Quantum key distribution: how to distill unconditionally secure keys

Matteo Canale Ph.D. student @ UniPD Intern @ ID Quantique SA

matteo.canale@dei.unipd.it

BunnyTN3 - March 12th, 2012

Motivations 00	QKD system model 0000	Key distillation	QKD in pract
A 11			

Motivations	

Outline

QKD system model

8 Key distillation

- * ロ * * 母 * * 主 * * モ * モ * の < や

Motivations	QKD system model	Key distillation	QKD in practice
•0	0000	0000000	0000000

Information-Theoretic security

Motivations	QKD s	ystem model	Key distillation	QKD in practice
••	0000		0000000	0000000
<u> </u>				

Information-Theoretic security

 strongest notion of security, as it makes no assumptions on the attacker's computing power

Motivations	QKD system model	Key distillation	QKD in practice
•0	0000	0000000	0000000

Information-Theoretic security

- strongest notion of security, as it makes no assumptions on the attacker's computing power
- only relies on information theory

Motivations	QKD system model	Key distillation	QKD in practice
•0	0000	0000000	0000000
<u></u>			

Information-Theoretic security

- strongest notion of security, as it makes no assumptions on the attacker's computing power
- only relies on information theory
- Physical laws of Quantum Mechanics can be exploited while looking for I-T security

Information-Theoretic security

- strongest notion of security, as it makes no assumptions on the attacker's computing power
- only relies on information theory
- Physical laws of Quantum Mechanics can be exploited while looking for I-T security
 - Eavesdropping detection

"In quantum systems, one cannot take a measurement without perturbing the system itself."

Information-Theoretic security

- strongest notion of security, as it makes no assumptions on the attacker's computing power
- only relies on information theory
- Physical laws of Quantum Mechanics can be exploited while looking for I-T security
 - Eavesdropping detection

"In quantum systems, one cannot take a measurement without perturbing the system itself."

passive attacks can be detected

•••			000000
00	0000	0000000	000000
Motivations	QKD system model	Key distillation	QKD in practice

Information-Theoretic security

- strongest notion of security, as it makes no assumptions on the attacker's computing power
- only relies on information theory
- Physical laws of Quantum Mechanics can be exploited while looking for I-T security
 - Eavesdropping detection

"In quantum systems, one cannot take a measurement without perturbing the system itself."

- passive attacks can be detected
- no perturbation \Rightarrow no measurement \Rightarrow no eavesdropping

Information-Theoretic security

- strongest notion of security, as it makes no assumptions on the attacker's computing power
- only relies on information theory
- Physical laws of Quantum Mechanics can be exploited while looking for I-T security
 - Eavesdropping detection

"In quantum systems, one cannot take a measurement without perturbing the system itself."

- passive attacks can be detected
- no perturbation \Rightarrow no measurement \Rightarrow no eavesdropping

No-cloning theorem

"Perfect copying is impossible in the quantum domain."

Motivations	QKD system model	Key distillation	QKD in practice
•0	0000	0000000	0000000

Information-Theoretic security

- strongest notion of security, as it makes no assumptions on the attacker's computing power
- only relies on information theory
- Physical laws of Quantum Mechanics can be exploited while looking for I-T security
 - Eavesdropping detection

"In quantum systems, one cannot take a measurement without perturbing the system itself."

- passive attacks can be detected
- ${\: \bullet \:}$ no perturbation ${\: \Rightarrow \:}$ no measurement ${\: \Rightarrow \:}$ no eavesdropping

No-cloning theorem

"Perfect copying is impossible in the quantum domain."

• replay and man-in-the-middle attacks are more difficult to deploy

Motivations	QKD system model	Key distillation	QKD in practice
o●	0000	00000000	
Quantum Kev	Distribution		

- Eavesdropping detection + no-cloning theorem
 - do not provide a complete solution for all cryptographic purposes, but offer an advantage over classical systems
 - they allow to know a posteriori if the information sent over a quantum channel and shared by two parties is actually secret

Motivations	QKD system model	Key distillation	QKD in practice
o●	0000	00000000	0000000
Quantum Kev	Distribution		

- Eavesdropping detection + no-cloning theorem
 - do not provide a complete solution for all cryptographic purposes, but offer an advantage over classical systems
 - they allow to know a posteriori if the information sent over a quantum channel and shared by two parties is actually secret
- What if we use these tools in order to deploy a secret key agreement protocol?

