Abel-Jacobi map, integral Hodge classes, and decomposition of the diagonal

Claire Voisin

CNRS and Institut de Mathématiques de Jussieu

Levico Terme, September 2010

Decomposition of the diagonal

X=smooth projective complex variety.

• Assume $CH_0(X) = \mathbb{Z}$ (equivalently $CH_0(X)_{\mathbb{Q}} = \mathbb{Q}$).

Theorem

(Bloch-Srinivas) For some integer N>0, one has an equality (Chow decomposition of the diagonal)

$$N\Delta_X = Z + Z'$$
 in $CH^n(X \times X)$, $n = \dim X$

with Z' supported on $X \times pt$, Z supported on $D \times X$, for some $D \nsubseteq X$.

In particular, one has then such a decomposition at the level of cohomology classes, i.e. in $H^{2n}(X\times X,\mathbb{Z})$.

Definition

X has an integral cohomological decomposition of the diagonal if a decomposition as above holds in $H^{2n}(X \times X, \mathbb{Z})$, with N = 1.

Decomposition of the diagonal, continued

Question (Q0)

For which X with trivial CH_0 group does there exist an integral cohomological decomposition of the diagonal?

More generally, study the following invariant N(X) of X: N(X) is the GCD of the integers N appearing in a cohomological decomposition of the diagonal as above. (Can also study the similar invariant defined using the Chow decomposition of the diagonal.)

Remark

This is a birational invariant of X. Indeed, under blow-up $\tau:Y\to X$, there is a decomposition

$$[\Delta_Y] = (\tau, \tau)^* [\Delta_X] + [\Delta_\tau]$$

where the cycle Δ_{τ} is supported over $E \times E$, E=exceptional divisor.

1-cycles on threefolds with trivial CH_0

From now on, dim X = 3.

The Chow decomposition of the diagonal $N\Delta_X \equiv_{rat} Z + N(X \times pt)$ with Z supported over $D \times X$, $D \subsetneq X$ implies:

- a) $CH^2(X)_{hom}/CH^2(X)_{alg}$ is of torsion (annihilated by N).
- b) ϕ_X is surjective and $Ker(\phi_X: CH^2(X)_{hom} \to J(X))$ is of torsion (annihilated by N).

Here ϕ_X is the Abel-Jacobi map of X. J(X) = Griffiths' intermediate Jacobian (an abelian variety in this case).

Much more is true:

Theorem (Bloch, Bloch-Srinivas)

Under the same assumptions:

- a) $CH^2(X)_{hom}/CH^2(X)_{alg} = \{0\}.$
- b) $Ker(\phi_X : CH^2(X)_{hom} \to J(X)) = \{0\}.$

(Uses Bloch-Ogus theory and Merkureev-Suslin theorem).

1-cycles on threefolds with trivial CH_0 , continued

For such X, 1-cycles look very much like 0-cycles on curves. Namely ϕ_X induces an isomorphism: $CH^2(X)_{hom}\cong J(X)$.

Note $CH^2(X)_{hom}$ is an abstract group, a priori not a variety. J(X) is a variety. The group morphism ϕ_X is algebraic in the following sense (this can be taken as an universal definition of J(X)):

For any smooth variety B, for any cod. 2 cycle $Z_B \subset B \times X$, s.t. Z_b is cohomologous to 0, $\forall b \in B$, the map

$$\phi_{Z_B}: B \to J(X), b \mapsto \phi_X(Z_b)$$

is a morphism of alg. varieties.

Question (Q1)

Same assumptions on X. Does there exist a cod. 2 cycle $Z_{J(X)} \subset J(X) \times X$, s.t. Z_t is cohomologous to 0, $t \in J(X)$ and $\phi_{Z_{J(X)}}: J(X) \to J(X), \ \ t \mapsto \phi_X(Z_t)$ is the identity of J(X)?

NB. For 0-cycles on curves, the analogous question has a positive answer (the universal divisor on $Pic^0(C) \times C$).

Remark

There is an integral Hodge class of degree 4 on $J(X) \times X$, which corresponds to the isomorphism of Hodge structures $H_1(J(X),\mathbb{Z}) \cong H^3(X,\mathbb{Z})/torsion$. Thus (Q1) has an affirmative answer if the Hodge conjecture holds for degree 4 integral Hodge classes on $J(X) \times X$.

Note: The Hodge conjecture does not hold in general for integral degree 4 Hodge classes (Atiyah-Hirzebruch, Kollár...), even on unirational varieties (Colliot-Thélène-Voisin 2010).

Remark

Answer to (Q1) is birationally invariant. More generally: the GCD of $deg\ f: B \to J(X)$, f onto gen. finite, induced by a cycle $Z \subset B \times X$, i.e. $f(b) = \phi_X(Z_b)$, is a birational invariant of X.

