn on X is generated by the
cyclic action

(u, v) 7→ (ζu, ζ−1v), ζ ∈ µn

and by the reflection (u, v) 7→ (v ,u).
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The general problem

Very simple dihedral covers

Here the branch locus is the Cartier divisor D := div(a2 − F n),
i.e., B = {y |a2(y)− F n(y) = 0}.
In fact, the covering factors as the double covering provided by
( set w := vn − un)

w2 = −4(F n(y)− a2(y)),

followed by the cyclic covering

2vn = 2a + w

which is only ramified in codimension 2 (in the points where
a(y) = F (y) = 0).

In particular, the fundamental group of Y \ B is non abelian,
having a surjection onto Dn.
This shows some advantage of the algebraic set up, where one
does not have to preliminarly compute π1(Y \ B)
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The general problem

The branching data

Returning to the general situation, assume that Y is smooth.
We have a surjection µ : π1(Y \ B)→ G, called the monodromy.
By purity of the branch locus, B is a divisor, and let Dα be an
irreducible component of B.
Let γα ∈ π1(Y \ B) be a geometrical loop going simply around
Dα, so that µ(γα) := gα ∈ G.
Since a different choice of γα remains in the same conjugacy
class, we attach to Dα a conjugacy class Cα := [gα] inside G,
called the local monodromy.
Ordering the components Dα, we get a sequence of conjugacy
classes Cα of G, and one defines

Definition
The branching datum of X → Y is the sequence (Cα),Dα ≤ B
of conjugacy classes of G, taken up to permutation and up to
the action of Aut(G).
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The general problem

The branching data

Assume now that Y is a smooth curve.
For each point pα ∈ B we get a conjugacy class Cα := [gα]
inside G.
In this case the branching datum of X → Y is the datum of a
function defined on the set of conjugacy classes of G:
k(C) := card{α|Cα = C}, taken up to the action of Aut(G).
For instance, if G is cyclic, G ∼= Z/d , then we have a sequence
k1, . . . , kd−1 taken up to the action of Aut(G) = (Z/d)∗ acting
on the set of indices.
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Cyclic coverings

Cyclic coverings with Y factorial.

Assume now that Y is a factorial variety and that G is cyclic,
G ∼= Z/d .
Then C(X ) is a cyclic Galois extension of C(Y ).
Denote by G ∼= µd := {ζ ∈ C|ζd = 1} the Galois group, by Z/d
the group of characters

Z/d ∼= {χ|∃m ∈ Z/d , χ(ζ) = ζm}.
The extension is given by

C(X ) = C(Y )(w),wd = f (y) ∈ C(Y ),

where w is an eigenvector for a primitive character.
Since Y is factorial, f admits a unique prime factorization as a
fraction of pairwise relatively prime sections of line bundles,

wd =

∏
i σ

ni
i∏

i τ
mj
j

.
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Cyclic coverings

Cyclic coverings with Y factorial.

Write now
ni = Ni + dn′i , rj = −Mj + dm′j

with 0 ≤ Ni ,Mj ≤ d − 1 and set

z := w ·
∏

i

σ
−n′i
i

∏
i

τ
m′j
j .

Whence z is a rational section of a line bundle L on Y and we
have

zd =
∏

i

σNi
i

∏
i

τ
Mj
j .

We put together the prime factors which appear with the same
exponent and write:

zd =
d−1∏
i=1

δi
i .
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Cyclic coverings

Cyclic coverings with Y factorial.

We put together the prime factors which appear with the same
exponent and write:

zd =
d−1∏
i=1

δi
i .

Since X is normal each factor δi is reduced, but not irreducible,
and corresponds to a Cartier divisor that we shall denote Di .
Di is exactly the divisorial part of the branch locus D :=

∑
i Di

where the local monodromy is exactly the element i ∈ Z/d .
We have then the basic linear equivalence

(∗) dL ≡
∑

i

iDi .
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Cyclic coverings

Cyclic coverings with Y factorial.

The following theorem is a special case of the structure
theorem for Abelian coverings due to Pardini.

Theorem

i) Given a factorial variety Y , the datum of a pair (X , γ) where X
is a normal scheme and γ is an automorphism of order d such
that X/γ ∼= Y, is equivalent to the datum of reduced effective
divisors D1, . . .Dd−1 without common components, and of a
divisor class L such that

(∗) dL ≡
∑

i

iDi .
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Cyclic coverings

Cyclic coverings with Y factorial.

