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Definitions and notation

@ Joint work with Luc Pirio.
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Definitions and notation

@ Joint work with Luc Pirio.

@ X denotes an irreducible projective (or proper) complex
variety.

o dim(X)=r+1 <+ X=X+
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Definitions and notation

P1,-.-,Pn € X
n > 2 general points
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Definitions and notation

3 C = Cp17-~~7pn

=— irreducible curve :

P1,-.-,Pn € X
n > 2 general points
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Definitions and notation

3C=C
X . I
PL---Pn € . — irreducible curve :
n > 2 general points
P1,---yPn € C
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Definitions and notation

3C=C
X . I
PL---Pn € . — irreducible curve :
n > 2 general points
P1,---yPn € C

@ if we put restrictions on C natural obstructions appear.
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Definitions and notation

3C=C
X . I
PL---Pn € . — irreducible curve :
n > 2 general points
P1,---yPn € C

@ if we put restrictions on C natural obstructions appear.

n=2%& X rationally connected variety
C rational curve ( dubbed RC).
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Definitions and notation

Theorem (Kolldr—Miyaoka—Mori)

3C = Cp,,....p, € X rational curve
@ X RC < passing through n > 2
general points p1,...,pp € X
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Definitions and notation

Theorem (Kolldr—Miyaoka—Mori)

3C = Cp,,....p, € X rational curve
@ X RC < passing through n > 2
general points p1,...,pp € X

X1 RC 3C C X SMOOTH rational curve
@ SMOOTH = passing through n > 2
r>?2 general points py,...,pp € X
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Definitions and notation

Theorem (Kolldr—Miyaoka—Mori)

3C = Cp,,....p, € X rational curve
@ X RC < passing through n > 2

general points p1,...,pp € X

X+ RC 3C C X SMOOTH rational curve
@ SMOOTH = passing through n > 2

r>2 general points py,...,pp € X

Xr+1 RC

SMOOTH df : C — X EMBEDDING :
o =

r>2 p1,-..Pn € f(C)

C any SMOOTH curve
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Definitions and notation

Fixed n > 2, 6 > n—1 and an embedding X C PN
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Definitions and notation

Fixed n > 2, 6 > n—1 and an embedding X C PN

X c PN
n—covered by curves
of degree §
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Definitions and notation

Fixed n > 2, 6 > n—1 and an embedding X C PN

X cPN 3C=0Cp,.p X
n—covered by curves <= through n > 2 general points
of degree 0 with deg(C) = 6.
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Definitions and notation

Fixed n > 2, 6 > n—1 and an embedding X C PN

X cPN 3C=0Cp,.p X
n—covered by curves <= through n > 2 general points
of degree 0 with deg(C) = 6.

In this case we shall use the notation :

X = X(n,8) c PN,
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Examples/reinterpretation of known results

We shall also assume X C PV non-degenerate.
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Examples/reinterpretation of known results

We shall also assume X C PV non-degenerate.

o X=X"(21)cPV <= N=r+1and X =Prtl;
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Examples/reinterpretation of known results

We shall also assume X C PV non-degenerate.

o X=X"(21)cPV <= N=r+1and X =Prtl;

(@) N=r+2

_ yr+l1 N
© X=X"(3,2) CPY <= 1) xr+1 ¢ P2 quadric:
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Examples/reinterpretation of known results

We shall also assume X C PV non-degenerate.

Examples
o X=X"(21)cPV <= N=r+1and X =Prtl;

_ xrtl N (a) N=r+2
© X=X"(3,2) CPY <= 1) xr+1 ¢ P2 quadric:

N=r+n-1
Xr+1CPr+n—1

— yr+i1 _ N
o X=X (nn-1) CP" = deg(X) = n—1

(minimal degree)
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Pirio—Trepréau bound

Theorem (Pirio—Trepréau, 2009)

Let X = X" X(n,8) C PN, Then

N <7(r,nd)—1=m(r,n, 6 +r(n—1)+2)—1,
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Pirio—Trepréau bound

Theorem (Pirio—Trepréau, 2009)

Let X = X" X(n,8) C PN, Then
N <7(r,nd)—1=m(r,n, 6 +r(n—1)+2)—1,

where

w(r,n,d)zz(U—'—;_1>(max{O,d—(a+r)(n—1)—1})

o>0
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Pirio—Trepréau bound

Theorem (Pirio—Trepréau, 2009)

Let X = X" X(n,8) C PN, Then
N <7(r,nd)—1=m(r,n, 6 +r(n—1)+2)—1,

where

w(r,n,d)zz(U—'—;_1>(max{O,d—(a+r)(n—1)—1})

o>0

is the Castelnuovo—Harris function

Francesco Russo Varieties n—covered by curved of degree §



Pirio—Trepréau bound

Theorem (Pirio—Trepréau, 2009)

Let X = X" X(n,8) C PN, Then

N <7(r,nd)—1=m(r,n, 6 +r(n—1)+2)—1,

where
m(r,n,d) = Z (U—'—;_1>(max{0,d—(a+r)(n—1)—1})
>0

is the Castelnuovo—Harris function bounding the genus g(V') of

an irreducible variety
Ve ]P)r+nfl

of degree deg(V) = d.
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Previously known results and some classifications

Let us begin with 6 =2 (or n = 2). Recall that 6 > n — 1.
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Previously known results and some classifications

Let us begin with 6 =2 (or n = 2). Recall that 6 > n — 1.

o X =X(3,2) c PN = X! C Pr*2 quadric.

