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Let X be a smooth complex projective variety of dimension n,
OX be the structure sheaf and Ω1

X be the cotangent of X .

Definition

1 X is irregular if q = h1(OX ) = h0(Ω1
X ) > 0.

2 X is b-irregular if φ :
∧2 H1(X ,C)→ H2(X ,C) is not

injective.

3 X is hb-irregular if φ2.0 :
∧2 H0(X ,Ω1

X )→ H0(X ,Ω2
X ) is

not injective.

q = 1
2
b1 is the irregularity,

b stands either for badly or bitterly, h for holomorphically.

G. Pirola



Definitions
Motivation

Examples
Conclusion

Irregular varieties
Lagrangian varieties

Remarks

1 A curve C of genus g ≥ 2 is b (and hb)-irregular.

2 if f : X → Y is a dominant morphism and Y is
b-irregular then X is b-irregular.

3 if f : X → Y is a dominant rational map and Y is
hb-irregular then X is hb-irregular.

G. Pirola
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Lagrangian varieties

Definition

(X ,Ω) is a generalized Lagrangian variety (dim X = n) if there
are ω1, ..., ω2n in H0(X ,Ω1

X ) independent forms:
W = span < ω1, ..., ω2n >, dim W = 2n

Ω = ω1 ∧ ω2 + ... + ω2n−1 ∧ ω2n :

1 the evaluation map ev : W ⊗OX → Ω1
X is generically

surjective

2 Ω|X = φ2.0(Ω) = 0

Ω is a Lagrangian structure on X ,
sing(Ω) = {x | evx : W ⊗OX ,x → Ω1

X ,x not surjective}.

G. Pirola
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If (X ,Ω) is a generalized Lagrangian variety, U ⊂ X is simply
connected and p ∈ U , we define
f : U → C2n

f (q) =

∫ q

p

(ω1, ...., ω2n)

f (U) is Lagrangian with respect to

dz1 ∧ dz2 + ... + dz2n−1 ∧ dz2n

sing(Ω) ∩ U = {q ∈ U : df not surjective}.

G. Pirola
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Definition

(X ,Ω) is Lagrangian if there is a gen. finite map f : X → A,
A is an abelian variety, dim A = 2n and W = f ∗H0(A,Ω1

A).

Remark

If X is Lagrangian then f (X ) is a Lagrangian subvariety of A
and sing(Ω) is the branch of f . If W = H0(X ,Ω1

X ) and
q = 2n, then f is the Albanese map (up to isogenies).

Remark

Curves of genus g > 1 are gen. Lagrangian, curves in abelian
surface are Lagrangian, products of Lagrangian are Lagrangian.

G. Pirola
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Algebras

Let a : X → Alb(X ) be the Albanese map. Consider the
algebras:

Definition

1 HQ = ⊕Hp(X ,Q) (HC = HQ ⊗ C)

2 Hhol(X ) = ⊕Hp.0

3 H′ = ⊕
∧p H1.0 ≡ Hhol(Alb(X ))

4 H′′ = a∗(Hhol(Alb(X )).

H′′ is the subalgebra of Hhol(X ) generated by H1.0.

G. Pirola
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FORMALITY

Theorem (Deligne, Griffiths, Morgan, Sullivan)

The rational homotopy groups πi(X )⊗Q (i > 1) depend only
on the algebra HQ.

This usually requires π1(X ) = 0.

G. Pirola
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Nilpotent tower FORMALITY

G = π1(X )
G0 = G , G1 = [G ,G ], ..., Gn = [G ,Gn−1]
Nn =

√
Gn = {x ∈ G : xm ∈ Gn} (normal)

G = N0 ⊃ N1 ⊃ ... ⊃ Nn ⊃ ...

Ni/Ni+1 = (Gi/Gi+1)/torsion

N = Malcev completion of {G/Ni}

Theorem (Chen, Morgan, Hain, Campana, etc...)

N depends only on φ :
∧2 H1(X ,Q)→ H2(X ,Q).

G. Pirola
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In particular if ker φ 6= 0 then π1(X ) is not abelian. To
illustrate, we recall the following

Theorem (J. Amòros-I. Bauer)

Let X be a compact algebraic variety whose fundamental
group admits a presentation with n generators and s relations;
then

s − n ≥ dim Imφ− 2q.

G. Pirola
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Castelnuovo-de Franchis

There is a classical case where π1(X ) is not abelian:

Theorem

Let S be an algebraic surface; 0 6= ω1 ∧ ω2 ∈ ker φ2.0

⇐⇒ there is a non-constant map f : S → C , C a curve of
genus g ≥ 2.