In the above theorem X is a variety if , setting
m := G.C.D.{i |Di 6= 0}, either
(**) m = 1 or, setting d = mn, the divisor class

(∗ ∗ ∗) L′ :=
d
m

L−
∑

i

i
m

Di

has order precisely m.

The scheme structure of X was explicitly given, in the more
general case of abelian coverings by Pardini, who also
calculated explicitly the basic invariants of the covering.
The explicit description of the scheme structure can then be
used to describe flat families of cyclic coverings. The main
obstruction to a smooth family of deformation is that deforming
Y the space H0(OY (D) may become smaller, or even vanish.
This fact was used by Fantechi and Pardini to construct moduli
spaces whch are not Cohen Macaulay.
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Cyclic coverings

Cyclic coverings of curves.

Theorem

The pairs (C,G) where C is a complex projective curve of
genus g ≥ 2, and G is a finite cyclic group of order d acting
faithfully on C with a given branching datum [(k1, . . . kd−1)] are
parametrized by a connected complex manifold Tg;d ,[(k1,...kd−1)]

of dimension 3(h − 1) + k, where k :=
∑

i ki and h is the genus
of the quotient curve C′ := C/G.
The image Mg;d ,[(k1,...kd−1)] of Tg;d ,[(k1,...kd−1)] inside the moduli
space Mg is a closed subset of the same dimension.
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Cyclic coverings

Cyclic coverings of curves.

The previous result was proven by Cornalba in the particular
case where d is a prime number.
Barbara Fantechi posed the problem to show the result in full
generality.
Observe that h is determined by the Hurwitz formula.
The proof shows also that, if 3(h − 1) + k is strictly positive,
then the general curve C inside Mg;d ,[(k1,...kd−1)] has G as a
maximal cyclic group of automorphisms.
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Cyclic coverings

Cyclic coverings of curves.

Idea of the proof:
Such pairs (C, γ) are determined by the following data: a curve
C′ of genus h, divisors Di for all i ∈ Z/d and a surjective
homomorphism ψ : H1(C′ \ D,Z)→ Z/d such that the image of
a small circle around a point p ∈ Di maps to the class of i in
Z/d .
We have the homology exact sequence, where we write
D1 = p1 + · · ·+ pk1 , D2 = pk1+1 + . . . pk1+k2 , . . . ,

(∗∗)0→ A := (⊕jZpj)/Z(
∑

j

pj)→ H1(C′\D,Z)→ H1(C′,Z) ∼= Z2h → 0

which admits several splittings: we choose a splitting such that
Z2h maps onto Z/d .
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Cyclic coverings

Cyclic coverings of curves.

Idea of the proof, continuation:
Topologically, this means that we choose a special symplectic
basis of H1(C′,Z), such that the points pj lie in the complement
of the corresponding canonical dissection of the curve C′, and
then we take a disk ∆ contained in this complement and
containing the branch divisor D.
Geometrically, this means that the ramified covering is just
obtained glueing together a ramified covering of ∆ with an
unramified covering of C′ \∆.
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Cyclic coverings

Cyclic coverings of curves.

Idea of the proof, continuation:
The theorem clearly holds for genus h = 0, since there is only
one divisor class L satisfying (∗) dL ≡

∑
i iDi , hence two

coverings of the disk with the same branching behaviour are
equivalent.

The unramified coverings correspond to primitive vectors in
H1(C′,Z/d), and recall that the symplectic group Sp(2h,Z)
acts transitively on the set of such primitive elements.
We want to show that for a suitable diffeomorphism of C′ which
leaves the disk ∆ pointwise fixed we can transform the resulting
homomorphism Ψ into one in normal form.
To this purpose we take a product of Dehn twists over loops
supported in C′ \∆, and we observe that these generate the
mapping class group of C′. Since the mapping class group
maps onto the symplectic group, we are done.
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The singular locus of the moduli space of stable curves

Irreducible components of Sing(Mg).

Mg is locally the quotient of the Kuranishi family of a stable
curve C by the finite group Aut(C).
Hence Mg is smooth unless C has an automorphism of prime
order.