Quantum Key Distribution (QKD)

1

Motivations	QKD system model	Key distillation	QKD in practice
00		00000000	0000000
Outline			

Motivations 00	QKD system model ●000	Key distillation	QKD in practice
QKD system	model		
$A \overset{K}{\longleftarrow} f_{A} f_{A}$	quantum source ← (·, ·) Classical CA modem	quantum channel quantum y detector $f_{B}(\cdot, \cdot)$ classical channel detector c	

	Channel characteristics			Objec
1	Quantum Ch.	Classical Ch.		
	private	public, auth.		● (
	low rate	high rate		• (
	unreliable	reliable		
			_	• (

 $\max_{f_a, f_B, x} H(k_A) \quad \text{subject to:}$

- $\frac{\text{Correctness}}{P[k_{\text{A}} \neq k_{\text{B}}]} < \varepsilon$
 - Secrecy) $I(k_A, k_B; z, c) < \varepsilon'$
- Uniformity) $L(K_A) H(K_A) < \varepsilon''$

Motivations 00		QKD system model ०●००	Key distillation 00000000	QKD in practice 0000000
QKD	system	model		
	x	quantum source	quantum channel detector	

۵	œ	۵	n	d
C	g	C	ш	u

x/y	prepared/measured random bit sequence
Z	information on x leaked to E
$c = [c_A, c_B]$	public communications
f_A, f_B	key distillation functions
k_A, k_B	final keys

Motivations 00	QKD system model ○○●○	Key distillation	QKD in practice
Kev distillation	: a practical sche	me	

3-phase protocol [Maurer,1993]:

Motivations	QKD system model	Key distillation	QKD in practice
00	○○●○		0000000
Kov distills	tion: a practical sc	heme	

3-phase protocol [Maurer,1993]:

 $\textcircled{O} Sifting \rightarrow advantage over E$

so that I(x'; y') > I(x'; z, c')

Motivations	

QKD system model

Key distillation

QKD in practice

Key distillation: a practical scheme

3-phase protocol [Maurer,1993]:

• Sifting \rightarrow advantage over E

so that I(x'; y') > I(x'; z, c')Information reconciliation \rightarrow correctness

so that $P[x'' \neq y''] < \varepsilon'$

Motivatio	

QKD system model

Key distillation

QKD in practice

Key distillation: a practical scheme

3-phase protocol [Maurer, 1993]: • Sifting \rightarrow advantage over E so that I(x'; y') > I(x'; z, c')Information reconciliation \rightarrow correctness so that $P[x'' \neq y''] < \varepsilon'$ Privacy amplification \rightarrow secrecy so that $I(k_{\rm A}, k_{\rm B}; z, c) < \varepsilon''$

Motivations	QKD system model	Key distillation	QKD i
00	0000	0000000	0000
A prostical	c ch omo		

・ロト・日本・モート・モー うんの

Motivatio	ons

QKD system model ○○○● Key distillation

QKD in practice

A practical scheme

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 … 釣んで

Motivations	

QKD system model

Key distillation

A practical scheme

Motivations	QKD system model	Key distillation	QKD in practice
00	0000		0000000
\bigcirc			

Motivations	QKD system model	Key distillation	QKD in practice
00		●○○○○○○○	0000000
Sifting	(BB84 protocol <mark>[Benne</mark>	ett-Brassard,198	4])

$Map\;Bit\toQubit$		
Bit	Qubit	Qubit
	(↔)	(区)
0	\leftrightarrow	\sim
1	\uparrow	\checkmark

Motivations 00	QKD system model 0000	Key distillation	QKD in practice 0000000
Sifting (BB84 µ	protocol [B	ennett-Brassard,1984])	

	Alice	randomly	generates
--	-------	----------	-----------

$Map\;Bit\toQubit$		
Bit	Qubit	Qubit
	(↔)	(区)
0	\leftrightarrow	\sim
1	\uparrow	\checkmark

Motivations	QKD system model	Key distillation	QKD in practice
00	0000	●○○○○○○	0000000
Sifting	(BB84 protocol <mark>[</mark>	Bennett-Brassard,1984])	

$Map\;Bit\toQubit$		
Bit	Qubit	Qubit
	(↔)	(区)
0	\longleftrightarrow	~
1	\uparrow	\checkmark

