On maximal curves over finite fields of small order

Irene Platoni University of Trento (Italy)

12 March 2012

Notation and terminology

- $\mathcal{X} \subseteq \mathbb{P}^{r}\left(\overline{\mathbb{F}}_{\ell}\right)$ projective, geometrically irreducible, non-singular algebraic curve, defined over $\mathbb{F} \rho$
- g genus of \mathcal{X}
- If $f(X, Y)=0$ is birationally equivalent to \mathcal{X}, then
\mathcal{X} is said to be the non-singular model of $f(X, Y)=0$
- $\mathcal{X}\left(\mathbb{F}_{\ell}\right)=\mathcal{X} \cap P G(r, \ell)$

Notation and terminology

- $\mathcal{X} \subseteq \mathbb{P}^{r}\left(\overline{\mathbb{F}}_{\ell}\right)$ projective, geometrically irreducible, non-singular algebraic curve, defined over \mathbb{F}_{ℓ}
- g genus of \mathcal{X}
- If $f(X, Y)=0$ is birationally equivalent to \mathcal{X}, then
\mathcal{X} is said to be the non-singular model of $f(X, Y)=0$

Notation and terminology

- $\mathcal{X} \subseteq \mathbb{P}^{r}\left(\overline{\mathbb{F}}_{\ell}\right)$ projective, geometrically irreducible, non-singular algebraic curve, defined over \mathbb{F}_{ℓ}
- g genus of \mathcal{X}
- If $f(X, Y)=0$ is birationally equivalent to \mathcal{X}, then \mathcal{X} is said to be the non-singular model of $f(X, Y)=0$

Notation and terminology

- $\mathcal{X} \subseteq \mathbb{P}^{r}\left(\overline{\mathbb{F}}_{\ell}\right)$ projective, geometrically irreducible, non-singular algebraic curve, defined over \mathbb{F}_{ℓ}
- g genus of \mathcal{X}
- If $f(X, Y)=0$ is birationally equivalent to \mathcal{X}, then

$$
\mathcal{X}: f(X, Y)=0
$$

\mathcal{X} is said to be the non-singular model of $f(X, Y)=0$

- $\mathcal{X}\left(\mathbb{F}_{\ell}\right)=\mathcal{X} \cap P G(r, \ell)$

Notation and terminology

- $\mathcal{X} \subseteq \mathbb{P}^{r}\left(\overline{\mathbb{F}}_{\ell}\right)$ projective, geometrically irreducible, non-singular algebraic curve, defined over \mathbb{F}_{ℓ}
- g genus of \mathcal{X}
- If $f(X, Y)=0$ is birationally equivalent to \mathcal{X}, then

$$
\mathcal{X}: f(X, Y)=0
$$

\mathcal{X} is said to be the non-singular model of $f(X, Y)=0$

- $\mathcal{X}\left(\mathbb{F}_{\ell}\right)=\mathcal{X} \cap P G(r, \ell)$

Maximal Curves

Theorem (Hasse-Weil, 1948)

Definition

\mathcal{X} is \mathbb{F}_{ℓ}-maximal (or simply maximal) if the number $\left|\mathcal{X}\left(\mathbb{F}_{\ell}\right)\right|$ of its $\mathbb{F}_{\ell \text {-rational points attains the equality in the Hasse-Weil bound. }}^{\text {W }}$

```
- \ell square, \ell}=\mp@subsup{q}{}{2}\mathrm{ (q power of a prime).
```


Example: Hermitian curve

Maximal Curves

Theorem (Hasse-Weil, 1948)

$$
\left|\mathcal{X}\left(\mathbb{F}_{\ell}\right)\right| \leq \ell+1+2 g \sqrt{\ell}
$$

Definition

 E-rational points attains the equality in the Hasse-Weil bound

- ℓ square, $\ell=q^{2}$ (q power of a prime)

Example: Hermitian curve

Maximal Curves

Theorem (Hasse-Weil, 1948)

$$
\left|\mathcal{X}\left(\mathbb{F}_{\ell}\right)\right| \leq \ell+1+2 g \sqrt{\ell} .
$$

Definition

\mathcal{X} is \mathbb{F}_{ℓ}-maximal (or simply maximal) if the number $\left|\mathcal{X}\left(\mathbb{F}_{\ell}\right)\right|$ of its \mathbb{F}_{ℓ}-rational points attains the equality in the Hasse-Weil bound.

- ℓ square, $\ell=q^{2}$ (q power of a prime)

Example: Hermitian curve

Maximal Curves

Theorem (Hasse-Weil, 1948)

$$
\left|\mathcal{X}\left(\mathbb{F}_{\ell}\right)\right| \leq \ell+1+2 g \sqrt{\ell} .
$$

Definition

\mathcal{X} is \mathbb{F}_{ℓ}-maximal (or simply maximal) if the number $\left|\mathcal{X}\left(\mathbb{F}_{\ell}\right)\right|$ of its \mathbb{F}_{ℓ}-rational points attains the equality in the Hasse-Weil bound.

- ℓ square, $\ell=q^{2}$ (q power of a prime).

Example: Hermitian curve

Maximal Curves

Theorem (Hasse-Weil, 1948)

$$
\left|\mathcal{X}\left(\mathbb{F}_{\ell}\right)\right| \leq \ell+1+2 g \sqrt{\ell}
$$

Definition

\mathcal{X} is \mathbb{F}_{ℓ}-maximal (or simply maximal) if the number $\left|\mathcal{X}\left(\mathbb{F}_{\ell}\right)\right|$ of its \mathbb{F}_{ℓ}-rational points attains the equality in the Hasse-Weil bound.

- ℓ square, $\ell=q^{2}$ (q power of a prime).

Example: Hermitian curve

$$
\mathcal{H}_{2}: X_{2}^{q+1}=X_{1}^{q} X_{0}+X_{1} X_{0}^{q}
$$

Maximal Curves

Theorem (Hasse-Weil, 1948)

$$
\left|\mathcal{X}\left(\mathbb{F}_{\ell}\right)\right| \leq \ell+1+2 g \sqrt{\ell}
$$

Definition

\mathcal{X} is \mathbb{F}_{ℓ}-maximal (or simply maximal) if the number $\left|\mathcal{X}\left(\mathbb{F}_{\ell}\right)\right|$ of its \mathbb{F}_{ℓ}-rational points attains the equality in the Hasse-Weil bound.

- ℓ square, $\ell=q^{2}$ (q power of a prime).

Example: Hermitian curve

$$
\begin{gathered}
\mathcal{H}_{2}: X_{2}^{q+1}=X_{1}^{q} X_{0}+X_{1} X_{0}^{q} \\
-g=\frac{1}{2} q(q-1), \quad\left|\mathcal{H}_{2}\left(\mathbb{F}_{q^{2}}\right)\right|=q^{3}+1
\end{gathered}
$$

Relevance of maximal curves in the construction of good AG-Codes

```
The quality of a linear code is measured by the following parameters:
    - Theorem (Singleton): R+\delta\leq1+1/n
    - A code is said to be "good" when R+\delta is near to 1.
If C}\mathrm{ is an AG-code built from a non-singular curve }\mathcal{X}\mathrm{ , of genus }g\mathrm{ , defined
over }\mp@subsup{\mathbb{F}}{\ell}{}\mathrm{ , then
- The code \(C\) is "good" when the underlying curve \(\mathcal{X}\) has many \(\mathbb{F}_{\ell}\)-rational points with respect to its genus.
```


Relevance of maximal curves in the construction of good AG-Codes

The quality of a linear code is measured by the following parameters:

```
- Information Rate R
- Relative Distance \(\delta\)
```

- Theorem (Singleton): $R+\delta \leq 1+1 / n$
- A code is said to be "good" when $R+\delta$ is near to 1

If C is an $A G$-code built from a non-singular curve \mathcal{X}, of genus g, defined over \mathbb{F}_{ρ}, then

- The code C is "good" when the underlying curve \mathcal{X} has many \mathbb{F}_{ℓ}-rational points with respect to its genus

Relevance of maximal curves in the construction of good AG-Codes

The quality of a linear code is measured by the following parameters:

- Information Rate R
- Relative Distance δ
- Theorem (Singleton): $R+\delta \leq 1+1 / n$
- A code is said to be "good" when $R+\delta$ is near to 1

If C is an $A G$-code built from a non-singular curve \mathcal{X}, of genus g, defined over \mathbb{F}_{ρ}, then

- The code C is "good" when the underlying curve \mathcal{X} has many \mathbb{F}_{0}-rational points with respect to its genus

Relevance of maximal curves in the construction of good AG-Codes

The quality of a linear code is measured by the following parameters:

- Information Rate R
- Relative Distance δ
- Theorem (Singleton): $R+\delta \leq 1+1 / n$
- A code is said to be "good" when $R+\delta$ is near to 1

If C is an $A G$-code built from a non-singular curve \mathcal{X}, of genus g, defined over \mathbb{F}_{ℓ}, then

- The code C is "good" when the underlying curve \mathcal{X} has many \mathbb{E}_{ℓ}-rational points with respect to its genus

Relevance of maximal curves in the construction of good AG-Codes

The quality of a linear code is measured by the following parameters:

- Information Rate R
- Relative Distance δ
- Theorem (Singleton): $R+\delta \leq 1+1 / n$
- A code is said to be "good" when $R+\delta$ is near to 1

If C is an $A G$-code built from a non-singular curve \mathcal{X}, of genus g, defined over \mathbb{F}_{ρ}, then

- The code C is "good" when the underlying curve \mathcal{X} has many $\mathbb{F}_{\ell \text {-rational }}$ points with respect to its genus

Relevance of maximal curves in the construction of good AG-Codes

The quality of a linear code is measured by the following parameters:

- Information Rate R
- Relative Distance δ
- Theorem (Singleton): $R+\delta \leq 1+1 / n$
- A code is said to be "good" when $R+\delta$ is near to 1 .