Moreover, by Chevalley’s theorem, the quotient of a smooth
manifold by a finite group Γ is smooth if and only if the group is
generated by pseudoreflections.
This implies that the singular locus is contained in the union of
the irreducible closed subsets Mg;p,[(k1,...kd−1)] which have
codimension at least 2.
But these loci have always codimension at least 2 unless γ is
the hyperelliptic involution and g = 2 or g = 3.
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The singular locus of the moduli space of stable curves

Irreducible components of Sing(Mg).

Discarding these two hyperelliptic loci in genus g = 2,3 we can
write Sing(Mg) as a union of irreducible closed subsets
Mg;p,[(k1,...kd−1)].
The question whether this is an irredundant irreducible
decomposition was completely solved by Cornalba.
We have a shorter approach, based on the following

Proposition
Assume one such component Mg;p,[(k1,...kd−1)] is contained in a
bigger one: then, for the general curve C in Mg;p,[(k1,...kd−1)] the
normalizer of G in Aut(C) is strictly bigger than G.

The argument is based on a numerical calculation.
It guarantees that the quotient curve C′ has a nontrivial
automorphism leaving the branch locus invariant, and this
allows the analysis of the possible cases.
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The singular locus of the moduli space of stable curves

Automorphisms of prime order of stable curves.

Since the topological type of stable curves is not constant, the
basic idea is contained in the following

Definition
We shall say that a pair (C, γ) is simplifiable if it admits a
small deformation to a pair with a smaller number of nodes,
whereas we shall say that (C, γ) is maximal if it is not
simplifiable.

A very simple argument shows when a node fixed by γ is
smoothable.
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The singular locus of the moduli space of stable curves

Automorphisms of prime order of stable curves.

If a node p is fixed by γ, then if γ does not exchange the
branches there are local holomorphic coordinates (x , y) such
that C = {xy = 0}, and

γ(x , y) = (ζmi x , ζmj y).

The node is then smoothable if and only if mi + mj ≡ 0(d).
In the case where γ exchanges the branches we have d = 2
(since d is prime) and we have:

γ(x , y) = (y , x),

thus the node is smoothable.
Finally,an easy argument shows that all the nodes which are
not fixed by γ are smoothable, and the conclusion is:
If (C, γ) is maximal, then every component of C is left invariant
by γ.
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The singular locus of the moduli space of stable curves

Automorphisms of prime order of stable curves.

Since if (C, γ) is maximal, then every component of C is left
invariant by γ, we divide the set of components Ci , i ∈ I into two
sets: I0 is the set of indices such that γ is the identity on Ci for
i ∈ I0, I1 := I \ I0.

Definition
To a maximal pair (C, γ), for d prime, we attach a graph G with
set of vertices I = I0 ∪ I1, and with edges correspond to the
nodes p. Each vertex i is labelled by the genus gi of Ci .
For i ∈ I1, we associate to i a branching sequence
(k ′1, . . . , k

′
d−1) corresponding to the fixed points of γ|Ci which

are not nodes .
For each edge p connecting i and j, i ∈ I1, i 6= j , we give labels
m(p, i),m(p, j) ∈ {0,1, . . . ,d − 1} describing the local action at
p, while for i = j we obtain an unordered pair m(p, i),n(p, i).
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The singular locus of the moduli space of stable curves

Automorphisms of prime order of stable curves.

Theorem
The pairs (C,G) where C is a stable projective curve of genus
g ≥ 2, and G is a finite cyclic group of prime order d acting
faithfully on C with a given topological type associated to an
admissible automorphism graph G are parametrized by a
connected complex manifold Tg;d ,[G].
The image Mg;d ,[G] of Tg;d ,[G] inside the compactified moduli
space Mg is a locally closed subset of the same dimension
whose closure consists of the coverings whose topological type
can be simplified to the topological type of Tg;d ,[G].

Here admissible means that the graph corresponds to a
maximal pair.
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The singular locus of the moduli space of stable curves

Automorphisms of prime order of stable curves.

If Tg;d ,[G] contains only stable singular curves, then Mg;d ,[G] is
not a divisor in the moduli space Mg , unless, for g ≥ 3 we are
in the following case:

1 C = C1 ∪ C2, where 1 ∈ I0, 2 ∈ I1, and g2 = 1 (elliptic tail).
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The singular locus of the moduli space of stable curves

Irreducible components of Sing(Mg).