Francesco Russo Varieties n—covered by curved of degree §



Previously known results and some classifications

Let us begin with 6 =2 (or n = 2). Recall that 6 > n — 1.
o X =X(3,2) c PN = X! C Pr*2 quadric.

o (C. Segre &) Scorza (1909) : 7(r,2,2) < ("131?)
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Previously known results and some classifications

Let us begin with 6 =2 (or n = 2). Recall that 6 > n — 1.
o X =X(3,2) c PN = X! C Pr*2 quadric.
= +142
o (C. Segre &) Scorza (1909) : 7(r,2,2) < ("577)

@ Scorza (1909) : X arbitrary
f(n 27 2) _ (r+é+2) — X = V2(Pr+1) - P(H?Z)*l.
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Previously known results and some classifications

Let us begin with 6 =2 (or n = 2). Recall that 6 > n — 1.
o X =X(3,2) c PN = X! C Pr*2 quadric.
= +142
o (C. Segre &) Scorza (1909) : 7(r,2,2) < ("577)

@ Scorza (1909) : X arbitrary
f(n 27 2) _ (r+é+2) — X = V2(Pr+1) - P(H?Z)*l.

o Next case X = X(2,2) c PN.
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Previously known results and some classifications

Let us begin with 6 =2 (or n = 2). Recall that 6 > n — 1.
o X =X(3,2) c PN = X! C Pr*2 quadric.
= +142
o (C. Segre &) Scorza (1909) : 7(r,2,2) < ("577)

@ Scorza (1909) : X arbitrary
f(n 27 2) _ (r+é+2) — X = V2(Pr+1) - P(H?Z)*l.

o Next case X = X(2,2) c PN.

Scorza (1909) : classification X = X(2,2) C PN in some cases
reconsidered in [Chiantini, Ciliberto, —;2017].
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Previously known results and some classifications

X = X(2,2) c PN SMOOTH
(conic-connected manifold)
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Previously known results and some classifications

CLASSIFIED :
X = X(2,2) c PN SMOOTH Fano & by(X) <2
(conic-connected manifold) etc, etc

(lonescu, —; 2008)
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Previously known results and some classifications

CLASSIFIED :
X = X(2,2) c PN SMOOTH Fano & by(X) <2
(conic-connected manifold) etc, etc

(lonescu, —; 2008)

e Bompiani (7) (1921), Pirio & — (2010) :
X1 c PN arbitrary
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Previously known results and some classifications

CLASSIFIED :
X = X(2,2) c PN SMOOTH Fano & by(X) <2
(conic-connected manifold) etc, etc

(lonescu, —; 2008)

e Bompiani (7) (1921), Pirio & — (2010) :
X1 c PN arbitrary

(a) w(r,2,8) = ("FH°)
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Previously known results and some classifications

CLASSIFIED :
X = X(2,2) c PN SMOOTH Fano & by(X) <2
(conic-connected manifold) etc, etc

(lonescu, —; 2008)

e Bompiani (7) (1921), Pirio & — (2010) :
X1 c PN arbitrary

(a) w(r,2,8) = ("FH°)

(b) N = ("H9) —1 e X = ps(Pr+t) c P("37)1
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Previously known results and some classifications

Let us consider § = 3. Recall § > n— 1.
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Previously known results and some classifications

Let us consider § = 3. Recall § > n— 1.

o X =X(4,3) CPN = X"+1 C Pr+3 & deg(X) =3
(CLASSIFIED).
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Previously known results and some classifications

Let us consider § = 3. Recall § > n— 1.

o X =X(4,3) CPN = X"+1 C Pr+3 & deg(X) =3
(CLASSIFIED).

e 7(r,3,3) = 2r +4, as we shall see in a moment.
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Previously known results and some classifications

Let us consider § = 3. Recall § > n— 1.

o X =X(4,3) CPN = X"+1 C Pr+3 & deg(X) =3
(CLASSIFIED).

e 7(r,3,3) = 2r +4, as we shall see in a moment.

o X = X1(3,3) c p2rhH
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Previously known results and some classifications

Let us consider § = 3. Recall § > n— 1.

o X =X(4,3) CPN = X"+1 C Pr+3 & deg(X) =3
(CLASSIFIED).

e 7(r,3,3) = 2r +4, as we shall see in a moment.
CLASSIFIED :

o X = X"1(3,3) c PArtI+t —  (Pirio, —; 2010)
object of this talk
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7w(r,3,3)=2r+4

o x € X = X1(3,3) c PV general point;
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w(r,3,3)=2r+4

o x € X = X1(3,3) c PV general point;
o T = T,X =P projective tangent space to X at x;
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7w(r,3,3)=2r+4

o x € X = X1(3,3) c PV general point;
o T = T,X =P projective tangent space to X at x;

(*]
7 X--+ X7 C PN-r—2

projection of X from T, not defined along T N X.
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7w(r,3,3)=2r+4

o p1 # po € X general = 7w7(p1) # 77(p2).
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7w(r,3,3)=2r+4

o p1 # po € X general = 7w7(p1) # 77(p2).
(otherwise N = r +2 < 2r + 3).
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7w(r,3,3)=2r+4

o p1 # po € X general = 7w7(p1) # 77(p2).
(otherwise N = r +2 < 2r + 3).

e 3C = C p, p, With deg(C) = 3;
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7w(r,3,3)=2r+4

o p1 # po € X general = 7w7(p1) # 77(p2).
(otherwise N = r +2 < 2r + 3).

e 3C = C p, p, With deg(C) = 3;

o m7(Ciprp) = (m7(p1), m7(P2)) € X7,
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7w(r,3,3)=2r+4

o p1 # po € X general = 7w7(p1) # 77(p2).
(otherwise N = r +2 < 2r + 3).

