A new bound on the size of linear codes

Dott. Emanuele Bellini Prof. Massimiliano Sala ¹
Dott.sa Eleonora Guerrini ²

1 - Università degli Studi di Trento, Lab di Matematica Industriale e Crittografia

2 - Ecole Normale Superieure de Lyon

12 Marzo 2012

Preliminary notions: a code C

Definition

Let $C \subseteq \mathbb{F}_q^n$, $C \neq \emptyset$. We say that C is an (n,q) **code**. Any $c \in C$ is a **word**.

Let $\phi: (\mathbb{F}_q)^k \to (\mathbb{F}_q)^n$ be an injective function and let $C = \operatorname{Im}(\phi)$. We say that C is an (n, k, q) systematic code.

If C is a vector subspace of $(\mathbb{F}_q)^n$, then C is an (n, k, q) linear code.

$$\mathbb{F} = \mathbb{F}_q$$
.

In a systematic code C any $c \in C$ can be seen as c = (a, F(a)) for (exactly) one $a \in \mathbb{F}^k$ and for an injective function $F : \mathbb{F}^k \to \mathbb{F}^{n-k}$.

Preliminary notions: distance of a code

Definition

We denote with d a number such that $1 \le d \le n$ to indicate the **hamming distance** of a code, which is the minimum number of elements which are different considering any possible combination of two different words in C.

Example

The whole \mathbb{F}^n has distance 1.

d = n in a systematic code is possible only if k = 1.

Preliminary notions: spheres

Definition

Let $I, m \in \mathbb{N}$ such that $I \leq m$. In \mathbb{F}^m , we denote by B(I, m) the set of vectors with distance from the word 0 less than or equal to I, and we call it the **ball** (or **sphere**) centered in 0 of radius I.

Obviously, B(I, m) is the set of vectors of weight less than or equal to I. So that:

$$|B(l,m)| = \sum_{i=0}^{l} {m \choose j} (q-1)^{j}.$$

The size problem

Definition

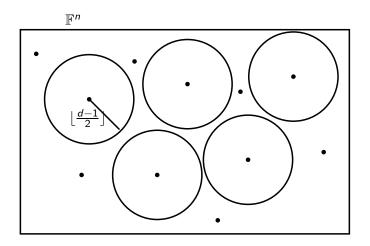
The number $A_q(n, d)$ denotes the maximum number of codewords in a code over \mathbb{F}_q of length n and distance d.

Given parameters q, n, d, what can we say on k or equivalently on $A_q(n, d)$?

Some known bounds for $A_q(n, d)$

Singleton	\rightarrow	$A_q(n,d) \leq q^{n-d+1}$
Hamming	\rightarrow	$A_q(n,d) \leq \frac{q^n}{\sum_{k=0}^{\lfloor \frac{d-1}{2} \rfloor} \binom{n}{k} (q-1)^k}$
if $n(1-q^{-1}) < d$ Plotkin	\rightarrow	$A_q(n,d) \leq \lfloor \frac{d}{d-n(1-q^{-1})} \rfloor$
Johnson, Levenshtein, Elias,	\rightarrow	more complicated formulas
Only for linear codes: Griesmer	\rightarrow	$n \geq \sum_{i=0}^{k-1} \left \frac{d}{q^i} \right $

A picture for the Hamming Bound



Bound A

Theorem

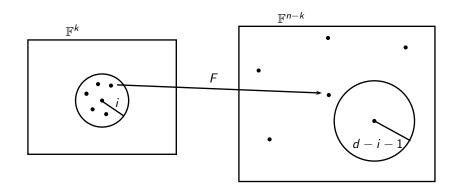
4 Let $d, i \in \mathbb{N}, d \geq 2$. Let n be such that there exists an (n, k, q) systematic code C with distance at least d and $n - 1 \geq k \geq 1$. If $1 \leq i \leq \min\{ \lfloor \frac{d-1}{2} \rfloor, k \}$, then

$$|B(i,k)| \leq |\mathbb{F}^{n-k} \setminus B(d-i-1,n-k)| + 1$$

that is

$$\sum_{j=0}^{i} \binom{k}{j} (q-1)^{j} \leq \sum_{j=d-i}^{n-k} \binom{n-k}{j} (q-1)^{j} + 1$$