Theorem

Assume that g ≥ 2, and consider the closed subvarieties
Mg;d ,[G] inside the compactified moduli space Mg , such that

1 d is a prime number
2 the cyclic group G either has order d 6= 2 or it acts trivially

on the elliptic tails.
3 the subset I1 contains exactly one element
4 I0 is not empty (hence Mg;d ,[G] contains only singular

stable curves).

The above components Mg;d ,[G] are then all distinct, for
different d and different topological types, and provide the
irreducible components of Sing(Mg) which do not intersect Mg .
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Dihedral coverings of curves

Outline

1 The general problem

2 Cyclic coverings

3 The singular locus of the moduli space of stable curves

4 Dihedral coverings of curves

5 Questions



Special Galois coverings and the irreducibility of certain spaces of coverings of curves, with applications to moduli of curves.

Dihedral coverings of curves

Coverings of smooth curves

Before we concentrate on the dihedral groups, let us explain
the underlying philosophy.
Given a group G acting faithfully on a curve C of genus g,
Teichmüller theory shows that, once the topological type is
fixed, then one has an irreducible family parametrizing all the
coverings having the fixed topological type.
Hence the basic question is to understand geometrically the
meaning of topological type.
We let C′ := C/G and let g′ be the genus of C′: this is the basic
topological invariant, together with the number k of branch
points.
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Dihedral coverings of curves

Coverings of smooth curves

Given a curve C′ of genus g′, and k marked points, the
topological type is given by the equivalence classes of the
monodromy, which belongs to the set of surjections
µ : πg,k → G where

πg,k := π1(C′ \ {p1, . . . ,pk}).

The classes are the orbits for the action of the modular group
Mg′,k and of Aut(G).
In the case g′ = 0 we have an action of the braid group Brk ,
and for the unramified case (k = 0) we have an action of the
groupMg′,0 = Out(πg′).
Hence the problem is reduced to a group theoretical problem:
but, as we saw in the case of cyclic coverings, geometry does
certainly help.
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Dihedral coverings of curves

Dihedral coverings of smooth curves

When considering the dihedral group

Dn := 〈x , y |y2 = xyxy = xn = 1〉

a basic difference occurs for n even, resp. n odd:

n is odd: then the abelianization of Dn equals Z/2, and
there are the following nontrivial conjugacy classes
[x i ],1 ≤ i ≤ n−1

2 , [y ]

n is even: then the abelianization of Dn equals (Z/2)2, and
there are the following nontrivial conjugacy classes
[x i ],1 ≤ i ≤ n

2 , [y ], [xy ].
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Dihedral coverings of curves

Dihedral coverings of smooth curves

In work in progress together with Michael Lönne and Fabio
Perroni we showed:

Theorem
Dihedral coverings with group Dn with g′ = 0 and a fixed
branching datum form an irreducible family when n is odd.

A similar proof holds also for the case g′ = 0 and n even, but
we would like to verify all the details once more.
Conjecture: the same result holds also for n odd and any g′.
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Questions

Automorphisms of stable curves

Consider a stable curve consisting of a rational smooth
component C0, intersecting g elliptic tails C1, . . .Cg in nodes
p1, . . .pg .
Then, if C1, . . .Cg and p1, . . .pg ∈ C0 are general, Aut(C) has
cardinality at least 2g . If instead the elliptic curves are
equianharmonic, and the points p1, . . .pg . are roots of unity in
the complex line C, then Aut(C) has cardinality (2g) · 6g .
This number is by far larger than the Hurwitz bound 84(g − 1)
for the cardinality of Aut(C) for a smooth curve of genus g.
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Questions

Automorphisms of stable curves

Question 1: which is the Hurwitz bound for stable curves? I.e.,
which is the maximal cardinality ast (g) of Aut(C) for a stable
curve of genus g ?
Question 2: which are the Hurwitz stable curves? I.e., which is
the geometrical description of the stable curves C of genus g
such that Aut(C) attains the maximal allowed cardinality ast (g)?
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Questions

Abelian coverings of smooth curves

Let C → C′ be an unramified covering with group (Z/2)2.
To it, one associates a two dimensional subspace V of
H1(C′,Z/2).
There are therefore two different possible cases: V is isotropic
or not.
This remark provides further topological invariants for dihedral
coverings with group D2m when g′ > 0.
Are there other ?
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