On the search of extremal self-dual codes of length 72

Martino Borello

Index

The problem

Decomposition of codes

Exhaustive search

On the search of extremal self-dual codes of length 72

Martino Borello

BunnyTN3, Trento, 12.03.2012

On the search of extremal self-dual codes of length 72

Martino Borello

Index

The problem

Decomposition of codes

Exhaustive search

1 The problem

2 Decomposition of codes

Extremal self-dual codes

On the search of extremal self-dual codes of length 72

Martino Borello

Index

The problem

Decomposition of codes

Exhaustive search A (binary) self-dual doubly-even code ${\mathcal C}$ of parameters [n,k,d] is a linear code s.t.

•
$$\mathcal{C} = \mathcal{C}^{\perp}$$
 (so $k = \frac{n}{2}$)

• {wt(c) |
$$c \in C$$
} $\subseteq 4\mathbb{Z}$

Some results

- n = 8m with $m \in \mathbb{N}$ (Gleason '71);
- if n = 24m then all codewords of a given weight support 5-designs (Assmus and Mattson '69);

•
$$d \le 4 \left\lceil \frac{n}{24} \right\rceil + 4$$
 (Mallows and Sloane '73).

If $d = 4\left[\frac{n}{24}\right] + 4$ then C is called **extremal** self-dual code.

Doubly-even self-dual codes

On the search of extremal self-dual codes of length 72

Martino Borello

Index

The problem

Decomposition of codes

Exhaustive search C extremal self-dual code of length a multiple of 24. Then $n \in \{24, 48, 72, \dots, 3672\}$ (Zhang '99).

Examples

Only two extremal self-dual codes are known:

- *G*₂₄ (**Golay code**), unique (up to equivalence) with parameters [24, 12, 8];
- *QR*₄₈ (extended quadratic residue code), unique (up to equivalence) with parameters [48, 24, 12].

A longstanding open problem

Is there a [72, 36, 16] self-dual doubly-even code? (Sloane '73)

Automorphism Group

On the search of extremal self-dual codes of length 72

Martino Borello

Index

The problem

Decomposition of codes

Exhaustive search There is (right) action of S_n on \mathbb{F}_2^n (action on the coordinates): if $v = (v_1, v_2, \dots, v_n) \in \mathbb{F}_2^n$ and $g \in S_n$ then define

$$v^g := (v_{g^{-1}(1)}, v_{g^{-1}(2)}, \dots, v_{g^{-1}(n)}).$$

Definition

 $\operatorname{Aut}(\mathcal{C}) := \{g \in \mathcal{S}_n \mid \mathcal{C}^g = \mathcal{C}\} \leq \mathcal{S}_n$ (Automorphism Group)

- $\operatorname{Aut}(\mathcal{G}_{24}) = M_{24};$
- $\operatorname{Aut}(QR_{48}) = \mathsf{PSL}(2, 47);$
- what do we know when the length is 72?

Automorphism Group

On the search of extremal self-dual codes of length 72

Martino Borello

Index

The problem

Decomposition of codes

Exhaustive search

Theorem (... Bouyuklieva, O'Brien, Willems, Nebe, Feulner)

If C is a binary self-dual doubly-even [72, 36, 16] code then Aut(C) is trivial or is isomorphic to one of the following:

- Order 2: \mathbb{Z}_2 ;
- Order 3: ℤ₃;
- Order 4: \mathbb{Z}_4 or $\mathbb{Z}_2 \times \mathbb{Z}_2$;
- Order 5: \mathbb{Z}_5 ;
- Order 6: S_3 or \mathbb{Z}_6 ;
- Order 8: $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ or \mathcal{D}_8 ;
- Order 12: \mathcal{A}_4 , \mathbb{Z}_{12} , $\mathbb{Z}_6 \times \mathbb{Z}_2$, \mathcal{D}_{12} or $\mathbb{Z}_3 \rtimes \mathbb{Z}_4$;
- Order 24: S_4 , D_{24} , $(\mathbb{Z}_6 \times \mathbb{Z}_2)$: \mathbb{Z}_2 , $D_8 \times \mathbb{Z}_3$, $\mathcal{A}_4 \times \mathbb{Z}_2$, $D_{12} \times \mathbb{Z}_2$ or $\mathbb{Z}_6 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

Automorphism Group

On the search of extremal self-dual codes of length 72

Martino Borello

Index

The problem

Decomposition of codes

Exhaustive search

Conjecture

If C is a binary self-dual doubly-even [72, 36, 16] code then Aut(C) is trivial or is isomorphic to one of the following:

- Order 2: \mathbb{Z}_2 ;
- Order 3: ℤ₃;
- Order 4: \mathbb{Z}_4 or $\mathbb{Z}_2 \times \mathbb{Z}_2$;
- Order 5: \mathbb{Z}_5 ;
- Order 6: *S*₃;
- Order 8: $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ or \mathcal{D}_8 ;
- Order 12: *A*₄;
- Order 24: *S*₄.

A classical decomposition

On the search of extremal self-dual codes of length 72

Martino Borello

Index

The problem

Decomposition of codes

Exhaustive search

Definition

Let $h \in Aut(\mathcal{C})$. $\mathcal{C}(h) := \{c \in \mathcal{C} \mid c^h = c\}$ is the fixed code (by h).