e 3C = C p, p, With deg(C) = 3;

° 7"'T(Cx,pl,pz) = <7TT(P1)77TT(P2)> C XTa
that is

Xr=X(r+1,2,1) =prti-o = phN-r-2,

In conclusion N=2r+3—0,0 >0and 7(r,3,3) =2r+4. [
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X — )(r—kl(37 3) c P2Ar+1)+1

o C = Cp pp; C (C)is a twisted cubic;
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X — )(r—kl(37 3) c P2Ar+1)+1

o C = Cp pp; C (C)is a twisted cubic;

o mr|c : C--»L isomorphism, L C X7 =P"*! line;
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X — )(r—kl(37 3) c P2Ar+1)+1

o C = Cp pp; C (C)is a twisted cubic;

o mr|c : C--»L isomorphism, L C X7 =P"*! line;

o 71 : X--»Prtl is birational ;

Francesco Russo Varieties n—covered by curved of degree §



X — )(r—kl(37 3) c P2Ar+1)+1

o C = Cp pp; C (C)is a twisted cubic;

o mr|c : C--»L isomorphism, L C X7 =P"*! line;
o 71 : X--»Prtl is birational ;

o 7l = ¢p Pl X C P23, A C |Opria(3)| complete
linear system.
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X — )(r—kl(37 3) c P2Ar+1)+1

o a: X =Bl X — X blow-up of X at x:
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X — )(r—kl(37 3) c P2Ar+1)+1

o a: X =Bl X — X blow-up of X at x:

@ E = P" exceptional divisor;
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X — )(r—kl(37 3) c P2Ar+1)+1

o a: X =Bl X — X blow-up of X at x:

@ E = P" exceptional divisor;

@ TT: X — X--»Pr*1 induced rational map ;
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X — )(r—kl(37 3) c P2Ar+1)+1

o a: X =Bl X — X blow-up of X at x:

@ E = P" exceptional divisor;
@ TT: X — X--»Pr*1 induced rational map ;

o #r(E) =M, =P C P! HYPERPLANE
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X — )(r—kl(37 3) c P2Ar+1)+1

o a: X =Bl X — X blow-up of X at x:

@ E = P" exceptional divisor;
@ TT: X — X--»Pr*1 induced rational map ;

o #r(E) =M, =P C P! HYPERPLANE

(W}l(ﬂx) =x & W}I(L) is smooth at x for L general).
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X — )(r—kl(37 3) c P2Ar+1)+1

® )y =T71|g : E--»lx is a Cremona transformation given by
Q C Opr(2) because
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X — )(r—kl(37 3) c P2Ar+1)+1

® )y =T71|g : E--»lx is a Cremona transformation given by
Q C Opr(2) because

a*(0(1)) ® O(—2E) ® O = Opr(2).
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X — )(r—kl(37 3) c P2Ar+1)+1

® )y =T71|g : E--»lx is a Cremona transformation given by
Q C Opr(2) because

a*(0(1)) ® O(—2E) ® O = Opr(2).

e Q = |ll, x| Second fundamental form of X at x;
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X — )(r—kl(37 3) c P2Ar+1)+1

® )y =T71|g : E--»lx is a Cremona transformation given by
Q C Opr(2) because

a*(0(1)) ® O(—2E) ® O = Opr(2).

e Q = |ll, x| Second fundamental form of X at x;

e Bs(|/ly x|) = Bx C E =asymptotic directions to X at x.

Francesco Russo Varieties n—covered by curved of degree §



X — )(r—kl(37 3) c P2Ar+1)+1

e dim(|/l, x|) = r < codim(X) — 1 = expected dimension.
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X — )(r—kl(37 3) c P2Ar+1)+1

e dim(|/l, x|) = r < codim(X) — 1 = expected dimension.
o Yl = 777.‘ - My--»E given by Q C |Op(2)].

(recall that 771 (M) = x. 1)
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X — )(r—kl(37 3) c P2Ar+1)+1

e dim(|/l, x|) = r < codim(X) — 1 = expected dimension.
o Yl = 777.‘ - My--»E given by Q C |Op(2)].
(recall that 771 (M) = x. 1)

o B, =Bs(y;!)
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Structure Theorem for X = X'*1(3,3) C P2(r+1)+1
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Structure Theorem for X = X'*1(3,3) C P2(r+1)+1

BX = Bs(wx) CcC E=P"

x =T =¢c Biry (P .
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Structure Theorem for X = X'*1(3,3) C P2(r+1)+1

BX = Bs(wx) CcC E=P"

x =T =¢c Biry (P .

Theorem (Pirio, — (2010))
X = X™+1(3,3) c P21+ Then :

4
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Structure Theorem for X = X'+1(3,3) c PAr+)+!

By = Bs(1)) C E =P

= T =€ Biry(P" o
(0 TTIE I 22( ) { B, = Bs(w;l) cn,=Ppr

Theorem (Pirio, — (2010))
X = X™1(3,3) ¢ P2r+D+1, Then :

A. 1y € Lin C Biry(P") <= X SMOOTH rational normal scroll

4
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Structure Theorem for X = X'+1(3,3) c PAr+)+!

By = Bs(1)) C E =P

= T =€ Biry(P" o
(0 TTIE I 22( ) { B, = Bs(w;l) cn,=Ppr

Theorem (Pirio, — (2010))
X = X™1(3,3) ¢ P2r+D+1, Then :

A. 1y € Lin C Biry(P") <= X SMOOTH rational normal scroll

B. X not a scroll :

4
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Structure Theorem for X = X'+1(3,3) c PAr+)+!

