The Geometry of Hermitian two-point codes

E. Ballico, A. Ravagnani, M. Sala

Workshop BunnyTn3

E. Ballico, A. Ravagnani, M. Sala The Geometry of Hermitian two-point codes

The Hermitian curve

・ロト ・ 理ト ・ ヨト ・ ヨト

The Hermitian curve

The Hermitian curve

 $X\subseteq \mathbb{P}^2$

is the projective smooth curve defined over \mathbb{F}_{q^2} by the affine equation

$$y^q + y = x^{q+1}.$$

- ₹ € ►

The Hermitian curve

The Hermitian curve

 $X\subseteq \mathbb{P}^2$

is the projective smooth curve defined over \mathbb{F}_{q^2} by the affine equation

$$y^q + y = x^{q+1}.$$

This curve has a very particular geometry.

The Hermitian curve

• *X* is maximal (Hasse-Weil) with

$$|X(\mathbb{F}_{q^2})| = q^3 + 1$$

and only one point at infinity,

$$P_{\infty}=(0:1:0).$$

● For any $P \in X(\mathbb{F}_{q^2})$ we get an isomorphism of shaves

$$O_X(1) \cong \mathcal{L}((q+1)P).$$

The Hermitian curve

イロト イポト イヨト イヨト

The Hermitian curve

Solution Every line $L \subseteq \mathbb{P}^2$

- either is tangent to *X* at a point $P \in X(\mathbb{F}_{q^2})$, with contact order q+1, and does not intersect *X* in any other \mathbb{F}_{q^2} -rational point,
- or it intersects X in q + 1 distinct \mathbb{F}_{q^2} -rational points.

The Hermitian curve

Solution Every line $L \subseteq \mathbb{P}^2$

- either is tangent to *X* at a point $P \in X(\mathbb{F}_{q^2})$, with contact order q+1, and does not intersect *X* in any other \mathbb{F}_{q^2} -rational point,
- or it intersects X in q + 1 distinct \mathbb{F}_{q^2} -rational points.
- The group of automorphisms of *X* is 2-transitive.

Two-point codes

ヘロト 人間 トイヨト イヨト

Two-point codes

Choose

E. Ballico, A. Ravagnani, M. Sala The Geometry of Hermitian two-point codes

・ロト ・ 理ト ・ ヨト ・ ヨト

Two-point codes

Choose

• two distinct points $P, Q \in X(\mathbb{F}_{q^2})$,

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Two-point codes

Choose

- two distinct points $P, Q \in X(\mathbb{F}_{q^2})$,
- a pair of integers (m, n) such that m + n > 0

伺き くほき くほう

Two-point codes

Choose

- two distinct points $P, Q \in X(\mathbb{F}_{q^2})$,
- a pair of integers (m, n) such that m + n > 0

and consider the code

C(m,P,n,Q)

obtained evaluating the vector space

L(mP + nQ) on the set $X(\mathbb{F}_{q^2}) \setminus \{P, Q\}$.

A standard assumption

E. Ballico, A. Ravagnani, M. Sala The Geometry of Hermitian two-point codes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

A standard assumption

Remark

By the 2-transitivity of Aut(X) we may assume in C(m, P, n, Q)

$$P = P_{\infty} = (0:1:0), \qquad Q = P_0 = (0:0:1).$$

< A >

글 🕨 🖌 글 🕨

Known results

E. Ballico, A. Ravagnani, M. Sala The Geometry of Hermitian two-point codes

ヘロト 人間 とくほ とくほとう

Known results

• 2006-07: Homma and Kim find the minimum distance of any $C(m, P_{\infty}, n, P_0)$.

2010: Park gives explicit formula for the minimum distance of any C(m, P_∞, n, P₀)[⊥].

・ 得 ト ・ ヨ ト ・ ヨ ト …

Our interpretation of two-point codes

E. Ballico, A. Ravagnani, M. Sala The Geometry of Hermitian two-point codes

何とくほとくほと

Our interpretation of two-point codes

Lemma

Given a two-point code $C(m, P_{\infty}, n, P_0)$ on X, there exists a tern of integers (d, a, b) with

$$d > 0, \quad 0 \le a, b \le d, \quad E := aP_{\infty} + bP_0$$

such that $C(m, P_{\infty}, n, P_0)$ is the code obtained evaluating

 $H^0(X, \mathcal{O}_X(d)(-E))$ on $X(\mathbb{F}_{q^2}) \setminus \{P_{\infty}, P_0\}.$

Our interpretation of two-point codes

Lemma

Given a two-point code $C(m, P_{\infty}, n, P_0)$ on X, there exists a tern of integers (d, a, b) with

$$d > 0, \quad 0 \le a, b \le d, \quad E := aP_{\infty} + bP_0$$

such that $C(m, P_{\infty}, n, P_0)$ is the code obtained evaluating

$$H^0(X, O_X(d)(-E))$$
 on $X(\mathbb{F}_{q^2}) \setminus \{P_\infty, P_0\}$.

