Improved decoding of affine-variety codes

Chiara Marcolla, Emmanuela Orsini, Massimiliano Sala

University of Trento, Italy
Department of Mathematics

Trento, 2012

Affine-variety codes: decoding and small weight

(1) Affine-variety codes
(2) Decoding of affine-variety codes

Affine-variety codes

Let \mathbb{F}_{q} be a finite field.
Let $I \in \mathbb{F}_{q}[X]=\mathbb{F}_{q}\left[x_{1}, \ldots, x_{m}\right]$ be a zero-dimensional and radical ideal. Let $\mathcal{V}(I)=\mathcal{P}=\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$ its variety.

Definition

Let $P_{0}=\left(\bar{x}_{0,1}, \ldots, \bar{x}_{0, m}\right) \in\left(\mathbb{F}_{q}\right)^{m} \backslash \mathcal{V}(I)$.
We say that P_{0} is an optimal ghost point if there is a $1 \leq j \leq m$ such that the hyperplane $x_{j}=\bar{x}_{0, j}$ does not intersect the variety.

We call evaluation map

$$
e v_{\mathcal{P}}(f)=\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) .
$$

Affine-variety codes

Let \mathbb{F}_{q} be a finite field.
Let $I \in \mathbb{F}_{q}[X]=\mathbb{F}_{q}\left[x_{1}, \ldots, x_{m}\right]$ be a zero-dimensional and radical ideal. Let $\mathcal{V}(I)=\mathcal{P}=\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$ its variety.

Definition

Let $P_{0}=\left(\bar{x}_{0,1}, \ldots, \bar{x}_{0, m}\right) \in\left(\mathbb{F}_{q}\right)^{m} \backslash \mathcal{V}(I)$.
We say that P_{0} is an optimal ghost point if there is a $1 \leq j \leq m$ such that the hyperplane $x_{j}=\bar{x}_{0, j}$ does not intersect the variety.

We call evaluation map

$$
\begin{gathered}
e v_{\mathcal{P}}: R=\mathbb{F}_{q}\left[x_{1}, \ldots, x_{m}\right] / I \longrightarrow\left(\mathbb{F}_{q}\right)^{n} \\
e v_{\mathcal{P}}(f)=\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) .
\end{gathered}
$$

Affine-variety codes

Let $L \subseteq R$ be an \mathbb{F}_{q} vector subspace of R with dimension r.

Definition

The affine-variety code $C(I, L)$ is the image $\operatorname{ev}_{\mathcal{P}}(L)$ and the affine-variety code

$$
C^{\perp}(I, L)=\left\{\mathbf{c} \in\left(\mathbb{F}_{q}\right)^{n} \mid \mathbf{c} \cdot e v_{\mathcal{P}}(f)=0 \text { and } f \in L\right\}
$$

is its dual code
Let $L=\left\langle b_{1}, \ldots, b_{r}\right\rangle$, then the parity - check matrix for $C^{\perp}(I, L)$ is

$$
H=\left(\begin{array}{cccc}
b_{1}\left(P_{1}\right) & b_{1}\left(P_{2}\right) & \ldots & b_{1}\left(P_{n}\right) \\
\vdots & \vdots & \ldots & \vdots \\
b_{r}\left(P_{1}\right) & b_{r}\left(P_{2}\right) & \ldots & b_{r}\left(P_{n}\right)
\end{array}\right)
$$

Hermitian code

We consider the Hermitian curve χ over $\mathbb{F}_{q^{2}}$

$$
x^{q+1}=y^{q}+y
$$

This curve has $n=q^{3}$ rational points that we call $\mathcal{P}=\left\{P_{1}, \ldots, P_{n}\right\}$.
Let m be a natural number, then we define

$$
\mathcal{B}_{m, q}=\left\{x^{r} y^{s} \mid q r+(q+1) s \leq m, 0 \leq s \leq q-1,0 \leq r \leq q^{2}-1\right\} .
$$

So we consider

$$
E_{m}=\left\langle e v_{p}(f) \text { such that } f \in B_{m, q}\right\rangle .
$$

Therefore

$$
C_{m}=\left(E_{m}\right)^{\perp}=\left\{c \in\left(\mathbb{F}_{q}\right)^{n} \mid c \cdot e_{p}(f)=0 \text { and } f \in \mathcal{B}_{m \cdot q}\right\}
$$

is called Hermitian code. The parity-check matrix H of $C(m, q)$ is

Hermitian code

We consider the Hermitian curve χ over $\mathbb{F}_{q^{2}}$

$$
x^{q+1}=y^{q}+y
$$

This curve has $n=q^{3}$ rational points that we call $\mathcal{P}=\left\{P_{1}, \ldots, P_{n}\right\}$. Let m be a natural number, then we define

$$
\mathcal{B}_{m, q}=\left\{x^{r} y^{s} \mid q r+(q+1) s \leq m, 0 \leq s \leq q-1,0 \leq r \leq q^{2}-1\right\} .
$$

So we consider

$$
E_{m}=\left\langle e v_{\mathcal{P}}(f) \text { such that } f \in \mathcal{B}_{m, q}\right\rangle
$$

Therefore

$$
C_{m}=\left(E_{m}\right)^{\perp}=\left\{\mathbf{c} \in\left(\mathbb{F}_{q}\right)^{n} \mid \mathbf{c} \cdot e v_{\mathcal{P}}(f)=0 \text { and } f \in \mathcal{B}_{m, q}\right\}
$$

is called Hermitian code. The parity-check matrix H of $C(m, q)$ is

Hermitian code

We consider the Hermitian curve χ over $\mathbb{F}_{q^{2}}$

$$
x^{q+1}=y^{q}+y
$$

This curve has $n=q^{3}$ rational points that we call $\mathcal{P}=\left\{P_{1}, \ldots, P_{n}\right\}$. Let m be a natural number, then we define

$$
\mathcal{B}_{m, q}=\left\{x^{r} y^{s} \mid q r+(q+1) s \leq m, 0 \leq s \leq q-1,0 \leq r \leq q^{2}-1\right\} .
$$

So we consider

$$
E_{m}=\left\langle e v_{\mathcal{P}}(f) \text { such that } f \in \mathcal{B}_{m, q}\right\rangle
$$

Therefore

$$
C_{m}=\left(E_{m}\right)^{\perp}=\left\{\mathbf{c} \in\left(\mathbb{F}_{q}\right)^{n} \mid \mathbf{c} \cdot e v_{\mathcal{P}}(f)=0 \text { and } f \in \mathcal{B}_{m, q}\right\}
$$

is called Hermitian code. The parity-check matrix \mathbf{H} of $C(m, q)$ is

$$
\mathbf{H}=\left(\begin{array}{ccc}
f_{1}\left(P_{1}\right) & \ldots & f_{1}\left(P_{n}\right) \\
\vdots & \ddots & \vdots \\
f_{i}\left(P_{1}\right) & \ldots & f_{i}\left(P_{n}\right)
\end{array}\right) \text { where } f_{j} \in \mathcal{B}_{m, q} .
$$