By = Bs(1)) C E =P

= T =€ Biry(P" o
(0 TTIE I 22( ) { B, = Bs(w;l) cn,=Ppr

Theorem (Pirio, — (2010))
X = X™1(3,3) ¢ P2r+D+1, Then :

A. 1y € Lin C Biry(P") <= X SMOOTH rational normal scroll

B. X not a scroll :
1 N7 Pt 25 X s given by |3H — 2B,
2. B, = Hilb™ (X, x) ~prj Bx

4
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Structure Theorem for X = X'+1(3,3) c PAr+)+!

By = Bs(1)) C E =P

x =T =& Biry(P" -
(0 TT|E 22( ) { B, = Bs(w;l) cn, =P

Theorem (Pirio, — (2010))
X = X™1(3,3) ¢ P2r+D+1, Then :

A. 1y € Lin C Biry(P") <= X SMOOTH rational normal scroll

B. X not a scroll :
1 N7 Pt 25 X s given by |3H — 2B,

2. B, = Hilb™ (X, x) ~pwj By (usually only Hilb™™(X,x) C B,
holds!)

3. X SMOOTH —> B, et B, are SMOOTH

4
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From Bir((P") to X 1(3,3) c P2rt1)+1
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From Bir((P") to X 1(3,3) c P2rt1)+1

B = Bs(¢) C P"

¢ : P"--»P" € Biryy(P") \ Lin(P") { B=Bs(¢pt) cPr
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From Bir((P") to X 1(3,3) c P2rt1)+1

B = Bs(¢) C P"

¢ : P"--»P" € Biryy(P") \ Lin(P") { B=Bs(¢pt) cPr

@ X =(xq:...:X41) coordinates on P"

Francesco Russo Varieties n—covered by curved of degree §



From Bir((P") to X 1(3,3) c P2rt1)+1

B = Bs(¢) C P"

¢ : P"--»P" € Biryy(P") \ Lin(P") { B=Bs(¢pt) cPr

@ X =(xq:...:X41) coordinates on P"

° ¢ =(¢1(x) ... 1 Prya(x)) : Pr--»P"

Francesco Russo Varieties n—covered by curved of degree §



From Bir((P") to X 1(3,3) c P2rt1)+1

B = Bs(¢) C P"

¢ : P"--»P" € Biryy(P") \ Lin(P") { B=Bs(¢pt) cPr

@ X =(xq:...:X41) coordinates on P"
° ¢ =(¢1(x) ... 1 Prya(x)) : Pr--»P"

@ o logp=(x)(x1:...:x41) with o(x) € C[xq,...,x]s;
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From Bir((P") to X 1(3,3) c P2rt1)+1

B = Bs(¢) C P"

¢ : P"--»P" € Biryy(P") \ Lin(P") { B=Bs(¢pt) cPr

@ X =(xq:...:X41) coordinates on P"
° ¢ =(¢1(x) ... 1 Prya(x)) : Pr--»P"

@ o logp=(x)(x1:...:x41) with o(x) € C[xq,...,x]s;
(¢7" 0 ¢ ~pir Ipr)
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From BiI’(Q’Q)(IP)r) to )(r'H(:B7 3) c pAr+1)+1

B = Bs(¢) C P"

¢ : P"--»P" € Biryy(P") \ Lin(P") { B=Bs(¢pt) cPr

@ X =(xq:...:X41) coordinates on P"
° ¢ =(¢1(x) ... 1 Prya(x)) : Pr--»P"

@ o logp=(x)(x1:...:x41) with o(x) € C[xq,...,x]s;
(¢7" 0 ¢ ~pir Ipr)

@ the cubic hypersurface V(¢(x)) C P’ has double points along
B = V(¢1(x),...,dr+1(x)) = Bs(¢), that is
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From BiI’(Q’Q)(IP)r) to )(r'H(:B7 3) c pAr+1)+1

B = Bs(¢) C P"

¢ : P"--»P" € Biryy(P") \ Lin(P") { B=Bs(¢pt) cPr

@ X =(xq:...:X41) coordinates on P"
° ¢ =(¢1(x) ... 1 Prya(x)) : Pr--»P"

@ o logp=(x)(x1:...:x41) with o(x) € C[xq,...,x]s;
(¢7" 0 ¢ ~pir Ipr)

@ the cubic hypersurface V(¢(x)) C P’ has double points along
B = V(¢1(x),...,dr+1(x)) = Bs(¢), that is

dp(x)
Ox;

€ (WY1(x)y .., Yrp1(x)) V i=1,...,r+ 1
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@ The cubic hypersurface V(¢(x)) is the secant scheme of B,
that is
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@ The cubic hypersurface V(¢(x)) is the secant scheme of B,
that is the locus of lines spanned by lenght 2 subschemes of B
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Correspondence between Bir(, 5)(P") to

Xr+1(3’ 3) C P2Ar+1)+1
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Correspondence between Bir(, 5)(P") to

Xr+1(3’ 3) C P2Ar+1)+1

B = Bs(¢) C P

¢ : P'-->P" € Birp»(P") \ Lin(PP") { B =Bs(¢7!) C P
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Correspondence between Bir(, 5)(P") to

Xr+1(3’ 3) C P2Ar+1)+1

B = Bs(¢) C P
B=Bs(¢p) cPr

Let

¢ : P'-=»P" € Birp,(P") \ Lin(P") {

Xo={(1:x:01(x) ... 0rp1(x) 1 p(x)} C p2r+1)+1,

Then :
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Correspondence between Bir(, 5)(P") to