If C is an $A G$-code built from a non-singular curve \mathcal{X}, of genus g, defined over \mathbb{F}_{ρ}, then

- The code C is "good" when the underlying curve \mathcal{X} has many \mathbb{F}_{ℓ}-rational points with respect to its genus.

Relevance of maximal curves in the construction of good AG-Codes

The quality of a linear code is measured by the following parameters:

- Information Rate R
- Relative Distance δ
- Theorem (Singleton): $R+\delta \leq 1+1 / n$
- A code is said to be "good" when $R+\delta$ is near to 1 .

If C is an AG-code built from a non-singular curve \mathcal{X}, of genus g, defined over \mathbb{F}_{ℓ}, then

$$
R+\delta \geq 1-\frac{g-1}{\left|\mathcal{X}\left(\mathbb{F}_{\ell}\right)\right|}
$$

- The code C is "good" when the underlying curve \mathcal{X} has many \mathbb{F}_{ℓ}-rational points with respect to its genus

Relevance of maximal curves in the construction of good AG-Codes

The quality of a linear code is measured by the following parameters:

- Information Rate R
- Relative Distance δ
- Theorem (Singleton): $R+\delta \leq 1+1 / n$
- A code is said to be "good" when $R+\delta$ is near to 1 .

If C is an AG-code built from a non-singular curve \mathcal{X}, of genus g, defined over \mathbb{F}_{ℓ}, then

$$
R+\delta \geq 1-\frac{g-1}{\left|\mathcal{X}\left(\mathbb{F}_{\ell}\right)\right|}
$$

- The code C is "good" when the underlying curve \mathcal{X} has many \mathbb{F}_{ℓ}-rational points with respect to its genus.

Natural Embedding Theorem

Hermitian Variety of $\mathbb{P}^{m}\left(\overline{\mathbb{F}}_{q^{2}}\right)$

 Theorem (G. Korchmáros - F. Torres, 2001)
 Un to isomornhisms \mathbb{F} n-maximal curves are:

The integer r is the geometrical Frobenius dimension of the curve.

Natural Embedding Theorem

$$
\begin{aligned}
& \text { Hermitian Variety of } \mathbb{P}^{m}\left(\overline{\mathbb{F}}_{q^{2}}\right) \\
& \qquad \mathcal{H}_{m}: X_{2}^{q+1}+X_{3}^{q+1}+\cdots+X_{m}^{q+1}=X_{1}^{q} X_{0}+X_{1} X_{0}^{q}
\end{aligned}
$$

Theorem (G. Korchmáros - F. Torres, 2001)
 Up to isomorphisms, $\mathbb{F}_{q^{2}}$-maximal curves are.

The integer r is the geometrical Frobenius dimension of the curve.

- $r=3 \Rightarrow m=3$

Natural Embedding Theorem

Hermitian Variety of $\mathbb{P}^{m}\left(\overline{\mathbb{F}}_{q^{2}}\right)$

$$
\mathcal{H}_{m}: X_{2}^{q+1}+X_{3}^{q+1}+\cdots+X_{m}^{q+1}=X_{1}^{q} X_{0}+X_{1} X_{0}^{q}
$$

Theorem (G. Korchmáros - F. Torres, 2001)

Up to isomorphisms, $\mathbb{F}_{q^{2}}$-maximal curves are:

- non-singular irreducible curves, of degree $q+1$,
- contained in some non-degenerate \mathcal{H}_{m};
\square

The integer r is the geometrical Frobenius dimension of the curve.

- $r=3 \Rightarrow m=3$

Natural Embedding Theorem

Hermitian Variety of $\mathbb{P}^{m}\left(\overline{\mathbb{F}}_{q^{2}}\right)$

$$
\mathcal{H}_{m}: X_{2}^{q+1}+X_{3}^{q+1}+\cdots+X_{m}^{q+1}=X_{1}^{q} X_{0}+X_{1} X_{0}^{q}
$$

Theorem (G. Korchmáros - F. Torres, 2001)

Up to isomorphisms, $\mathbb{F}_{q^{2}}$-maximal curves are:

- non-singular irreducible curves, of degree $q+1$,
- contained in some non-degenerate \mathcal{H}_{m};
- thus 2

The integer r is the geometrical Frobenius dimension of the curve.

- $r=2 \Rightarrow m=2 \Rightarrow \mathcal{X} \cong \mathcal{H}_{2}$.
- $r=3 \Rightarrow m=3$

Natural Embedding Theorem

Hermitian Variety of $\mathbb{P}^{m}\left(\overline{\mathbb{F}}_{q^{2}}\right)$

$$
\mathcal{H}_{m}: X_{2}^{q+1}+X_{3}^{q+1}+\cdots+X_{m}^{q+1}=X_{1}^{q} X_{0}+X_{1} X_{0}^{q}
$$

Theorem (G. Korchmáros - F. Torres, 2001)

Up to isomorphisms, $\mathbb{F}_{q^{2}}$-maximal curves are:

- non-singular irreducible curves, of degree $q+1$,
- contained in some non-degenerate \mathcal{H}_{m};

The integer r is the geometrical Frobenius dimension of the curve

- $r=3 \Rightarrow m=3$

Natural Embedding Theorem

Hermitian Variety of $\mathbb{P}^{m}\left(\overline{\mathbb{F}}_{q^{2}}\right)$

$$
\mathcal{H}_{m}: X_{2}^{q+1}+X_{3}^{q+1}+\cdots+X_{m}^{q+1}=X_{1}^{q} X_{0}+X_{1} X_{0}^{q}
$$

Theorem (G. Korchmáros - F. Torres, 2001)

Up to isomorphisms, $\mathbb{F}_{q^{2}}$-maximal curves are:

- non-singular irreducible curves, of degree $q+1$,
- contained in some non-degenerate \mathcal{H}_{m};
- thus $2 \leq m \leq r$.

The integer r is the geometrical Frobenius dimension of the curve.

- $r=2 \Rightarrow m=2 \Rightarrow \mathcal{X} \cong \mathcal{H}_{2}$.
- $r=3 \Rightarrow m=3$

Natural Embedding Theorem

Hermitian Variety of $\mathbb{P}^{m}\left(\overline{\mathbb{F}}_{q^{2}}\right)$

$$
\mathcal{H}_{m}: X_{2}^{q+1}+X_{3}^{q+1}+\cdots+X_{m}^{q+1}=X_{1}^{q} X_{0}+X_{1} X_{0}^{q}
$$

Theorem (G. Korchmáros - F. Torres, 2001)

Up to isomorphisms, $\mathbb{F}_{q^{2}}$-maximal curves are:

- non-singular irreducible curves, of degree $q+1$,
- contained in some non-degenerate \mathcal{H}_{m};
- thus $2 \leq m \leq r$.

The integer r is the geometrical Frobenius dimension of the curve.

- $r=3 \Rightarrow m=3$

Natural Embedding Theorem

Hermitian Variety of $\mathbb{P}^{m}\left(\overline{\mathbb{F}}_{q^{2}}\right)$

$$
\mathcal{H}_{m}: X_{2}^{q+1}+X_{3}^{q+1}+\cdots+X_{m}^{q+1}=X_{1}^{q} X_{0}+X_{1} X_{0}^{q}
$$

Theorem (G. Korchmáros - F. Torres, 2001)

Up to isomorphisms, $\mathbb{F}_{q^{2}}$-maximal curves are:

- non-singular irreducible curves, of degree $q+1$,
- contained in some non-degenerate \mathcal{H}_{m};
- thus $2 \leq m \leq r$.

The integer r is the geometrical Frobenius dimension of the curve.

- $r=2 \Rightarrow m=2 \Rightarrow \mathcal{X} \cong \mathcal{H}_{2}$.
- $r=3 \Rightarrow m=3$.

Natural Embedding Theorem

Hermitian Variety of $\mathbb{P}^{m}\left(\overline{\mathbb{F}}_{q^{2}}\right)$

$$
\mathcal{H}_{m}: X_{2}^{q+1}+X_{3}^{q+1}+\cdots+X_{m}^{q+1}=X_{1}^{q} X_{0}+X_{1} X_{0}^{q}
$$

Theorem (G. Korchmáros - F. Torres, 2001)

Up to isomorphisms, $\mathbb{F}_{q^{2}}$-maximal curves are:

- non-singular irreducible curves, of degree $q+1$,
- contained in some non-degenerate \mathcal{H}_{m};
- thus $2 \leq m \leq r$.

The integer r is the geometrical Frobenius dimension of the curve.

- $r=2 \Rightarrow m=2 \Rightarrow \mathcal{X} \cong \mathcal{H}_{2}$.
- $r=3 \Rightarrow m=3$.

Classification results

```
- largest genus: }\mp@subsup{g}{1}{}=\frac{1}{2}q(q-1) (Ihara, 1981)
    If g(\mathcal{X})=\frac{1}{2}q(q-1), then \mathcal{X}\cong\mp@subsup{\mathcal{H}}{2}{}\mathrm{ (Rück-Stichtenoth, 1994).}
- second largest genus: }\mp@subsup{g}{2}{}=\lfloor\frac{1}{4}(q-1\mp@subsup{)}{}{2}\rfloor(Fuhrmann-Torres, 1996)
If g(\mathcal{X})=\lfloor\frac{1}{4}(q-1\mp@subsup{)}{}{2}\rfloor, then
```

- third largest genus: $g_{3}=\left\lfloor\frac{1}{6}\left(q^{2}-q+4\right)\right\rfloor$ (Korchmáros-Torres, for $q \geq 7$)

Classification results

- largest genus: $g_{1}=\frac{1}{2} q(q-1)$ (Ihara, 1981)

If $g(\mathcal{X})=\frac{1}{2} q(q-1)$, then $\mathcal{X} \cong \mathcal{H}_{2}$ (Rück-Stichtenoth, 1994).