Affine-variety codes: decoding and small weights

(1) Affine-variety codes

2 Decoding of affine-variety codes

Weakly stratified ideal

Let $J \subset \mathbb{K}\left[\mathcal{S}, \mathcal{A}_{L}, \ldots, \mathcal{A}_{1}, \mathcal{T}\right]=\mathbb{K}[\mathcal{S}, \mathcal{A}, \mathcal{T}]$ be a zero-dimensional ideal, with

$$
\mathcal{S}=\left\{\mathrm{s}_{1}, \ldots, \mathrm{~s}_{N}\right\}, \mathcal{A}_{j}=\left\{\mathrm{a}_{j, 1}, \ldots, \mathrm{a}_{j, m}\right\}, \mathcal{T}=\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{K}\right\} .
$$

Definition

We say that J is a weakly stratified ideal if

$$
\Sigma_{l}^{j, i} \neq \emptyset \quad \text { for } 1 \leq I \leq \eta(j, i), 1 \leq i \leq m, 1 \leq j \leq L .
$$

where $\eta(j, i)$ is the maximum number of extensions at any level $\Sigma_{l}^{j, i}$ and

$$
\begin{aligned}
\Sigma_{I}^{j, i}=\{ & \left(\overline{\mathcal{S}}, \overline{\mathcal{A}}_{L}, \ldots, \overline{\mathcal{A}}_{j+1}, \overline{\mathrm{a}}_{j, 1}, \ldots, \overline{\mathrm{a}}_{j, i-1}\right) \in \mathcal{V}\left(J_{(j, i-1)}\right) \mid \exists \text { exactly } / \text { distinct } \\
& \text { values }\left\{\overline{\mathrm{a}}_{j, i}^{(1)}, \ldots, \overline{\mathrm{a}}_{j, i}^{(l)}\right\} \text { s.t. }\left(\overline{\mathcal{S}}, \overline{\mathcal{A}}_{L}, \ldots, \overline{\mathcal{A}}_{j+1}, \overline{\mathrm{a}}_{j, 1}, \ldots, \overline{\mathrm{a}}_{j, i-1}, \overline{\mathrm{a}}_{j, i}^{(\ell)}\right) \text { is in } \\
& \left.\mathcal{V}\left(J_{(j, i)}\right), 1 \leq \ell \leq I\right\}, \quad i=2, \ldots, m, j=1, \ldots, L-1 .
\end{aligned}
$$

Example $(L=2, m=1)$

Let $\mathcal{S}=\left\{\mathrm{s}_{1}\right\}, \mathcal{A}_{1}=\left\{\mathrm{a}_{1,1}\right\}, \mathcal{A}_{2}=\left\{\mathrm{a}_{2,1}\right\}$ and $\mathcal{T}=\left\{\mathrm{t}_{1}\right\}$. Let $J=\mathcal{I}(Z)$ with $Z=\{(0,0,0,0),(0,1,1,0),(0,2,2,0)\}$.

$$
\begin{gathered}
\mathcal{V}\left(J_{\mathcal{S}}\right)=\{0\}, \quad \mathcal{V}\left(J_{\mathcal{S}, \mathrm{a}_{2,1}}\right)=\{(0,0),(0,1),(0,2)\}, \\
\mathcal{V}\left(J_{\mathcal{S}, \mathrm{a}_{2,1}, \mathrm{a}_{1,1}}\right)=\{(0,0,0),(0,1,1),(0,2,2)\} .
\end{gathered}
$$

Let us consider the projection

Example $(L=2, m=1)$

Let $\mathcal{S}=\left\{\mathrm{s}_{1}\right\}, \mathcal{A}_{1}=\left\{\mathrm{a}_{1,1}\right\}, \mathcal{A}_{2}=\left\{\mathrm{a}_{2,1}\right\}$ and $\mathcal{T}=\left\{\mathrm{t}_{1}\right\}$. Let $J=\mathcal{I}(Z)$ with $Z=\{(0,0,0,0),(0,1,1,0),(0,2,2,0)\}$.

$$
\begin{gathered}
\mathcal{V}\left(J_{\mathcal{S}}\right)=\{0\}, \quad \mathcal{V}\left(J_{\mathcal{S}, \mathrm{a}_{2,1}}\right)=\{(0,0),(0,1),(0,2)\}, \\
\mathcal{V}\left(J_{\mathcal{S}, \mathrm{a}_{2,1}, \mathrm{a}_{1,1}}\right)=\{(0,0,0),(0,1,1),(0,2,2)\} .
\end{gathered}
$$

Let us consider the projection

$$
\pi_{2}: \mathcal{V}\left(J_{\mathcal{S}, \mathrm{a}_{2,1}}\right) \rightarrow \mathcal{V}\left(J_{\mathcal{S}}\right)
$$

Then $\left|\pi_{2}^{-1}(\{0\})\right|=3$ and we have $\sum_{3}^{2,1}=\{0\}$. So $\eta(2,1)=3$.

Example $(L=2, m=1)$

Let $\mathcal{S}=\left\{\mathrm{s}_{1}\right\}, \mathcal{A}_{1}=\left\{\mathrm{a}_{1,1}\right\}, \mathcal{A}_{2}=\left\{\mathrm{a}_{2,1}\right\}$ and $\mathcal{T}=\left\{\mathrm{t}_{1}\right\}$. Let $J=\mathcal{I}(Z)$ with $Z=\{(0,0,0,0),(0,1,1,0),(0,2,2,0)\}$.

$$
\begin{gathered}
\mathcal{V}\left(J_{\mathcal{S}}\right)=\{0\}, \quad \mathcal{V}\left(J_{\mathcal{S}, \mathrm{a}_{2,1}}\right)=\{(0,0),(0,1),(0,2)\}, \\
\mathcal{V}\left(J_{\mathcal{S}, \mathrm{a}_{2,1}, \mathrm{a}_{1,1}}\right)=\{(0,0,0),(0,1,1),(0,2,2)\} .
\end{gathered}
$$

Let us consider the projection

$$
\pi_{2}: \mathcal{V}\left(J_{\mathcal{S}, \mathrm{a}_{2,1}}\right) \rightarrow \mathcal{V}\left(J_{\mathcal{S}}\right)
$$

Then $\left|\pi_{2}^{-1}(\{0\})\right|=3$ and we have $\sum_{3}^{2,1}=\{0\}$. So $\eta(2,1)=3$.
But $\sum_{1}^{2,1}=\emptyset, \sum_{2}^{2,1}=\emptyset$ and J is not a weakly stratified ideal.