Xr+1(3’ 3) C P2Ar+1)+1

B = Bs(¢) C P
B=Bs(¢p) cPr

Let

¢ : P'-=»P" € Birp,(P") \ Lin(P") {

Xo={(1:x:01(x) ... 0rp1(x) 1 p(x)} C p2r+1)+1,

Then :
A Xy = X+1(3,3) P2(r+1)+1  pot 5 rational normal scroll :
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Correspondence between Bir(, 5)(P") to

Xr+1(3’ 3) C P2Ar+1)+1

B = Bs(¢) C P
B=Bs(¢p) cPr

Let

¢ : P'-=»P" € Birp,(P") \ Lin(P") {

Xo={(1:x:01(x) ... 0rp1(x) 1 p(x)} C p2r+1)+1,

Then :
A Xy = X+1(3,3) P2(r+1)+1  pot 5 rational normal scroll :

B. Bx ~proj B for x € X general
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Correspondence

There exists a bijection

" {Birz,z(ﬂw)} {X = X+1(3,3) C P2(f+1>+1}

proj. transf. induced proj. transf.

given by
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Correspondence

There exists a bijection

" {Birz,z(ﬂw)} {X = X+1(3,3) C P2(f+1>+1}

proj. transf. induced proj. transf.

given by
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Consequences of the Structure Theorem and of the

Correspendence
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Consequences of the Structure Theorem and of the

Correspendence

B = Bs(¢) C Pr

¢ : P'--»P" € Birp»(P") \ Lin(P") { B = Bs(qﬁil) CP*
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Consequences of the Structure Theorem and of the

Correspendence

- Pr__sPr H r H r B:BS(¢)C]P)r
¢ : P'--»P" € Birp»(P") \ Lin(P") { B—Bs(6-!) C P
Corollary (Pirio, — (2010))

Let ¢ : P'-—>P" € Biras(P") \ Lin(P"). Then
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Consequences of the Structure Theorem and of the

Correspendence

- Pr__sPr H r H r B:BS(¢)C]P)r
¢ : P'--»P" € Birp»(P") \ Lin(P") { B—Bs(6-!) C P
Corollary (Pirio, — (2010))

Let ¢ : P'-—>P" € Biras(P") \ Lin(P"). Then

O B and B are projectively equivalent
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Consequences of the Structure Theorem and of the

Correspendence

- Pr__sPr H r H r B:BS(¢)C]P)r
¢ : P'--»P" € Birp»(P") \ Lin(P") { B—Bs(6-!) C P
Corollary (Pirio, — (2010))

Let ¢ : P'-—>P" € Biras(P") \ Lin(P"). Then

O B and B are projectively equivalent

@ modulo a projective transformation ¢ = ¢!, that is

Francesco Russo Varieties n—covered by curved of degree §



Consequences of the Structure Theorem and of the

Correspendence

- Pr__sPr H r H r B:BS(¢)C]P)r
¢ : P'--»P" € Birp»(P") \ Lin(P") { B—Bs(6-!) C P
Corollary (Pirio, — (2010))

Let ¢ : P'-—>P" € Biras(P") \ Lin(P"). Then

O B and B are projectively equivalent

@ modulo a projective transformation ¢ = ¢, that is ¢ is
(essentially) an involution.
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Consequences of the Structure Theorem and of the

Correspondence
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Consequences of the Structure Theorem and of the
Correspondence

Corollary (Pirio, — (2010))
X = X™1(3,3) ¢ P2r+1)+1, Then
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Consequences of the Structure Theorem and of the
Correspondence

Corollary (Pirio, — (2010))
X = X™1(3,3) ¢ P2r+1)+1, Then
X is a OADP variety, that is
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Consequences of the Structure Theorem and of the
Correspondence

Corollary (Pirio, — (2010))
X = X™1(3,3) ¢ P2r+1)+1, Then
X is a OADP variety, that is

through a general point q € P>'+3 there passes a unique secant
line to X.

Remark

The Structure Theorem has important applications to the
classification of (SMOOTH) OADP varieties.
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Classification of SMOOTH X = X"1(3,3) C P2(r+1)+1
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Classification of SMOOTH X = X"1(3,3) C P2(r+1)+1

B = Bs(¢) C P

¢ : Pr-->P" € Biry(P") \ Lin(P") { B=Bs(¢ ') CP
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Classification of SMOOTH X = X"1(3,3) C P2(r+1)+1

B = Bs(¢) C P

¢ : Pr-->P" € Biry(P") \ Lin(P") { B=Bs(¢ ') CP

Theorem (Ein, Shepherd—-Barron (1989))
If B is SMOOTH, then one of the following holds :
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Classification of SMOOTH X = X"1(3,3) C P2(r+1)+1

B = Bs(¢) C P

¢ : Pr-->P" € Biry(P") \ Lin(P") { B=Bs(¢ ') CP

Theorem (Ein, Shepherd—-Barron (1989))
If B is SMOOTH, then one of the following holds :

Qr>2 B=Q2II p, Q"2 smooth quadric hyp. &
p & (Qr’2> (ELEMENTARY QUADRATIC TRANSF.);
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Classification of SMOOTH X = X"1(3,3) C P2(r+1)+1

B = Bs(¢) C P

¢ : Pr-->P" € Biry(P") \ Lin(P") { B=Bs(¢ ') CP

Theorem (Ein, Shepherd—-Barron (1989))
If B is SMOOTH, then one of the following holds :
Q@ r>2 B=Q ?Ilp, Q2 smooth quadric hyp. &
p & (Q~2) (ELEMENTARY QUADRATIC TRANSF.);
@ r =5, B rpoj 12(P?);
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Classification of SMOOTH X = X"1(3,3) C P2(r+1)+1