- Alice randomly generates
 - bits $\{x_n\}$ i.i.d. in $\{0,1\}$

xn 0 1 1 0 0 1 1 1

Motivations	QKD system model	Key distillation	QKD in practice
00	0000	●००००००	0000000
Sifting	(BB84 protocol <mark>[Benn</mark>	ett-Brassard,198	4])

$Map\;Bit\toQubit$		
Bit	Qubit	Qubit
	(↔)	(\boxtimes)
0	\leftrightarrow	\sim
1	\uparrow	\checkmark

- Alice randomly generates
 - bits $\{x_n\}$ i.i.d. in $\{0,1\}$
 - bases $\{\psi_n\}$ i.i.d. in $\{ \Longleftrightarrow, \boxtimes \}$

x _n	0	1	1	0	0	1	1	1
ψ_{n}	\leftrightarrow	X	X	\leftrightarrow	X	\leftrightarrow	\leftrightarrow	X

00 Motivations	QKD system model	Key distillation ●○○○○○○	QKD in practice
Sifting ((BB84 protocol <mark>[Benn</mark>	ett-Brassard,1984	ŀ])
	Alice ran	lomby generator	

$Map\;Bit\toQubit$					
Bit	Qubit	Qubit			
	(↔)	(区)			
0	\leftrightarrow	\sim			
1	\uparrow	\checkmark			

- Ance randomly generates
 - bits $\{x_n\}$ i.i.d. in $\{0,1\}$
 - bases $\{\psi_n\}$ i.i.d. in $\{\leftrightarrow, \aleph\}$

$$(a_n) = \text{modulate}_{\{\psi_n\}}(\{x_n\})$$

x _n	0	1	1	0	0	1	1	1
ψ_n	\leftrightarrow	X	X	\leftrightarrow	X	\leftrightarrow	\leftrightarrow	X
a _n	\longleftrightarrow	\checkmark	\mathbf{Z}	\leftrightarrow	K_	\rightarrow	\uparrow	\checkmark

Motivations 00	QKD system model 0000	€000000	QKD in practice
Sifting (I	BB84 protocol <mark>[Benr</mark>	ett-Brassard,1984	ŀ])
	Alice ran	domly generates	

$Map\;Bit\toQubit$					
Bit	Qubit	Qubit			
	(↔)	(区)			
0	\leftrightarrow	5			
1	\uparrow	\checkmark			

- bits $\{x_n\}$ i.i.d. in $\{0,1\}$
- bases $\{\psi_n\}$ i.i.d. in $\{\clubsuit, \boxtimes\}$
- $\bigcirc \{a_n\} = \mathsf{modulate}_{\{\psi_n\}}(\{x_n\})$
- Sob randomly generates $\{\xi_n\}$ i.i.d. in $\{\bigoplus, \bigotimes\}$

x _n	0	1	1	0	0	1	1	1
ψ_n	\leftrightarrow	X	X	\leftrightarrow	X	\leftrightarrow	\leftrightarrow	\mathbf{X}
a _n	\longleftrightarrow	$\mathbf{\Sigma}$	\mathbf{z}	\longleftrightarrow	~	\leftrightarrow	\leftrightarrow	\checkmark
ξn	X	X	${\leftrightarrow}$	\leftrightarrow	\leftrightarrow	X	\leftrightarrow	X

N C	lotivation O	s	QK 00	D system model Key distillation	QKD in practic
0	Siftir	ıg (BB	884 pro	otocol [Bennett-Brassard,1984])	
				Alice randomly generates	
	Ma	p Bit $ ightarrow$	Qubit	• bits $\{x_n\}$ i.i.d. in $\{0, 1\}$	
	Bit	Qubit	Qubit	• bases $\{\psi_n\}$ i.i.d. in $\{\bigoplus, X\}$	
		(↔)	(\boxtimes)	$ \{a_n\} = \text{modulate}_{\{y_n\}}(\{x_n\}) $	
	<u> </u>		R.		

