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Notation and terminology

X ⊆ P
r (F̄ℓ) projective, geometrically irreducible, non-singular

algebraic curve, defined over Fℓ

g genus of X

If f (X ,Y ) = 0 is birationally equivalent to X , then

X : f (X ,Y ) = 0

X is said to be the non-singular model of f (X ,Y ) = 0

X (Fℓ) = X ∩ PG(r , ℓ)
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Maximal Curves

Theorem (Hasse-Weil, 1948)

|X (Fℓ)| ≤ ℓ+ 1 + 2g
√
ℓ.

Definition

X is Fℓ-maximal (or simply maximal) if the number |X (Fℓ)| of its
Fℓ-rational points attains the equality in the Hasse-Weil bound.

ℓ square, ℓ = q2 (q power of a prime).

Example: Hermitian curve

H2 : X
q+1
2 = X q

1 X0 + X1X
q
0

g =
1

2
q(q − 1), |H2(Fq2)| = q3 + 1
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Relevance of maximal curves in the construction of

good AG-Codes

The quality of a linear code is measured by the following parameters:

Information Rate R

Relative Distance δ

Theorem (Singleton): R + δ ≤ 1 + 1/n

A code is said to be “good” when R + δ is near to 1.

If C is an AG-code built from a non-singular curve X , of genus g , defined
over Fℓ, then

R + δ ≥ 1− g − 1

|X (Fℓ)|
.

The code C is “good” when the underlying curve X has many
Fℓ-rational points with respect to its genus.
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Natural Embedding Theorem

Hermitian Variety of Pm(Fq2)

Hm : X q+1
2 + X q+1

3 + · · ·+ X q+1
m = X q

1 X0 + X1X
q
0

Theorem (G. Korchmáros - F. Torres, 2001)

Up to isomorphisms, Fq2-maximal curves are:

non-singular irreducible curves, of degree q + 1,

contained in some non-degenerate Hm;

thus 2 ≤ m ≤ r .

The integer r is the geometrical Frobenius dimension of the curve.

r = 2 ⇒ m = 2 ⇒ X ∼= H2.

r = 3 ⇒ m = 3.
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Classification results

largest genus: g1 =
1
2q(q − 1) (Ihara, 1981)

If g(X ) = 1
2q(q − 1), then X ∼= H2 (Rück-Stichtenoth, 1994).

second largest genus: g2 =
⌊
1
4 (q − 1)2

⌋
(Fuhrmann-Torres, 1996).

If g(X ) =
⌊
1
4 (q − 1)2

⌋
, then

for q odd, X is Fq2 -birationally equivalent to the curve of affine
equation

Y
q+1
2 = X

q + X

(Fuhrmann-Garcia-Torres, 1997);
for q ≥ 4 even, X is Fq2 -birationally equivalent to the curve of affine
equation

Y
q+1 = X + X

2 + X
4 + . . .+ X

q
4 + X

q
2

(Abdón-Torres 1999 for q = 4, Korchmáros-Torres 2002 for q > 4).

third largest genus: g3 =
⌊
1
6 (q

2 − q + 4)
⌋
(Korchmáros-Torres, for

q ≥ 7)
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(Korchmáros-Torres, for

q ≥ 7)

Irene Platoni, University of Trento (Italy) On maximal curves over finite fields of small order



Classification results

largest genus: g1 =
1
2q(q − 1) (Ihara, 1981)

If g(X ) = 1
2q(q − 1), then X ∼= H2 (Rück-Stichtenoth, 1994).

second largest genus: g2 =
⌊
1
4 (q − 1)2

⌋
(Fuhrmann-Torres, 1996).