B = Bs(¢) C P

¢ : Pr-->P" € Biry(P") \ Lin(P") { B=Bs(¢ ') CP

Theorem (Ein, Shepherd—-Barron (1989))
If B is SMOOTH, then one of the following holds :
Qr>2 B=Q2II p, Q"2 smooth quadric hyp. &
p & (Q~2) (ELEMENTARY QUADRATIC TRANSF.);
Q r =5, B ~pj 12(P?);
Q r =8, B~y Segre(P? x P?);
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Classification of SMOOTH X = X"1(3,3) C P2(r+1)+1

B = Bs(¢) C P

¢ : Pr-->P" € Biry(P") \ Lin(P") { B=Bs(¢ ') CP

Theorem (Ein, Shepherd—-Barron (1989))
If B is SMOOTH, then one of the following holds :
Qr>2 B=Q2II p, Q"2 smooth quadric hyp. &
p & (Q~2) (ELEMENTARY QUADRATIC TRANSF.);
Q r =5, B ~pj 12(P?);
Q r =8, B~y Segre(P? x P?);
Q r =14, B ~p0; G(1,5);
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Classification of SMOOTH X = X'+1(3,3) c PAr+1+1

B = Bs(¢) C P

¢ : Pr-->P" € Biry(P") \ Lin(P") { B=Bs(¢ ') CP

Theorem (Ein, Shepherd—-Barron (1989))

If B is SMOOTH, then one of the following holds :
Qr>2 B=Q2II p, Q"2 smooth quadric hyp. &

p & (Q~2) (ELEMENTARY QUADRATIC TRANSF.);

P =5 8 fog vo(IP?) ;

r =8, B ~prj Segre(P? x P?);

r =14, B ~p; G(1,5);

r =26, B ~pn Es, dim(Es) = 16.

©©0 00
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Classification of SMOOTH X = X"1(3,3) C P2(r+1)+1

Structure Theorem & Ein-SB Theorem yield :
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Classification of SMOOTH X = X'+1(3,3) c PAr+1+1

Structure Theorem & Ein-SB Theorem yield :

Theorem (Pirio, — (2010))

X = X™1(3,3) ¢ P2r+D+1 SMOOTH. Then one of the following
holds, modulo projective equivalence :
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Classification of SMOOTH X = X'+1(3,3) c PAr+1+1

Structure Theorem & Ein-SB Theorem yield :

Theorem (Pirio, — (2010))

X = X™1(3,3) ¢ P2r+D+1 SMOOTH. Then one of the following
holds, modulo projective equivalence :

Q@ X is either 51127 or S1._113;
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Classification of SMOOTH X = X'+1(3,3) c PAr+1+1

Structure Theorem & Ein-SB Theorem yield :

Theorem (Pirio, — (2010))

X = X™1(3,3) ¢ P2r+D+1 SMOOTH. Then one of the following
holds, modulo projective equivalence :

Q@ X is either 51127 or S1._113;
Q X= Segre(IP’1 X Q"), Q" smooth hyp.
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Classification of SMOOTH X = X'+1(3,3) c PAr+1+1

Structure Theorem & Ein-SB Theorem yield :

Theorem (Pirio, — (2010))

X = X™1(3,3) ¢ P2r+D+1 SMOOTH. Then one of the following
holds, modulo projective equivalence :

Q@ X is either S; 120 or 51._.113 ;
Q X= Segre(IP’1 X Q"), Q" smooth hyp.
© r=5 X =LG3(C% c P3;
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Classification of SMOOTH X = X'+1(3,3) c PAr+1+1

Structure Theorem & Ein-SB Theorem yield :

Theorem (Pirio, — (2010))

X = X™1(3,3) ¢ P2r+D+1 SMOOTH. Then one of the following
holds, modulo projective equivalence :

Q@ X is either 51127 or S1._113;

Q X= Segre(IP’1 X Q"), Q" smooth hyp.
© r=5 X =LG3(C% c P3;

Q r=8and X = G3(C%) c P¥?;
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Classification of SMOOTH X = X'+1(3,3) c PAr+1+1

Structure Theorem & Ein-SB Theorem yield :

Theorem (Pirio, — (2010))
X = X™1(3,3) ¢ P2r+D+1 SMOOTH. Then one of the following
holds, modulo projective equivalence :

Q@ X is either 51127 or S1._113;

Q X= Segre(IP’1 X Q"), Q" smooth hyp.

© r=5 X =LG3(C% c P3;

Q r=8and X = G3(C%) c P¥?;

Q@ r =14 and X = 0Gg(C*?) c P3!;
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Classification of SMOOTH X = X'+1(3,3) c PAr+1+1

Structure Theorem & Ein-SB Theorem yield :

Theorem (Pirio, — (2010))
X = X™1(3,3) ¢ P2r+D+1 SMOOTH. Then one of the following
holds, modulo projective equivalence :

Q@ X is either 51127 or S1._113;

Q X= Segre(IP’1 X Q"), Q" smooth hyp.