Theorem (Huffman '82)

If h has odd order

$$\mathcal{C} = \mathcal{C}(h) \oplus \mathcal{E}(h)$$

where

$$\mathcal{E}(h) := \{ c \in \mathcal{C} \mid \operatorname{wt}(c_{|\Omega_i}) \equiv 0 \pmod{2}, \text{ for all } i \}$$

Decomposition of codes as \mathbb{F}_2G -modules

On the search of extremal self-dual codes of length 72

Martino Borello

Index

The problem

Decomposition of codes

Exhaustive search

Theorem

Let C be a binary linear code, $G \leq \operatorname{Aut}(C)$ and

$$1 = f_1 + \ldots + f_t$$

be a decomposition of $1 \in \mathbb{F}_2G$ into *central orthogonal idempotents* $f_i \in \mathbb{F}_2G$. Set $\mathcal{V}_i = \mathcal{V}f_i$ and $\mathcal{C}_i = \mathcal{C}f_i \subseteq \mathcal{V}_i$ for $i \in \{1, \dots, t\}$. Then $\mathcal{V} = \mathcal{V}_1 \oplus \ldots \oplus \mathcal{V}_t$ and $\mathcal{C} = \mathcal{C}_1 \oplus \ldots \oplus \mathcal{C}_t$

as \mathbb{F}_2G -modules.

Decomposition of $\ensuremath{\mathcal{C}}$

On the search of extremal self-dual codes of length 72

Martino Borello

Index

The problem

Decomposition of codes

Exhaustive search $\mathcal{V} = \mathbb{F}_2^{72}$, \mathcal{C} binary self-dual doubly-even [72, 36, 16] code. Suppose that there exist $g \in Aut(\mathcal{C})$ of order 6.

 g^2 ha order 3, so $\mathcal{C} = \mathcal{C}(g^2) \oplus \mathcal{E}(g^2)$.

Set $G = \langle g \rangle$. Then $f_1 = 1 + g^2 + g^4$ and $f_2 = g^2 + g^4$ are (central) idempotents in $\mathbb{F}_2\langle g \rangle$ such that $\hat{f}_1 = f_1$ and $\hat{f}_2 = f_2$.

1 $C_1 = Cf_1 = C(g^2)$ and $C_2 = Cf_2 = \mathcal{E}(g^2)$;

2 V₁ = Vf₁ = V(g²), the subspace of all the vectors fixed by g²;
3 V₂ = Vf₂ is the set of vectors of even weight on the orbits of g².

Decomposition of $\ensuremath{\mathcal{C}}$

On the search of extremal self-dual codes of length 72

Martino Borello

Index

The problem

Decomposition of codes

Exhaustive search There are only two types of cyclic $\mathbb{F}_2\langle g \rangle$ -submodules of \mathcal{V}_2 :

I. irreducible of dimension 2.

II. indecomposable of dimension 4 with a socle of dimension 2.

Theorem (B.)

Let \mathcal{M} be a $\mathbb{F}_2\langle g \rangle$ -submodule of \mathcal{V}_2 such that $\dim(\mathcal{M}) = 2\dim(\operatorname{soc}(\mathcal{M})) = 4m$. Then for every decomposition

 $\operatorname{soc}(\mathcal{M}) = \mathfrak{p}_1 \oplus \ldots \oplus \mathfrak{p}_m$

of the socle in irreducible $\mathbb{F}_2\langle g \rangle$ -submodules, there exist $\mathfrak{q}_1, \ldots, \mathfrak{q}_m$, cyclic $\mathbb{F}_2\langle g \rangle$ -submodules of type II of \mathcal{M} with $\operatorname{soc}(\mathfrak{q}_i) = \mathfrak{p}_i$ such that

$$\mathcal{M} = \mathfrak{q}_1 \oplus \ldots \oplus \mathfrak{q}_m.$$

Our method

On the search of extremal self-dual codes of length 72

Martino Borello

Index

The problem

Decomposition of codes

Exhaustive search

Lemma

$$\operatorname{soc}(\mathcal{E}(g^2)) = (\mathcal{E}(g^2))(g^3) = (\mathcal{C}(g^2) + \mathcal{C}(g^3)) \cap \mathcal{V}_2.$$

Problems

Determine the fixed codes, classify the possible socles and do an exhaustive search.

Fixed codes

On the search of extremal self-dual codes of length 72

Martino Borello

Index

The problem

Decomposition of codes

Exhaustive search

Proposition (Nebe '11)

 $\mathcal{C}(g^2)$ is equivalent to $\mathcal{G}_{24} \otimes \langle (1,1,1) \rangle$.

Proposition (Nebe '11)

 $C(g^3)$ is equivalent to $\mathcal{K} \otimes \langle (1,1) \rangle$, with \mathcal{K} one of the 41 self-dual [36, 18, 8] codes classified by Mechor and Gaborit.

Proposition (B.)

C(g) is equivalent to $\mathcal{F} \otimes \langle (1, 1, 1, 1, 1, 1) \rangle$, where \mathcal{F} is binary self-dual [12, 6, 4] code with generator matrix

On the search of extremal self-dual codes of length 72

Martino Borello

Index

The problem

Decomposition of codes

Exhaustive search

Thank you very much for the attention!