- second largest genus: $g_{2}=\left\lfloor\frac{1}{4}(q-1)^{2}\right\rfloor$ (Fuhrmann-Torres, 1996). If $g(\mathcal{X})=\left|\frac{1}{4}(q-1)^{2}\right|$, then
- third largest genus: $g_{3}=\left\lfloor\frac{1}{6}\left(q^{2}-q+4\right)\right\rfloor$ (Korchmáros-Torres, for $q \geq 7$)

Classification results

- largest genus: $g_{1}=\frac{1}{2} q(q-1)$ (Ihara, 1981)

$$
\text { If } g(\mathcal{X})=\frac{1}{2} q(q-1) \text {, then } \mathcal{X} \cong \mathcal{H}_{2} \text { (Rück-Stichtenoth, 1994). }
$$

- third largest genus: $g_{3}=\left\lfloor\frac{1}{6}\left(q^{2}-q+4\right)\right\rfloor$ (Korchmáros-Torres, for $q \geq 7$)

Classification results

- largest genus: $g_{1}=\frac{1}{2} q(q-1)$ (Ihara, 1981)

If $g(\mathcal{X})=\frac{1}{2} q(q-1)$, then $\mathcal{X} \cong \mathcal{H}_{2}$ (Rück-Stichtenoth, 1994).

- second largest genus: $g_{2}=\left\lfloor\frac{1}{4}(q-1)^{2}\right\rfloor$ (Fuhrmann-Torres, 1996).
- third largest genus: $g_{3}=\left\lfloor\frac{1}{6}\left(q^{2}-q+4\right)\right\rfloor$ (Korchmáros-Torres, for $q \geq 7$)

Classification results

- largest genus: $g_{1}=\frac{1}{2} q(q-1)$ (Ihara, 1981)

If $g(\mathcal{X})=\frac{1}{2} q(q-1)$, then $\mathcal{X} \cong \mathcal{H}_{2}$ (Rück-Stichtenoth, 1994).

- second largest genus: $g_{2}=\left\lfloor\frac{1}{4}(q-1)^{2}\right\rfloor$ (Fuhrmann-Torres, 1996). If $g(\mathcal{X})=\left\lfloor\frac{1}{4}(q-1)^{2}\right\rfloor$, then
- for q odd, \mathcal{X} is $\mathbb{F}_{q^{2}}$-birationally equivalent to the curve of affine equation
(Fuhrmann-Garcia-Torres, 1997);
- for $q \geq 4$ even, \mathcal{X} is $\mathbb{F}_{q^{2}}$-birationally equivalent to the curve of affine equation
(Abdón-Torres 1999 for $q=4$, Korchmáros-Torres 2002 for $q>4$).
- third largest genus: $g_{3}=\left\lfloor\left.\frac{1}{6}\left(a^{2}-q+4\right) \right\rvert\,\right.$ (Korchmáros-Torres, for $q \geq 7$)

Classification results

- largest genus: $g_{1}=\frac{1}{2} q(q-1)$ (Ihara, 1981)

If $g(\mathcal{X})=\frac{1}{2} q(q-1)$, then $\mathcal{X} \cong \mathcal{H}_{2}$ (Rück-Stichtenoth, 1994).

- second largest genus: $g_{2}=\left\lfloor\frac{1}{4}(q-1)^{2}\right\rfloor$ (Fuhrmann-Torres, 1996). If $g(\mathcal{X})=\left\lfloor\frac{1}{4}(q-1)^{2}\right\rfloor$, then
- for q odd, \mathcal{X} is $\mathbb{F}_{q^{2}}$-birationally equivalent to the curve of affine equation

$$
Y^{\frac{q+1}{2}}=X^{q}+X
$$

(Fuhrmann-Garcia-Torres, 1997);
equation
(Abdón-Torres 1999 for $q=4$, Korchmáros-Torres 2002 for $q>4$).

- third largest genus: $g_{3}=\left|\frac{1}{6}\left(q^{2}-q+4\right)\right|$ (Korchmáros-Torres, for $q \geq 7$)

Classification results

- largest genus: $g_{1}=\frac{1}{2} q(q-1)$ (Ihara, 1981)

If $g(\mathcal{X})=\frac{1}{2} q(q-1)$, then $\mathcal{X} \cong \mathcal{H}_{2}$ (Rück-Stichtenoth, 1994).

- second largest genus: $g_{2}=\left\lfloor\frac{1}{4}(q-1)^{2}\right\rfloor$ (Fuhrmann-Torres, 1996). If $g(\mathcal{X})=\left\lfloor\frac{1}{4}(q-1)^{2}\right\rfloor$, then
- for q odd, \mathcal{X} is $\mathbb{F}_{q^{2}}$-birationally equivalent to the curve of affine equation

$$
Y^{\frac{q+1}{2}}=X^{q}+X
$$

(Fuhrmann-Garcia-Torres, 1997);

- for $q \geq 4$ even, \mathcal{X} is $\mathbb{F}_{q^{2}}$-birationally equivalent to the curve of affine equation

$$
Y^{q+1}=X+X^{2}+X^{4}+\ldots+X^{\frac{q}{4}}+X^{\frac{q}{2}}
$$

(Abdón-Torres 1999 for $q=4$, Korchmáros-Torres 2002 for $q>4$).
(- third $\begin{aligned} & \text { a } \\ & q \geq 7)\end{aligned}$

Classification results

- largest genus: $g_{1}=\frac{1}{2} q(q-1)$ (Ihara, 1981)

If $g(\mathcal{X})=\frac{1}{2} q(q-1)$, then $\mathcal{X} \cong \mathcal{H}_{2}$ (Rück-Stichtenoth, 1994).

- second largest genus: $g_{2}=\left\lfloor\frac{1}{4}(q-1)^{2}\right\rfloor$ (Fuhrmann-Torres, 1996). If $g(\mathcal{X})=\left\lfloor\frac{1}{4}(q-1)^{2}\right\rfloor$, then
- for q odd, \mathcal{X} is $\mathbb{F}_{q^{2}}$-birationally equivalent to the curve of affine equation

$$
Y^{\frac{q+1}{2}}=X^{q}+X
$$

(Fuhrmann-Garcia-Torres, 1997);

- for $q \geq 4$ even, \mathcal{X} is $\mathbb{F}_{q^{2}}$-birationally equivalent to the curve of affine equation

$$
Y^{q+1}=X+X^{2}+X^{4}+\ldots+X^{\frac{q}{4}}+X^{\frac{q}{2}}
$$

(Abdón-Torres 1999 for $q=4$, Korchmáros-Torres 2002 for $q>4$).

- third largest genus: $g_{3}=\left\lfloor\frac{1}{6}\left(q^{2}-q+4\right)\right\rfloor$ (Korchmáros-Torres, for $q \geq 7$)

Classification results

Known example of $\mathbb{F}_{q^{2}}$-maximal curve, of genus g_{3}

- Open problem: Does $\mathcal{Y}(q)$ is the only $\mathbb{F}_{q^{2}}$-maximal curve, of genus g_{3} ?
- $q=4$ or $q=5 \Rightarrow g_{2}=g_{3}$.
- $q=7 \Rightarrow g_{2}>g_{3}=7$.

Classification results

Known example of $\mathbb{F}_{q^{2}}$-maximal curve, of genus g_{3}

$$
\mathcal{Y}(q): \begin{cases}X^{(q+1) / 3}+X^{2(q+1) / 3}+Y^{q+1}=0, & \text { if } q \equiv 2(\bmod 3) \\ T(Y)-X^{q}-X=0, & \text { if } q \equiv 0(\bmod 3) \\ Y^{q}-Y X^{2(q-1) / 3}+\omega X^{(q-1) / 3}=0, & \text { if } q \equiv 1(\bmod 3)\end{cases}
$$

$$
\text { with } T(Y)=Y+Y^{3}+\cdots+Y^{q / 3} \text { and } \omega^{q+1}=-1
$$

- Open problem: Does $\mathcal{Y}(q)$ is the only $\mathbb{F}_{q^{2}}$ maximal curve, of genus

Classification results

Known example of $\mathbb{F}_{q^{2}}$-maximal curve, of genus g_{3}

$$
\mathcal{Y}(q): \begin{cases}X^{(q+1) / 3}+X^{2(q+1) / 3}+Y^{q+1}=0, & \text { if } q \equiv 2(\bmod 3) \\ T(Y)-X^{q}-X=0, & \text { if } q \equiv 0(\bmod 3), \\ Y^{q}-Y X^{2(q-1) / 3}+\omega X^{(q-1) / 3}=0, & \text { if } q \equiv 1(\bmod 3)\end{cases}
$$

with $T(Y)=Y+Y^{3}+\cdots+Y^{q / 3}$ and $\omega^{q+1}=-1$.

- Open problem: Does $\mathcal{Y}(q)$ is the only $\mathbb{F}_{q^{2}}$-maximal curve, of genus g_{3} ?

Classification results

Known example of $\mathbb{F}_{q^{2}}$-maximal curve, of genus g_{3}

$$
\mathcal{Y}(q): \begin{cases}X^{(q+1) / 3}+X^{2(q+1) / 3}+Y^{q+1}=0, & \text { if } q \equiv 2(\bmod 3) \\ T(Y)-X^{q}-X=0, & \text { if } q \equiv 0(\bmod 3), \\ Y^{q}-Y X^{2(q-1) / 3}+\omega X^{(q-1) / 3}=0, & \text { if } q \equiv 1(\bmod 3)\end{cases}
$$

with $T(Y)=Y+Y^{3}+\cdots+Y^{q / 3}$ and $\omega^{q+1}=-1$.

- Open problem: Does $\mathcal{Y}(q)$ is the only $\mathbb{F}_{q^{2}}$-maximal curve, of genus g_{3} ?
- $q=4$ or $q=5 \Rightarrow g_{2}=g_{3}$.