First variant

There are useful variants of the previous question :

Question (Q2)

Same assumptions on X. Does there exist a smooth projective variety B, and a cod. 2 cycle $Z_B \subset B \times X$, s.t. Z_b is cohomologous to 0, $b \in B$ and

$$\phi_{Z_B}: B \to J(X), \ b \mapsto \phi_X(Z_b)$$

is surjective with rationally connected general fibers?

(Compare with the case of zero cycles on curves: the Abel map

$$z \mapsto alb_C(z-z_0), \ C^{(n)} \to J(C)$$

is surjective with RC fibers for n > g).

Note: Positive answer to (Q1) \Rightarrow Positive answer to (Q2). Take B = J(X).

Proposition (Voisin 2010)

Assume (Q2) has an affirmative answer, and that there exists a 1-cycle $\Gamma \in CH_1(J)$ such that $\Gamma^{*g} = g!J(X)$, $g = \dim J(X)$. Then (Q1) also has an affirmative answer.

Remark

As $\dim X=3$, J(X) is a ppav. (Θ divisor given by the unimodular intersection pairing on $H^3(X,\mathbb{Z})/torsion$).

There is thus an integral Hodge class $\gamma = \frac{[\Theta]^{*(g-1)}}{(g-1)!}$ on J(X), where $g = \dim J(X)$. It satisfies $\gamma^{*g} = g![J(X)]$, but is not known in general to be algebraic. This is known if J(X) is a product of Jacobians of curves, for example if $g \leq 3$.

Proof of Proposition (sketch)

Assume for simplicity Γ is effective. By assumption, there exist a smooth projective variety B, and a cod. 2 cycle $Z \subset B \times X$, s.t. Z_b is cohomologous to 0, $b \in B$ and $\phi_{Z_B} : B \to J(X)$ is surjective with rationally connected general fibers.

- \bullet May assume by translating $\Gamma \subset J(X)$ that general fibers over Γ are rationally connected.
- The Graber-Harris-Starr theorem then says : there exists a lift $\gamma:\Gamma\to B$ of ϕ_B over $\Gamma.$
- Let $Z_{\Gamma} := (\gamma, Id_X)^*Z_B$. Then $\phi_{\Gamma} : \Gamma \to J(X), \ \gamma \mapsto \phi_X(Z_{\Gamma,\gamma})$ is the inclusion of Γ in J(X).
- ullet Z_{Γ} induces an obvious cod. 2 cycle $Z_{\Gamma}^{(g)}\subset \Gamma^{(g)} imes X$, $Z_{\Gamma^{(g)},\gamma_1+\ldots+\gamma_g}^{(g)}:=Z_{\Gamma,\gamma_1}+\ldots+Z_{\Gamma,\gamma_g}.$
- Now use the sum map, which is by assumption birational:

$$\mu:\Gamma^{(g)}\to J(X).$$

Let $Z_{J(X)}:=(\mu,Id_X)_*(Z^{(g)})\subset J(X)\times X.$ Check that $\phi_{Z_{J(X)}}=Id_{J(X)}.$

Second variant

Under our assumptions on X, any degree 4 class $\alpha \in H^4(X,\mathbb{Z})$ is Hodge. Then get a torsor $J(X)_{\alpha}$ in which the Deligne cycle class map $\phi_{X,D}$ on cod. 2 cycles of class α takes value. (Analogue of $Pic^d(C)$).

Concretely, for any smooth variety B, and cod 2 cycle $Z_B \subset B \times X$ s.t. Z_b is of class α , get a morphism

$$\phi_{Z_B}: B \to J(X)_{\alpha}, \ b \mapsto \phi_{X,D}(Z_{B,b}).$$

Question (Q3)

Does there exist a smooth projective variety B_{α} canonically defined up to birational transformations, and a cod. 2 cycle $Z_{\alpha} \subset B_{\alpha} \times X$, s.t. Z_b is of class α , $b \in B_{\alpha}$ and

$$\phi_{Z_{\alpha}}: B_{\alpha} \to J(X)_{\alpha}$$

is surjective with rationally connected general fibers?

Eg. It could be that, if X is rationally connected, for α sufficiently positive: $(B_{\alpha}=\text{Hilbert scheme of rational curves of class }\alpha, Z_{\alpha}=\text{universal curve})$ works (question by Jason Starr).

A motivation for variant (Q3)

If $B_{\alpha},\,Z_{\alpha}$ are canonically defined, can put them in family.

- Let $\pi: \mathcal{X} \to \Gamma$, Γ = smooth proj. curve. \mathcal{X} smooth proj. fourfold, π smooth over Γ_0 .
- Let the generic fiber satisfy $H^2(\mathcal{O}_{\mathcal{X}_{\eta}}) = H^3(\mathcal{O}_{\mathcal{X}_{\eta}}) = 0$ (eg, \mathcal{X}_t has CH_0 supported on a curve, $t \in \Gamma$ general).