Example $(L=3, m=1)$

Let $\mathcal{S}=\left\{\mathrm{s}_{1}\right\}, \mathcal{A}_{1}=\left\{\mathrm{a}_{1,1}\right\}, \mathcal{A}_{2}=\left\{\mathrm{a}_{2,1}\right\}, \mathcal{A}_{3}=\left\{\mathrm{a}_{3,1}\right\}, \mathcal{T}=\left\{\mathrm{t}_{1}\right\}$. Let $J=\mathcal{I}(Z) \subset \mathbb{C}\left[\mathrm{s}_{1}, \mathrm{a}_{3,1}, \mathrm{a}_{2,1}, \mathrm{a}_{1,1}, \mathrm{t}_{1}\right]$ with

$$
Z=\{(0,1,0,0,0),(0,2,1,1,2),(2,2,2,0,0)\}
$$

The order $<$ is $s_{1}<a_{3,1}<a_{2,1}<a_{1,1}<t_{1}$ and the varieties are

$$
\begin{aligned}
& \mathcal{V}\left(\mathcal{J}_{\mathcal{S}}\right)=\{0,2\}, \quad \mathcal{V}\left(\mathcal{J}_{\mathcal{S}, \mathrm{a}_{3,1}}\right)=\{(0,1),(0,2),(2,2)\}, \\
& \mathcal{V}\left(\mathcal{J}_{\mathcal{S}, \mathrm{a}_{3,1}, \mathrm{a}_{2,1}}\right)=\{(0,1,0),(0,2,1),(2,2,2)\}, \\
& \mathcal{V}\left(\mathcal{J}_{\mathcal{S}, \mathrm{a}_{3,1}, \mathrm{a}_{2,1}, \mathrm{a}_{1,1}}\right)=\{(0,1,0,0),(0,2,1,1),(2,2,2,0)\}
\end{aligned}
$$

Example ($L=3, m=1$)

Let us consider the projection

$$
\pi_{3}: \mathcal{V}\left(\mathcal{J}_{\mathcal{S}, \mathrm{a}_{3,1}}\right) \rightarrow \mathcal{V}\left(\mathcal{J}_{\mathcal{S}}\right)
$$

where

$$
\begin{aligned}
& \mathcal{V}\left(J_{\mathcal{S}}\right)=\{0,2\} \\
& \mathcal{V}\left(J_{\mathcal{S}, a_{3,1}}\right)=\{(0,1),(0,2),(2,2)\}
\end{aligned}
$$

Example ($L=3, m=1$)

Let us consider the projection

$$
\pi_{3}: \mathcal{V}\left(\mathcal{J}_{\mathcal{S}, \mathrm{a}_{3,1}}\right) \rightarrow \mathcal{V}\left(\mathcal{J}_{\mathcal{S}}\right)
$$

where

$$
\begin{aligned}
& \mathcal{V}\left(J_{\mathcal{S}}\right)=\{0,2\} \\
& \mathcal{V}\left(J_{\mathcal{S}, a_{3}, 1}\right)=\{(0,1),(0,2),(2,2)\}
\end{aligned}
$$

Then

$$
\left|\pi_{3}^{-1}(\{0\})\right|=2 \quad \text { and } \quad\left|\pi_{3}^{-1}(\{2\})\right|=1
$$

So $\sum_{2}^{3,1}=\{0\}$.

Example ($L=3, m=1$)

Let us consider the projection

$$
\pi_{3}: \mathcal{V}\left(\mathcal{J}_{\mathcal{S}, \mathrm{a}_{3,1}}\right) \rightarrow \mathcal{V}\left(\mathcal{J}_{\mathcal{S}}\right)
$$

where

$$
\begin{aligned}
& \mathcal{V}\left(J_{\mathcal{S}}\right)=\{0,2\} \\
& \mathcal{V}\left(J_{\mathcal{S}, a_{3,1}}\right)=\{(0,1),(0,2),(2,2)\}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \quad\left|\pi_{3}^{-1}(\{0\})\right|=2 \quad \text { and } \quad\left|\pi_{3}^{-1}(\{2\})\right|=1 \\
& \text { So } \sum_{2}^{3,1}=\{0\}, \sum_{1}^{3,1}=\{2\} \text {. }
\end{aligned}
$$

Example ($L=3, m=1$)

Let us consider the projection

$$
\pi_{2}: \mathcal{V}\left(J_{\mathcal{S}, \mathrm{a}_{3,1}, \mathrm{a}_{2,1}}\right) \rightarrow \mathcal{V}\left(\mathcal{J}_{\mathcal{S}, \mathrm{a}_{3,1}}\right)
$$

where

$$
\begin{aligned}
& \mathcal{V}\left(\mathcal{J}_{\mathcal{S}, a_{3,1}}\right)=\{(0,1),(0,2),(2,2)\} \\
& \mathcal{V}\left(\mathcal{J}_{\mathcal{S}, a_{3,1}, a_{2,1}}\right)=\{(0,1,0),(0,2,1),(2,2,2)\} .
\end{aligned}
$$

Then

$$
\sum_{1}^{2,1}=\{(0,1),(0,2),(2,2)\} \text { and } \eta(2,1)=1 .
$$

Example ($L=3, m=1$)

Let us consider the projection

$$
\pi_{1}: \mathcal{V}\left(J_{\mathcal{S}, \mathrm{a}_{3,1}, \mathrm{a}_{2,1}, \mathrm{a}_{1,1}}\right) \rightarrow \mathcal{V}\left(J_{\mathcal{S}, \mathrm{a}_{3,1}, \mathrm{a}_{2,1}}\right)
$$

where

$$
\begin{aligned}
& \mathcal{V}\left(J_{(2,1)}\right)=\{(0,1,0),(0,2,1),(2,2,2)\}, \\
& \mathcal{V}\left(J_{(1,1)}\right)=\{(0,1,0,0),(0,2,1,1),(2,2,2,0)\} .
\end{aligned}
$$

Then

$$
\sum_{1}^{1,1}=\{(0,1,0),(0,2,1),(2,2,2)\} \text { and } \eta(1,1)=1
$$

So J is a weakly stratified.

Stuffed ideal

Let $\mathcal{R}=\mathbb{K}\left[\mathcal{S}, \mathcal{A}_{L}, \ldots, \mathcal{A}_{j+1}, \mathrm{a}_{j, 1}, \ldots, \mathrm{a}_{j, i-1}\right]$. Let $K \subset \mathcal{R}\left[\mathrm{a}_{j, i}\right]$ be a zero-dimensional ideal and let $P_{h} \in \Sigma_{h}^{j, i}$ where $1 \leq h \leq \delta-1$, then exist $g \in G=\mathrm{GB}(K)$ such that

$$
g\left(P_{h}, \mathrm{a}_{j, i}\right)=\mathrm{a}_{j, i}^{\delta}+\alpha_{\delta-1} \mathrm{a}_{j, i}^{\delta-1}+\ldots+\alpha_{0} \in \mathbb{K}\left[\mathbf{a}_{j, i}\right]
$$

where $\alpha_{i} \in \mathbb{K}$ and $\delta=\eta(j, i)$.

