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Introduction

Among the favourite, at least to me, moduli spaces related to curves of

genus g let me mention the following ones (besides Mg ):

I Picd ,g : the universal Picard variety over Mg i.e. the moduli
of pairs (C ,N) such that N ∈ Picd (C );

I Rg : the Prym moduli space i.e. the moduli of pairs (C ,N)
such that N is a non trivial square root of OC ;

I S+
g ∪ S−g : the moduli spaces of even or odd spin curves i.e.

the moduli of pairs (C ,N) such that N⊗2 ∼= ωC ;

I Rp
g : the moduli space of pairs (C ,N) such that N is a non

trivial p-root of OC .

? In the following C is always a smooth, irreducible, complex projective curve of genus g ≥ 2.



The first part of the talk reviews some new or recent results on
these spaces, focusing on the following type of questions

I What about the Kodaira dimension

I Uniruledness/rational connectedness/unirationality

I Rationality problem.

Then we will turn to various and diverse geometric descriptions of
some of these spaces in very low genus.



Perspectives are changing according to the times. The unirationality of
any moduli space M was maybe believable in the ancient times.
In the recent times the drastic division of the Kodaira dimension between
−∞ and 3g − 3 in the known cases, made perhaps believable that either
kod(M) = 3g − 3 or M is unirational for a moduli space in my list.
Nowadays too the attention on the various questions is varying and some
changes of perspective are occurring, as we will see. In this spirit, let me
address some related questions, still open in very low genus:

1. How much the rationality is extended in the set of rationally
connected moduli spaces in the previous list?

2. What about uniruled but not rationally connected examples in the
previous families of moduli spaces?

3. For which values of g the Kodaira dimension is intermediate, i.e.
not −∞ nor 3g − 3?



The universal Picard variety Picd,g

Rationality

Known in few cases, mostly open.

In the second part Pic0,g , g = 3, 4, 5, is discussed.

Unirationality

The unirationality of Picd ,g is known for g ≤ 9 [—]

Kodaira dimension
The Kodaira dimension of Picd ,g is

◦ −∞ for g ≤ 9,

◦ 0 for g = 10,

◦ 19 for g = 11,

◦ 3g − 3 for g ≥ 12.

I The intermediate Kodaira dimension appears: [Farkas- –] for d = g ,

extended by [Bini, Fontanari, Viviani] to (d + g − 1, 2g − 2) = 1.



The Prym moduli space Rg

Rationality

Known for g ≤ 4.

Due to Dolgachev for g ≤ 3 and to Catanese for g ≤ 4.

Unirationality

The unirationality is known for g ≤ 7

[Izadi-Lo Giudice-Sankaran] g = 5, [Donagi] g = 6, [—] g ≤ 7.

Kodaira dimension
Rg is of general type for g ≥ 12.

Due to [Farkas-Ludwig]

I What about rationality for g = 5, 6?

I What about the (intermediate) Kodaira dimension of Rg ,
8 ≤ g ≤ 11?



Quick unirationality for Rg , g ≤ 6
Let me sketch a quick, different proof for g ≤ 6:
Let (C , η) ∈ Rg , g ≤ 6 be general . Then C is birational to C ′ ⊂ P2, C ′

a δ-nodal sextic with δ := 10− g . Let

η′ ∈ (ν∗)−1(η) ⊂ Pic0(C ′).

It turns out that, for a general (C , η), one can apply to (C ′, η′)
Beauville’s results on determinantal hypersurfaces. This gives the exact
sequence

0 −−−−→ OP2(−4)⊕3 A−−−−→ OP2(−2)⊕3 −−−−→ η′ −−−−→ 0

where A := (aij ) is a symmetric matrix of quadratic forms on P2.
Fixing coordinates (x , y) we obtain a hypersurface of type (2, 2)

T := {
∑

aij yi yj = 0} ⊂ P2 × P2

and a conic bundle p1 : T → P2 with discriminant (C ′, η′) (*)

(*) T is nodal: p1 : Sing T → Sing C ′ is bijective. Moreover π′ : C̃ ′ → C ′ is not allowable for Pryms.



