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The nodal Fano threefold X10

Reconstructing X10
Verra threefolds

Period maps

A Fano variety is a complex projective variety X with −KX ample.

Smooth Fano threefolds form 105 irreducible families:

88 with Picard numbers > 1;

17 with Picard number 1:

7 with indices > 1;
10 with index 1: one for each degree in {2, 4, 6, 8, . . . , 18, 22}.

X10: Fano threefold with Picard number 1, index 1, and degree 10.
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The fourfold WO and the threefold XO in P6
O

The double étale cover π : eΓ6 → Γ6
A (birational) conic bundle structure on X

A general X10 is the intersection in P(∧2V5) = P9 of

the Grassmannian G (2,V5),

a general P7,

a general quadric Ω,

and
X10 = G (2,V5) ∩ P7 ∩ Ω ⊂ P7

is anticanonically embedded.

Note:

W = G (2,V5) ∩ P7 is a smooth fourfold, independent of P7;

for Ω general quadric cone with vertex O ∈W general,
X = W ∩ Ω has a single node at O.

From now on, X ⊂ P7 will be such a nodal Fano threefold.
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The fourfold WO and the threefold XO in P6
O

The double étale cover π : eΓ6 → Γ6
A (birational) conic bundle structure on X

If pO : P7 99K P6
O is the projection from O,

WO := pO(W ) ⊂ P6
O is the base-locus of a pencil (Ωp)p∈Γ1 of

quadrics of rank 6 (all such pencils are isomorphic);

WO contains P3
W := pO(TW ,O);

Sing(WO) is the locus of the vertices of the Ωp, a smooth
rational cubic curve in P3

W ;

and

XO := pO(X ) ⊂ P6
O is the intersection of WO with the

general quadric ΩO := pO(Ω);

Sing(XO) = Sing(WO) ∩ ΩO consists of six points
(corresponding to the six lines in X through O).
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The fourfold WO and the threefold XO in P6
O

The double étale cover π : eΓ6 → Γ6
A (birational) conic bundle structure on X

The threefold XO is therefore the base-locus of the net of quadrics
Π := 〈ΩO , Γ1〉 in P6

O . Consider

the discriminant curve Γ7 ⊂ Π corresponding to singular
quadrics (all of rank 6), union of

the line Γ1 of quadrics containing WO and
a smooth sextic Γ6 meeting Γ1 transversely at the six points
corresponding to the quadrics in Γ1 with vertices at the six
singular points of XO ;

the double étale cover

π : Γ̃6 ∪ Γ1
1 ∪ Γ2

1 → Γ6 ∪ Γ1

corresponding to the choice of a family of 3-planes contained
in a quadric of rank 6 in Π (P3

W defines the component Γ1
1).
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The fourfold WO and the threefold XO in P6
O

The double étale cover π : eΓ6 → Γ6
A (birational) conic bundle structure on X

As the base-locus of the net of quadrics Π, the threefold XO has a
birational conic bundle structure p` : X 99K Π:

choose a general line ` ⊂ XO ;

to x ∈ XO general, associate the unique quadric in Π
containing the 2-plane 〈x , `〉.

The discriminant curve is Γ7 = Γ6 ∪ Γ1.
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10 be the 21-dim’l moduli stack for our nodal X .

Theorem

There is a birational isomorphism

X nodal
10

∼
99K

{
triples

(Γ6, Γ1,M)

}/
isom.

where M is an even invertible theta-characteristic on Γ6 ∪ Γ1.
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Surjectivity
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Sketch of proof. Given X , the curve Γ7 = Γ6 ∪ Γ1 parametrizes
singular quadrics in the net Π of quadrics containing XO .

Let

v : Γ7 ↪→ P6
O

p 7−→ Vertex(Ωp)

and define
MX = v∗OP6

O
(1)⊗ OΓ7(−1).

Then (Beauville),

MX is a theta-characteristic and H0(Γ7,MX ) = 0;

the double étale cover π : Γ̃7 → Γ7 is defined by the line
bundle η = MX (−2), of order 2;

XO ⊂ P6
O is determined up to projective isomorphism by the

pair (Γ7,MX ).
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Conversely, given

general curves Γ6 and Γ1 in Π,

an invertible theta-characteristic M on Γ7 = Γ6 ∪ Γ1 with
H0(Γ7,M) = 0 (such an M always exists (Catanese)),

there is a resolution

0 −→ OΠ(−2)⊕7 A−→ OΠ(−1)⊕7 −→ M −→ 0,

where (Dixon, Catanese, Beauville)

A is a 7× 7 symmetric matrix of linear forms;

det(A) is an equation for Γ7;

A defines a net of quadrics in P6
O whose base-locus XO is the

intersection of WO with a smooth quadric.

Its inverse image under the birational map W 99KWO is a
threefold X10 with a single node at O. �
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We now reinterpret the right-hand side in

X nodal
10

∼
99K

{
triples

(Γ6, Γ1,M)

}/
isom.