Definition

We say that K is stuffed if for any $1 \leq h \leq \delta-1$ and for any $P_{h} \in \Sigma_{h}^{j, i}$, the equation

$$
g\left(P_{h}, \mathrm{a}_{j, i}\right)=0
$$

has h distinct solutions in \mathbb{K}.

Multi-dimensional general error locator polynomials

Let $C=C^{\perp}(I, L)$ be an affine-variety code.
Let P_{0} be a ghost point and let $t_{i}=\min \left\{t,\left|\left\{\pi_{i}(P) \mid P \in \mathcal{V}(I) \cup P_{0}\right\}\right|\right\}$ where $\pi_{i}\left(\bar{x}_{1}, \ldots, \bar{x}_{m}\right)=\bar{x}_{i}$.
We consider

$$
\mathcal{L}_{i}\left(S, x_{1}, \ldots, x_{i}\right)=x_{i}^{t_{i}}+a_{t_{i}-1} x_{i}^{t_{i}-1}+\ldots+a_{0}
$$

where $S=\left\{s_{1}, \ldots, s_{r}\right\}$ and $a_{j} \in \mathbb{F}_{q}\left[S, x_{1}, \ldots, x_{i-1}\right]$.
Let \mathbf{e} be an error s.t. $\mathbf{w}(\mathbf{e})=\mu \leq \mathbf{t}, \mathbf{s} \in\left(\mathbb{F}_{q}\right)^{r}$ is the corresponding syndrome and $\left(\bar{x}_{1,1}, \ldots, \bar{x}_{1, m}\right), \ldots,\left(\bar{x}_{\mu, 1}, \ldots, \bar{x}_{\mu, m}\right)$ are error locations. Let $\mathbf{x}^{j}=\left(\bar{x}_{j, 1}, \ldots, \bar{x}_{j, i-1}\right)$. Then, if the roots of

$$
\mathcal{L}_{i}\left(\mathbf{s}, \mathbf{x}^{j}, x_{i}\right)
$$

are $\left\{\bar{x}_{h, i} \mid \overline{\mathbf{x}}^{h}=\overline{\mathbf{x}}^{j}, 1 \leq h \leq \mu\right.$, when $\mu=t$ or $0 \leq h \leq \mu$, when $\left.\mu \leq t-1\right\}$, then $\left\{\mathcal{L}_{i}\right\}_{1 \leq i \leq m}$ is a set of multi-dimensional general error locator polynomials for C.

Example (Hermitian code $q=2$)

Let $x^{3}=y^{2}+y$ be the Hermitian curve over \mathbb{F}_{4}.
The $P_{0}=(1,1)$ is the ghost point and Hermitian points are

$$
\begin{array}{llll}
P_{1}=(0,0), & P_{2}=(0,1), & P_{3}=(1, \alpha), & P_{4}=\left(1, \alpha^{2}\right), \\
P_{5}=(\alpha, \alpha), & P_{6}=\left(\alpha, \alpha^{2}\right), & P_{7}=\left(\alpha^{2}, \alpha\right), & P_{8}=\left(\alpha^{2}, \alpha^{2}\right) .
\end{array}
$$

Let C be the Hermitian code with $\mathcal{B}_{m, 2}=\left\{1, x, y, x^{2}, x y\right\}$
Let $\mathcal{P}_{x}\left(s_{1}, \ldots, s_{5}, x\right)$ and $\mathcal{P}_{x y}\left(s_{1}, \ldots, s_{5}, x, y\right)$ be the polynomials in the
Gröbner basis G.

Example (Hermitian code $q=2$)

Let $x^{3}=y^{2}+y$ be the Hermitian curve over \mathbb{F}_{4}.
The $P_{0}=(1,1)$ is the ghost point and Hermitian points are

$$
\begin{array}{llll}
P_{1}=(0,0), & P_{2}=(0,1), & P_{3}=(1, \alpha), & P_{4}=\left(1, \alpha^{2}\right), \\
P_{5}=(\alpha, \alpha), & P_{6}=\left(\alpha, \alpha^{2}\right), & P_{7}=\left(\alpha^{2}, \alpha\right), & P_{8}=\left(\alpha^{2}, \alpha^{2}\right) .
\end{array}
$$

Let C be the Hermitian code with $\mathcal{B}_{m, 2}=\left\{1, x, y, x^{2}, x y\right\}$.
Let $\mathcal{P}_{x}\left(s_{1}, \ldots, s_{5}, x\right)$ and $\mathcal{P}_{x y}\left(s_{1}, \ldots, s_{5}, x, y\right)$ be the polynomials in the Gröbner basis G.

$$
\begin{aligned}
& S=(0,1,1,1,0) \\
& \mathcal{P}_{x}(S, x)=x^{2}+f(S) x \\
& \mathcal{P}_{x y}(S, x, y)=y^{2}+f_{1}(S) y+f_{2}(S) x+f_{3}(S)
\end{aligned}
$$

Example (Hermitian code $q=2$)

Let $x^{3}=y^{2}+y$ be the Hermitian curve over \mathbb{F}_{4}.
The $P_{0}=(1,1)$ is the ghost point and Hermitian points are

$$
\begin{array}{llll}
P_{1}=(0,0), & P_{2}=(0,1), & P_{3}=(1, \alpha), & P_{4}=\left(1, \alpha^{2}\right), \\
P_{5}=(\alpha, \alpha), & P_{6}=\left(\alpha, \alpha^{2}\right), & P_{7}=\left(\alpha^{2}, \alpha\right), & P_{8}=\left(\alpha^{2}, \alpha^{2}\right) .
\end{array}
$$

Let C be the Hermitian code with $\mathcal{B}_{m, 2}=\left\{1, x, y, x^{2}, x y\right\}$.
Let $\mathcal{P}_{x}\left(s_{1}, \ldots, s_{5}, x\right)$ and $\mathcal{P}_{x y}\left(s_{1}, \ldots, s_{5}, x, y\right)$ be the polynomials in the Gröbner basis G.
Two errors occur at the points P_{1} and P_{2}. The syndrome is $\mathbf{s}=(0,1,1,1,0)$.
$\mathcal{P}_{x}(\mathbf{s}, x)=x^{2}+x=x(x-1)$
$\mathcal{P}_{x y}(S, x, y)=y^{2}+f_{1}(S) y+f_{2}(S) x+f_{3}(S)$

Example (Hermitian code $q=2$)

