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o Information-Theoretic security

o strongest notion of security, as it makes no assumptions on the
attacker's computing power
o only relies on information theory

o Physical laws of Quantum Mechanics can be exploited while
looking for I-T security

Q Eavesdropping detection

“In quantum systems, one cannot take a measurement without
perturbing the system itself.”

@ passive attacks can be detected
2 no perturbation = no measurement = no eavesdropping

Q No-cloning theorem
“Perfect copying is impossible in the quantum domain.”

2 replay and man-in-the-middle attacks are more difficult to
deploy
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o Eavesdropping detection + no-cloning theorem

o do not provide a complete solution for all cryptographic
purposes, but offer an advantage over classical systems

o they allow to know a posteriori if the information sent over a
quantum channel and shared by two parties is actually secret

o What if we use these tools in order to deploy a secret key
agreement protocol?
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Quantum Key Distribution
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Q Interactive
o Keys are interactively reconciled by means of a binary error
search based on multiple, subsequent public communications

Q Systematic

o Given a (n+ r, n) generating matrix G = { IA" ]:
O Alice transmits the redundancy ¢ = Ax’
@ Bob chooses &' = arg minacc d(a, [y, c])
o Examples: LDPC
BCH
Q Hashing
o Given a (n,n — r) parity check matrix H:
@ Alice transmits the syndrome ¢ = Hx’
© Bob chooses &' = arg mina.pa—c d(a, y)
o Examples: Winnow
LDPC
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The choice of the coding technique for reconciliation depends on
the model for the classical channel

Layer Ch. type | Condition | Delays Codes used
Physical | AWGN | high SNR | none systematic (soft)
Data link | binary | low BER low systematic (hard)
Net & up | packet | error free long | interactive, hashing
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A class H of hash functions from {0,1}" to {0,1}" is 2-universal if
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o Families of 2-universal hash functions

Qo ...
o Random matrices
o ...
o Toeplitz random matrices
Randomly choose an (n+ m — 1)-bit seed which defines a
random m X n Toeplitz matrix
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o Quantum channel

s Fiber optics (commercial solutions: id Quantique, MagiQ, ...)
s Free-space (prototypes: UniPD, LMU, ...)

o Classical channel

o Ethernet
@ 802.11

@ ...

Quantum Ch.

Classical Ch.
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SECOQC (2004-2008)
http://wuw.secoqc.net

SwissQuantum (2009-2011)

http://swissquantum.idquantique.com

Tokyo QKD Network (2010)
http://www.uqcc2010.o0rg

©

©

©
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QuantumFuture

9 4-year research project at UniPD

o 1.4 M€, funded by the University of Padova
o 4 RUs: Telecom, Controls, Optics, Astronomy
o Main focus on free-space QKD

More information available at:
http://quantumfuture.dei.unipd.it


http://quantumfuture.dei.unipd.it
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o Network encryption

o plug-&-play commercial QKD devices
o QKD devices for research and development applications

o Quantum Random Number Generators

o Single Photon Detectors for Quantum Applications

More information available at:
http://www.idquantique.com


http://www.idquantique.com
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