If g(X ) =
⌊
1
4 (q − 1)2

⌋
, then

for q odd, X is Fq2 -birationally equivalent to the curve of affine
equation

Y
q+1
2 = X

q + X

(Fuhrmann-Garcia-Torres, 1997);
for q ≥ 4 even, X is Fq2 -birationally equivalent to the curve of affine
equation

Y
q+1 = X + X

2 + X
4 + . . .+ X

q
4 + X

q
2

(Abdón-Torres 1999 for q = 4, Korchmáros-Torres 2002 for q > 4).
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third largest genus: g3 =
⌊
1
6 (q

2 − q + 4)
⌋
(Korchmáros-Torres, for

q ≥ 7)
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Classification results

Known example of Fq2-maximal curve, of genus g3

Y(q) :







X (q+1)/3 + X 2(q+1)/3 + Y q+1 = 0, if q ≡ 2 (mod 3)

T (Y )− X q − X = 0, if q ≡ 0 (mod 3)

Y q − YX 2(q−1)/3 + ωX (q−1)/3 = 0, if q ≡ 1 (mod 3)

,

with T (Y ) = Y + Y 3 + · · ·+ Y q/3 and ωq+1 = −1.

Open problem: Does Y(q) is the only Fq2-maximal curve, of genus
g3?

q = 4 or q = 5 ⇒ g2 = g3.

q = 7 ⇒ g2 > g3 = 7.
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Classification results

Theorem (S. Fanali - M. Giulietti - I.P., 2012)

Up to birational equivalence, the curve Y(7) of affine equation

Y 7 − YX 4 + ωX 2 = 0, con ω8 = −1.

is the only F49-maximal curve of genus 7.
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Sketch of the proof

Let X be an F49-maximal curve, of genus 7.

{

q = 7

g = 7
⇒ r = 3.

Determine all the possible model plane of X , using:

Natural Embedding Theorem

A characterization of maximal curves with Frobenius dimension 3 of
independent interest
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Curves with Frobenius dimension 3

H(P) = {0, ρ(P), q, q + 1, . . .}

Theorem (S. Fanali - M .Giulietti - I.P., 2012)

If X is an Fq2 -maximal curve with Frobenius dimension 3 and
P ∈ X (Fq2), then X is birationally equivalent over Fq2 to a plane curve
with affine equation

Z q+1 = X q + X + λξ(X ,Z ),

where

λ ∈ F
∗

q2

ξ(X ,Z ) is a polynomial of degree ρ(P)

ξ(X ,Z ) =
∏

i=1,...,ρ(P) Ti(X ,Z )

Ti(X ,Z ) = 0 are tangents of H2 at ρ(P) not necessarily distinct
affine points P1, . . . ,Pρ(P).
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Curves with Frobenius dimension 3

Let H3 be the Hermitian surface of homogeneous equation:

Z q+1 + Y q+1 = X qT + XT q , H3 ⊆ P
3(F̄q2)

N.E .T⇒







X is an irreducible, non-singular curve

deg(X ) = q + 1

X ⊆ H3

Let π be the canonical projection
from Y∞ to the xz-plane; then:

π(H3) = H2

π(X ) ⊆ H2

X ∩ {Y = 0} ⊆ H2 → theese
are the P1, . . . ,Pρ(P) points of
the Theorem!

y

x

z

H3
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Curves with Frobenius dimension 3

H(P) = {0, ρ(P), q, q + 1, . . .}

Theorem (S. Fanali - M .Giulietti - I.P., 2012)

If X is an Fq2 -maximal curve with Frobenius dimension 3 and
P ∈ X (Fq2), then X is birationally equivalent over Fq2 to a plane curve
with affine equation

Z q+1 = X q + X + λξ(X ,Z ),
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λ ∈ F
∗

q2

ξ(X ,Z ) is a polynomial of degree ρ(P)
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Estimate the number of curves to be tested

Let N be the number of curves to be tested.

We have
N = (q2 − 1)

︸ ︷︷ ︸
· (q3)ρ(P)

︸ ︷︷ ︸
≈ q2+3ρ(P)

↓ ↓
λ ∈ F

∗

q2
ways in which

ξ(X ,Z) can change

For q = 7, since j(P) > 1, we obtain

ρ(P) = q + 1− j(P) ≤ 6,

and so we have, in the worst case

N ≈ 720(≈ 256) −→ not computationally manageable!