G. Pirola
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Corollary

If a surface S has irregularity q and no fibrations over curves
of genus > 1, then (pg = dim H0(Ω2

X ))

pg ≥ 2q − 3.

Definition

We call the line pg = 2q − 3 the Castelnuovo-de Franchis line
(or trench).

G. Pirola
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Conjecture (M. Mendes Lopes, R. Pardini)

Let X be without fibrations over curves of genus > 1, and
q > 2. If X is on the trench then

q = 3 and X = C2

where C2 is the 2-symmetric product of C genus 3 curve.

Remark

If there are not (generalized) Lagrangian structures then:

pg ≥ 4q − 11.

(The trench is far away).

G. Pirola
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Catanese and BGG

There are many generalizations of the Castelnuovo-de Franchis
theorem (one should also mention Ran, Beauville, Siu, et
cetera):

Definition

We say that X is of Albanese strict type if α is generically
finite, but α is not surjective.

Definition

We say that a (rational map) f : X → Y is an s-Albanese
fibration if

1 Y is of Albanese strict type;

2 dim X − dim Y = s.

G. Pirola
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Theorem (Fabrizio Catanese (Invent. Math. ’91))

There is a one-to-one correspondence between fibrations of
Albanese strict type and maximal isotropic subspaces (isotropic
Hodge-substructure) of the first cohomology group of X .

Remark

Fabrizio’s results gives that the Lagrangian structures are the
simplest tensors in the kernel of: φ2.0 :

∧2 H1.0 → H2.0 which
are not pull-back of a map f : X → Y .

G. Pirola
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Using BGG correspondence, HC = ⊕Hp(X ,C) is a module
over H′ = ⊕

∧p H1.0. Inequalities of Castelnuovo-de Franchis
type have been obtained by Lazarsfeld and Popa. In particular:

Theorem (R. Lazarsfeld-M. Popa)

If X is a surface without fibrations on curves of genus g ≥ 2
then h1.1 = dim H1(X ,Ω1

X ) ≥ 3q − (1).

Remark

For minimal surfaces of general type Bogomolov-Miyaoka-Yau
gives

h11 ≥ 1 + q + pg .

G. Pirola
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A symplectic topological result

Let (X ,Ω) be a Lagrangian structure, set U = X \ sing(Ω).
Lagrangian duality gives the exact sequence :

0→ Ω1
U
∗ → W ⊗OU → Ω1

U → 0.

Theorem (M.A. Barja, J.C. Naranjo, G.P.)

If (X ,Ω) is a generalized Lagrangian variety such that
codim(sing(Ω)) ≥ 2 then c1(X )2 − 2c2(X ) is a nef class.

If dim X = 2 and dim(sing(Ω)) < 1, or sing(Ω) is a
normal-crossing connected divisor, then the topological
signature τ(X ) of X is not negative, that is:

K 2
X ≥ 8χ(X ).

G. Pirola
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We made the following

Conjecture

If (X ,Ω) is a Lagrangian surface then τ(X ) ≥ 0 (similarly for
generalized Lagrangian).

G. Pirola
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Remark

If the conjecture was true one could divide the irregular
varieties:

1 fibred over curves of genus > 1;

2 non fibred:

i) no Lagrangian structure pg > 4q − 11,
ii) generalized Lagrangian K 2 ≥ 8χ.

A good weapon to avoid the trench!

Remark

Our example will give that the conjecture is false.

G. Pirola
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Trench warfare

Mais, mon colon, celle que j’préfère
C’est la guerr’ de quatorz’-dix-huit

G. Brassens

Theorem (M. Mendes Lopes, R. Pardini, G.P.)

No nonfibred surface with q = 5 and pg = 7.

The proof use some hard analysis of the canonical and
bicanonical map (ML-P) and some earlier estimate on h11

from Hodge theory (A. Causin-G.P.).

G. Pirola
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Examples of h-irregular (but not hb) given by
1 Sommese-van de Ven
2 Campana
3 Arapura-Nori
4 ...

Example (Lagrangian surfaces of Bogomolov-Tschinkel)

They use a correspondence on

Γ ⊂ K1 × K2

Ki are Kummer surfaces of Ai , i = 1, 2, Γ is a K 3, then the
pull-back

X ⊂ A1 × A2

is a Lagrangian surface.

G. Pirola
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Geometric Galois Closure

Used many times: e.g. M. Teicher’s school (Amram-Teicher-
Vishne: examples of non fibred surfaces with non finite
nilpotent tower).

Let f : Z → Y be a dominant generically finite map (or
rational) of degree d > 2. Set

V = {z = (z1, ..., zd) ∈ Z d : {z1, ..., zd} = f −1(y), y ∈ Y }.