Classification results

Known example of $\mathbb{F}_{q^{2}}$-maximal curve, of genus g_{3}

$$
\mathcal{Y}(q): \begin{cases}X^{(q+1) / 3}+X^{2(q+1) / 3}+Y^{q+1}=0, & \text { if } q \equiv 2(\bmod 3) \\ T(Y)-X^{q}-X=0, & \text { if } q \equiv 0(\bmod 3), \\ Y^{q}-Y X^{2(q-1) / 3}+\omega X^{(q-1) / 3}=0, & \text { if } q \equiv 1(\bmod 3)\end{cases}
$$

with $T(Y)=Y+Y^{3}+\cdots+Y^{q / 3}$ and $\omega^{q+1}=-1$.

- Open problem: Does $\mathcal{Y}(q)$ is the only $\mathbb{F}_{q^{2}}$-maximal curve, of genus g_{3} ?
- $q=4$ or $q=5 \Rightarrow g_{2}=g_{3}$.
- $q=7 \Rightarrow g_{2}>g_{3}=7$.

Classification results

Theorem (S. Fanali - M. Giulietti - I.P., 2012)

Up to birational equivalence, the curve $\mathcal{Y}(7)$ of affine equation

$$
Y^{7}-Y X^{4}+\omega X^{2}=0, \operatorname{con} \omega^{8}=-1
$$

is the only \mathbb{F}_{49}-maximal curve of genus 7 .

Sketch of the proof

Let \mathcal{X} be an \mathbb{F}_{49}-maximal curve, of genus 7 .

- Natural Embedding Theorem
- A characterization of maximal curves with Frobenius dimension 3 of independent interest

Sketch of the proof

Let \mathcal{X} be an \mathbb{F}_{49}-maximal curve, of genus 7 .

- $\left\{\begin{array}{l}q=7 \\ g=7\end{array} \quad \Rightarrow r=3\right.$.

Determine all the possible model plane of \mathcal{X}, using:

- Natural Embedding Theorem
- A characterization of maximal curves with Frobenius dimension 3 of independent interest

Sketch of the proof

Let \mathcal{X} be an \mathbb{F}_{49}-maximal curve, of genus 7 .

- $\left\{\begin{array}{l}q=7 \\ g=7\end{array} \Rightarrow r=3\right.$.

Determine all the possible model plane of \mathcal{X}, using:

- Natural Embedding Theorem
- A characterization of maximal curves with Frobenius dimension 3 of independent interest

Sketch of the proof

Let \mathcal{X} be an \mathbb{F}_{49}-maximal curve, of genus 7 .

- $\left\{\begin{array}{l}q=7 \\ g=7\end{array} \Rightarrow r=3\right.$.

Determine all the possible model plane of \mathcal{X}, using:

- Natural Embedding Theorem
- A characterization of maximal curves with Frobenius dimension 3 of independent interest

Sketch of the proof

Let \mathcal{X} be an \mathbb{F}_{49}-maximal curve, of genus 7 .

- $\left\{\begin{array}{l}q=7 \\ g=7\end{array} \Rightarrow r=3\right.$.

Determine all the possible model plane of \mathcal{X}, using:

- Natural Embedding Theorem
- A characterization of maximal curves with Frobenius dimension 3 of independent interest

Curves with Frobenius dimension 3

```
- H(P)}={0,\rho(P),q,q+1,\ldots
Theorem (S. Fanali - M .Giulietti - I.P., 2012)
If }\mathcal{X}\mathrm{ is an }\mp@subsup{\mathbb{F}}{\mp@subsup{0}{}{2}}{2-maximal curve with Frohenius dimension 3}\mathrm{ and
P}\in\mathcal{X}(\mp@subsup{\mathbb{F}}{\mp@subsup{q}{}{2}}{})\mathrm{ , then }\mathcal{X}\mathrm{ is birationally equivalent over }\mp@subsup{\mathbb{F}}{\mp@subsup{q}{}{2}}{}\mathrm{ to a plane curve
with affine equation
```


[^0]
Curves with Frobenius dimension 3

- $H(P)=\{0, \rho(P), q, q+1, \ldots\}$

Theorem (S. Fanali - M . Giulietti - I.P., 2012)
If \mathcal{X} is an $\mathbb{F}_{q^{2}}$ maximal curve with Frobenius dimension 3 and
$P \in \mathcal{X}\left(\mathbb{F}_{\sim^{2}}\right)$, then \mathcal{X} is birationallv equivalent over $\mathbb{F} q^{2}$ to a plane curve
with affine equation

Curves with Frobenius dimension 3

- $H(P)=\{0, \rho(P), q, q+1, \ldots\}$

Theorem (S. Fanali - M .Giulietti - I.P., 2012)

If \mathcal{X} is an $\mathbb{F}_{q^{2}}$-maximal curve with Frobenius dimension 3 and $P \in \mathcal{X}\left(\mathbb{F}_{q^{2}}\right)$, then \mathcal{X} is birationally equivalent over $\mathbb{F}_{q^{2}}$ to a plane curve with affine equation

$$
Z^{q+1}=X^{q}+X+\lambda \xi(X, Z)
$$

where

- $\xi(X, Z)$ is a polynomial of degree $\rho(P)$
- $\xi(X, Z)=\prod_{i=1, \ldots, \rho(P)} T_{i}(X, Z)$
- $T_{i}(X, Z)=0$ are tangents of \mathcal{H}_{2} at $\rho(P)$ not necessarily distinct affine points $P_{1}, \ldots, P_{\rho(P)}$.

Curves with Frobenius dimension 3

- $H(P)=\{0, \rho(P), q, q+1, \ldots\}$

Theorem (S. Fanali - M .Giulietti - I.P., 2012)

If \mathcal{X} is an $\mathbb{F}_{q^{2}}$-maximal curve with Frobenius dimension 3 and $P \in \mathcal{X}\left(\mathbb{F}_{q^{2}}\right)$, then \mathcal{X} is birationally equivalent over $\mathbb{F}_{q^{2}}$ to a plane curve with affine equation

$$
Z^{q+1}=X^{q}+X+\lambda \xi(X, Z)
$$

where

- $\lambda \in \mathbb{F}_{q^{2}}^{*}$
- $\xi(X, Z)$ is a polynomial of degree $\rho(P)$
- $\xi(X, Z)=\prod_{i=1, \ldots, \rho(P)} T_{i}(X, Z)$
- $T_{i}(X, Z)=0$ are tangents of \mathcal{H}_{2} at $\rho(P)$ not necessarily distinct affine points $P_{1}, \ldots, P_{p(P)}$.

Curves with Frobenius dimension 3

- $H(P)=\{0, \rho(P), q, q+1, \ldots\}$

Theorem (S. Fanali - M .Giulietti - I.P., 2012)

If \mathcal{X} is an $\mathbb{F}_{q^{2}}$-maximal curve with Frobenius dimension 3 and $P \in \mathcal{X}\left(\mathbb{F}_{q^{2}}\right)$, then \mathcal{X} is birationally equivalent over $\mathbb{F}_{q^{2}}$ to a plane curve with affine equation

$$
Z^{q+1}=X^{q}+X+\lambda \xi(X, Z)
$$

where

- $\lambda \in \mathbb{F}_{q^{2}}^{*}$
- $\xi(X, Z)$ is a polynomial of degree $\rho(P)$
- $\xi(X, Z)=\prod_{i=1, \ldots . . \rho(P)} T_{i}(X, Z)$
- $T_{i}(X, Z)=0$ are tangents of \mathcal{H}_{2} at $\rho(P)$ not necessarily distinct affine points P_{1},

Curves with Frobenius dimension 3

- $H(P)=\{0, \rho(P), q, q+1, \ldots\}$

Theorem (S. Fanali - M .Giulietti - I.P., 2012)

If \mathcal{X} is an $\mathbb{F}_{q^{2}}$-maximal curve with Frobenius dimension 3 and $P \in \mathcal{X}\left(\mathbb{F}_{q^{2}}\right)$, then \mathcal{X} is birationally equivalent over $\mathbb{F}_{q^{2}}$ to a plane curve with affine equation

$$
Z^{q+1}=X^{q}+X+\lambda \xi(X, Z)
$$

where

- $\lambda \in \mathbb{F}_{q^{2}}^{*}$
- $\xi(X, Z)$ is a polynomial of degree $\rho(P)$
- $\xi(X, Z)=\prod_{i=1, \ldots, \rho(P)} T_{i}(X, Z)$
- $T_{i}(X, Z)=0$ are tangents of \mathcal{H}_{2} at $\rho(P)$ not necessarily distinct

Curves with Frobenius dimension 3

- $H(P)=\{0, \rho(P), q, q+1, \ldots\}$

Theorem (S. Fanali - M .Giulietti - I.P., 2012)

If \mathcal{X} is an $\mathbb{F}_{q^{2}-\text {-maximal curve with Frobenius dimension } 3 \text { and }}$ $P \in \mathcal{X}\left(\mathbb{F}_{q^{2}}\right)$, then \mathcal{X} is birationally equivalent over $\mathbb{F}_{q^{2}}$ to a plane curve with affine equation

$$
Z^{q+1}=X^{q}+X+\lambda \xi(X, Z)
$$

where

- $\lambda \in \mathbb{F}_{q^{2}}^{*}$
- $\xi(X, Z)$ is a polynomial of degree $\rho(P)$
- $\xi(X, Z)=\prod_{i=1, \ldots, \rho(P)} T_{i}(X, Z)$
- $T_{i}(X, Z)=0$ are tangents of \mathcal{H}_{2} at $\rho(P)$ not necessarily distinct affine points $P_{1}, \ldots, P_{\rho(P)}$.