This gives an algebraic family of abelian varieties $\mathcal{J} \to \Gamma_0$. For α section of $R^4\pi_*\mathbb{Z}$ over Γ_0 , get twisted family $\mathcal{J}_\alpha \to \Gamma_0$.

• Assume $H^3(X_t,\mathbb{Z})$ has no torsion for any $t\in\Gamma_0$ and singular fibers of π have at most ordinary quadratic singularities.

Theorem (Colliot-Thélène-Voisin 2010)

Assume for any section α , there exists a family of codimension 2-cycles of class α in fibers of π :

$$B_{\alpha} \to \Gamma_0$$
, $Z_{\alpha} \subset B_{\alpha} \times_{\Gamma} \mathcal{X}$

s.t. $\phi_{Z_{\alpha}}: B_{\alpha} \to \mathcal{J}_{\alpha}$ is surjective with rationally connected general fibers. Then the Hodge conjecture is true for integral Hodge classes of degree 4 on \mathcal{X} .

Proof of Theorem (sketch)

- Use the theory of normal functions. A Hodge class β on $\mathcal X$ induces a section α of $R^4\pi_*\mathbb Z$ which has a lift ν_β to an algebraic section of $\mathcal J_\alpha$.
- By assumption, have $B_{\alpha},\,Z_{\alpha}\subset B_{\alpha}\times_{\Gamma}\mathcal{X}$, such that $\phi_{Z_{\alpha}}:B_{\alpha}\to\mathcal{J}_{\alpha}$ is surjective with RC fibers. By Graber-Harris-Starr, ν_{β} has a lift to a section $\sigma:\Gamma\to B_{\alpha}$.
- Let $\mathcal{Z}:=(\sigma,Id_{\mathcal{X}})^*Z_{\alpha}\subset\Gamma\times_{\Gamma}\mathcal{X}=\mathcal{X}$. The normal function associated to \mathcal{Z} is equal to ν_{β} .
- As $H^3(X_t,\mathbb{Z})$ has no torsion, equality of normal functions implies that the degree 4 classes β and $[\mathcal{Z}]$ agree on $\mathcal{X}_0 := \pi^{-1}(\Gamma_0)$.
- The difference $[\mathcal{Z}] \beta$ comes then from homology of singular fibers $H_4(X_{t_i}, \mathbb{Z})$.
- Assumptions $H^2(X_t, \mathcal{O}_{X_t}) = 0$ + singularities of X_{t_i} are at worst nodes \Rightarrow this homology is generated by homology classes of 2-cycles on X_{t_i} . Thus $[\mathcal{Z}] \beta$ is algebraic and so is β .

Application: cubic fibrations over curves

Theorem (Voisin 2010)

Let $\mathcal{X} \to \Gamma$ be a a smooth projective model of a cubic threefold in $\mathbb{P}^4_{\mathbb{C}(\Gamma)}$. Assume sing. fibers have at most ordinary quad. singularities. Then HC is true for integral Hodge classes of degree 4 on \mathcal{X} .

Check hypotheses: cubic threefolds X have trivial CH_0 (they are RC). No torsion in $H^3(X,\mathbb{Z})$ by Lefschetz. Note: $H^4(X,\mathbb{Z}) \cong \mathbb{Z}$ (degree).

Theorem

- a) (Iliev-Markushevich 2002) The morphism induced by Abel-Jacobi map of X is surjective with RC fibers for the families B_4 of degree 4 rational curves and the family B_5 of degree 5 elliptic curves on X.
- b) (Voisin 2010) The morphism induced by Abel-Jacobi map is surjective with RC fibers for the family B_6 of degree 6 elliptic curves on X.
- \Rightarrow existence of B_{α}, Z_{α} for all degrees. Indeed, use the cycle h^2 of degree 3 on fibers and its multiples to get then the result for all degrees.

Integral cohomological decomposition of the diagonal

Assume the existence of an integral cohomological decomposition

$$[\Delta_X] = [Z] + [Z']$$

with Z supported on $D\times X$, $D\subsetneq X$, Z' supported on $X\times pt$. This implies that $H^i(X,\mathcal{O}_X)=0,\ i>0$ by applying $[\Delta_X]^*$ to $H^i(X,\mathcal{O}_X)$, noticing that $[Z]^*=0$ on $H^i(X,\mathcal{O}_X)$. (=Bloch-Srinivas' proof of Mumford's theorem).