Bound A - Sketch of proof



Bound A - Sketch of proof

Two steps:

- prove that $F(B(i,k)\setminus\{0\})\subseteq \mathbb{F}^{n-k}\setminus B_0(d-i-1,n-k)$
- 2 prove that $F' = F_{|B(i,k)}$ is injective

We use that:

- \bigcirc wlog $0 \in C$
- ② if $c \in \mathbb{F}^k$ and $w(c) \le i$ then $w(F(c)) \ge d i$
- \bullet if $c, c' \in \mathbb{F}^k$ and $w(c), w(c') \leq i$ then $d(F(c), F(c')) \geq d 2i$

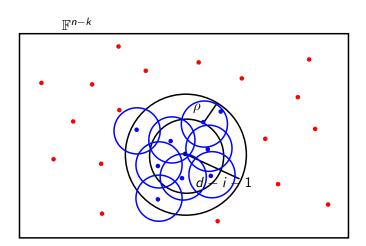
Bound B

Theorem (Bound \mathcal{B})

Let $n, k, d, i \in \mathbb{N}$. Let n be the smallest integer such that there exists an (n, k, q) systematic code with minimum distance at least d. If $n-1 \geq k \geq 1$, $1 \leq i \leq \min\{\lfloor \frac{d-1}{2} \rfloor, k\}$, then

$$|B(i,k)| \le A_q(n-k,d-2i) \setminus \frac{|B(i,n-k)|}{|B(d-2i-1,n-k)|} + 1$$

Bound B - Sketch of proof



Bound B - Sketch of proof

Consider the code $\mathcal{F} = F(B(i,k)) \subset \mathbb{F}^{n-k} \setminus B(d-i-1,n-k)$. $d(\mathcal{F}) \geq d-2i$.

Consider the code C, the largest code of distance d-2i in $\mathbb{F}^{n-k}\setminus B(d-i-1,n-k)$.

Consider the code \bar{C} , the largest code of distance d-2i in \mathbb{F}^{n-k} such that $C \subseteq \bar{C}$. Then:

$$|\mathcal{F}| \le |C| \le |\bar{C}| \le A_q(n-k, d-2i)$$

We have:

$$C = \bar{C} \setminus \bar{C} \cap B(d-i-1,n-k)$$

So we can bound $|\bar{C}|$ from above using $A_q(n-k,d-2i)$, and $|\bar{C}\cap B(d-i-1,n-k)|$ from below, counting how many words of \bar{C} are captured in the sphere.

Bound C - Conjecture

Theorem (Bound \mathcal{C})

Let $n, k, d, i \in \mathbb{N}$. Let n be the smallest integer such that there exists an (n, k, q) systematic code with minimum distance at least d. If $n-1 \ge k \ge 1$, $1 \le i \le \min\{\lfloor \frac{d-1}{2} \rfloor, k\}$, then

$$|B(i,k)| \leq A_q(n-k,d-2i) \frac{|\mathbb{F}^{n-k} \setminus B(d-i-1,n-k)|}{|\mathbb{F}^{n-k}|} + 1$$

or, equivalently:

$$\sum_{i=0}^{j} {k \choose j} (q-1)^{j} \leq A_{q}(n-k,d-2i) \frac{\sum_{j=d-i}^{n-k} {n-k \choose j} (q-1)^{j}}{2^{n-k}} + 1$$

Some interesting results

	BB	BA	l	Jq	J2	1	Ha		Gr		Le		El		P1
n = 19 d = 7														 	x x
n = 20 d = 8		 11									8	 	9	 	' x
n = 27 d = 11		 14										 	10		 x
n = 28 d = 11													11		 x

Introduction Bounding the size of a code Our bounds Comparisons

Grazie per l'attenzione!