Curves with Frobenius dimension 3

Let \mathcal{H}_{3} be the Hermitian surface of homogeneous equation:

$$
Z^{q+1}+Y^{q+1}=X^{q} T+X T^{q}, \quad \mathcal{H}_{3} \subseteq \mathbb{P}^{3}\left(\overline{\mathbb{F}}_{q^{2}}\right)
$$

Curves with Frobenius dimension 3

Let \mathcal{H}_{3} be the Hermitian surface of homogeneous equation:

$$
Z^{q+1}+Y^{q+1}=X^{q} T+X T^{q}, \quad \mathcal{H}_{3} \subseteq \mathbb{P}^{3}\left(\overline{\mathbb{F}}_{q^{2}}\right)
$$

Curves with Frobenius dimension 3

Let \mathcal{H}_{3} be the Hermitian surface of homogeneous equation:

$$
Z^{q+1}+Y^{q+1}=X^{q} T+X T^{q}, \quad \mathcal{H}_{3} \subseteq \mathbb{P}^{3}\left(\overline{\mathbb{F}}_{q^{2}}\right)
$$

Curves with Frobenius dimension 3

Let \mathcal{H}_{3} be the Hermitian surface of homogeneous equation:

$$
Z^{q+1}+Y^{q+1}=X^{q} T+X T^{q}, \quad \mathcal{H}_{3} \subseteq \mathbb{P}^{3}\left(\overline{\mathbb{F}}_{q^{2}}\right)
$$

$$
\stackrel{\text { N.E. } T}{\Rightarrow}\left\{\begin{array}{l}
\mathcal{X} \text { is an irreducible, non-singular curve } \\
\operatorname{deg}(\mathcal{X})=q+1 \\
\mathcal{X} \subseteq \mathcal{H}_{3}
\end{array}\right.
$$

$$
\text { Let } \pi \text { be the canonical projection }
$$

$$
\text { from } Y_{\infty} \text { to the } x z \text {-plane; then: }
$$

Curves with Frobenius dimension 3

Let \mathcal{H}_{3} be the Hermitian surface of homogeneous equation:

$$
Z^{q+1}+Y^{q+1}=X^{q} T+X T^{q}, \quad \mathcal{H}_{3} \subseteq \mathbb{P}^{3}\left(\overline{\mathbb{F}}_{q^{2}}\right)
$$

Curves with Frobenius dimension 3

Let \mathcal{H}_{3} be the Hermitian surface of homogeneous equation:

$$
Z^{q+1}+Y^{q+1}=X^{q} T+X T^{q}, \quad \mathcal{H}_{3} \subseteq \mathbb{P}^{3}\left(\overline{\mathbb{F}}_{q^{2}}\right)
$$

$\stackrel{\text { N.E. } T}{\Rightarrow}\left\{\begin{array}{l}\mathcal{X} \text { is an irreducible, non-singular curve } \\ \operatorname{deg}(\mathcal{X})=q+1 \\ \mathcal{X} \subseteq \mathcal{H}_{3}\end{array}\right.$
Let π be the canonical projection from Y_{∞} to the $x z$-plane; then:

- $\pi\left(\mathcal{H}_{3}\right)=\mathcal{H}_{2}$

Curves with Frobenius dimension 3

Let \mathcal{H}_{3} be the Hermitian surface of homogeneous equation:

$$
Z^{q+1}+Y^{q+1}=X^{q} T+X T^{q}, \quad \mathcal{H}_{3} \subseteq \mathbb{P}^{3}\left(\overline{\mathbb{F}}_{q^{2}}\right)
$$

$\stackrel{\text { N.E. } T}{\Rightarrow}\left\{\begin{array}{l}\mathcal{X} \text { is an irreducible, non-singular curve } \\ \operatorname{deg}(\mathcal{X})=q+1 \\ \mathcal{X} \subseteq \mathcal{H}_{3}\end{array}\right.$
Let π be the canonical projection from Y_{∞} to the $x z$-plane; then:

- $\pi\left(\mathcal{H}_{3}\right)=\mathcal{H}_{2}$
- $\pi(\mathcal{X}) \subseteq \mathcal{H}_{2}$
-

$\subseteq \mathcal{H}_{2} \rightarrow$ theese
are the
the Theorem!

Curves with Frobenius dimension 3

Let \mathcal{H}_{3} be the Hermitian surface of homogeneous equation:

$$
Z^{q+1}+Y^{q+1}=X^{q} T+X T^{q}, \quad \mathcal{H}_{3} \subseteq \mathbb{P}^{3}\left(\overline{\mathbb{F}}_{q^{2}}\right)
$$

$\stackrel{\text { N.E. } T}{\Rightarrow}\left\{\begin{array}{l}\mathcal{X} \text { is an irreducible, non-singular curve } \\ \operatorname{deg}(\mathcal{X})=q+1 \\ \mathcal{X} \subseteq \mathcal{H}_{3}\end{array}\right.$
Let π be the canonical projection from Y_{∞} to the $x z$-plane; then:

- $\pi\left(\mathcal{H}_{3}\right)=\mathcal{H}_{2}$
- $\pi(\mathcal{X}) \subseteq \mathcal{H}_{2}$
- $\mathcal{X} \cap\{Y=0\} \subseteq \mathcal{H}_{2} \rightarrow$ theese are the $P_{1}, \ldots, P_{\rho(P)}$ points of the Theorem!

Curves with Frobenius dimension 3

Let \mathcal{H}_{3} be the Hermitian surface of homogeneous equation:

$$
Z^{q+1}+Y^{q+1}=X^{q} T+X T^{q}, \quad \mathcal{H}_{3} \subseteq \mathbb{P}^{3}\left(\overline{\mathbb{F}}_{q^{2}}\right)
$$

$\stackrel{\text { N.E. } T}{\Rightarrow}\left\{\begin{array}{l}\mathcal{X} \text { is an irreducible, non-singular curve } \\ \operatorname{deg}(\mathcal{X})=q+1 \\ \mathcal{X} \subseteq \mathcal{H}_{3}\end{array}\right.$
Let π be the canonical projection from Y_{∞} to the $x z$-plane; then:

- $\pi\left(\mathcal{H}_{3}\right)=\mathcal{H}_{2}$
- $\pi(\mathcal{X}) \subseteq \mathcal{H}_{2}$
- $\mathcal{X} \cap\{Y=0\} \subseteq \mathcal{H}_{2} \rightarrow$ theese are the $P_{1}, \ldots, P_{\rho(P)}$ points of the Theorem!

Curves with Frobenius dimension 3

- $H(P)=\{0, \rho(P), q, q+1, \ldots\}$

Theorem (S. Fanali - M .Giulietti - I.P., 2012)

If \mathcal{X} is an $\mathbb{F}_{q^{2}-\text {-maximal curve with Frobenius dimension } 3 \text { and }}$ $P \in \mathcal{X}\left(\mathbb{F}_{q^{2}}\right)$, then \mathcal{X} is birationally equivalent over $\mathbb{F}_{q^{2}}$ to a plane curve with affine equation

$$
Z^{q+1}=X^{q}+X+\lambda \xi(X, Z)
$$

where

- $\lambda \in \mathbb{F}_{q^{2}}^{*}$
- $\xi(X, Z)$ is a polynomial of degree $\rho(P)$
- $\xi(X, Z)=\prod_{i=1, \ldots, \rho(P)} T_{i}(X, Z)$
- $T_{i}(X, Z)=0$ are tangents of \mathcal{H}_{2} at $\rho(P)$ not necessarily distinct affine points $P_{1}, \ldots, P_{\rho(P)}$.

Estimate the number of curves to be tested

Let N be the number of curves to be tested.

- We have
)

ways in which
- For $q=7$, since $j(P)>1$, we obtain
and so we have, in the worst case
$N \approx 7^{20}\left(\approx 2^{56}\right) \longrightarrow$ not computationally manageable!
- Geometric remarks necessary to reduce N and computation time for testing each curve.

Estimate the number of curves to be tested

Let N be the number of curves to be tested.

- We have

$$
\begin{aligned}
& N=\underbrace{\left(q^{2}-1\right)} \cdot \underbrace{\left(q^{3}\right)^{\rho(P)}} \approx q^{2+3 \rho(P)} \\
& \lambda \in \mathbb{F}_{q^{2}}^{*} \quad \text { ways in which } \\
& \xi(X, Z) \text { can change }
\end{aligned}
$$

- For $q=7$, since $j(P)>1$, we obtain
and so we have, in the worst case $N \approx 7^{20}\left(\approx 2^{56}\right) \longrightarrow$ not computationally manageable!
- Geometric remarks necessary to reduce N and computation time for testing each curve.

Estimate the number of curves to be tested

Let N be the number of curves to be tested.

- We have

$$
N=\underbrace{\left(q^{2}-1\right)}_{\begin{array}{c}
\downarrow \\
\lambda \in \mathbb{F}_{q^{2}}^{*} \quad \text { ways in which } \\
\xi(X, Z) \text { can change }
\end{array}} \cdot \underbrace{\left(q^{3}\right)^{\rho(P)}}_{\downarrow} \approx q^{2+3 \rho(P)}
$$

- For $q=7$, since $j(P)>1$, we obtain

$$
\rho(P)=q+1-j(P) \leq 6
$$

and so we have, in the worst case
$N \approx 7^{20}\left(\approx 2^{56}\right) \longrightarrow$ not computationally manageable!

- Geometric remarks necessary to reduce N and computation time for testing each curve.

Estimate the number of curves to be tested

Let N be the number of curves to be tested.

- We have

$$
N=\underbrace{\left(q^{2}-1\right)}_{\begin{array}{c}
\downarrow \\
\lambda \in \mathbb{F}_{q^{2}}^{*} \quad \text { ways in which } \\
\xi(X, Z) \text { can change }
\end{array}} \cdot \underbrace{\left(q^{3}\right)^{\rho(P)}}_{\downarrow} \approx q^{2+3 \rho(P)}
$$

- For $q=7$, since $j(P)>1$, we obtain

$$
\rho(P)=q+1-j(P) \leq 6,
$$

and so we have, in the worst case

$$
N \approx 7^{20}\left(\approx 2^{56}\right) \longrightarrow \text { not computationally manageable! }
$$

- Geometric remarks necessary to reduce N and computation time for testing each curve.

Estimate the number of curves to be tested

Let N be the number of curves to be tested.