Proposition (Voisin 2010)

Under this assumption, X satisfies :

- a) $H^*(X,\mathbb{Z})$ has no torsion.
- b) Positive answer to (Q1): there exists a codim 2 cycle $Z_J \subset J(X) \times X$ such that $\phi_{Z_J} : J(X) \to J(X)$ is $Id_{J(X)}$.
- c) $H^4(X,\mathbb{Z})$ is generated over \mathbb{Z} by classes of algebraic cycles.

Sketch of proof.

Cycle classes act on integral cohomology and on Jacobians.

- $[\Delta]^*$ acts as identity on integral cohomology and on Jacobians. One has $[\Delta]^* = [Z]^*$ on $H^{*>0}(X,\mathbb{Z})$ and on J(X).
- ullet For a) in degree 3, get that $Id_{H^3(X,\mathbb{Z})}$ factors through $H^1(\widetilde{D},\mathbb{Z})$. The later group has no torsion. Other degrees work similarly.
- ullet For b) , get that $Id_{J(X)}$ factors through $Z^*:J(X)\to Pic^0(\widetilde{D}).$ Here $j:\widetilde{D}\to X$ is a desing. of D. Z is lifted to a codim 2 cycle in $\widetilde{D}\times X$. Let $\mathcal{D}:=$ universal divisor on $Pic^0(\widetilde{D})\times\widetilde{D}$.
- Let $Z_J = (Id_{J(X)}, j)_*((Z^*, Id_{\widetilde{D}})^*\mathcal{D}) \subset J(X) \times X$.
- Check that $\phi_{Z_J} = Id_{J(X)}$.
- For c), get for any $\alpha \in H^4(X,\mathbb{Z})$, by applying $[\Delta]^*$, that $\alpha = j_*([Z]^*\alpha)$, where Z is seen as a correspondence between \widetilde{D} and X. But $[Z]^*\alpha$ is a degree 2 integral Hodge class on \widetilde{D} , hence algebraic by Lefschetz.

Partial converse

Assume X= smooth proj. threefold with $H^i(X,\mathcal{O}_X)=0,\ i>0.$ Hence the Hodge structures on $H^2(X,\mathbb{Z})$ and $H^4(X,\mathbb{Z})$ are trivial. J(X) is a ppav.

Theorem (Voisin 2010)

Assume

- i) $H^*(X,\mathbb{Z})$ has no torsion.
- I) II (X,\mathbb{Z}) has no torsion
- ii) The intermediate Jacobian J(X) has a 1-cycle of class $\frac{|\Theta|^{g-1}}{(g-1)!}$. iii) question (Q1) has affirmative answer for X, i.e. there is a codim 2 cycle $Z_J \subset J(X) \times X$ st. Z_t cohomologous to 0 on X for all t, with
- $\phi_{Z_I} = Id : J(X) \to J(X).$
- iv) $H^4(X,\mathbb{Z})$ is algebraic.

Then X admits an integral cohomological decomposition of the diagonal.

Remark

When X is a uniruled threefold with $H^2(X, \mathcal{O}_X) = 0$, it is known (Voisin 2006) that $H^4(X, \mathbb{Z})$ is algebraic, i.e. iv) holds.

- For a topological manifold with no torsion in $H^*(X,\mathbb{Z})$, there is a Künneth decomposition of cohomology of $X \times X$. Thus
- $[\Delta_X] = \delta_{6,0} + \delta_{5,1} + \delta_{4,2} + \delta_{3,3} + \delta_{2,4} + \delta_{1,5} + \delta_{0,6}.$
- As $H^1(X, \mathcal{O}_X) = 0$, $\delta_{5,1} = \delta_{1,5} = 0$.
- As $H^2(X,\mathbb{Z})$ and $H^4(X,\mathbb{Z})$ are generated by cycle classes, both $\delta_{4,2}$ and $\delta_{2,4}$ are classes of algebraic cycles supported over $D \subsetneq X$.

It only remains to construct a cycle $Z_3 \subset X \times X$ s.t. Z_3 is supported over some $D \subsetneq X$ and $[Z_3]$ acts as identity on $H^3(X,\mathbb{Z})$.

- There is a 1-cycle Γ in J(X) with class $[\Gamma] = \frac{\Theta^{g-1}}{(g-1)!}$. Assume for simplicity Γ effective (so J(X) is a Jacobian).
- ullet There is $Z_J\subset J(X) imes X$ codim 2 cycle st. $\phi_{Z_J}=Id:J(X)\to J(X).$ Let $Z_\Gamma:=Z_{J|\Gamma\times X}.$
- Let $Z_3 := Z_{\Gamma} \circ {}^t Z_{\Gamma}$. Z_3 is supported over a surface in X, as ${}^t Z_{\Gamma}$. Check that $[Z_3]$ acts as identity on $H^3(X,\mathbb{Z})$.