Let $x^{3}=y^{2}+y$ be the Hermitian curve over \mathbb{F}_{4}.
The $P_{0}=(1,1)$ is the ghost point and Hermitian points are

$$
\begin{array}{llll}
P_{1}=(0,0), & P_{2}=(0,1), & P_{3}=(1, \alpha), & P_{4}=\left(1, \alpha^{2}\right), \\
P_{5}=(\alpha, \alpha), & P_{6}=\left(\alpha, \alpha^{2}\right), & P_{7}=\left(\alpha^{2}, \alpha\right), & P_{8}=\left(\alpha^{2}, \alpha^{2}\right) .
\end{array}
$$

Let C be the Hermitian code with $\mathcal{B}_{m, 2}=\left\{1, x, y, x^{2}, x y\right\}$.
Let $\mathcal{P}_{x}\left(s_{1}, \ldots, s_{5}, x\right)$ and $\mathcal{P}_{x y}\left(s_{1}, \ldots, s_{5}, x, y\right)$ be the polynomials in the Gröbner basis G.
Two errors occur at the points P_{1} and P_{2}. The syndrome is $\mathbf{s}=(0,1,1,1,0)$.

$$
\begin{aligned}
& \mathcal{P}_{x}(\mathbf{s}, x)=x^{2}+x=x(x-1) \\
& \mathcal{P}_{x y}(\mathbf{s}, 0, y)=y^{2}+y=y(y-1)
\end{aligned}
$$

Example (Hermitian code $q=2$)

Let $x^{3}=y^{2}+y$ be the Hermitian curve over \mathbb{F}_{4}.
The $P_{0}=(1,1)$ is the ghost point and Hermitian points are

$$
\begin{array}{llll}
P_{1}=(0,0), & P_{2}=(0,1), & P_{3}=(1, \alpha), & P_{4}=\left(1, \alpha^{2}\right), \\
P_{5}=(\alpha, \alpha), & P_{6}=\left(\alpha, \alpha^{2}\right), & P_{7}=\left(\alpha^{2}, \alpha\right), & P_{8}=\left(\alpha^{2}, \alpha^{2}\right) .
\end{array}
$$

Let C be the Hermitian code with $\mathcal{B}_{m, 2}=\left\{1, x, y, x^{2}, x y\right\}$.
Let $\mathcal{P}_{x}\left(s_{1}, \ldots, s_{5}, x\right)$ and $\mathcal{P}_{x y}\left(s_{1}, \ldots, s_{5}, x, y\right)$ be the polynomials in the Gröbner basis G.
Two errors occur at the points P_{1} and P_{2}. The syndrome is $\mathbf{s}=(0,1,1,1,0)$.

$$
\begin{aligned}
& \mathcal{P}_{x}(\mathbf{s}, x)=x^{2}+x=x(x-1) \\
& \mathcal{P}_{x y}(\mathbf{s}, 0, y)=y^{2}+y=y(y-1)
\end{aligned}
$$

Example (Hermitian code $q=2$)

Let $x^{3}=y^{2}+y$ be the Hermitian curve over \mathbb{F}_{4}.
The $P_{0}=(1,1)$ is the ghost point and Hermitian points are

$$
\begin{array}{llll}
P_{1}=(0,0), & P_{2}=(0,1), & P_{3}=(1, \alpha), & P_{4}=\left(1, \alpha^{2}\right), \\
P_{5}=(\alpha, \alpha), & P_{6}=\left(\alpha, \alpha^{2}\right), & P_{7}=\left(\alpha^{2}, \alpha\right), & P_{8}=\left(\alpha^{2}, \alpha^{2}\right) .
\end{array}
$$

Let C be the Hermitian code with $\mathcal{B}_{m, 2}=\left\{1, x, y, x^{2}, x y\right\}$.
Let $\mathcal{P}_{x}\left(s_{1}, \ldots, s_{5}, x\right)$ and $\mathcal{P}_{x y}\left(s_{1}, \ldots, s_{5}, x, y\right)$ be the polynomials in the Gröbner basis G.
Two errors occur at the points P_{1} and P_{2}. The syndrome is $\mathbf{s}=(0,1,1,1,0)$.
$\mathcal{P}_{x}(\mathbf{s}, x)=x^{2}+x=x(x-1)$
$\mathcal{P}_{x y}(\mathbf{s}, 0, y)=y^{2}+y=y(y-1)$

Example (Hermitian code $q=2$)

Let $x^{3}=y^{2}+y$ be the Hermitian curve over \mathbb{F}_{4}.
The $P_{0}=(1,1)$ is the ghost point and Hermitian points are

$$
\begin{array}{llll}
P_{1}=(0,0), & P_{2}=(0,1), & P_{3}=(1, \alpha), & P_{4}=\left(1, \alpha^{2}\right), \\
P_{5}=(\alpha, \alpha), & P_{6}=\left(\alpha, \alpha^{2}\right), & P_{7}=\left(\alpha^{2}, \alpha\right), & P_{8}=\left(\alpha^{2}, \alpha^{2}\right) .
\end{array}
$$

Let C be the Hermitian code with $\mathcal{B}_{m, 2}=\left\{1, x, y, x^{2}, x y\right\}$.
Let $\mathcal{P}_{x}\left(s_{1}, \ldots, s_{5}, x\right)$ and $\mathcal{P}_{x y}\left(s_{1}, \ldots, s_{5}, x, y\right)$ be the polynomials in the Gröbner basis G.
Two errors occur at the points P_{1} and P_{2}. The syndrome is $\mathbf{s}=(0,1,1,1,0)$.
$\mathcal{P}_{x}(\mathbf{s}, x)=x^{2}+x=x(x-1)$
$\mathcal{P}_{x y}(\mathbf{s}, 1, y)=y^{2}+y=y(y-1)$

Example (Hermitian code $q=2$)

Let $x^{3}=y^{2}+y$ be the Hermitian curve over \mathbb{F}_{4}.
The $P_{0}=(1,1)$ is the ghost point and Hermitian points are

$$
\begin{array}{llll}
P_{1}=(0,0), & P_{2}=(0,1), & P_{3}=(1, \alpha), & P_{4}=\left(1, \alpha^{2}\right), \\
P_{5}=(\alpha, \alpha), & P_{6}=\left(\alpha, \alpha^{2}\right), & P_{7}=\left(\alpha^{2}, \alpha\right), & P_{8}=\left(\alpha^{2}, \alpha^{2}\right) .
\end{array}
$$

Let C be the Hermitian code with $\mathcal{B}_{m, 2}=\left\{1, x, y, x^{2}, x y\right\}$.
Let $\mathcal{P}_{x}\left(s_{1}, \ldots, s_{5}, x\right)$ and $\mathcal{P}_{x y}\left(s_{1}, \ldots, s_{5}, x, y\right)$ be the polynomials in the Gröbner basis G.
Two errors occur at the points P_{1} and P_{2}. The syndrome is $\mathbf{s}=(0,1,1,1,0)$.

