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Definitions

A protocol consists of a set of rules (conventions) that determine
the exchange of messages between two or more principals.
In short, a distributed algorithm with emphasis on communication.

Cryptographic (or security) protocols use cryptographic
mechanisms to achieve security objectives, e.g.

entity or message authentication,
key establishment,
timeliness,
non-repudiation,
fair exchange, ...

Small recipes, but nontrivial to design and understand.
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Communication

Fundamental event is communication between principals.

A→ B : {A,TA,KAB}KB

A and B name roles.
Can be instantiated by any principal playing in the role.

Communication is asynchronous (depending on semantic model).

Sender/receiver names “A→ B” are not part of the message.

Protocol specifies actions of principals.
Equivalently, protocol defines a set of event sequences (traces).
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An Authentication Protocol (NSPK)

1. A→ B : {A,NA}KB

2. B → A : {NA,NB}KA

3. A→ B : {NB}KB

Here is an instance (a protocol run):

{Alice,17}
BobK

{17,41}

{41}

AliceK

BobK
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How protocol is executed
1. A→ B : {A,NA}KB

2. B → A : {NA,NB}KA

3. A→ B : {NB}KB

Each principal executes a “protocol automaton”,
e.g., Alice in role A.

State s1: Generate nonce NAlice, concatenate to name, and
encrypt with KBob.
Send {Alice,NAlice}KBob to Bob.
Goto state s2.

State s2: Receive message C and decrypt it: M = {C}K−1
Alice

.

If M is not of the form {NAlice,X} for some nonce X ,
then goto reject state else goto state s3.

State s3: . . .

State reject: terminate with failure.
N.B. principals can be engaged in multiple runs.
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Assumptions and Goals

Assumptions: Implicit (or explicit) prerequisites.
Principals know their private keys and public keys of others.
Principals can generate nonces.

Goals: What the protocol should achieve, e.g.
Authenticate messages, binding them to their originator.
Ensure timeliness of messages (recent, fresh, ...)
Guarantee secrecy of certain items (e.g., generated keys).

Theses:
A protocol without clear goals (and assumptions) is useless.
A protocol without a proof of correctness is probably wrong.
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Assumptions: Attacker

How do we model the attacker? Possibilities:
He knows the protocol but cannot break crypto. (Standard)
He is passive but overhears all communications.
He is active and can intercept and generate messages.

“Transfer $20 to Bob” “Transfer $10,000 to Charlie”
He might even be one of the principals running the protocol!

A friend’s just an enemy in disguise. You can’t trust nobody.
(Charles Dickens, Oliver Twist)
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Standard Attacker Model (Dolev & Yao)

The attacker is active. Namely:
He can intercept and read all messages.

He can decompose messages into their parts.
But cryptography is secure: decryption requires inverse keys.

He can build new messages with the different constructors.

He can send messages at any time.

Sometimes called the Dolev-Yao attacker model.

⇓

correct protocols function in the largest range of environments.
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Kinds of attack

Replay (or freshness) attack: reuse parts of previous messages.

Man-in-the-middle (or parallel sessions) attack: A↔M↔ B.

Masquerading attack: pretend to be another principal, e.g.
M forges source address (e.g., present in network protocols), or
M convinces other principals that A’s public key is KM.

Type flaw attack: substitute a different type of message field.
Example: use a name (or a key or ...) as a nonce.

Reflection attack send transmitted information back to originator.
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Problem with NSPK

1. A→ B : {A,NA}KB

2. B → A : {NA,NB}KA

3. A→ B : {NB}KBGoal: mutual (entity) authentication.
Recall principals can be involved in multiple runs.
Goal should hold in all interleaved protocol runs.
Correctness argument (informal).

1 This is Alice and I have chosen a nonce NAlice.
2 Here is your Nonce NAlice. Since I could read it, I must be Bob. I

also have a challenge NBob for you.
3 You sent me NBob. Since only Alice can read this and I sent it back,

I must be Alice.

Protocol proposed in 1970s and used for decades.
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Attack on NSPK (details)

NSPK #1 NSPK #2

B believes he is speaking with A!
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Formalisation of the SAML SSO

We consider model-checking problems of the form:

(P1‖ · · · ‖Pn‖I) |= (C⇒G)

P1, . . . ,Pn: the honest participants.
I: the DY intruder.
C: LTL formula constraining the behaviours of the DY intruder on
the communication channels.
G: LTL formula encoding the expected security properties.

By LTL we mean propositional LTL with future (i.e. G, F, X) and past
(i.e. H, O, Y) operators.
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Modeling the Honest Participants

(P1‖ · · · ‖Pn‖I) |= (C⇒G)

Processes associated concurrently executing a number of sessions of
the protocol.

States: sets of facts, i.e. ground atomic formulae
Transitions: rewrite rules defining the allowed behaviours.
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Modeling the Honest Participants

Fact Meaning

stateRole(j ,a,es, s) Principal a, playing role Role, is ready to exe-
cute step j in session s of the protocol.

ik(m) The intruder knows message m.
sent(rs,b,a,m, c) Principal rs has sent message m on channel c

to principal a pretending to be principal b.
rcvd(a,b,m, c) Message m (supposedly sent by principal b)

has been received on channel c by principal a

Example (State):

stateInit(2,a, [ka,ka
−1,kb],1) �sent(a,a,i, {〈a,na〉}ki,c)

�stateResp(1,b, [kb,kb
−1,ka],1) �ik(ka) �ik(kb)
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Modeling the Intruder

(P1‖ · · · ‖Pn‖I) |= (C⇒G)

Interception

sent(A,A,B,M,C)
intercept(A,B,M,C)−−−−−−−−−−−−→ rcvd(i,A,M,C) �ik(M)