Let Tδ ⊂| OP2×P2(2, 2) | be the family of δ-nodal threefolds T ,
δ ≤ 7. It follows that there exists a dominant map

φδ : Tδ → R10−δ

sending (T , p1) −→ (C ′, η′) −→ (C , η). Tδ is rational for δ ≤ 7.
Hence Rg is unirational for 3 ≤ g ≤ 6.

I Let g = 6 then the nodes of T can be fixed, so that R6 is
dominated by a fixed P15 of 4-nodal threefolds T .
Is it possible to use this to study the rationality problem?

(Compare with Shepherd-Barron’s proof of the rationality of M6).



Moduli S+
g of even spin curves

Rationality

The rationality of S+
g is known for g ≤ 4.

g ≤ 3: classical. g = 4: [Takagi-Zucconi].

Uniruledness
The uniruledness of S+

g is known for g ≤ 7.

Kodaira dimension

◦ kod(S+
g ) = −∞ for g ≤ 7,

◦ kod(S+
8 ) = 0,

◦ kod(S+
g ) = 3g − 3 for g ≥ 9.

g ≤ 8: [Farkas- —]. g ≥ 9: [Farkas].

I What about the (uni)rationality of S+
g for g ≤ 7?



Moduli S−g of odd spin curves

Rationality

The rationality of S−g is known for g ≤ 3.

Unirationality

The unirationality is known for g ≤ 8.

Uniruledness
The uniruledness is known for g ≤ 11.

Kodaira dimension

◦ kod(S−g ) = −∞ for g ≤ 11,

◦ kod(S−g ) = 3g − 3 for g ≥ 12.

[Farkas- —].

I What about rational connectedness for g = 9, 10, 11?

I Experimentally the uniruledness is related to K3 surfaces.



K3 surfaces and uniruledness: examples

Example (Odd spin moduli space of genus g ≤ 11)
(C , d) general odd spin curve, g ≤ 11, g 6= 10. Then:

C ⊂ S ⊂ Pg , S a smooth K3 surface s.t. OS (1) ∼= OS (C ).

Pd :=| Id/S (C ) | defines a pencil of odd spin curves (D, d), D ∈ Pd .
The image of the natural map m : Pd → S−g is a rational curve
through a general point. Hence S−g is uniruled.

(C , d) general spin curve g = 10. It is known that a general 1-nodal
quotient C ′ = C/ < x = y > embeds as follows:

C ′ ⊂ S ⊂ P11, S a smooth K3 surface s.t. OS (1) ∼= OS (C ′),

[KFPS]. One shows that x , y can be choosen in d . Let d = x + y + z ,
o = Sing C ′. Then the pencil Pd :=| C ′ − 2o − z | defines a rational
curve through a general point of S−10. Hence S−10 is uniruled.



Example (Prym moduli space of genus 7 )
(C , η) general Prym curve, g = 7. ωC ⊗ η embeds C as

C ⊂ S ⊂ P5, where S is a smooth c.i. of three quadrics.

Moreover h0(IC/P5(2)) = 3. Surprisingly S is a very special K3,
namely a Nikulin surface. The standard exact sequence

0→ OS (C − 2H)→ OS (2(C − H))→ η⊗2 → 0

implies that 2(C − H) ∼ L with L effective, (H hyperplane section).
Actually L is the sum of 8 disjoint lines. Let E := C − H.

Since L > 0, (D,OD(E )) is a Prym curve for any smooth D ∈| C |.

Conclusion: the construction defines a non constant moduli map
m :| C |→ R7 targeting a general point. Hence R7 is uniruled.
The unirationality follows by a different method, [—].



Example (Even spin moduli spaces of genus g ≤ 7)
(C , θ) a general even spin curve of genus 7. Fix η ∈ Pic0

2 (C ) so that
η(d) ∼= θ, d odd theta characteristic. Then consider as previously the
embedding defined by ωC ⊗ η:

C ⊂ S ⊂ P5.

The pencil Pd :=| Id/S (C ) | defines a family of even spin curves:
indeed S is a Nikulin surface such that ηD := OD(E ) ∈ Pic0

2 (D), for
any D ∈| C |. (With the previous notations). Then

{(D, ηD(d), D ∈ Pd}

is a rational family of even spin curves targeting a general point of
S+

7 , which is therefore uniruled.
Similarily for g ≤ 5 via Nikulin surfaces. g = 6 needs to be treated
differently.