$$
\mathcal{P}_{x}(\mathbf{s}, x) \quad=x^{2}+x=x(x-1) \quad \Longrightarrow(1,0) \notin \chi
$$

Example (Hermitian code $q=2$)

Let $x^{3}=y^{2}+y$ be the Hermitian curve over \mathbb{F}_{4}.
The $P_{0}=(1,1)$ is the ghost point and Hermitian points are

$$
\begin{array}{llll}
P_{1}=(0,0), & P_{2}=(0,1), & P_{3}=(1, \alpha), & P_{4}=\left(1, \alpha^{2}\right), \\
P_{5}=(\alpha, \alpha), & P_{6}=\left(\alpha, \alpha^{2}\right), & P_{7}=\left(\alpha^{2}, \alpha\right), & P_{8}=\left(\alpha^{2}, \alpha^{2}\right) .
\end{array}
$$

Let C be the Hermitian code with $\mathcal{B}_{m, 2}=\left\{1, x, y, x^{2}, x y\right\}$.
Let $\mathcal{P}_{x}\left(s_{1}, \ldots, s_{5}, x\right)$ and $\mathcal{P}_{x y}\left(s_{1}, \ldots, s_{5}, x, y\right)$ be the polynomials in the Gröbner basis G.
Two errors occur at the points P_{1} and P_{2}. The syndrome is $\mathbf{s}=(0,1,1,1,0)$.

$$
\begin{array}{ll}
\mathcal{P}_{x}(\mathbf{s}, x) & =x^{2}+x=x(x-1) \\
\mathcal{P}_{x y}(\mathbf{s}, 1, y)=y^{2}+y=y(y-1) & \Longrightarrow(1,0) \notin \chi \\
& \Longrightarrow(1,1) \notin \chi
\end{array}
$$

Example (Hermitian code $q=2$)

Let $x^{3}=y^{2}+y$ be the Hermitian curve over \mathbb{F}_{4}.
The $P_{0}=(1,1)$ is the ghost point and Hermitian points are

$$
\begin{array}{llll}
P_{1}=(0,0), & P_{2}=(0,1), & P_{3}=(1, \alpha), & P_{4}=\left(1, \alpha^{2}\right), \\
P_{5}=(\alpha, \alpha), & P_{6}=\left(\alpha, \alpha^{2}\right), & P_{7}=\left(\alpha^{2}, \alpha\right), & P_{8}=\left(\alpha^{2}, \alpha^{2}\right) .
\end{array}
$$

Let C be the Hermitian code with $\mathcal{B}_{m, 2}=\left\{1, x, y, x^{2}, x y\right\}$.
Let $\mathcal{P}_{x}\left(s_{1}, \ldots, s_{5}, x\right)$ and $\mathcal{P}_{x y}\left(s_{1}, \ldots, s_{5}, x, y\right)$ be the polynomials in the Gröbner basis G.
Two errors occur at the points P_{6} and P_{7}. The syndrome is

$$
\begin{aligned}
& \mathbf{s}=(\alpha+1,0, \alpha, 0,0) \\
& \mathcal{P}_{x}(S, x)=x^{2}+f(S) x \\
& \mathcal{P}_{x y}(S, x, y)=y^{2}+f_{1}(S) y+f_{2}(S) x+f_{3}(S)
\end{aligned}
$$

Example (Hermitian code $q=2$)

Let $x^{3}=y^{2}+y$ be the Hermitian curve over \mathbb{F}_{4}.
The $P_{0}=(1,1)$ is the ghost point and Hermitian points are

$$
\begin{array}{llll}
P_{1}=(0,0), & P_{2}=(0,1), & P_{3}=(1, \alpha), & P_{4}=\left(1, \alpha^{2}\right), \\
P_{5}=(\alpha, \alpha), & P_{6}=\left(\alpha, \alpha^{2}\right), & P_{7}=\left(\alpha^{2}, \alpha\right), & P_{8}=\left(\alpha^{2}, \alpha^{2}\right) .
\end{array}
$$

Let C be the Hermitian code with $\mathcal{B}_{m, 2}=\left\{1, x, y, x^{2}, x y\right\}$.
Let $\mathcal{P}_{x}\left(s_{1}, \ldots, s_{5}, x\right)$ and $\mathcal{P}_{x y}\left(s_{1}, \ldots, s_{5}, x, y\right)$ be the polynomials in the Gröbner basis G.
Two errors occur at the points P_{6} and P_{7}. The syndrome is

$$
\begin{aligned}
& \mathbf{s}=(\alpha+1,0, \alpha, 0,0) \\
& \mathcal{P}_{x}(\mathbf{s}, x)=x^{2}+x+1=(x-\alpha)\left(x-\alpha^{2}\right) \\
& \mathcal{P}_{x y}(S, x, y)=y^{2}+f_{1}(S) y+f_{2}(S) x+f_{3}(S)
\end{aligned}
$$

Example (Hermitian code $q=2$)

Let $x^{3}=y^{2}+y$ be the Hermitian curve over \mathbb{F}_{4}.
The $P_{0}=(1,1)$ is the ghost point and Hermitian points are

$$
\begin{array}{llll}
P_{1}=(0,0), & P_{2}=(0,1), & P_{3}=(1, \alpha), & P_{4}=\left(1, \alpha^{2}\right), \\
P_{5}=(\alpha, \alpha), & P_{6}=\left(\alpha, \alpha^{2}\right), & P_{7}=\left(\alpha^{2}, \alpha\right), & P_{8}=\left(\alpha^{2}, \alpha^{2}\right) .
\end{array}
$$

Let C be the Hermitian code with $\mathcal{B}_{m, 2}=\left\{1, x, y, x^{2}, x y\right\}$.
Let $\mathcal{P}_{x}\left(s_{1}, \ldots, s_{5}, x\right)$ and $\mathcal{P}_{x y}\left(s_{1}, \ldots, s_{5}, x, y\right)$ be the polynomials in the Gröbner basis G.
Two errors occur at the points P_{6} and P_{7}. The syndrome is

$$
\begin{aligned}
& \mathbf{s}=(\alpha+1,0, \alpha, 0,0) \\
& \mathcal{P}_{x}(\mathbf{s}, x)=x^{2}+x+1=(x-\alpha)\left(x-\alpha^{2}\right) \\
& \mathcal{P}_{x y}(\mathbf{s}, \alpha, y)=y^{2}+y+1=(y-\alpha)\left(y-\alpha^{2}\right)
\end{aligned}
$$

Example (Hermitian code $q=2$)

Let $x^{3}=y^{2}+y$ be the Hermitian curve over \mathbb{F}_{4}.
The $P_{0}=(1,1)$ is the ghost point and Hermitian points are

$$
\begin{array}{llll}
P_{1}=(0,0), & P_{2}=(0,1), & P_{3}=(1, \alpha), & P_{4}=\left(1, \alpha^{2}\right), \\
P_{5}=(\alpha, \alpha), & P_{6}=\left(\alpha, \alpha^{2}\right), & P_{7}=\left(\alpha^{2}, \alpha\right), & P_{8}=\left(\alpha^{2}, \alpha^{2}\right) .
\end{array}
$$

