
UNOBSERVABLE INTRUSION DETECTION
BASED ON CALL TRACES

IN PARAVIRTUALIZED SYSTEMS
Marino Miculan

University of Udine
Google: miculan

(Work in collaboration with Carlo Maiero)

BunnyTN3
Terzo Workshop di Crittografia

Trento – March 12, 2012
Intrusion Detection Systems

• IDS gathers data from the
management system (via
“sensors”) and using a KB
decides if to raise an alert

• Crucial design questions:

• What to observe?

• How to observe?

What To Observe?

• “Syntactic” IDS look for
discrepancies in code, data…
(virus signatures, digests of
programs, patterns…)

• Quite limited
• Patterns change often
• (Antivirus detect ~50% viruses)
• Difficult to look into process memory

(e.g. to detect buffer overflows)

What To Observe?
• “Semantic” IDS: look for discrepancies in the run-time
behavior with respect to the expected one (the “model”)
• More robust to changes, non intrusive, …

• Behavior = interactions with environment

• Slogan: A process behavior is fully determined
by its system call traces (with parameters)

• Black box approach: no need to look “inside” the application

First (naive) Architecture

Process to
monitor

Model
Learning

dtrace
int 0x80

Kernel space
User space

Syscall kernel code

entry probe

return probe

Process to
monitor

Anomaly
Detection

Engine

dtrace
int 0x80

Kernel space
User space

Syscall kernel code

entry probe

DTrace return
probe

Model

Training phase
(in safe context)

Alert

Monitoring phase
(online, unsafe context)

But The Enemy Is Smart…

• First architecture requires changes in Operating System kernel
in order to place probes on system calls

• Attacker can
• notice the presence of probe, and change attack

accordingly
• attack the IDS itself, by removing probes

• How to observe system call traces WITHOUT changing OS?

Solution:
Paravirtualized Systems How To Intercept Syscall In VM

0x80 EAX EBX ECX EDX EBP ESI EDI ESP EIP

System call Number Pid

• In paravirtualized system
system calls are trapped in a
different way

• What and where to intercept?

New Architecture: XenIDS

XenIds

XenIni

 Security
policy

Interception
mechanism

Stealth Interception

1. Xenini intercepts the system
call or the hypercall

2. Xenini alerts XenIds via a VIRQ
3. XenIds makes a request get

info to libxc
4. Libxc requires data to Xenini
5. Xenini transmits the data to

libxc
6. Libxc returns data to IDS
7. the IDS processes the data and

gives an answer.
8. control flow returns to the

guest VM

Advantages Of
XenINI/XenIDS Architecture

• Secure: does not change any guest kernel structure, thus
cannot be tampered

• Isolated and unobservable: the attacker cannot tell
whether is monitored or not

• Flexible and independent from virtual machine

• Independent from memory: no introspection in guest
memory or disk

• Simple: only one point of deployment

Model Construction And
Anomaly Detection

• So we can observe
system call traces
without being catch

• What should we do
with these traces?

• Various methods to
construct model &
detect anomalies

Process to
monitor

Model
Learning

dtrace
int 0x80

Kernel space
User space

Syscall kernel code

entry probe

return probe

Process to
monitor

Anomaly
Detection

Engine

dtrace
int 0x80

Kernel space
User space

Syscall kernel code

entry probe

DTrace return
probe

Model

Training phase
(in safe context)

Alert

Monitoring phase
(online, unsafe context)

Process to
monitor

Model
Learning

dtrace
int 0x80

Kernel space
User space

Syscall kernel code

entry probe

return probe

Process to
monitor

Anomaly
Detection

Engine

dtrace
int 0x80

Kernel space
User space

Syscall kernel code

entry probe

DTrace return
probe

Model

Training phase
(in safe context)

Alert

Monitoring phase
(online, unsafe context)

• We will see only a simple one (we are working also on others)

Algorithms For Anomaly
Detection: Stide

P1

5

3

4

3

4

P4

2

5

4

3

6

P3

2

5

2

3

1

P2

21

5

3

4

22

Dictionary of
normal sequences

• Stide looks for suspect subsequences of syscalls

• Model: All subsequences of lenght k of normal
execution (patterns) of all programs running on
a machine (usually k=5 or 6)

• Learning: All pattern generated by a
machine during normal execution are stored in
database
• This can lead to more false negative in a server

running many programs, but not more false
positives. (Not observed in our tests)

Algorithms For Anomaly
Detection: Stide (cont.)

• Detection: an intrusion is recognized only if the number of
anomalies on the last n syscalls is > threshold.

• Choosing the threshold Th is crucial
• Low Th => too many false positives
• High Th => attacks with less anomalies than Th are not

detected (false negative)

• For our test, after two weeks of training period we
identified Th as 15%
• No false positives
• Behaviors differing less than 15% from stored

sequences are considered “safe”

About The Threshold

• Offline test on M.I.T. interception traces: all attacks have been
recognized, no false positives

• Online test: observation of a modified (i.e. “hacked”) FTP server

• Observation of normal uses which did not appeared in training set

Stide: Evaluation Of
Detection Capability

Use Mismatch Anomaly?
strings of 25 chars < 15% No
strings of 100 chars < 15% No
closing using kill < 15% No

Change to FTP server Mismatch Anomaly?
local copy string 20% Yes
open a system shell 50% Yes
remote copy string 30% Yes

Stide: Performance Evaluation

Overall overhead: 7-8% (in asyncronous mode)

(Lower is better)

Conclusions

• We have shown how to detect host intrusions by observing
only system calls, without being observed by the intruder

• The overhead of XenIDS is acceptable for real time detection

• Threshold is delicate: it depends on various aspects
• the training period
• the desired “aggressiveness” of the IDS

• To circumvent these issues, we are working on new models
based on Execution Graphs extended with Data Flow constraints

Thanks For Attention

Questions?

marino.miculan@uniud.it