Pic0,g in low genus

The second part of this talk deals with some concrete geometry of
Pic0,g in very low genus: g = 3, 4, 5. Some conventions:

◦ (C ,N) := a pair such that N ∈ Pic0(C ), N non trivial.
◦ N := OC (e) with e ∈ Div0(C ),
◦ He := H0(ωC (e)).

To study Pic0,g it will be useful the multiplication map

µ : He ⊗ H−e → H0(ω2
C ).

Any good property of a general (C ,N) is assumed. In particular:

Lemma
For a general pair (C ,N) µ has maximal rank:
it is surjective for g ≥ 4 and injective for g ≤ 3.



Let us consider the Segre embedding

Pe × P−e ⊂ Pg2−2g := P(H∗e ⊗ H∗−e),

where Pe := PH∗e . Then µ defines a morphism

f : C → C ′ ⊂ Pe × P−e ⊂ Pg2−2g

which is birational onto its image C ′. For g ≥ 4 f is an embedding.
So we put C := C ′, reserving the notation C ′ to the genus 3 case.

I At least in very low genus one can construct from f a special
surface S. S is an invariant of (C ,N): its moduli are useful to
describe Pic0,g .

I Step by step we will do this for g = 3, 4, 5.



On the rationality of Pic0,3

From (C ,N) we have at first a 6-nodal curve of bidegree (4, 4)

C ′ ⊂ P1 × P1.

Blowing Sing C ′ up, we obtain a degree two Del Pezzo surface

σ : S → P1 × P1.

The strict transform of C ′ is a copy of C , still denoted by C .
S is endowed with the polarizations

OS (H) := σ∗OP1×P1(1, 1) and OS (H1 ) := σ∗OP1×P1 (1 , 0),

where N ∼= OC (H1). H2 := H − H1. Moreover notice that

C ∈| −2KS | .

The construction (C ,N) −→ (S ,H,H1) is equivariant.



For g = 3 we see a phenomenon also occuring for g = 5:

I the condition (∗) : OS (H) ∼= ω⊗2
C makes the surface S special.

Let E := E1 + · · ·+ E6 be the exceptional divisor of σ. Since
C ∼ 4H − 2E ∼ −2KS , we have the standard exact sequence

0→ OS (−H)→ OS (3H − 2E )→ OC (C − H)→ 0.

Moreover OC (C ) ∼= ω⊗2
C . Then:

I (*) holds iff ω⊗2
C (−H) ∼= OC iff h0(OS (3H − 2E )) = 1.

The latter condition is equivalent to say that in P1 × P1 there
exists a curve of type (3,3) with six nodes at Sing C ′.



Let (S ,H,H1) be any Del Pezzo of degree 2, polarized by (H,H1):

Proposition

The following conditions are equivalent

I a smooth C ∈| −2KS | satisfies ω⊗2
C
∼= OC (H),

I σH : S → P1 × P1 is the blowing up of Sing l , where
l = l1 + l2 + l3 and l1, l2, l3 ∈| OP1×P1(1, 1) |.

I each smooth C ∈| −2KS | satisfies ω⊗2
C
∼= OC (H).

[Geometrically: C ′ is the projection of the bicanonical model C ⊂ P5

from s = Sing Q, Q a rank 4 quadric through C . The six nodes arise

from six bisecant lines to C intersecting s. But these are chords of the

Veronese surface V ⊃ C . Hence they intersect s in pairs: the projection

of V from s is a quartic Steiner surface R and Sing C ′ ⊂ Sing R.]



A triple (S ,H,H1) defined by a general Sing l as above has trivial
automorphisms group, as a triple.

Let L be the family of the elements Sing l . Then we have:

1. Rational moduli M := L/PGL(2)× PGL(2) for (S ,H,H1).

2. A universal surface p : S → U ⊂M.

3. PM := P(p∗ω
⊗2
S/U) with fibre | −2KS | at (S ,H,H1).

The assignement (C ,N)→ (S ,H,H1) induces a birational map

φ : Pic0,3 → PM.