Let C be the Hermitian code with $\mathcal{B}_{m, 2}=\left\{1, x, y, x^{2}, x y\right\}$.
Let $\mathcal{P}_{x}\left(s_{1}, \ldots, s_{5}, x\right)$ and $\mathcal{P}_{x y}\left(s_{1}, \ldots, s_{5}, x, y\right)$ be the polynomials in the Gröbner basis G.
Two errors occur at the points P_{6} and P_{7}. The syndrome is

$$
\begin{aligned}
& \mathbf{s}=(\alpha+1,0, \alpha, 0,0) \\
& \mathcal{P}_{x}(\mathbf{s}, x)=x^{2}+x+1=(x-\alpha)\left(x-\alpha^{2}\right) \\
& \mathcal{P}_{x y}(\mathbf{s}, \alpha, y)=y^{2}+y+1=(y-\alpha)\left(y-\alpha^{2}\right)
\end{aligned}
$$

Example (Hermitian code $q=2$)

Let $x^{3}=y^{2}+y$ be the Hermitian curve over \mathbb{F}_{4}.
The $P_{0}=(1,1)$ is the ghost point and Hermitian points are

$$
\begin{array}{llll}
P_{1}=(0,0), & P_{2}=(0,1), & P_{3}=(1, \alpha), & P_{4}=\left(1, \alpha^{2}\right), \\
P_{5}=(\alpha, \alpha), & P_{6}=\left(\alpha, \alpha^{2}\right), & P_{7}=\left(\alpha^{2}, \alpha\right), & P_{8}=\left(\alpha^{2}, \alpha^{2}\right) .
\end{array}
$$

Let C be the Hermitian code with $\mathcal{B}_{m, 2}=\left\{1, x, y, x^{2}, x y\right\}$.
Let $\mathcal{P}_{x}\left(s_{1}, \ldots, s_{5}, x\right)$ and $\mathcal{P}_{x y}\left(s_{1}, \ldots, s_{5}, x, y\right)$ be the polynomials in the Gröbner basis G.
Two errors occur at the points P_{6} and P_{7}. The syndrome is

$$
\begin{aligned}
& \mathbf{s}=(\alpha+1,0, \alpha, 0,0) \\
& \mathcal{P}_{x}(\mathbf{s}, x)=x^{2}+x+1=(x-\alpha)\left(x-\alpha^{2}\right) \\
& \mathcal{P}_{x y}(\mathbf{s}, \alpha, y)=y^{2}+y+1=(y-\alpha)\left(y-\alpha^{2}\right)
\end{aligned}
$$

Example (Hermitian code $q=2$)

Let $x^{3}=y^{2}+y$ be the Hermitian curve over \mathbb{F}_{4}.
The $P_{0}=(1,1)$ is the ghost point and Hermitian points are

$$
\begin{array}{llll}
P_{1}=(0,0), & P_{2}=(0,1), & P_{3}=(1, \alpha), & P_{4}=\left(1, \alpha^{2}\right), \\
P_{5}=(\alpha, \alpha), & P_{6}=\left(\alpha, \alpha^{2}\right), & P_{7}=\left(\alpha^{2}, \alpha\right), & P_{8}=\left(\alpha^{2}, \alpha^{2}\right) .
\end{array}
$$

Let C be the Hermitian code with $\mathcal{B}_{m, 2}=\left\{1, x, y, x^{2}, x y\right\}$. Let $\mathcal{P}_{x}\left(s_{1}, \ldots, s_{5}, x\right)$ and $\mathcal{P}_{x y}\left(s_{1}, \ldots, s_{5}, x, y\right)$ be the weakly locators in the Gröbner basis G.
Two errors occur at the points P_{6} and P_{7}. The syndrome is

$$
\begin{aligned}
& \mathbf{s}=(\alpha+1,0, \alpha, 0,0) \\
& \mathcal{P}_{x}(\mathbf{s}, x)=x^{2}+x+1=(x-\alpha)\left(x-\alpha^{2}\right) \\
& \mathcal{P}_{x y}\left(\mathbf{s}, \alpha^{2}, y\right)=y^{2}+y+1=(y-\alpha)\left(y-\alpha^{2}\right)
\end{aligned}
$$

Example (Hermitian code $q=2$)

Let $x^{3}=y^{2}+y$ be the Hermitian curve over \mathbb{F}_{4}.
The $P_{0}=(1,1)$ is the ghost point and Hermitian points are

$$
\begin{array}{llll}
P_{1}=(0,0), & P_{2}=(0,1), & P_{3}=(1, \alpha), & P_{4}=\left(1, \alpha^{2}\right), \\
P_{5}=(\alpha, \alpha), & P_{6}=\left(\alpha, \alpha^{2}\right), & P_{7}=\left(\alpha^{2}, \alpha\right), & P_{8}=\left(\alpha^{2}, \alpha^{2}\right) .
\end{array}
$$

Let C be the Hermitian code with $\mathcal{B}_{m, 2}=\left\{1, x, y, x^{2}, x y\right\}$.
Let $\mathcal{L}_{x}\left(s_{1}, \ldots, s_{5}, x\right)$ and $\mathcal{L}_{x y}\left(s_{1}, \ldots, s_{5}, x, y\right)$ be the locators in the Gröbner basis G.
Two errors occur at the points P_{6} and P_{7}. The syndrome is

$$
\begin{aligned}
& \mathbf{s}=(\alpha+1,0, \alpha, 0,0) \\
& \begin{array}{ll}
\mathcal{L}_{x}(S, x) & =x^{2}+a(S) x+b(S) \\
\mathcal{L}_{x y}(S, x, y) & =y^{2}+A(S) y+B(S) x+C(S)
\end{array}
\end{aligned}
$$

We stuff the ideal I.