Remark

V ≡ {z ∈ Z d−1 : ∃zd ∈ Z : {z1, ..., zd} = f −1(y), y ∈ Y }.

G. Pirola
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Definition

Let X be the normalization of the closure of a component V 0

of V ; let g : X → Y be defined by

X
π−→ Z

g↘ ↙f
Y

π projection. Then (X , g) is the Galois closure of f .

G. Pirola
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Theorem

Assume

1 the Galois group of f is the full-symmetric group σd (i.e.
V 0 is irreducible);

2 h1.0(Y ) = h2.0(Y ) = 0 (e.g. Y = Pn);

3 the Albanese map Z → A = Alb(Z ) is generically finite
(q(Z ) ≥ n = dim Z ).

Then

1 h1.0(X ) ≥ (d − 1)q(Z );

2 dim(ker φ2.0) ≥
(
q(Z)

2

)
.

In particular X is hb-irregular and π1(X ) is not abelian.

φ2.0
X :

V2 H0(Ω1
X )→ H0(X ,Ω2

X )

G. Pirola
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Proof.

Set q = q(Z ). The σd equivariant map: j : X → Z d gives
σd -representation maps: j∗ : Hp.0(Z d)→ Hp.0(X ) :

1 H1.0(Z d) = Γq + Cq, (Γ standard, C trivial repr.). One
has

Γq ↪→ H1.0(X ).

2 We have
2∧

Γq ↪→
2∧

H1.0(Z ).

Since H2.0(Y ) = 0 the invariant part is in the kernel:(∧2 Γq
)σd

⊂ ker φ2.0, then (easy computation)

( 2∧
Γq
)σd

⊃ C(q
2).

G. Pirola
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Remark

Easy to satisfy the assumption: embed an abelian variety in Pn

and take generic projections.

Remark

The elements ker φ2.0 constructed have the type

α1 ∧ β1 + ... + αd−1 ∧ βd−1.

They give Lagrangian structures only if n = d − 1. We have
only one example with d = n + 1.

G. Pirola
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Degree of irrationality

One defines the degree of irrationality of a variety X :

di(X ) = min{deg(g) | g : X 99K Pn dominant}.

Remark

Yoshihara-Tokunaga proved that if S is an abelian surface with
polarization (1.2) then di(S) = 3.
Bastianelli (Trans. 2010) has proved that di(C2) ≥ g − 1 of
the 2-symmetric product C2 of a curve C of genus g .

Problem

Let A = J(C ) be the general principal polarized abelian
surface. Is there a 3 : 1 rational map g : A→ P2 ?

G. Pirola
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(1.2)-abelian surfaces (Barth)

Let S be an abelian surface with an irreducible polarization of
type (1.2) – i.e. there is a smooth curve C ⊂ S , C 2 = 4, and
genus 3 (S is the Prym variety of bielliptic curves of genus 3).

- |C | is a pencil with 4 base points, P0,P1,P2,P3

- if P0 = OS is the origin of S then 2Pi = OS .

G. Pirola
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The construction (Xiao, Yoshihara-Tokunaga)

Blow-up the point Pi then we have p : S ′ → P1 and 4 sections
Ei . The general curve C of the pencil is not hyperelliptic. Now
use the point P0 to define C → |KC − (PO)| = P1, and glue:

p∗(ωS ′(−E0))

to get a 3 : 1 rational map g : S ′ 99K P1 × P1.
Solving the singularity along the smooth 6 hyperelliptic curves
Z → S ′ we get a finite map

f : Z → F3

(F3− Hirzebruch).

G. Pirola
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LG Surface

We define the Galois closure g : X ′ → Z to be the Galois
closure of f : Z → F3.

Definition

We call LG (Lagrangian-Galois) surface the minimal
desingularization X of X ′.

Theorem

The LG surface X is a surface of general type with invariants

K 2
X = 198, c2(X ) = 102, χ(OX ) = 25, q = 4, pg = 28.

X is Lagrangian with Alb(X ) = S × S, and it does not have
any fibration over curves of genus ≥ 2.

G. Pirola



Definitions
Motivation

Examples
Conclusion

Previous examples
Galois closure
The example

LG Surface

We define the Galois closure g : X ′ → Z to be the Galois
closure of f : Z → F3.

Definition

We call LG (Lagrangian-Galois) surface the minimal
desingularization X of X ′.

Theorem

The LG surface X is a surface of general type with invariants

K 2
X = 198, c2(X ) = 102, χ(OX ) = 25, q = 4, pg = 28.