Lemma
Given (C ,N) let (S ,H,H1) be its associated triple. Then there
exists a unique D ∈| −2KS | such that D is biregular to C and
OD(H1) ∼= ωC ⊗ N.

Proof.
Let σ∗D = D ′ ⊂ P1 × P1, then Sing D ′ = Sing C ′ and there exists
α ∈ PGL(2)× PGL(2) s. t. α(D ′) = C ′. Hence α(SingC ′) = Sing C ′.
Since Aut(S ,H,H1) = 1, then α = id and D ′ = C ′.

Definition
Let x ∈ Pic0,3 be the moduli point of (C ,N), y the moduli point
of (S ,H,H1). By definition φ(x) := (y ,D).

φ admits an obvious inverse sending (y ,D) to the moduli point of
(D,OD(H1)). Hence Pic0,3 is rational.



On the rationality of Kum0,4

Starting from (C ,N) we have now

C ⊂ P2 × P2 ⊂ P8.

Projecting C in the two factors we obtain the 6-nodal sextics

Ci := pi∗C ⊂ P2, i = 1, 2.

Since C is bicanonically embedded it easily follows that:

I Sing C1 and Sing C2 are related by a double six configuration.

In other words:
let σi : Si → P2 be the blowing up of Sing Ci and Ei the
exceptional divisor. Then:

I S1 and S2 are the same cubic surface S,

I E1,E2 is a double six configuration of lines on S.



Essentially, one proceeds as in genus three:

I Aut S = 1 for a general S,

I C embeds in S as the strict transform of Ci by σi ,

I σ1/C is the map defined by ωC ⊗ N.

The assignement (C ,N) −→ (S , σ1) defines a birational map

φ : Pic0,4 → Pp∗(ω
⊗2
S/P),

P being the moduli space of (S , σ1) and ωS/P the relative cotangent
sheaf of the universal cubic p : S → P. Let c be the moduli point of
(C ,N), s the moduli point of (S , σ1): φ(c) := (s,C ). Then

Pic0,4
∼= P × P9.

The rationality of P is unknown. Let I : P → P be the involution
(S , σ1)↔ (S , σ2): by Coble P/I is rational. It’s easy to see that

Kum0,4 := (Pic0,4/ < −1 >) ∼= (P/ < I >)× P9.

Hence Kum0,4 is rational.



On the rationality of Pic0,5

In this case (C ,N) defines a K3 surface S . We have

C ⊂ P3 × P3 ∩ P(Ker µ)⊥ ⊂ P15.

P(Ker µ)⊥ is transversal of codimension 4 to P3 × P3, hence

S := P(Ker µ)⊥ ∩ P3 × P3

is a smooth K3 surface. S is endowed with the polarizations:

| H1 |:=| OS (1, 0) |, , | H2 := OS (0, 1) | , | H |:=| H1+H2 | , | C | .

Moreover
H2

i = 4 , H1H2 = 6.

Let p1, p2 be the two projections in P3, it is easy to see that

Si = pi∗S , i = 1, 2

is a determinantal quartic surface.



It is not enough for Pic S: once more consider

0→ OS (C − H)→ OS (2C − H)→ OC (2C − H)→ 0.

1. It holds h1(OS (C − H)) = 0 and (C − H)2 = −12.
2. OC (H) bicanonical ⇒ OC (2C − H) ∼= OC ⇒ 2C − H > 0.
3. 2C − H ∼ B1 + · · ·+ B6, where B1 . . .B6 are conics.
4. Bi Bj = −2δij , H1Bi = H2Bi = 1, CBi = 0.

(S ,H1) is an invariant of (C ,N), S is a very special K3 surface.



The lattice of a general S is:

L := Zc ⊕ Zh1 ⊕ Zb1 ⊕ . . .Zb6

with intersection matrix:

c2 = 8 , h2
1 = 4 , ch1 = 8 , cbi = 0 , h1bi = 1 , bi bj = −2δij .

By definition K is the moduli of pairs (S , j) such that:

◦ j : L→ Pic S is a primitive embedding,
◦ (S ,OS (C )) is a polarized K3 surface,
◦ j(c) = OS (C ).