×

3	Bob randomly generates $\{\xi_n\}$ i.i.d.	in $\{ \Leftrightarrow, X \}$
	$\{b_n\} = measure_{\{\xi_n\}}(\{a_n\})$	

x _n	0	1	1	0	0	1	1	1
ψ_n	\leftrightarrow	X	X	\leftrightarrow	X	\leftrightarrow	\leftrightarrow	\mathbf{X}
a _n	\longleftrightarrow	\mathbf{k}	\mathbf{z}	\longleftrightarrow	~	\leftrightarrow	\leftrightarrow	\checkmark
ξn	X	\mathbf{X}	\leftrightarrow	\leftrightarrow	\leftrightarrow	\otimes	\leftrightarrow	\mathbf{X}
bn	~	\checkmark	\longleftrightarrow	\longleftrightarrow	\uparrow	~	\uparrow	\mathbf{z}

N 0	lotivation O	s	QK 00	D system model Key distillation	QKD in practio
Ç	Siftir	ıg (BB	884 pro	otocol [Bennett-Brassard,19	84])
				Alice randomly generates	
	Ma	p Bit $ ightarrow$	Qubit	• bits $\{x_n\}$ i.i.d. in $\{0, 1\}$	
	Bit	Qubit	Qubit	• bases $\{\psi_n\}$ i.i.d. in $\{ \Longleftrightarrow \}$	∑}
		(↔)	(\boxtimes)	$ \left\{a_n\right\} = modulate_{\{\psi_n\}}(\{x_n\}) $	-
	<u> </u>		ĸ		

$$\bigcirc \ \{b_n\} = \mathsf{measure}_{\{\xi_n\}}(\{a_n\})$$

$$\bigcirc \{y_n\} = \operatorname{demod}(\{b_n\})$$

x _n	0	1	1	0	0	1	1	1
ψ_{n}	\leftrightarrow	X	X	\leftrightarrow	X	\leftrightarrow	\leftrightarrow	\mathbb{X}
a _n	\longleftrightarrow	\mathbf{k}	\mathbf{z}	\longleftrightarrow	~	\leftrightarrow	\leftrightarrow	\checkmark
ξn	X	X	${\longleftrightarrow}$	\leftrightarrow	${\longleftrightarrow}$	X	\leftrightarrow	\mathbf{X}
bn	~	\checkmark	\longleftrightarrow	\longleftrightarrow	\uparrow	~	\uparrow	\checkmark
Уn	1	1	0	0	1	1	1	1

N	Notivation		QK 00	D system model 00	Key distillation ●○○○○○○○	QKD in practio
	Siftir	ng (BE	884 pro	otocol <mark>[Ben</mark>	nett-Brassard,1984])
				Alice ra	ndomly generates	
	Ma	p Bit $ ightarrow$	Qubit	● bi	ts $\{x_n\}$ i.i.d. in $\{0,1\}$	
	Bit	Qubit	Qubit	ba	ases $\{\psi_n\}$ i.i.d. in $\{\bigoplus, \boxtimes\}$	
		(↔)	(义)	$\bigcirc \{a_n\} =$	$modulate_{\{y_n\}}(\{x_n\})$	
	0	\leftrightarrow		ر با م		ut, א זו
	1	\uparrow	\checkmark	U Bob ran	idomly generates $\{\xi_n\}$ i.i.d. in	i { \ ,⊠}

3	Bob	randomly	generates	$\{\xi_n\}$	i.i.d.	in $\{ \Leftrightarrow, \boxtimes \}$
---	-----	----------	-----------	-------------	--------	---------------------------------------

$$\ \, {b_n} = measure_{\{\xi_n\}}(\{a_n\})$$

$$\{y_n\} = \mathsf{demod}(\{b_n\})$$

x _n	0	1	1	0	0	1	1	1
ψ_{n}	\leftrightarrow	X	X	\leftrightarrow	X	\leftrightarrow	\leftrightarrow	\mathbf{X}
a _n	\longleftrightarrow	\mathbf{Z}	~	\longleftrightarrow	~	\rightarrow	\uparrow	\checkmark
ξn	X	X	${\longleftrightarrow}$	\leftrightarrow	\leftrightarrow	X	\leftrightarrow	\mathbf{X}
bn	~	\checkmark	\longleftrightarrow	\longleftrightarrow	\uparrow	~	\uparrow	\checkmark
Уn	1	1	0	0	1	1	1	1

SIFTING - keep $(x_i, y_i) \iff \psi_i = \xi_i$

Motivations	QKD system model	Key distillation	QKD in practice
00	0000	000000	0000000
Key reconciliat	ion		

Channel characteristics					
Quantum Ch.	Classical Ch.				
private	public, auth.				
low rate	high rate				
unreliable	reliable				

Objectives

Orrectness:
$$P[x' = \hat{x}'] \approx 1$$

Secrecy: $I(x'; c) < \delta$

Motivations 00	QKD system model 0000	Key distillation	QKD in practice
Key reconciliat	ion		

Interactive

• Keys are interactively reconciled by means of a binary error search based on multiple, subsequent public communications [Brassard-Salvail,93].