X is Lagrangian with Alb(X ) = S × S, and it does not have
any fibration over curves of genus ≥ 2.

G. Pirola



Definitions
Motivation

Examples
Conclusion

Previous examples
Galois closure
The example

Corollary

Let τ(X ) be the signature of X . Then

τ(X ) = −2.

The conjecture (BNP) is false and the connectedness of
sing(Ω) is important:

Proposition

For a general S the Galois closure X = X ′ is smooth. If Ω is
the Lagrangian structure of X , then sing(Ω) consists of the 6
smooth rational connected components disjoint (−3)-curves.

G. Pirola
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ingredients

1 fibred Galois covering;

2 the Galois covering has degree 2;

3 2- and 3-torsion points;

4 the special fibers;

5 the group action;

6 moduli of (1.2) surfaces.

G. Pirola
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proof 1

The maps f : X → Z and g : Z → F3 are fiber space map:

X
f−→ Z

p′↘ ↙p
P1

Z
π−→ F3

p↘ ↙k
P1

The general fibre D of p′ : X → P1 are the Galois closure of
the fiber C , p : Z → P1 :

f : D → C .

G. Pirola
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proof 2

-The Galois closure f : X → Z of g : Z → F3 is 2 : 1.

We need the branch divisor R of f .

-The branch of f is the ramification divisor of g .

The intersection with the general fiber is the C branch of the
3 : 1 map f : C → P1 :

R · C = 10.

G. Pirola
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proof 3: torsion points

1 P0 = O origin of the abelian surface;

2 P1,P2,P3 in the kernel of the polarization;

3 12 other torsion points (corresponds to the singular
points);

4 the 3-torsion points locus S3 (non trivial)

S3 \ {O} ⊂ R .

G. Pirola



Definitions
Motivation

Examples
Conclusion

Previous examples
Galois closure
The example

proof 4: special fiber

The smooth hyperelliptic curves gives the picture (F.B.):

G. Pirola
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proof 5

We get that Néron Severi group of Z general is generated by
C , Ei , Gij .

1 The branch divisor R is numerically equivalent to

−2E0 + 4
3∑

k=1

Ek + 20C − 4
3∑

k=1

(G1k + G2k).

2 The branch divisor R is reduced and has at most simple
singularities.

G. Pirola
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proof 6

From theory of double covering:

K 2
X = 198, c2(X ) = 102, χ(OX ) = 25

from Hodge index

τ(X ) = −2.

G. Pirola
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proof 7: irregularity

Using representation theory of σ3 one proves that the
irregularity is 4.

Analysing the special fibers and the group action one shows
that

Alb(X ) = S × S .

G. Pirola
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proof 8: no irrational pencil of genus g ≥ 2

The tricky part. By contradiction let h : X → B be the pencil.
Then genus(B) = 2, and

J(B) = S/ < P0,Pi >

for any choice of i = 1, 2, 3. Define a natural map :

M : Moduli . ab.(1.2)− surf → hilb3(Moduli PPA− surf ).

M(S) = S/ < P0,P1 > +S/ < P0,P2 > +S/ < P0,P3 >

We obtain Image(F ) ⊂ diagonal .
The product of an elliptic curve S = E × E shows this is false.

G. Pirola
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proof 8: complements

Using the monodromy of the points of order 3 and some
analysis on special surfaces (the S obtained as Prym of the
Fermat curve X 4 + Y 4 + Z 4 = 0) one shows that X = X ′ for
general S .

We can use also the methods of (BNP) to compute τ(X ).

G. Pirola
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proof 9: complements

Corollary

Let φ1.1 : H1.0(X )⊗ H0.1(X )→ H1(X ,Ω1), then
dim ker(φ1.1) = 5 and dim(ker φ) = 7.
(φ :

V2 H1(X ,C)→ H2(X ,C)).

Remark (A. Causin-G.P.)

We proved dim(ker φ) ≥ 7 if q = 4 and no irrational pencil of
genus ≥ 2. The bound is attained in the example.

G. Pirola
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With A. Collino and J.C. Naranjo we discover a surface,
connected with the the Fano surface F of line on the smooth
cubic 3−fold V , and a structure similar to the previous
surface: S ⊂ F 3

S = {(`1, `2, `3} ∈ F 3 : `1∩ `2∩ `3 = {p}; < `1, `2, `3 >= P2}

We have a σ3 action on S , the quotient is the vertex map
v : S → V

v(`1, `2, `3) = p.

G. Pirola
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1 Compute the nilpotent tower of the Galois closures.

2 Compute the fundamental group.

3 (Campana) Find a Lagrangian variety of a simple abelian
variety.

G. Pirola
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