One can show that Aut(S , j) = 1 for a general (S , j). Let C be
the universal line bundle on the universal surface S → U ⊂ K.
The assignement (C ,N) −→ (S , j ; C ) induces a birational map

α : Pic0,5 → PK := Pπ∗C.

The rationality of Pic0,5 then follows from the rationality of K.



Projective models of S

1. S ⊂ P3 × P3 , H1 + H2 Smooth linear section of P3 × P3.

2. Si := p1∗S ⊂ P3 , Hi , i = 1, 2 Smooth quartic models of S .

3. Sd := P(Kerµ) ∩ D, D = dual of P3 × P3. Singular quartic.

4. Sn ⊂ P5 , C . Singular complete int. of 3 quadrics in P5.

Sn is the most interesting model: B1, . . . ,B6 are contracted to six
nodes o1 . . . o6. Let Π be the net of quadrics through Sn, then:

1. Sing Sn = {o1 . . . o6},
2. each Q ∈ Π has rank ≥ 5,

3. the discriminant D ⊂ Π is an integral six-nodal sextic,

4. Sing D ⊂ B ⊂ Π, where B is a smooth conic.

The above properties characterize nets Π: building on them one
can deduce the rationality of the moduli space of these nets.



Main remark: Fix a smooth conic B ⊂ P2 and consider

w = (w1, . . . ,w6) ∈ B6.

Let Π be a net of the previous family s. t. {w1 . . .w6} is Sing D.
Fix coordinates (x , y) on P2 × P5.One can assume that

Sing Sn = {o1 . . . o6}

is the set of fundamental points. Then Π is defined by a symmetric
matrix of linear forms of the following type:

(hij ),

where hii = 0 and hij is an equation of wi wj .



The 3-torsion locus R3
g in Pic0,g

Let us restrict to pairs (C ,N) such that N ∈ Pic0
3 (C ):

g = 3 (Bauer-Catanese)

1. N ∈ Pic0
3 (C )⇔ l1, l2, l3 are rank 2 distinct conic sections.

2. A unique Del Pezzo So exists such that l1, l2, l3 is as in 1.

3. It follows that R3
3 is birational to the rational quotient

| −2KSo | /Aut(Sing l).

I In genus 3 N is induced from Pic So : So contracts to a surface So with 3 A2-double points. Sing So
defines a 3:1 cover branched on Sing So . This induces on C ∈| −2KSo | the 3:1 cover defined by N.



g = 4 (Bauer - —)
No special cubic S in this case: (C ,N) defines (S , σ1) with S general.
Indeed let S be general, σ1 : S → P2 the contraction of E by | H1 |:

1. N = OC (KS + H1) ∈ Pic0
3 (C ) iff the cup product

∪C : H1(−E )→ H1(−E + C )) is not injective.

2. The locus T3 := {C ∈| −2KS | / N⊗3 ∼= OC} is birational to a
P1-bundle over P4 = PH1(−E ).

3. R3
4 is birational to the product P × P4 × P1.

Let T ′3 := {(v ,C ) ∈ PH1(−E )× | −2KS | / v ∪ sC = 0}. Then T ′3
∼= T3

via p2, moreover dim T3 = 5. One shows that

p1 : T ′3 → PH1(−E )

is a P1-bundle. Proof: v ∈ PH1(−E ) defines the extension

0→ OS (−E − 2KS )→ V → OS (−2KS )→ 0.



The fibre of p1 turns out to be Pv := PH0(V). One has to analyze
this extension in detail to deduce that dim Pv = 1.

1. Let E :=
∑

Ei , F :=
∑

Fi be the exceptional divisors of σ1 and
σ2. The base locus of Pv is a quadratic section of F .

2. One shows that Pv is a pencil if Pv has no fixed component.

3. Moreover: for a base-point-free pencil P with base locus a quadratic
section of F , it follows P = Pv for some v ∈ PH1(−E ).

Then, to prove that the general fibre of T3 → PH1(−E ) is P1, it suffices
to produce a pencil P as above.
One can use the double six. Indeed the pencil generated by the divisors

E1 + E2 + E3 + F4 + F5 + F6 , F1 + F2 + F3 + E4 + E5 + E6

is a pencil as required.


