D
s =

Bunny TN3

Terzo Workshop di Crittografia
Trento — March 12,2012

UNOBSERVABLE INTRUSION DETECTION
EESEDIONCARRIRE Gi=
IN PARAVIRTUALIZED SYSTEMS

Marino Miculan
University of Udine

Google: miculan

(Work in collaboration with Carlo Maiero)

s-s;oO
w
Q What To Observe!

A

! Instusion detection module !} Response |
i :

* “Syntactic” IDS look for i =
d 0 o] led etection | | iy
discrepancies in code, data... || gei"’ engine [117] Al A

(virus signatures, digests of | i
programs, patterns...) 1 Se“rs |
» Quite limited sl

* Patterns change often

* (Antivirus detect ~50% viruses)

» Difficult to look into process memory
(e.g. to detect buffer overflows)

Intrusion Detection Systems

* IDS gathers data from the
management system (via

“sensors’) and using a KB .
decides if to raise an alert | Kni:lzdge" | e [T A A
—
» Crucial design questions: | Sensors H

! Instrusion detection module i Response
i

N

* What to observe? Managed system

* How to observe!?

StS

What To Observe!

* “Semantic” IDS: look for discrepancies in the run-time
behavior with respect to the expected one (the “model")
* More robust to changes, non intrusive, ...

* Behavior = interactions with environment

— User
application return from mode
syscall interrupt

Kernel
transfer to mode
interrupt
handler

- Slogan: A process behavior is fully determined
by its system call traces (with parameters)
* Black box approach: no need to look “inside” the application

NSRER

First (naive) Archrtecture

Training phase i Monitoring phase

in safe context) ' online, unsafe context
i
'
! Alert
.7
Anomaly
Model "
- | Model]—> Detection
Learning Engine
1
i
i
i
Process to ' Process to
monitor monitor
int 0x80 \\ int 0x80 \\

— dtrace User space A dtrace User space
T Kernel space | Kemel space
R N —

~— — ~ —

entry probe |

Syscall kernel code return probe

entry probe

Syscall kernel code

DTrace return
probe

Solution:
Paravirtualized Systems

VMO VM1 VM2 VM3

vT1/
Back-End AMDV
Native “HVM”

Device Front-End Front-End Front-End
Driver. Device Drivers Device Drivers Device Drivers

Safe HW IF
Xen Hypervisor

Hardware (SMP, MMU, physical memory, Ethemet, SCSVIDE) |

S,

D
ﬁ

&

S

Ky
it But The Enemy Is Smart...

* First architecture requires changes in Operating System kernel
in order to place probes on system calls

* Attacker can
* notice the presence of probe, and change attack
accordingly
» attack the IDS itself, by removing probes

* How to observe system call traces WITHOUT changing OS?

JowTo Intercept Syscall In VM

Native Paravirtualized
Ring3
Application Application /
* In paravirtualized system . E
g ing. :
system calls are trapped in a i3
different way -
(Po] Kernel
i
. 4 2
* What and where to intercept? =i i ;
ernel L lypervisor _
——> System Call

—————> Fast System Call

————— > Hypercall

0x80 EAX EBX ECX EDX EBP ESI EDI ESP EIP
System call Number Pid

= New Architecture: XenlDS
VMO
&
2olisy Xenlds

GuestOs GuestOS GuestOS Unmodified
(XenLinuk) (XenLinux) (XenLinux) GuestOS

Interception
mechanism

Xenlni l Hypervisor Xen

Hardware

g
ZEHERY

Stealth Interception

|. Xenini intercepts the system
call or the hypercall
2. Xenini alerts Xenlds via a VIRQ L | Xenids “ LSRnERees
3. Xenlds makes a request get
info to libxc -
4. Libxc requires data to Xenini libxe
5. Xenini transmits the data to A Hypercal
libxc 4 Systefn call
6. Libxc returns data to IDS syscti_xeniniop} _ Xeninivirg 1 |8
7. the IDS processes the data and v U
gives an answer. Xenini
8. control flow returns to the
guest VM

Dom0 DomU

xc_xenini_bqu 3 2

Logging |

Hypervisor Xen

Advantages Of
XenINI/XenlDS Architecture

* Secure: does not change any guest kernel structure, thus
cannot be tampered

* Isolated and unobservable: the attacker cannot tell
whether is monitored or not

* Flexible and independent from virtual machine

* Independent from memory: no introspection in guest
memory or disk

» Simple: only one point of deployment

i 370

£o)
9
C

Model Construction And
Anomaly Detection

5
SR

* So we can observe
system call traces
without being catch

Training phase jonitori
(in safe context) (online, unsafe context)

* What should we do — P
with these traces?

* Various methods to
construct model &
detect anomalies

* We will see only a simple one (we are working also on others)

Algorithms For Anomaly
Detection: Stide

» Stide looks for suspect subsequences of syscalls

execution (patterns) of all programs running on

5
3 5
* Model: All subsequences of lenght k of normal 4 3 7
3 3
a machine (usually k=5 or 6) 4 |

\\ ““/

+ Learning: All pattern generated by a \\\ / /
machine during normal execution are stored in R
database

+ This can lead to more false negative in a server
running many programs, but not more false
positives. (Not observed in our tests)
Dictionary of
normal sequences

Algorithms For Anomaly
Bieicction: Stidel(Eenisy

* Detection: an intrusion is recognized only if the number of
anomalies on the last n syscalls is > threshold.

ABCD...

BCDA... ABCD... Yes
ACBD... DEAG... 2
DEAG... %

Incoming * 5

Trace) Count the number
Jacs Extract sequences # [Look for Anomalous ety o
of size k Sequences |

last n system calls

About The Threshold

* Choosing the threshold Th is crucial
* Low Th => too many false positives
* High Th => attacks with less anomalies than Th are not
detected (false negative)

* For our test, after two weeks of training period we
identified Th as 15%
* No false positives
* Behaviors differing less than 5% from stored
sequences are considered “‘safe”

tide: Evaluation Of
Detection Capability

+ Offline test on M.I.T. interception traces: all attacks have been
recognized, no false positives

* Online test: observation of a modified (i.e."hacked"”) FTP server

Change to FTP server

local copy string 20% Yes
open a system shell 50% Yes
remote copy string 30% Yes

+ Observation of normal uses which did not appeared in training set
Use
strings of 25 chars < 15% No
strings of 100 chars < 15% No

closing using kill < 15% No

30

25

20

15

10

seconds

(Lower is better)

27.181

19.472

20.596
13.119
13.692

9.501
9.929
10.146
10.671

ab -n 100000 -c 5 ab -n 50000 -c 2 ab -n 50000 -c 50
O Xen native [Xenids deactivated [Xenids asynchronous

Overall overhead: 7-8% (in asyncronous mode)

S*S
% 2>
S %
= C

&

ZEHERY

Conclusions

* We have shown how to detect host intrusions by observing
only system calls, without being observed by the intruder

* The overhead of XenlIDS is acceptable for real time detection

* Threshold is delicate: it depends on various aspects
* the training period
* the desired “aggressiveness” of the IDS

* To circumvent these issues, we are working on new models
based on Execution Graphs extended with Data Flow constraints

=
r&s 2
@%

| Thanks For Attention

Questions!?

marino.miculan@uniud.it