© r=5 X =LG3(C% c P3;

Q r=8and X = G3(C%) c P¥?;

Q@ r =14 and X = 0Gg(C*?) c P3!;

Q r=26 and X = E; C P?>.
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rdan algebras
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Jordan algebras

o J = C—algebra
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Jordan algebras

—dim(J) <400 (dimJ=r+1)
o J = C—algebra — J commutative

— with unity e
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Jordan algebras

—dim(J) <400 (dimJ=r+1)
o J = C—algebra — J commutative

— with unity e

Definition

J Jordan algebra if
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Jordan algebras

—dim(J) <400 (dimJ=r+1)
o J = C—algebra — J commutative

— with unity e

Definition

J Jordan algebra if

x2(yx) = (x’y)x Vx,y € J.
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Examples of Jordan algebras
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Examples of Jordan algebras

@ J associative, commutative (and with unity, always
assumed!).
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Examples of Jordan algebras

@ J associative, commutative (and with unity, always
assumed!).

@ J associative and non-commutative
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Examples of Jordan algebras

@ J associative, commutative (and with unity, always
assumed!).

@ J associative and non-commutative

= J* = (J, ) Jordan algebra
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Examples of Jordan algebras

@ J associative, commutative (and with unity, always
assumed!).

@ J associative and non-commutative

= J* = (J, ) Jordan algebra

Q@ B=(R,C,H,0)® C = Ms,3(B)
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Examples of Jordan algebras

@ J associative, commutative (and with unity, always
assumed!).

@ J associative and non-commutative

= J* = (J, ) Jordan algebra

Q@ B=(R,C,H,0) ® C = Ms.3(B)
= Herms(B) with M« N = (MN + NM)/2 Jordan
algebra.
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Jordan Algebras

e J Jordan algebra
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Jordan Algebras

— a2k well defined Yk e NVace J

e J Jordan algebra —
¥ - (a) = (a¥, k € N) associative
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Jordan Algebras

— a2k well defined Yk e NVace J

e J Jordan algebra —
¥ - (a) = (a¥, k € N) associative

Definition
Q rank(J) =dim(a) <r+1 (a € J generic);
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Jordan Algebras

— a2k well defined Yk e NVace J

e J Jordan algebra —
¥ - (a) = (a¥, k € N) associative

Definition
Q rank(J) =dim(a) <r+1 (a € J generic);

@ J is called cubic if rank(J) = 3
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Cubic Jordan algebras
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Cubic Jordan algebras

J cubic Jordan algebra.
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Cubic Jordan algebras

J cubic Jordan algebra.
© IN: J— C cubic norm (N € Sym3(J*))
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Cubic Jordan algebras

J cubic Jordan algebra.
© IN: J— C cubic norm (N € Sym3(J*))

Q@ Ja— a”, J — J adjoint (&7 € Sym*(J*)® J )

© such that
(a) (a7)* =a VacJ;
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Cubic Jordan algebras

J cubic Jordan algebra.
© IN: J— C cubic norm (N € Sym3(J*))
Q@ Ja— a”, J — J adjoint (&7 € Sym*(J*)® J )
© such that

(a) (a7)* =a VacJ;
(b) aa” = a*a= N(a)e Vac J.
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Cubic Jordan algebras

J cubic Jordan algebra.
© IN: J— C cubic norm (N € Sym3(J*))
Q@ Ja— a”, J — J adjoint (&7 € Sym*(J*)® J )

© such that
(a) (a7)* =a VacJ;
(b) aa” = a*a= N(a)e Vac J.

In particular : a invertible <= N(a) #0
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Cubic Jordan algebras

J cubic Jordan algebra.
© IN: J— C cubic norm (N € Sym3(J*))
Q@ Ja— a”, J — J adjoint (&7 € Sym*(J*)® J )
© such that

(a) (a7)* =a VacJ;
(b) aa” = a*a= N(a)e Vac J.

#
In particular : a invertible < N(a) #0 = al= I\7(a)
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Twisted cubic associated to a Jordan algebra

J cubic Jordan algebra, dim(J) =r+1, N : J — C cubic norm.
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Twisted cubic associated to a Jordan algebra

J cubic Jordan algebra, dim(J) =r+1, N : J — C cubic norm.

X;={(1:x:x#:N(x)), xe J} CP(C®J®JHC) =P+l
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Twisted cubic associated to a Jordan algebra

Definition
J cubic Jordan algebra, dim(J) =r+1, N : J — C cubic norm.

X;={(1:x:x#:N(x)), xe J} CP(C®J®JHC) =P+l

is the twisted cubic over the Jordan algebra J.
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Twisted cubic associated to a Jordan algebra

© For J=C, x* = x? and N(x) = x* we get
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Twisted cubic associated to a Jordan algebra

@ For J=C, x” = x? and N(x) = x> we get

Xe={(1:x:x2:x3), xeC}cP.

@ by the previous construction

XJ — )<r+1(37 3) C P2(I’+1)+1'
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Correspondence between Bir,»(IP") and Jordan algebras
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Correspondence between Bir,»(IP") and Jordan algebras

Theorem (Pirio, — (2010))

Let ¢ € Birp»(P") \ Lin(P") be an involution. Then
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Correspondence between Bir,»(IP") and Jordan algebras

Theorem (Pirio, — (2010))

Let ¢ € Birp»(P") \ Lin(P") be an involution. Then
3 a Jordan algebra structure J = (C™+1, %) such that

o =o*
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Classification of X = X"1(3,3) C P2(r+1)+1

Corollary (Pirio, — (2010))

Every X = X"t1(3,3) c P+ js projectively equivalent to a
X for some Jordan algebra J.
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Classification of X = X'(3,3) c P2r+1)+!

Corollary (Pirio, — (2010))

Every X = X"t1(3,3) c P+ js projectively equivalent to a
X for some Jordan algebra J.

RENEIS
@ SMOOTH X = X+1(3,3) ¢ P2r+D+1 correspond,
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Classification of X = X'(3,3) c P2r+1)+!