We denote this code by C(d, a, b) and assume $b \neq 0$ (if b = 0 then the code is a one-point code).

The proof of the Lemma is based on

the isomorphisms of sheaves

$$O_X(1)\cong \mathcal{L}((q+1)P_\infty)\cong \mathcal{L}((q+1)P_0),$$

2 the geometry of the **tangent lines** to *X*.

▲ 同 ▶ ▲ 国 ▶

< ≣⇒

Evaluation codes on arbitrary curves

How to study codes like C(d, a, b)?

프 🖌 🛪 프 🕨

Evaluation codes on arbitrary curves

How to study codes like C(d, a, b)?

The key-result is a characterization of the

support

of any codeword of certain Goppa codes on arbitrary curves.

3 ×

Theorem

Let *K* be a finite field and let $X \subset \mathbb{P}_K^2$ be a smooth plane curve of degree *c*. Fix an integer d > 0, a zero-dimensional scheme $E \subset X$ and a finite subset $B \subset X(K)$ such that $B \cap E_{\text{red}} = \emptyset$. Let *C* be the code obtained evaluating $H^0(X, O_X(d)(-E))$ on *B*. Assume $\sharp(B) > dc$.

The minimum distance of C^{\perp} is the minimal cardinality, say *s*, of a subset $S \subseteq B$ such that $h^1(\mathbb{P}^2, \mathcal{I}_{S \cup E}(d)) > h^1(\mathbb{P}^2, \mathcal{I}_E(d))$. A codeword of C^{\perp} has weight *w* if and only if it is supported by an $S \subseteq B$ such that

- $\textcircled{2} \quad h^1(\mathbb{P}^2,\mathcal{I}_{E\cup S}(d))>h^1(\mathbb{P}^2,\mathcal{I}_E(d)),$
- $\label{eq:holestop} \bullet h^1(\mathbb{P}^2, \mathcal{I}_{E\cup S}(d)) > h^1(\mathbb{P}^2, \mathcal{I}_{E\cup S'}(d)) \mbox{ for any } S' \subsetneq S.$

The case of Hermitian two-point codes

E. Ballico, A. Ravagnani, M. Sala The Geometry of Hermitian two-point codes

The case of Hermitian two-point codes

Combining the Theorem and other geometric properties of the Hermitian curve we get the following result.

Corollary

Let X be the Hermitian curve and choose integers

$$0 < d \le q, \qquad 0 \le a, b \le d.$$

Set $E := aP_{\infty} + bP_0$. Denote by C(d, a, b) the code obtained evaluating $H^0(X, O_X(d)(-E))$ on $B := X(\mathbb{F}_{q^2}) \setminus \{P_{\infty}, P_0\}$ and let δ be the minimum distance of $C(d, a, b)^{\perp}$. A subset $S \subseteq B$ of cardinality δ is the support of a minimum-weight codeword of $C(d, a, b)^{\perp}$ if and only if

 $h^1(\mathbb{P}^2, \mathcal{I}_{E\cup S}(d)) > 0.$

The key-condition

 $h^1(\mathbb{P}^2,\mathcal{I}_{E\cup S}(d))>0$

can be described in a purely geometric way, **extending** the recent results by Couvreur on the minimum distance of certain Goppa codes.

★ Ξ ► ★ Ξ ►

The main result

E. Ballico, A. Ravagnani, M. Sala The Geometry of Hermitian two-point codes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

The main result

Corollary

Let *X* be the Hermitian curve and choose integers

$$0 < d \le q, \qquad 0 \le a, b \le d.$$

Set $E := aP_{\infty} + bP_0$. Denote by C(d, a, b) the code obtained evaluating $H^0(X, O_X(d)(-E))$ on $B := X(\mathbb{F}_{q^2}) \setminus \{P_{\infty}, P_0\}$. Let δ be the minimum distance of $C(d, a, b)^{\perp}$. Assume

$$a+b+\delta \le 4d-5.$$

Let $S \subseteq B$ be a set of cardinality δ . Then *S* is the support of a minimumweight codeword of $C(d, a, b)^{\perp}$ if and only if there exists a subscheme $W \subseteq E \cup S$ with one of the following properties.

List of possible cases

- $\deg(W) = d + 2$ and W is contained in a line.
- 2 deg(W) = 2d + 2 and W is contained in a conic.
- deg(W) = 3d and W is the complete intersection of a cubic curve and a curve of degree d.
- $\deg(W) = 3d + 1$ and W is contained in a cubic curve.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Our main result

E. Ballico, A. Ravagnani, M. Sala The Geometry of Hermitian two-point codes

ヘロト 人間 とくほ とくほとう

Our main result

Combining this last result with the geometry of the Hermitian curve we **characterized** all the possible supports of a minimum-weight codeword of any $C(d, a, b)^{\perp}$ such that

 $5 < d \leq q,$

for any choice of q.