- We have

$$
N=\underbrace{\left(q^{2}-1\right)}_{\begin{array}{c}
\downarrow \\
\lambda \in \mathbb{F}_{q^{2}}^{*} \quad \text { ways in which } \\
\xi(X, Z) \text { can change }
\end{array}} \cdot \underbrace{\left(q^{3}\right)^{\rho(P)}}_{\downarrow} \approx q^{2+3 \rho(P)}
$$

- For $q=7$, since $j(P)>1$, we obtain

$$
\rho(P)=q+1-j(P) \leq 6
$$

and so we have, in the worst case

$$
N \approx 7^{20}\left(\approx 2^{56}\right) \longrightarrow \text { not computationally manageable! }
$$

- Geometric remarks necessary to reduce N and computation time for testing each curve.

Classification of maximal curves defined over \mathbb{F}_{49}, of genus 7

Let \mathcal{X} be a maximal curve defined over \mathbb{F}_{49}, of genus 7 . We may assume that:
i) \mathcal{X} is a curve of degree 8 , lying on the Hermitian surface of $\mathbb{P}^{3}\left(\overline{\mathbb{F}}_{49}\right)$ of equation $Z^{8}+Y^{8}=X^{7} T+X T^{7} ;\left(\stackrel{N^{\text {E.E.T. }}}{\Rightarrow}\right)$
ii) $P=(0: 1: 0: 0) \in \mathcal{X}$
iii) the osculating plane to \mathcal{X} in P has equation $T=0$;
iv) the tangent line \mathcal{X} in P has equations $Y=0, T=0$;
v) the non-osculating tangent planes to \mathcal{X} in P are that of equation $Y-b T=0$, with $b \in \overline{\mathbb{F}}_{49} .(\stackrel{\text { iii)-iv })}{\Rightarrow})$

Proposition

Let $i(P)$ be the multiplicity intersection of \mathcal{X} in P with an arbitrary non-osculating tangent plane to \mathcal{X} in P. Then $j(P)=2$ or $j(P)=3$

Classification of maximal curves defined over \mathbb{F}_{49}, of genus 7

Let \mathcal{X} be a maximal curve defined over \mathbb{F}_{49}, of genus 7 . We may assume that:
i) \mathcal{X} is a curve of degree 8 , lying on the Hermitian surface of $\mathbb{P}^{3}\left(\overline{\mathbb{F}}_{49}\right)$ of equation $Z^{8}+Y^{8}=X^{7} T+X T^{7} ;\left(\stackrel{N^{-E} \cdot T}{\Rightarrow}\right)$
ii) $P=(0: 1: 0: 0) \in \mathcal{X}$
iii) the osculating plane to \mathcal{X} in P has equation $T=0$;
iv) the tangent line \mathcal{X} in P has equations $Y=0, T=0$;
v) the non-osculating tangent planes to \mathcal{X} in P are that of equation $Y-b T=0$, with $b \in \overline{\mathbb{F}}_{49} .(\stackrel{\text { iii }}{\Rightarrow}$-iv) $)$

Proposition

Let $i(P)$ be the multiplicity intersection of \mathcal{X} in P with an arbitrary non-osculating tangent plane to \mathcal{X} in P. Then $j(P)=2$ or $j(P)=3$

Classification of maximal curves defined over \mathbb{F}_{49}, of genus 7

Let \mathcal{X} be a maximal curve defined over \mathbb{F}_{49}, of genus 7 . We may assume that:
i) \mathcal{X} is a curve of degree 8 , lying on the Hermitian surface of $\mathbb{P}^{3}\left(\overline{\mathbb{F}}_{49}\right)$ of equation $Z^{8}+Y^{8}=X^{7} T+X T^{7} ;\left(\stackrel{N^{-E} .{ }^{\top}}{ }{ }^{\text {. }}\right)$
ii) $P=(0: 1: 0: 0) \in \mathcal{X}$;
iii) the osculating plane to \mathcal{X} in P has equation $T=0$;
iv) the tangent line \mathcal{X} in P has equations $Y=0, T=0$;
v) the non-osculating tangent planes to \mathcal{X} in P are that of equation

Proposition

Let $i(P)$ be the multiplicity intersection of \mathcal{X} in P with an arbitrary non-osculating tangent plane to \mathcal{X} in P. Then $j(P)=2$ or $j(P)=3$

Classification of maximal curves defined over \mathbb{F}_{49}, of genus 7

Let \mathcal{X} be a maximal curve defined over \mathbb{F}_{49}, of genus 7 . We may assume that:
i) \mathcal{X} is a curve of degree 8 , lying on the Hermitian surface of $\mathbb{P}^{3}\left(\overline{\mathbb{F}}_{49}\right)$ of equation $Z^{8}+Y^{8}=X^{7} T+X T^{7} ;\left(\stackrel{N^{-E} .{ }^{\top}}{ }{ }^{\text {. }}\right)$
ii) $P=(0: 1: 0: 0) \in \mathcal{X}$;
iii) the osculating plane to \mathcal{X} in P has equation $T=0$;
iv) the tangent line \mathcal{X} in P has equations $Y=0, T=0$;
v) the non-osculating tangent planes to \mathcal{X} in P are that of equation

Proposition

Let $i(P)$ be the multiplicity intersection of \mathcal{X} in P with an arbitrary non-osculating tangent plane to \mathcal{X} in P. Then $j(P)=2$ or $j(P)=3$

Classification of maximal curves defined over \mathbb{F}_{49}, of genus 7

Let \mathcal{X} be a maximal curve defined over \mathbb{F}_{49}, of genus 7 . We may assume that:
i) \mathcal{X} is a curve of degree 8 , lying on the Hermitian surface of $\mathbb{P}^{3}\left(\overline{\mathbb{F}}_{49}\right)$ of equation $Z^{8}+Y^{8}=X^{7} T+X T^{7} ;\left(\stackrel{N^{-E} .{ }^{\top}}{ }{ }^{\text {. }}\right)$
ii) $P=(0: 1: 0: 0) \in \mathcal{X}$;
iii) the osculating plane to \mathcal{X} in P has equation $T=0$;
iv) the tangent line \mathcal{X} in P has equations $Y=0, T=0$;
v) the non-osculating tangent planes to \mathcal{X} in P are that of equation

Proposition

Let $i(P)$ be the multiplicity intersection of \mathcal{X} in P with an arbitrary non-osculating tangent plane to \mathcal{X} in P. Then $j(P)=2$ or $j(P)=3$

Classification of maximal curves defined over \mathbb{F}_{49}, of genus 7

Let \mathcal{X} be a maximal curve defined over \mathbb{F}_{49}, of genus 7 . We may assume that:
i) \mathcal{X} is a curve of degree 8 , lying on the Hermitian surface of $\mathbb{P}^{3}\left(\overline{\mathbb{F}}_{49}\right)$ of equation $Z^{8}+Y^{8}=X^{7} T+X T^{7} ;(\stackrel{\text { N.E.T. }}{\Rightarrow})$
ii) $P=(0: 1: 0: 0) \in \mathcal{X}$;
iii) the osculating plane to \mathcal{X} in P has equation $T=0$;
iv) the tangent line \mathcal{X} in P has equations $Y=0, T=0$;
v) the non-osculating tangent planes to \mathcal{X} in P are that of equation

$$
Y-b T=0 \text {, with } b \in \overline{\mathbb{F}}_{49} \cdot(\stackrel{\text { iii)-iv) }}{\Rightarrow})
$$

Proposition

Let $i(P)$ be the multiplicity intersection of \mathcal{X} in P with an arbitrary non-osculating tangent plane to \mathcal{X} in P. Then $j(P)=2$ or $j(P)=3$

Classification of maximal curves defined over \mathbb{F}_{49}, of genus 7

Let \mathcal{X} be a maximal curve defined over \mathbb{F}_{49}, of genus 7 . We may assume that:
i) \mathcal{X} is a curve of degree 8 , lying on the Hermitian surface of $\mathbb{P}^{3}\left(\overline{\mathbb{F}}_{49}\right)$ of equation $Z^{8}+Y^{8}=X^{7} T+X T^{7} ;\left(\stackrel{N^{-E} \cdot T}{\Rightarrow}\right)$
ii) $P=(0: 1: 0: 0) \in \mathcal{X}$;
iii) the osculating plane to \mathcal{X} in P has equation $T=0$;
iv) the tangent line \mathcal{X} in P has equations $Y=0, T=0$;
v) the non-osculating tangent planes to \mathcal{X} in P are that of equation

$$
Y-b T=0 \text {, with } b \in \overline{\mathbb{F}}_{49} \cdot(\stackrel{\text { iii)-iv) }}{\Rightarrow})
$$

Proposition

Let $j(P)$ be the multiplicity intersection of \mathcal{X} in P with an arbitrary non-osculating tangent plane to \mathcal{X} in P. Then $j(P)=2$ or $j(P)=3$.

Case $j(P)=3$

- If $j(P)=3 \stackrel{i)}{\Rightarrow}$ every non-osculating tangent plane to \mathcal{X} in P intersects the curve \mathcal{X} in 5 not necessarily distinct affine points, counted with multiplicity.

Proposition

There exists a non-osculating tangent plane H to \mathcal{X} in P of equation

$$
Y-b T=0, \text { con } b \in \mathbb{F}_{49}
$$

in which the 5 affine points of $\mathcal{X} \cap H$ are not all distinct, (i.e. the multiplicity of intersection of the plane with \mathcal{X} in one of theese point is greater than 1).

- Up to projectivity we can assume that:

Case $j(P)=3$

- If $j(P)=3 \stackrel{i}{\Rightarrow}$ every non-osculating tangent plane to \mathcal{X} in P intersects the curve \mathcal{X} in 5 not necessarily distinct affine points, counted with multiplicity.

Proposition

There exists a non-osculating tangent plane H to \mathcal{X} in P of equation
in which the 5 affine points of $\mathcal{X} \cap H$ are not all distinct, (i.e. the multiplicity of intersection of the plane with \mathcal{X} in one of theese point is greater than 1).