Motivations	QKD system model	Key distillation	QKD in practice
00	0000	○0●00000	0000000
Key reconciliat	ion		

- Interactive
 - Keys are interactively reconciled by means of a binary error search based on multiple, subsequent public communications [Brassard-Salvail,93].

Systematic

Given a (n + r, n) generating matrix G = Alice transmits the redundancy c = Ax'

Bob chooses x' = arg min_{a∈C} d(a, [y, c])
Examples: LDPC [Mondin et al.,2010] BCH [Traisilanun et al.,2007]

Motivations	QKD system model	Key distillation	QKD in practice
00	0000	○○●○○○○○	0000000
Key reconciliat	ion		

- Interactive
 - Keys are interactively reconciled by means of a binary error search based on multiple, subsequent public communications [Brassard-Salvail,93].

Systematic

 Given a (n + r, n) generating matrix G = Alice transmits the redundancy c = Ax'
 Bob chooses x̂' = arg min_{a∈C} d(a, [y, c])
 Examples: LDPC [Mondin et al.,2010]
 BCH [Traisilanun et al.,2007]

Hashing

- Given a (n, n r) parity check matrix **H**:
 - **()** Alice transmits the syndrome $\mathbf{c} = \mathbf{H}\mathbf{x}'$
 - **(a)** Bob chooses $\hat{\mathbf{x}}' = \arg \min_{\mathbf{a}: \mathbf{H}\mathbf{a}=\mathbf{c}} d(\mathbf{a}, \mathbf{y})$
- Examples: Winnow [Buttler et al.,2003] LDPC [Elkouss et al.,2009]

Motivations	QKD system model	Key distillation	QKD in practice
00	0000		0000000
Kev reconciliat	ion		

The choice of the coding technique for reconciliation depends on the model for the classical channel

Layer	Ch. type	Condition	Delays	Codes used
Physical	AWGN	high SNR	none	systematic (soft)
Data link	binary	low BER	low	systematic (hard)
Net & up	packet	error free	long	interactive, hashing

Motivations	QKD system model	Key distillation	QKD in practice
00	0000	○○○○●○○○	
D ·	11.02		

Privacy amplification

private

low rate

public, auth		······ [·······]·····(··,	_, _, ``
high rate		Minimum compression:	$\max H(\mathbf{k})$
ingli iute			. ,

Motivations	QKD system mode	Key distillation	QKD in practice
00	0000	○○○○●●○○	0000000
Choosing a	compression	function	

Definition (2-universal hash functions [Wegman-Carter, 1979])

A class $\mathcal H$ of hash functions from $\{0,1\}^n$ to $\{0,1\}^m$ is 2-universal if

$$\forall x, y \in \{0,1\}^n, x \neq y, \quad h \in \mathcal{H} : P[h(x) = h(y)] \leq \frac{1}{2^m}$$

00	0000		0000000
Choosing a	a compression	function	

•
$$n = H(\mathbf{x}')$$

•
$$t = I(\mathbf{x}'; \mathbf{z}, \mathbf{c})$$

$$\Rightarrow r = H(\mathbf{k}) = \mathbf{n} - \mathbf{t} - \mathbf{s}$$

Theorem ([Bennett et al.,1995])

If the compressing function h is chosen uniformly from a class of 2-UHFs, then on average (over z and h)

$$I(\mathbf{k};\mathbf{z},h) \leq \frac{2^{-s}}{\ln 2}$$

Motivations	QKD system model	Key distillation	QKD in practice
00	0000	○○○○○○○●	0000000
Choosing a	compression	function	

- Families of 2-universal hash functions
 - ...
 - Random matrices
 - ...

o ...

Toeplitz random matrices

Randomly choose an (n + m - 1)-bit seed which defines a random $m \times n$ Toeplitz matrix

$$\begin{bmatrix} z_1 \\ \vdots \\ z_m \end{bmatrix} = \begin{bmatrix} s_4 & s_5 & \dots & \dots & s_{n+m-1} \\ s_3 & s_4 & \ddots & \ddots & \ddots & s_{n+m-2} \\ s_2 & s_3 & \ddots & \ddots & \ddots & \ddots & \vdots \\ s_1 & s_2 & s_3 & s_4 & s_5 & \dots & s_{n-1} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

o ...