Corollary (Pirio, — (2010))

Every X = X"t1(3,3) c P+ js projectively equivalent to a
X for some Jordan algebra J.

Q@ SMOOTH X = X"*(3,3) ¢ P21+ correspond, as
expected,
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Classification of X = X'(3,3) c P2r+1)+!

Corollary (Pirio, — (2010))

Every X = X"t1(3,3) c P+ js projectively equivalent to a
X for some Jordan algebra J.

RENEIS

Q@ SMOOTH X = X"*(3,3) ¢ P21+ correspond, as
expected, to semi—simple Jordan algebras;
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Classification of X = X'(3,3) c P2r+1)+!

Corollary (Pirio, — (2010))

Every X = X"t1(3,3) c P+ js projectively equivalent to a
X for some Jordan algebra J.

RENEIS

Q@ SMOOTH X = X"*(3,3) ¢ P21+ correspond, as
expected, to semi—simple Jordan algebras;

@ Sing(X)) related to the RADICAL of J and to the
IRREDUCIBILITY of N(x).
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Applications

Let J be a cubic Jordan algebra of dimension 3. Then it is
isomorphic to one of the following :
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Applications

Let J be a cubic Jordan algebra of dimension 3. Then it is
isomorphic to one of the following :

x|, _ClX]

h=CxCxC, JQZCX(X2), 03)
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Applications

Theorem (Study (1890); Scorza (1935))

A cubic Jordan algebra of dimension 4 is isomorphic to one of the
following :
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Applications

Theorem (Study (1890); Scorza (1935))

A cubic Jordan algebra of dimension 4 is isomorphic to one of the

following :
Algbre Adjoint (x1,x2, X3, X4)7
C x C[X,Y] /(X Y)? (x22, X1Xo , —X1X3 , —X1X4)
C[X, Y]/ (X?, Y?) (X]_2 , —X1X0 , —X1X3 , 2XpX3 — X1X4)
CIX, Y]/ (X3, XY, Y?) (X 2 —X1X0 , —X1X3 , X2° — X1X4)
C x (% g) (x2 X4 , X1Xa , —X1X3 , X1X2)
{(g g E) ‘ a,b,c,d € Cy | (x1x0,x12, —x0X3, —X1X4)
C x A" avecrang(A) =2 | (x5 + X3 + X5, X1X0, —X1X3, —X1X4
A, (x1x2, x12, 42 — X0X3 , X1Xa)
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Applications

o Pan—Ronga—Vust (2001) classified Birp >(IP3) describing seven
different types of transformations according to their base loci.
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Applications

o Pan—Ronga—Vust (2001) classified Birp >(IP3) describing seven
different types of transformations according to their base loci.

@ Wesseler classified all Jordan algebras J with dim(J) < 6.
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Applications

o Pan—Ronga—Vust (2001) classified Birp >(IP3) describing seven
different types of transformations according to their base loci.

@ Wesseler classified all Jordan algebras J with dim(J) < 6.

@ Wesseler methods can be used to obtain in a simple way the
classification of cubic Jordan algebras J with dim(J) < 8.
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Applications

o Pan—Ronga—Vust (2001) classified Birp >(IP3) describing seven
different types of transformations according to their base loci.
@ Wesseler classified all Jordan algebras J with dim(J) < 6.

@ Wesseler methods can be used to obtain in a simple way the
classification of cubic Jordan algebras J with dim(J) < 8.

@ In this way the classification of Birp»(P") with r < 7 easily
follows.
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Applications

o Pan—Ronga—Vust (2001) classified Birp >(IP3) describing seven
different types of transformations according to their base loci.

@ Wesseler classified all Jordan algebras J with dim(J) < 6.

@ Wesseler methods can be used to obtain in a simple way the
classification of cubic Jordan algebras J with dim(J) < 8.

@ In this way the classification of Birp»(P") with r < 7 easily
follows.

o Semple (1929) describes general elements of Bira o(P*).
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Applications

o Pan—Ronga—Vust (2001) classified Birp >(IP3) describing seven
different types of transformations according to their base loci.

@ Wesseler classified all Jordan algebras J with dim(J) < 6.

@ Wesseler methods can be used to obtain in a simple way the
classification of cubic Jordan algebras J with dim(J) < 8.

@ In this way the classification of Birp»(P") with r < 7 easily
follows.

o Semple (1929) describes general elements of Bira o(P*).

@ By geometrical methods Bruno and Verra reconsidered
Semple’s classification and generalized it to P° with a
description of general elements.
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Theorem (Pirio, — (2009))

Let X be a proper irreducible variety of dimension r + 1, let D be a
nef Cartier divisor on X.
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Theorem (Pirio, — (2009))

Let X be a proper irreducible variety of dimension r + 1, let D be a
nef Cartier divisor on X. Suppose that through n > 2 general
points there passes an irreducible curve C such that
(D-C)=d6>n—1. Then
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Theorem (Pirio, — (2009))

Let X be a proper irreducible variety of dimension r + 1, let D be a
nef Cartier divisor on X. Suppose that through n > 2 general
points there passes an irreducible curve C such that
(D-C)=d6>n—1. Then

5r+1
Dt <

] 1)
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Other applications

Theorem (Pirio, — (2009))

Let X be a proper irreducible variety of dimension r + 1, let D be a
nef Cartier divisor on X. Suppose that through n > 2 general
points there passes an irreducible curve C such that
(D-C)=d6>n—1. Then

L 5r+1
D™ < . 1
~(n—-1) (1)
In particular, if X = X(r 4+ 1,n,6) C PN, then
5r+1
deg(X) < . 2
(X) < gy )
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