伺き くきき くきき

Here you are some explicit examples.

ヘロト 人間 とく ヨト く ヨト

Example 1

Consider a code C(d, a, b) such that

ヘロト 人間 とくほとくほとう

Example 1

Consider a code C(d, a, b) such that

d > 2,
1 ≤ a, b ≤ d,
d(q + 1) - a - b < q² - q - 2 (in particular, d ≤ q - 1),
a + b < 2d.

・ 同 ト ・ ヨ ト ・ ヨ ト

The minimum distance of $C(d, a, b)^{\perp}$ is *d*.

ヘロト 人間 とくほ とくほとう

The minimum distance of $C(d, a, b)^{\perp}$ is *d*.

Let $L_{0,\infty}$ denote the line through P_0 and P_{∞} . A subset

 $S \subseteq X(\mathbb{F}_{q^2}) \setminus \{P_{\infty}, P_0\}$

is the support of a minimum-weight codeword of $C(d, a, b)^{\perp}$

if and only if

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

The minimum distance of $C(d, a, b)^{\perp}$ is *d*.

Let $L_{0,\infty}$ denote the line through P_0 and P_{∞} . A subset

 $S \subseteq X(\mathbb{F}_{q^2}) \setminus \{P_{\infty}, P_0\}$

is the support of a minimum-weight codeword of $C(d, a, b)^{\perp}$

if and only if

伺き くほき くほう

Corollary

Let C(d, a, b) be a code such that

- *d* > 2,
- $1 \le a, b \le d,$

$$d(q+1) - a - b < q^2 - q - 2,$$

$$\bullet a + b < 2d.$$

Then the minimum distance of $C(d, a, b)^{\perp}$ is *d* and the number of the minimum-weight codewords of $C(d, a, b)^{\perp}$ is

$$(q^2-1)\binom{q-1}{d}.$$

イロト イポト イヨト イヨト

Example 2 (small-weight codewords)

E. Ballico, A. Ravagnani, M. Sala The Geometry of Hermitian two-point codes

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Example 2 (small-weight codewords)

Corollary

Consider a code C(d, a, b) such that

 $0 < d \leq q-2.$

イロト イポト イヨト イヨト

Example 2 (small-weight codewords)

Corollary

Consider a code C(d, a, b) such that

$$0 < d \le q - 2.$$

Let *w* be an integer such that

$$d \le w \le \min\{3d - a - b, 2d - 3\}.$$

イロト イポト イヨト イヨト

Example 2 (small-weight codewords)

Corollary

Consider a code C(d, a, b) such that

$$0 < d \le q - 2.$$

Let *w* be an integer such that

$$d \le w \le \min\{3d - a - b, 2d - 3\}.$$

The supports of a codeword of $C(d, a, b)^{\perp}$ of weight *w* are exactly the sets in the following list.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

List of possible cases

- Any subset of *w* elements of $L_{0,\infty} \cap X(\mathbb{F}_{q^2}) \setminus \{P_0, P_\infty\}$, where $L_{0,\infty}$ is the line through P_0 and P_∞ .
- ② Any subset of *w* elements of *L* ∩ *X*(\mathbb{F}_{q^2}) \ {*P*₀, *P*_∞}, where *L* is any line through *P*₀ which is not tangent to *X* (only if *w* ≥ *d* + 1).
- So Any subset of *w* elements of *L* ∩ *X*(\mathbb{F}_{q^2}) \ {*P*₀, *P*_∞}, where *L* is any line through *P*_∞ which is not tangent to *X* (only if $w \ge d + 1$).
- Any subset of w elements of L ∩ X(F_{q²}) \ {P₀, P_∞}, where L is any line which is not tangent to X and such that P₀, P_∞ ∉ L (only if w ≥ d + 2).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example 3 (smooth conics)

Consider a code C(d, a, b) such that

Example 3 (smooth conics)

Consider a code C(d, a, b) such that

・ 戸 ト ・ ヨ ト ・ ヨ ト

э

The minimum distance of $C(d, a, b)^{\perp}$ is 2d - 2 = 2q - 2.

ヘロト 人間 とくほとくほとう

The minimum distance of $C(d, a, b)^{\perp}$ is 2d - 2 = 2q - 2.

The points in the support of any minimum-weight codeword of $C(d, a, b)^{\perp}$ lie on a smooth conic which is tangent to the Hermitian curve *X* at both P_0 and P_{∞} .

- A - E - M