Example (Hermitian code $q=2$)

Let $x^{3}=y^{2}+y$ be the Hermitian curve over \mathbb{F}_{4}.
The $P_{0}=(1,1)$ is the ghost point and Hermitian points are

$$
\begin{array}{llll}
P_{1}=(0,0), & P_{2}=(0,1), & P_{3}=(1, \alpha), & P_{4}=\left(1, \alpha^{2}\right), \\
P_{5}=(\alpha, \alpha), & P_{6}=\left(\alpha, \alpha^{2}\right), & P_{7}=\left(\alpha^{2}, \alpha\right), & P_{8}=\left(\alpha^{2}, \alpha^{2}\right) .
\end{array}
$$

Let C be the Hermitian code with $\mathcal{B}_{m, 2}=\left\{1, x, y, x^{2}, x y\right\}$.
Let $\mathcal{L}_{x}\left(s_{1}, \ldots, s_{5}, x\right)$ and $\mathcal{L}_{x y}\left(s_{1}, \ldots, s_{5}, x, y\right)$ be the locators in the Gröbner basis G.
Two errors occur at the points P_{6} and P_{7}. The syndrome is

$$
\mathbf{s}=(\alpha+1,0, \alpha, 0,0)
$$

$$
\mathcal{L}_{x}(\mathbf{s}, x)=x^{2}+x+1=(x-\alpha)\left(x-\alpha^{2}\right)
$$

$$
\mathcal{L}_{x y}(S, x, y)=y^{2}+A(S) y+B(S) x+C(S)
$$

Example (Hermitian code $q=2$)

Let $x^{3}=y^{2}+y$ be the Hermitian curve over \mathbb{F}_{4}.
The $P_{0}=(1,1)$ is the ghost point and Hermitian points are

$$
\begin{array}{llll}
P_{1}=(0,0), & P_{2}=(0,1), & P_{3}=(1, \alpha), & P_{4}=\left(1, \alpha^{2}\right), \\
P_{5}=(\alpha, \alpha), & P_{6}=\left(\alpha, \alpha^{2}\right), & P_{7}=\left(\alpha^{2}, \alpha\right), & P_{8}=\left(\alpha^{2}, \alpha^{2}\right) .
\end{array}
$$

Let C be the Hermitian code with $\mathcal{B}_{m, 2}=\left\{1, x, y, x^{2}, x y\right\}$.
Let $\mathcal{L}_{x}\left(s_{1}, \ldots, s_{5}, x\right)$ and $\mathcal{L}_{x y}\left(s_{1}, \ldots, s_{5}, x, y\right)$ be the locators in the Gröbner basis G.
Two errors occur at the points P_{6} and P_{7}. The syndrome is $\mathbf{s}=(\alpha+1,0, \alpha, 0,0)$.

$$
\begin{aligned}
& \mathcal{L}_{x}(\mathbf{s}, x)=x^{2}+x+1=(x-\alpha)\left(x-\alpha^{2}\right) \\
& \mathcal{L}_{x y}(\mathbf{s}, \alpha, y)=y^{2}+\alpha=\left(y-\alpha^{2}\right)^{2}
\end{aligned}
$$

Example (Hermitian code $q=2$)

Let $x^{3}=y^{2}+y$ be the Hermitian curve over \mathbb{F}_{4}.
The $P_{0}=(1,1)$ is the ghost point and Hermitian points are

$$
\begin{array}{llll}
P_{1}=(0,0), & P_{2}=(0,1), & P_{3}=(1, \alpha), & P_{4}=\left(1, \alpha^{2}\right), \\
P_{5}=(\alpha, \alpha), & P_{6}=\left(\alpha, \alpha^{2}\right), & P_{7}=\left(\alpha^{2}, \alpha\right), & P_{8}=\left(\alpha^{2}, \alpha^{2}\right) .
\end{array}
$$

Let C be the Hermitian code with $\mathcal{B}_{m, 2}=\left\{1, x, y, x^{2}, x y\right\}$.
Let $\mathcal{L}_{x}\left(s_{1}, \ldots, s_{5}, x\right)$ and $\mathcal{L}_{x y}\left(s_{1}, \ldots, s_{5}, x, y\right)$ be the locators in the Gröbner basis G.
Two errors occur at the points P_{6} and P_{7}. The syndrome is $\mathbf{s}=(\alpha+1,0, \alpha, 0,0)$.

$$
\begin{aligned}
& \mathcal{L}_{x}(\mathbf{s}, x)=x^{2}+x+1=(x-\alpha)\left(x-\alpha^{2}\right) \\
& \mathcal{L}_{x y}\left(\mathbf{s}, \alpha^{2}, y\right)=y^{2}+\alpha^{2}=(y-\alpha)^{2}
\end{aligned}
$$

Example (Hermitian code $q=2$)

Let $x^{3}=y^{2}+y$ be the Hermitian curve over \mathbb{F}_{4}.
The $P_{0}=(1,1)$ is the ghost point and Hermitian points are

$$
\begin{array}{llll}
P_{1}=(0,0), & P_{2}=(0,1), & P_{3}=(1, \alpha), & P_{4}=\left(1, \alpha^{2}\right), \\
P_{5}=(\alpha, \alpha), & P_{6}=\left(\alpha, \alpha^{2}\right), & P_{7}=\left(\alpha^{2}, \alpha\right), & P_{8}=\left(\alpha^{2}, \alpha^{2}\right) .
\end{array}
$$

Let C be the Hermitian code with $\mathcal{B}_{m, 2}=\left\{1, x, y, x^{2}, x y\right\}$.
Let $\mathcal{L}_{x}\left(s_{1}, \ldots, s_{5}, x\right)$ and $\mathcal{L}_{x y}\left(s_{1}, \ldots, s_{5}, x, y\right)$ be the locators in the Gröbner basis G.
Two errors occur at the points P_{1} and P_{2}. The syndrome is $\mathbf{s}=(0,1,1,1,0)$.

$$
\begin{aligned}
\mathcal{L}_{x}(\mathbf{s}, x) & =x^{2} \\
\mathcal{L}_{x y}(S, x, y) & =y^{2}+A(S) y+B(S) x+C(S)
\end{aligned}
$$

Example (Hermitian code $q=2$)

Let $x^{3}=y^{2}+y$ be the Hermitian curve over \mathbb{F}_{4}.
The $P_{0}=(1,1)$ is the ghost point and Hermitian points are

$$
\begin{array}{llll}
P_{1}=(0,0), & P_{2}=(0,1), & P_{3}=(1, \alpha), & P_{4}=\left(1, \alpha^{2}\right), \\
P_{5}=(\alpha, \alpha), & P_{6}=\left(\alpha, \alpha^{2}\right), & P_{7}=\left(\alpha^{2}, \alpha\right), & P_{8}=\left(\alpha^{2}, \alpha^{2}\right) .
\end{array}
$$

Let C be the Hermitian code with $\mathcal{B}_{m, 2}=\left\{1, x, y, x^{2}, x y\right\}$.
Let $\mathcal{L}_{x}\left(s_{1}, \ldots, s_{5}, x\right)$ and $\mathcal{L}_{x y}\left(s_{1}, \ldots, s_{5}, x, y\right)$ be the locators in the Gröbner basis G.
Two errors occur at the points P_{1} and P_{2}. The syndrome is $\mathbf{s}=(0,1,1,1,0)$.

$$
\begin{aligned}
& \mathcal{L}_{x}(\mathbf{s}, x)=x^{2} \\
& \mathcal{L}_{x y}(\mathbf{s}, 0, y)=y^{2}+y=y(y-1)
\end{aligned}
$$

Thank you for your attention!

