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Intrusion Detection Systems

• IDS gathers data from the 
management system (via 
“sensors”) and using a KB 
decides if to raise an alert

• Crucial design questions:

• What to observe?

• How to observe?

What To Observe?

• “Syntactic” IDS look for
discrepancies in code, data…
(virus signatures, digests of
programs, patterns…)

• Quite limited
• Patterns change often
• (Antivirus detect ~50% viruses)
• Difficult to look into process memory 

(e.g. to detect buffer overflows)

What To Observe?
• “Semantic” IDS: look for discrepancies in the run-time 
behavior with respect to the expected one (the “model”)
• More robust to changes, non intrusive, …

• Behavior = interactions with environment

• Slogan: A process behavior is fully determined 
by its system call traces (with parameters)

• Black box approach: no need to look “inside” the application



First (naive) Architecture
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But The Enemy Is Smart…

• First architecture requires changes in Operating System kernel 
in order to place probes on system calls

• Attacker can
• notice the presence of probe, and change attack 

accordingly
• attack the IDS itself, by removing probes

• How to observe system call traces WITHOUT changing OS?

Solution:
Paravirtualized Systems How To Intercept Syscall In VM

0x80 EAX EBX ECX EDX EBP ESI EDI ESP EIP

System call Number Pid

• In paravirtualized system 
system calls are trapped in a 
different way 

• What and where to intercept?



New Architecture: XenIDS
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1. Xenini intercepts the system 
call or the hypercall

2. Xenini alerts XenIds via a VIRQ
3. XenIds makes a request get 

info to libxc
4. Libxc requires data to Xenini
5. Xenini transmits the data to 

libxc
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7. the IDS processes the data and 
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Advantages Of
XenINI/XenIDS Architecture

• Secure: does not change any guest kernel structure, thus 
cannot be tampered

• Isolated and unobservable: the attacker cannot tell 
whether is monitored or not

• Flexible and independent from virtual machine

• Independent from memory: no introspection in guest 
memory or disk

• Simple: only one point of deployment

Model Construction And 
Anomaly Detection

• So we can observe 
system call traces 
without being catch

• What should we do 
with these traces?

• Various methods to 
construct model & 
detect anomalies
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• We will see only a simple one (we are working also on others)



Algorithms For Anomaly 
Detection: Stide
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Dictionary of
normal sequences

• Stide looks for suspect subsequences of syscalls

• Model: All subsequences of lenght k of normal 
execution (patterns) of all programs running on 
a machine (usually k=5 or 6)

• Learning: All pattern generated by a 
machine during normal execution are stored in 
database
• This can lead to more false negative in a server 

running many programs, but not more false 
positives. (Not observed in our tests)

Algorithms For Anomaly 
Detection: Stide (cont.)

• Detection: an intrusion is recognized only if the number of 
anomalies on the last n syscalls is > threshold. 

• Choosing the threshold Th is crucial
• Low Th => too many false positives
• High Th => attacks with less anomalies than Th are not 

detected (false negative)

• For our test, after two weeks of training period we 
identified Th as 15%
•  No false positives
•  Behaviors differing less than 15% from stored 

sequences are considered “safe”

About The Threshold

• Offline test on M.I.T. interception traces: all attacks have been 
recognized, no false positives

• Online test: observation of a modified (i.e. “hacked”) FTP server

• Observation of normal uses which did not appeared in training set

Stide: Evaluation Of
Detection Capability

Use Mismatch Anomaly?
strings of 25 chars < 15% No
strings of 100 chars < 15% No
closing using kill < 15% No

Change to FTP server Mismatch Anomaly?
local copy string 20% Yes
open a system shell 50% Yes
remote copy string 30% Yes



Stide: Performance Evaluation

Overall overhead: 7-8% (in asyncronous mode) 

(Lower is better)

Conclusions

• We have shown how to detect host intrusions by observing 
only system calls, without being observed by the intruder

• The overhead of XenIDS is acceptable for real time detection

• Threshold is delicate: it depends on various aspects
• the training period
• the desired “aggressiveness” of the IDS

• To circumvent these issues, we are working on new models 
based on Execution Graphs extended with Data Flow constraints
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