Overhearing

sent(A,A,B,M,C)
overhear(A,B,M,C)−−−−−−−−−−−−→ sent(A,A,B,M,C) �

rcvd(i,A,M,C) �ik(M)

Faking

ik(M) �ik(A) �ik(B)
fake(A,B,M,C)−−−−−−−−→ sent(i,A,B,M,C) �

ik(M) �ik(A) �ik(B)
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The Model: Inferential Capabilities of the Intruder

ak(M) �ak(K)
encrypt(A,K,M)−−−−−−−−−→ ak(M) �ak(K) �ak({M}K)

ak({M}K) �ak(K−1)
decrypt_puk(A,K,M)−−−−−−−−−−−−→ ak({M}K) �ak(K−1) �ak(M)

ak({M}K−1) �ak(K)
decrypt_prk(A,K,M)−−−−−−−−−−−−→ ak({M}K−1) �ak(K) �ak(M)

ak(M1) �ak(M2)
pairing(A,M1,M2)−−−−−−−−−−→ ak(M1) �ak(M2) �ak(〈M1,M2〉)

ak(〈M1,M2〉)
decompose(A,M1,M2)−−−−−−−−−−−−→ ak(〈M1,M2〉) �ak(M1) �ak(M2)
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Modeling Secure Channels

(P1‖ · · · ‖Pn‖I) |= (C⇒G)

Confidential Channel
A channel ch is confidential to principal p iff its output is exclusively
accessible to a given receiver p:

confidential(ch,p) := G∀(rcvd(A,B,M, ch)⇒A = p)

Authentic Channel
A channel ch is authentic for principal p iff its input is exclusively
accessible to a given sender p:

authentic(ch,p) := G∀(sent(RS,A,B,M, ch)⇒(A = p∧RS = p))

Capital letters denote variables.
∀(α) abbreviates the universal closure of α.
Quantifiers are over finite domains (bounded analysis).
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Modeling Secure Channels

Weakly Confidential Channel
A channel ch is weakly confidential iff its output is exclusively
accessible to a single, yet unknown, receiver:

weakly_confidential(ch) :=
G∀((rcvd(A,B,M, ch) ∧ Frcvd(A′,B′,M ′, ch))⇒A = A′)

Weakly Authentic Channel
A channel ch is weakly authentic iff its input is exclusively accessible
to a single, yet unknown, sender:

weakly_authentic(ch) :=
G∀((sent(RS,A,B,M, ch) ∧ Fsent(RS′,A′,B′,M ′, ch))⇒

(A = A′ ∧ RS = RS′))
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Modeling Secure Channels

Unilateral SSL Channel
A run of SSL/TLS in which principal y has a valid certificate but
principal x does not, is modelled by a pair of channels x2y and y2x :

unilateral_confidential_authentic(x , y , x2y , y2x) :=
(confidential(x2y , y) ∧ weakly_authentic(x2y)∧
weakly_confidential(y2x) ∧ authentic(y2x , y) ∧

G∀(Fsent(RS, x , y ,M, x2y) ∧ Frcvd(R, y ,M ′, y2x))
⇒RS = R))

With the additional requirement that the principal sending messages
on x2y is the same principal that receives messages from y2x .
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Specifying Security Properties

(P1‖ · · · ‖Pn‖I) |= (C⇒G)

Authentication
b authenticates a on m in session s iff

authentication(b,a,m, s) :=
G∀(staterb(final_step,b, [a, . . . ,m, . . .], s)⇒

∃Ostatera(initial_step,a, [b, . . . ,m, . . .], s))

Secrecy
Secrecy of m holds iff the intruder cannot possibly know it:

secret(m) := G¬ik(m)

Alessandro Armando (FBK) Cryptographic Protocols Trento, November 22, 2011 22 / 29



Outline

1 Cryptographic Protocols: a Gentle Introduction

2 Formal Modeling of Cryptographic Protocols

3 Model Checking of Cryptographic Protocols

4 Results

5 Next Steps

Alessandro Armando (FBK) Cryptographic Protocols Trento, November 22, 2011 23 / 29



SATMC: a Bounded Model Checker for Cryptographic
Protocols

SATMC is a bounded model checker for cryptographic protocols.

Back-end of the AVISPA Tool and of the AVANTSSAR Platform.

SATMC automatically generates a propositional formula whose
satisfying assignments (if any) correspond to counterexamples
(i.e. execution traces of P1‖ · · · ‖Pn‖I that satisfy C, and falsify G)
of length bounded by some integer k .

Successful combination of
SAT-reduction techniques developed for AI-planning
Bounded model-checking techniques developed for reactive
systems.

Finding attacks (of length k ) on the protocol therefore boils down
to solving propositional satisfiability problems.
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Results

[2007] Flaw detected “patched” version of optimistic fair exhange
protocol proposed by Asokan,
Shoup, and Waidner (ASW).

[2008] Man-in-the-middle attack
discovered in SAML-based
Single Sign-On for Google Apps

[2010] Authentication flaw
detected in SAML 2.0 Web Browser
SSO Profile.

[2012] Authentication flaw detected in use case of commercial
2-factors authentication protocol.
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From Model Checking to Automatic Security Testing of
Web-based Applications

Problem: Checking the feasibility of attack traces returned by a
model checker is a difficult and a labour-intensive activity.

Goal: bind specifications of cryptographic protocols to actual
implementations and use the model checker to automatically drive
the security testing of implementations.
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Conclusions

Security protocols
crucial in securing distributed applications.
ubiquitous (can be found in all 7 layers of the ISO-OSI stack)
deceptively simple.

Formal modeling forces designers to spell out assumptions and
security goals.

Model checkers effective in unveiling most subtle flaws.
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