Motivations 00	QKD system model 0000	Key distillation 00000000	QKD in practice

Motivations	QKD system model	Key distillation	QKD in practice
00	0000	00000000	●000000
Quantum and	classical channels		

- Quantum channel
 - Fiber optics (commercial solutions: id Quantique, MagiQ, ...)
 - Free-space (prototypes: UniPD, LMU, ...)
- Classical channel
 - Ethernet
 - 802.11
 - o ...

Classical Ch.

Motivations 00		QKD system model 0000	Key distillation	QKD in practice ○●○○○○○
QKD	Networks			
1	A			

- SECOQC (2004-2008) http://www.secoqc.net
- SwissQuantum (2009-2011)

http://swissquantum.idquantique.com

• Tokyo QKD Network (2010)

http://www.uqcc2010.org

o ...

 Motivations
 QKD system model
 Key distillation
 QKD in practice

 00
 000
 00000000
 00000000

QuantumFuture

- 4-year research project at UniPD
- 1.4 M€, funded by the University of Padova
- 4 RUs: Telecom, Controls, Optics, Astronomy
- Main focus on free-space QKD

More information available at: http://quantumfuture.dei.unipd.it

Motivations	QKD system model	Key distillation	QKD in practice
00	0000	0000000	000●000
QKD at id	Quantique		

- Network encryption
 - plug-&-play commercial QKD devices
 - QKD devices for research and development applications
- Quantum Random Number Generators
- Single Photon Detectors for Quantum Applications

More information available at:

http://www.idquantique.com

Motivations	QKD system model	Key distillation	QKD in practice
			0000000
Essential	references		

- [Maurer, 1993] U. Maurer, "Secret key agreement by public discussion from common information", IEEE Transactions on Information Theory, vol. 39, no. 3, pp. 733-742, 1993.
- [Bennett-Brassard,1984] C. H. Bennett and G. Brassard, "Quantum cryptography: Public-key distribution and coin tossing", in IEEE International Conference on Computers, Systems and Signal Processing, 1984, pp. 175-179.
- [Brassard-Salvail, 1993] G. Brassard and L. Salvail, "Secret-Key Reconciliation by Public Discussion", International Conference on the Theory and Applications of Cryptographic Techniques, Advances in Cryptology, EUROCRYPT, pp. 410-423, 1993.
- [Mondin et al., 2010] M. Mondin, M. Delgado, F. Mesiti, and F. Daneshgaran, "Soft-processing for Information Reconciliation in QKD Applications", International Journal of Quantum Information, 2010.

Motivations	QKD system model	Key distillation	QKD in practice
00	0000	00000000	○○○○○●○
Essential refere	ences		

- [Traisilanun et al.,2007] W. Traisilanun, K. Sripimanwat, and O. Sangaroon, "Secret key reconciliation using BCH code in quantum key distribution", in International Symposium on Communications and Information Technologies, ISCIT, 2007, pp. 1482-1485.
- [Buttler et al.,2003] W. T. Buttler, S. K. Lamoreaux, J. R. Torgerson, G. H. Nickel, C. H. Donahue, and C. G. Peterson, "Fast, efficient error reconciliation for quantum cryptography", Physical Review A, vol. 67, no. 5, p. 052303, May 2003.
- [Elkouss et al., 2009] D. Elkouss, A. Leverrier, R. Allaume, and J. J. Boutros, "Efficient reconciliation protocol for discrete-variable quantum key distribution", in IEEE International Symposium on Information Theory, ISIT, 2009, pp. 1879-1883.

Motivations	QKD system model	Key distillation	QKD in practice
00	0000	00000000	○○○○○○●
Essential r	eferences		

- [Bennett et al.,1995] C. H. Bennett, G. Brassard, C. Crepeau, and U. Maurer, "Generalized privacy amplification", IEEE Transactions on Information Theory, vol. 41, no. 6, pp. 1915-1923, 1995.
- [Canale,2011] Canale, M. On Information-Theoretic Secret Key Agreement for Quantum Key Distribution. Tech. report, 2011.
- [Canale et al.,2011] M. Canale, D. Bacco, S. Calimani, F. Renna, N. Laurenti, G. Vallone, P. Villoresi, "A prototype of a free-space QKD scheme based on the B92 protocol", in International Symposium on Applied Sciences in Biomedical and Communication Technologies, ISABEL, 2011.