- Up to projectivity we can assume that:

Case $j(P)=3$

- If $j(P)=3 \stackrel{i}{\Rightarrow}$ every non-osculating tangent plane to \mathcal{X} in P intersects the curve \mathcal{X} in 5 not necessarily distinct affine points, counted with multiplicity.

Proposition

There exists a non-osculating tangent plane H to \mathcal{X} in P of equation

$$
Y-b T=0, \text { con } b \in \mathbb{F}_{49},
$$

in which the 5 affine points of $\mathcal{X} \cap H$ are not all distinct, (i.e. the multiplicity of intersection of the plane with \mathcal{X} in one of theese points is greater than 1).

- Up to projectivity we can assume that:

Case $j(P)=3$

- If $j(P)=3 \stackrel{i}{\Rightarrow}$ every non-osculating tangent plane to \mathcal{X} in P intersects the curve \mathcal{X} in 5 not necessarily distinct affine points, counted with multiplicity.

Proposition

There exists a non-osculating tangent plane H to \mathcal{X} in P of equation

$$
Y-b T=0, \text { con } b \in \mathbb{F}_{49},
$$

in which the 5 affine points of $\mathcal{X} \cap H$ are not all distinct, (i.e. the multiplicity of intersection of the plane with \mathcal{X} in one of theese points is greater than 1).

- Up to projectivity we can assume that:

2. $P_{0}=(1: 0: 0: 0) \in \mathcal{X} \cap H$ is a point of multiplicity greater than 1 ;

Case $j(P)=3$

- If $j(P)=3 \stackrel{i}{\Rightarrow}$ every non-osculating tangent plane to \mathcal{X} in P intersects the curve \mathcal{X} in 5 not necessarily distinct affine points, counted with multiplicity.

Proposition

There exists a non-osculating tangent plane H to \mathcal{X} in P of equation

$$
Y-b T=0, \text { con } b \in \mathbb{F}_{49},
$$

in which the 5 affine points of $\mathcal{X} \cap H$ are not all distinct, (i.e. the multiplicity of intersection of the plane with \mathcal{X} in one of theese points is greater than 1).

- Up to projectivity we can assume that:

$$
\text { 1. } H: Y=0 \text {; }
$$

Case $j(P)=3$

- If $j(P)=3 \stackrel{i}{\Rightarrow}$ every non-osculating tangent plane to \mathcal{X} in P intersects the curve \mathcal{X} in 5 not necessarily distinct affine points, counted with multiplicity.

Proposition

There exists a non-osculating tangent plane H to \mathcal{X} in P of equation

$$
Y-b T=0, \text { con } b \in \mathbb{F}_{49},
$$

in which the 5 affine points of $\mathcal{X} \cap H$ are not all distinct, (i.e. the multiplicity of intersection of the plane with \mathcal{X} in one of theese points is greater than 1).

- Up to projectivity we can assume that:

1. $H: Y=0$;
2. $P_{0}=(1: 0: 0: 0) \in \mathcal{X} \cap H$ is a point of multiplicity greater than 1 ;

Case $j(P)=3$

- If $j(P)=3 \stackrel{i}{\Rightarrow}$ every non-osculating tangent plane to \mathcal{X} in P intersects the curve \mathcal{X} in 5 not necessarily distinct affine points, counted with multiplicity.

Proposition

There exists a non-osculating tangent plane H to \mathcal{X} in P of equation

$$
Y-b T=0, \text { con } b \in \mathbb{F}_{49},
$$

in which the 5 affine points of $\mathcal{X} \cap H$ are not all distinct, (i.e. the multiplicity of intersection of the plane with \mathcal{X} in one of theese points is greater than 1).

- Up to projectivity we can assume that:

1. $H: Y=0$;
2. $P_{0}=(1: 0: 0: 0) \in \mathcal{X} \cap H$ is a point of multiplicity greater than 1 ;
3. $P_{1} \in \mathcal{X} \cap H$ is of type $(1: B: 0: 1)$, for some $B \in \mathbb{F}_{q^{2}}$, with $B^{q}+B=1$, or of type $(1: W: 0: 0)$, for some $W \in \mathbb{F}_{q^{2}}^{*}$ such that $W^{q}+W=0$.

Case $j(P)=3$

Frobenius morfism, defined over \mathbb{F}_{q}

Remark

Acting with Frobenius morfism Φ_{7}, defined over \mathbb{F}_{7} it is possible to divide the \mathbb{F}_{49}-rational points of \mathcal{H}_{2} in three disjoint orbits:

Case $j(P)=3$

Frobenius morfism, defined over \mathbb{F}_{q}

$$
\begin{aligned}
\Phi_{q}: \mathbb{P}^{n}\left(\overline{\mathbb{F}}_{q}\right) & \rightarrow \mathbb{P}^{n}\left(\overline{\mathbb{F}}_{q}\right) \\
\left(X_{0}: \ldots: X_{n}\right) & \mapsto\left(X_{0}^{q}: \ldots: X_{n}^{q}\right)
\end{aligned}
$$

Remark

Acting with Frobenius morfism Φ_{7}, defined over \mathbb{F}_{7} it is possible to divide the \mathbb{F}_{49}-rational points of \mathcal{H}_{2} in three disjoint orbits:

Case $j(P)=3$

Frobenius morfism, defined over \mathbb{F}_{q}

$$
\begin{aligned}
\Phi_{q}: \mathbb{P}^{n}\left(\overline{\mathbb{F}}_{q}\right) & \rightarrow \mathbb{P}^{n}\left(\overline{\mathbb{F}}_{q}\right) \\
\left(X_{0}: \ldots: X_{n}\right) & \mapsto\left(X_{0}^{q}: \ldots: X_{n}^{q}\right)
\end{aligned}
$$

Remark

Acting with Frobenius morfism Φ_{7}, defined over \mathbb{F}_{7} it is possible to divide the \mathbb{F}_{49}-rational points of \mathcal{H}_{2} in three disjoint orbits:

- \mathcal{A}_{2} maximal with respect to the following property: $Q \in \Lambda_{2} \rightarrow \Phi_{7}(Q) \notin \Lambda_{2} ;$
- $\mathcal{A}_{3}:=\left\{\Phi_{7}(Q) \mid Q \in \mathcal{A}_{2}\right\}$.

Case $j(P)=3$

Frobenius morfism, defined over \mathbb{F}_{q}

$$
\begin{aligned}
\Phi_{q}: \mathbb{P}^{n}\left(\overline{\mathbb{F}}_{q}\right) & \rightarrow \mathbb{P}^{n}\left(\overline{\mathbb{F}}_{q}\right) \\
\left(X_{0}: \ldots: X_{n}\right) & \mapsto\left(X_{0}^{q}: \ldots: X_{n}^{q}\right)
\end{aligned}
$$

Remark

Acting with Frobenius morfism Φ_{7}, defined over \mathbb{F}_{7} it is possible to divide the \mathbb{F}_{49}-rational points of \mathcal{H}_{2} in three disjoint orbits:

- $\mathcal{A}_{1}:=\left\{Q \in \mathcal{H}_{2}\left(\mathbb{F}_{49}\right): \Phi_{7}(Q)=Q\right\} ;$
- \mathcal{A}_{2} maximal with respect to the following property:
$Q \in \mathcal{A}_{2} \Rightarrow \Phi_{7}(Q) \notin \mathcal{A}_{2} ;$
- $\mathcal{A}_{3}:=\left\{\Phi_{7}(Q) \mid Q \in \mathcal{A}_{2}\right\}$.

Case $j(P)=3$

Frobenius morfism, defined over \mathbb{F}_{q}

$$
\begin{aligned}
\Phi_{q}: \mathbb{P}^{n}\left(\overline{\mathbb{F}}_{q}\right) & \rightarrow \mathbb{P}^{n}\left(\overline{\mathbb{F}}_{q}\right) \\
\left(X_{0}: \ldots: X_{n}\right) & \mapsto\left(X_{0}^{q}: \ldots: X_{n}^{q}\right)
\end{aligned}
$$

Remark

Acting with Frobenius morfism Φ_{7}, defined over \mathbb{F}_{7} it is possible to divide the \mathbb{F}_{49}-rational points of \mathcal{H}_{2} in three disjoint orbits:

- $\mathcal{A}_{1}:=\left\{Q \in \mathcal{H}_{2}\left(\mathbb{F}_{49}\right): \Phi_{7}(Q)=Q\right\}$;
- \mathcal{A}_{2} maximal with respect to the following property:

$$
Q \in \mathcal{A}_{2} \Rightarrow \Phi_{7}(Q) \notin \mathcal{A}_{2} ;
$$

Case $j(P)=3$

Frobenius morfism, defined over \mathbb{F}_{q}

$$
\begin{aligned}
\Phi_{q}: \mathbb{P}^{n}\left(\overline{\mathbb{F}}_{q}\right) & \rightarrow \mathbb{P}^{n}\left(\overline{\mathbb{F}}_{q}\right) \\
\left(X_{0}: \ldots: X_{n}\right) & \mapsto\left(X_{0}^{q}: \ldots: X_{n}^{q}\right)
\end{aligned}
$$

Remark

Acting with Frobenius morfism Φ_{7}, defined over \mathbb{F}_{7} it is possible to divide the \mathbb{F}_{49}-rational points of \mathcal{H}_{2} in three disjoint orbits:

- $\mathcal{A}_{1}:=\left\{Q \in \mathcal{H}_{2}\left(\mathbb{F}_{49}\right): \Phi_{7}(Q)=Q\right\}$;
- \mathcal{A}_{2} maximal with respect to the following property:

$$
Q \in \mathcal{A}_{2} \Rightarrow \Phi_{7}(Q) \notin \mathcal{A}_{2}
$$

- $\mathcal{A}_{3}:=\left\{\Phi_{7}(Q) \mid Q \in \mathcal{A}_{2}\right\}$.