Geometric remarks necessary to reduce N and computation
time for testing each curve.
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Classification of maximal curves defined over F49, of

genus 7

Let X be a maximal curve defined over F49, of genus 7. We may assume
that:

i) X is a curve of degree 8, lying on the Hermitian surface of P3(F49)

of equation Z 8 + Y 8 = X 7T + XT 7; (
N.E.T.⇒ )

ii) P = (0 : 1 : 0 : 0) ∈ X ;

iii) the osculating plane to X in P has equation T = 0;

iv) the tangent line X in P has equations Y = 0, T = 0;

v) the non-osculating tangent planes to X in P are that of equation

Y − bT = 0, with b ∈ F49. (
iii)-iv)⇒ )

Proposition

Let j(P) be the multiplicity intersection of X in P with an arbitrary
non-osculating tangent plane to X in P. Then j(P) = 2 or j(P) = 3.
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Case j(P) = 3

If j(P) = 3
i)⇒ every non-osculating tangent plane to X in P

intersects the curve X in 5 not necessarily distinct affine points,
counted with multiplicity.

Proposition

There exists a non-osculating tangent plane H to X in P of equation

Y − bT = 0, con b ∈ F49,

in which the 5 affine points of X ∩ H are not all distinct, (i.e. the
multiplicity of intersection of the plane with X in one of theese points is
greater than 1).

Up to projectivity we can assume that:

1. H : Y = 0;
2. P0 = (1 : 0 : 0 : 0) ∈ X ∩ H is a point of multiplicity greater than 1;
3. P1 ∈ X ∩ H is of type (1 : B : 0 : 1), for some B ∈ Fq2 , with

Bq + B = 1, or of type (1 : W : 0 : 0), for some W ∈ F
∗

q2
such that

W q +W = 0.
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Case j(P) = 3

Frobenius morfism, defined over Fq

Φq : P
n(Fq) → P

n(Fq)

(X0 : . . . : Xn) 7→ (X q
0 : . . . : X q

n )

Remark

Acting with Frobenius morfism Φ7, defined over F7 it is possible to divide
the F49-rational points of H2 in three disjoint orbits:

A1 := {Q ∈ H2(F49) : Φ7(Q) = Q};
A2 maximal with respect to the following property:

Q ∈ A2 ⇒ Φ7(Q) /∈ A2;

A3 := {Φ7(Q) | Q ∈ A2}.
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j(P) = 3

We limited our search considering the following cases (P0 and P1

previously defined):

A1) P2, P3 ∈ A1;

A2) P2 ∈ A1, P3 ∈ A2;

A3) P2 ∈ A2, P3 ∈ A3;

A4) P2, P3 ∈ A2.
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Estimate the number of curves to be tested in the

case j(P) = 3

Number of curves to be tested: N ≈ 72+3ρ(P).

If j(P) = 3 ⇒ ρ(P) = 5 and so N ≈ 717(≈ 247).

Thanks to the previous geometric remarks, we have significantly reduced
the value of N .

P0 = (1 : 0 : 0 : 0) → (N ≈ 714);

P0 of multeplicity greater than 1 → (N ≈ 711);

P1 of type (1 : B : 0 : 1), for some B ∈ Fq2 , with Bq + B = 1, or of
type (1 : W : 0 : 0), for some W ∈ F

∗

q2 such that

W q +W = 0 → (N ≈ 2 · 79);
Use of the Frobenius morfism Φ7 → (N ≈ 79);

Check on the number of rational points of the curve to be tested
→ (N ≈ 77(≈ 219)).
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Conclusions

Selection of the curves of genus 7 and with 148 rational points
(and so F49-maximal curves), not birationally equivalent to the
known example.

Theorem (S. Fanali - M. Giulietti - I.P., 2012)

Up to birational equivalence, the curve Y(7) of affine equation

Y 7 − YX 4 + ωX 2 = 0, con ω8 = −1.

is the only F49-maximal curve of genus 7.
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Other topics

(1) Study of Y(7) and parameters computation of the AG-Codes of the
curve.

(2) Classification attempt of maximal curves with Frobenius dimension
3, for q = 8.
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Thanks for your attention!
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