Consider the image of the embedding

Π∨ ↪→ Γ
(6)
6

Γ1 7−→ Γ1 · Γ6

Its inverse image in Γ̃
(6)
6 is the special surface (Beauville)

S = Seven t Sodd,

where Seven and Sodd are smooth, connected, with an involution σ.
When the set-up comes from X , the divisor Γ1

1 · Γ̃6 defines a point
sX of Sodd.
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Theorem

Given a general connected double étale cover π : Γ̃6 → Γ6, there is
a commutative diagram

{
Invertible theta-characteristics

M on Γ6 ∪ Γ1 with M|Γ6 ' η(2)

}
θ //

((RRRRRRRRRRRRRRR

S/σ

�����������

Π∨,

where θ is an open embedding and maps even (resp. odd)
theta-characteristics to Sodd/σ (resp. Seven/σ).
Furthermore,

θ(MX ) = sX .
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We obtain a birational isomorphism

X nodal
10

∼
99K

{
pairs (π : Γ̃6 → Γ6, s)

}/
isom.

where s ∈ Sodd/σ.
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Definition of Verra threefolds
X is birational to a Verra threefold

Let Π and Π? be two projective planes. A Verra threefold is a
smooth (Fano) hypersurface

T ⊂ Π× Π?

of bidegree (2, 2).

The projections induce two conic bundle structures T → Π and
T → Π? with discriminant curves sextics Γ6 ⊂ Π and Γ?6 ⊂ Π?, and
double étale covers

π : Γ̃6 → Γ6 and π? : Γ̃?6 → Γ?6.

T depends on 19 parameters (same as plane sextics).
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Definition of Verra threefolds
X is birational to a Verra threefold

The “double projection”

pW : X 99K P2
W

from the 4-plane TW ,O is another birational conic bundle structure.

Theorem

A general nodal Fano threefold X is birational to a general Verra
threefold: the conic bundle structures

pW : X 99K P2
W ,

p` : X 99K Π (for a suitable line ` ⊂ XO),

induce a birational isomorphism

(pW , p`) : X 99K T ⊂ P2
W × Π,

where T is a general Verra threefold.
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A general nodal Fano threefold X is birational to a general Verra
threefold: the conic bundle structures

pW : X 99K P2
W ,

p` : X 99K Π (for a suitable line ` ⊂ XO),

induce a birational isomorphism

(pW , p`) : X 99K T ⊂ P2
W × Π,

where T is a general Verra threefold.
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The period map for Verra threefolds
The intermediate Jacobian J(X )
The period map for X
The surface of conics in X
The period map for smooth X

The intermediate Jacobian

J(T ) := H3(T ,C)/
(
F 2H3(T ,C) + H3(T ,Z)

)
is a 9-dim’l ppav

and

J(T ) ' Prym(Γ̃6/Γ6) ' Prym(Γ̃?6/Γ?6).

Verra proved the following:
1 the period map {

Verra 3-folds
}/

isom.
J−→ A9

is birational onto its 19-dim’l image (generic Torelli holds),
2 the Prym map{

connected double étale
covers of plane sextics

}/
isom.

Prym−−−−−−→ A9

is generically 2-to-1 onto the same image.
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The period map for Verra threefolds
The intermediate Jacobian J(X )
The period map for X
The surface of conics in X
The period map for smooth X

The intermediate Jacobian J(X ) (defined as above) fits into an
extension

1→ C∗ → J(X )→ J(X̃ )→ 0,

where X̃ → X is the minimal desingularization and J(X̃ ) is a
9-dim’l ppav.
Since X̃ is birational to a Verra threefold T , we have

J(X̃ ) ' J(T ).
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The period map for Verra threefolds
The intermediate Jacobian J(X )
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Let ∂A10 be the moduli space of 10-dim’l group extensions as
above, with its projection p : ∂A10 → A9.

Theorem

There is a commutative diagram

X nodal
10

J
��

π //

π?
//

{
connected double étale
covers of plane sextics

}/
isom.

Prym
��

∂A10
p

// A9

A general fiber of the period map J is birationally the union of the
surfaces Sodd/σ and S?,odd/σ.
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Let Fg (X ) be the Hilbert scheme parametrizing conics in X .

Theorem (Logachev)

The variety Fg (X ) is an irreducible projective surface with smooth

normalization F̃g (X ). Its singular locus corresponds to conics on X
passing through O; it is isomorphic to the smooth connected curve
Γ̃?6.

Furthermore, the surface F̃g (X ) contains a single exceptional curve

and its contraction F̃m(X ) is isomorphic to Sodd.
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A birational isomorphism

ρ : Fg (X ) 99K Sodd

can be defined as follows:

1 let c ⊂ X be a conic such that O /∈ 〈c〉;
2 the set of quadrics in Π that contain the 2-plane 〈pO(c)〉 is a

line Lc ⊂ Π;

3 for each point p of Lc ∩ Γ6, the 3-plane

〈pO(c),Vertex(Ωp)〉 ⊂ Ωp

(when defined) defines a point p̃ ∈ Γ̃6 above p.

This defines a point ρ([c]) ∈ S .
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So we have another interpretation of the fiber of the period map

J : X nodal
10 −→ ∂A10

as the union of two surfaces of the type F̃m(X )/σ (the involution
σ can be defined geometrically on F̃m(X )).

This is the degenerate case of a situation that we studied earlier:

if X10 is the 22-dim’l moduli stack for smooth Fano
threefolds X10,

the general fiber of the period map

J : X10 −→ A10

is the union of finitely many disjoint (pairs of) smooth
irreducible projective surfaces of the type Fm(X )/σ.
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Threefolds X in the same component of a fiber are obtained one
from another by explicit birational transformations associated with
the choice of a conic in X .

To any line contained in X , one can also associate another
threefold of the same type in a different component of the fiber.
These correspond the two components that we described at the
boundary.
We conjecture that these are the only two components of a general
fiber of the period map

J : X10 −→ A10.
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