$j(P)=3$

We limited our search considering the following cases (P_{0} and P_{1} previously defined):
A1) $P_{2}, P_{3} \in \mathcal{A}_{1}$;
A2) $P_{2} \in \mathcal{A}_{1}, P_{3} \in \mathcal{A}_{2}$;
A3) $P_{2} \in \mathcal{A}_{2}, P_{3} \in \mathcal{A}_{3}$;
A4) $P_{2}, P_{3} \in \mathcal{A}_{2}$.

Estimate the number of curves to be tested in the case $j(P)=3$

- Number of curves to be tested: $N \approx 7^{2+3 \rho(P)}$
\qquad

Thanks to the previous geometric remarks, we have significantly reduced the value of N.

Estimate the number of curves to be tested in the case $j(P)=3$

- Number of curves to be tested: $N \approx 7^{2+3 \rho(P)}$.
- If $j(P)=3 \Rightarrow \rho(P)=5$ and so $N \approx 7^{17}\left(\approx 2^{47}\right)$

Thanks to the previous geometric remarks, we have significantly reduced the value of N.

Estimate the number of curves to be tested in the case $j(P)=3$

- Number of curves to be tested: $N \approx 7^{2+3 \rho(P)}$.
- If $j(P)=3 \Rightarrow \rho(P)=5$ and so $N \approx 7^{17}\left(\approx 2^{47}\right)$.

Thanks to the previous geometric remarks, we have significantly reduced the value of N.

Estimate the number of curves to be tested in the case $j(P)=3$

- Number of curves to be tested: $N \approx 7^{2+3 \rho(P)}$.
- If $j(P)=3 \Rightarrow \rho(P)=5$ and so $N \approx 7^{17}\left(\approx 2^{47}\right)$.

Thanks to the previous geometric remarks, we have significantly reduced the value of N.

- $P_{0}=(1: 0: 0: 0) \rightarrow\left(N \approx 7^{14}\right)$;
- P_{0} of multeplicity greater than $1 \rightarrow\left(N \approx 7^{11}\right)$;
- P_{1} of type $(1: B: 0: 1)$, for some $B \in \mathbb{F}_{q^{2}}$, with $B^{q}+B=1$, or of type ($1: W: 0: 0$), for some $W \in \mathbb{F}_{q^{2}}^{*}$ such that $W^{q}+W=0 \rightarrow\left(N \approx 2 \cdot 7^{9}\right) ;$
- Use of the Frobenius morfism $\Phi_{7} \rightarrow\left(N \approx 7^{9}\right)$;
- Check on the number of rational points of the curve to be tested

Estimate the number of curves to be tested in the case $j(P)=3$

- Number of curves to be tested: $N \approx 7^{2+3 \rho(P)}$.
- If $j(P)=3 \Rightarrow \rho(P)=5$ and so $N \approx 7^{17}\left(\approx 2^{47}\right)$.

Thanks to the previous geometric remarks, we have significantly reduced the value of N.

- $P_{0}=(1: 0: 0: 0) \rightarrow\left(N \approx 7^{14}\right)$;
- P_{0} of multeplicity greater than $1 \rightarrow\left(N \approx 7^{11}\right)$;
- P_{1} of type $(1: B: 0: 1)$, for some $B \in \mathbb{F}_{q^{2}}$, with $B^{q}+B=1$, or of type ($1: W: 0: 0$), for some $W \in \mathbb{F}_{q^{2}}^{*}$ such that $W^{9}+W=0 \rightarrow\left(N \approx 2 \cdot 7^{9}\right) ;$
- Use of the Frobenius morfism $\Phi_{7} \rightarrow\left(N \approx 7^{9}\right)$;
- Check on the number of rational points of the curve to be tested

Estimate the number of curves to be tested in the case $j(P)=3$

- Number of curves to be tested: $N \approx 7^{2+3 \rho(P)}$.
- If $j(P)=3 \Rightarrow \rho(P)=5$ and so $N \approx 7^{17}\left(\approx 2^{47}\right)$.

Thanks to the previous geometric remarks, we have significantly reduced the value of N.

- $P_{0}=(1: 0: 0: 0) \rightarrow\left(N \approx 7^{14}\right)$;
- P_{0} of multeplicity greater than $1 \rightarrow\left(N \approx 7^{11}\right)$;
- P_{1} of type $(1: B: 0: 1)$, for some $B \in \mathbb{F}_{q^{2}}$, with $B^{q}+B=1$, or of type $(1: W: 0: 0)$, for some $W \in \mathbb{F}_{q^{2}}^{*}$ such that $W^{q}+W=0 \rightarrow\left(N \approx 2 \cdot 7^{9}\right)$;
- Use of the Frobenius morfism $\Phi_{7} \rightarrow\left(N \approx 7^{9}\right)$;
- Check on the number of rational points of the curve to be tested

Estimate the number of curves to be tested in the case $j(P)=3$

- Number of curves to be tested: $N \approx 7^{2+3 \rho(P)}$.
- If $j(P)=3 \Rightarrow \rho(P)=5$ and so $N \approx 7^{17}\left(\approx 2^{47}\right)$.

Thanks to the previous geometric remarks, we have significantly reduced the value of N.

- $P_{0}=(1: 0: 0: 0) \rightarrow\left(N \approx 7^{14}\right)$;
- P_{0} of multeplicity greater than $1 \rightarrow\left(N \approx 7^{11}\right)$;
- P_{1} of type $(1: B: 0: 1)$, for some $B \in \mathbb{F}_{q^{2}}$, with $B^{q}+B=1$, or of type ($1: W: 0: 0$), for some $W \in \mathbb{F}_{q^{2}}^{*}$ such that $W^{q}+W=0 \rightarrow\left(N \approx 2 \cdot 7^{9}\right)$;
- Use of the Frobenius morfism $\Phi_{7} \rightarrow\left(N \approx 7^{9}\right)$;
- Check on the number of rational points of the curve to be tested

Estimate the number of curves to be tested in the case $j(P)=3$

- Number of curves to be tested: $N \approx 7^{2+3 \rho(P)}$.
- If $j(P)=3 \Rightarrow \rho(P)=5$ and so $N \approx 7^{17}\left(\approx 2^{47}\right)$.

Thanks to the previous geometric remarks, we have significantly reduced the value of N.

- $P_{0}=(1: 0: 0: 0) \rightarrow\left(N \approx 7^{14}\right)$;
- P_{0} of multeplicity greater than $1 \rightarrow\left(N \approx 7^{11}\right)$;
- P_{1} of type $(1: B: 0: 1)$, for some $B \in \mathbb{F}_{q^{2}}$, with $B^{q}+B=1$, or of type ($1: W: 0: 0$), for some $W \in \mathbb{F}_{q^{2}}^{*}$ such that $W^{q}+W=0 \rightarrow\left(N \approx 2 \cdot 7^{9}\right)$;
- Use of the Frobenius morfism $\Phi_{7} \rightarrow\left(N \approx 7^{9}\right)$;
- Check on the number of rational points of the curve to be tested

Estimate the number of curves to be tested in the case $j(P)=3$

- Number of curves to be tested: $N \approx 7^{2+3 \rho(P)}$.
- If $j(P)=3 \Rightarrow \rho(P)=5$ and so $N \approx 7^{17}\left(\approx 2^{47}\right)$.

Thanks to the previous geometric remarks, we have significantly reduced the value of N.

- $P_{0}=(1: 0: 0: 0) \rightarrow\left(N \approx 7^{14}\right)$;
- P_{0} of multeplicity greater than $1 \rightarrow\left(N \approx 7^{11}\right)$;
- P_{1} of type $(1: B: 0: 1)$, for some $B \in \mathbb{F}_{q^{2}}$, with $B^{q}+B=1$, or of type ($1: W: 0: 0$), for some $W \in \mathbb{F}_{q^{2}}^{*}$ such that $W^{q}+W=0 \rightarrow\left(N \approx 2 \cdot 7^{9}\right)$;
- Use of the Frobenius morfism $\Phi_{7} \rightarrow\left(N \approx 7^{9}\right)$;
- Check on the number of rational points of the curve to be tested $\rightarrow\left(N \approx 7^{7}\left(\approx 2^{19}\right)\right)$.

Conclusions

- Selection of the curves of genus 7 and with 148 rational points (and so \mathbb{F}_{49}-maximal curves), not birationally equivalent to the known example.

```
Theorem (S. Fanali - M. Giulietti - I.P., 2012)
Up to birational equivalence, the curve }\mathcal{V}(7)\mathrm{ of affine equation
```



```
is the only }\mp@subsup{\mathbb{F}}{49\mathrm{ -maximal curve of genus }7.}{
```


Conclusions

- Selection of the curves of genus 7 and with 148 rational points (and so \mathbb{F}_{49}-maximal curves), not birationally equivalent to the known example.

Theorem (S. Fanali - M. Giulietti - I.P., 2012)
Up to birational equivalence, the curve $\mathcal{Y}(7)$ of affine equation

is the only \mathbb{F}_{49}-maximal curve of genus 7

Conclusions

- Selection of the curves of genus 7 and with 148 rational points (and so \mathbb{F}_{49}-maximal curves), not birationally equivalent to the known example.

Theorem (S. Fanali - M. Giulietti - I.P., 2012)

$U p$ to birational equivalence, the curve $\mathcal{Y}(7)$ of affine equation

$$
Y^{7}-Y X^{4}+\omega X^{2}=0, \operatorname{con} \omega^{8}=-1 .
$$

is the only \mathbb{F}_{49}-maximal curve of genus 7 .

Other topics

(1) Study of $\mathcal{Y}(7)$ and parameters computation of the AG-Codes of the curve.

Other topics

(1) Study of $\mathcal{Y}(7)$ and parameters computation of the AG-Codes of the curve.
(2) Classification attempt of maximal curves with Frobenius dimension 3 , for $q=8$.

Thanks for your attention!

[^0]: where

