The Geometry of Hermitian two-point codes

E. Ballico, A. Ravagnani, M. Sala

Workshop BunnyTn3

The Hermitian curve

The Hermitian curve

The Hermitian curve

$$
X \subseteq \mathbb{P}^{2}
$$

is the projective smooth curve defined over $\mathbb{F}_{q^{2}}$ by the affine equation

$$
y^{q}+y=x^{q+1} .
$$

The Hermitian curve

The Hermitian curve

$$
X \subseteq \mathbb{P}^{2}
$$

is the projective smooth curve defined over $\mathbb{F}_{q^{2}}$ by the affine equation

$$
y^{q}+y=x^{q+1} .
$$

This curve has a very particular geometry.

The Hermitian curve

(1) X is maximal (Hasse-Weil) with

$$
\left|X\left(\mathbb{F}_{q^{2}}\right)\right|=q^{3}+1
$$

and only one point at infinity,

$$
P_{\infty}=(0: 1: 0) .
$$

(2) For any $P \in X\left(\mathbb{F}_{q^{2}}\right)$ we get an isomorphism of shaves

$$
O_{X}(1) \cong \mathcal{L}((q+1) P)
$$

The Hermitian curve

(3) Every line $L \subseteq \mathbb{P}^{2}$

The Hermitian curve

(3) Every line $L \subseteq \mathbb{P}^{2}$

- either is tangent to X at a point $P \in X\left(\mathbb{F}_{q^{2}}\right)$, with contact order $q+1$, and does not intersect X in any other $\mathbb{F}_{q^{2}}$-rational point,
- or it intersects X in $q+1$ distinct $\mathbb{F}_{q^{2}}$-rational points.

The Hermitian curve

(3) Every line $L \subseteq \mathbb{P}^{2}$

- either is tangent to X at a point $P \in X\left(\mathbb{F}_{q^{2}}\right)$, with contact order $q+1$, and does not intersect X in any other $\mathbb{F}_{q^{2}}$-rational point,
- or it intersects X in $q+1$ distinct $\mathbb{F}_{q^{2}}$-rational points.
(9) The group of automorphisms of X is 2-transitive.

Two-point codes

Two-point codes

Choose

Two-point codes

Choose

- two distinct points $P, Q \in X\left(\mathbb{F}_{q^{2}}\right)$,

Two-point codes

Choose

- two distinct points $P, Q \in X\left(\mathbb{F}_{q^{2}}\right)$,
- a pair of integers (m, n) such that $m+n>0$

Two-point codes

Choose

- two distinct points $P, Q \in X\left(\mathbb{F}_{q^{2}}\right)$,
- a pair of integers (m, n) such that $m+n>0$
and consider the code

$$
C(m, P, n, Q)
$$

obtained evaluating the vector space

$$
L(m P+n Q) \text { on the set } X\left(\mathbb{F}_{q^{2}}\right) \backslash\{P, Q\} .
$$

A standard assumption

A standard assumption

Remark

By the 2-transitivity of $\operatorname{Aut}(X)$ we may assume in $C(m, P, n, Q)$

$$
P=P_{\infty}=(0: 1: 0), \quad Q=P_{0}=(0: 0: 1) .
$$

Known results

Known results

- 2006-07: Homma and Kim find the minimum distance of any $C\left(m, P_{\infty}, n, P_{0}\right)$.
- 2010: Park gives explicit formula for the minimum distance of any $C\left(m, P_{\infty}, n, P_{0}\right)^{\perp}$.

Our interpretation of two-point codes

Our interpretation of two-point codes

Lemma

Given a two-point code $C\left(m, P_{\infty}, n, P_{0}\right)$ on X, there exists a tern of integers (d, a, b) with

$$
d>0, \quad 0 \leq a, b \leq d, \quad E:=a P_{\infty}+b P_{0}
$$

such that $C\left(m, P_{\infty}, n, P_{0}\right)$ is the code obtained evaluating

$$
H^{0}\left(X, O_{X}(d)(-E)\right) \quad \text { on } X\left(\mathbb{F}_{q^{2}}\right) \backslash\left\{P_{\infty}, P_{0}\right\}
$$

Our interpretation of two-point codes

Lemma

Given a two-point code $C\left(m, P_{\infty}, n, P_{0}\right)$ on X, there exists a tern of integers (d, a, b) with

$$
d>0, \quad 0 \leq a, b \leq d, \quad E:=a P_{\infty}+b P_{0}
$$

such that $C\left(m, P_{\infty}, n, P_{0}\right)$ is the code obtained evaluating

$$
H^{0}\left(X, O_{X}(d)(-E)\right) \quad \text { on } X\left(\mathbb{F}_{q^{2}}\right) \backslash\left\{P_{\infty}, P_{0}\right\}
$$

We denote this code by $C(d, a, b)$ and assume $b \neq 0$ (if $b=0$ then the code is a one-point code).

The proof of the Lemma is based on

(1) the isomorphisms of sheaves

$$
O_{X}(1) \cong \mathcal{L}\left((q+1) P_{\infty}\right) \cong \mathcal{L}\left((q+1) P_{0}\right)
$$

(2) the geometry of the tangent lines to X.

Evaluation codes on arbitrary curves

How to study codes like $C(d, a, b)$?

Evaluation codes on arbitrary curves

How to study codes like $C(d, a, b)$?

The key-result is a characterization of the

support

of any codeword of certain Goppa codes on arbitrary curves.

Theorem

Let K be a finite field and let $X \subset \mathbb{P}_{K}^{2}$ be a smooth plane curve of degree c. Fix an integer $d>0$, a zero-dimensional scheme $E \subset X$ and a finite subset $B \subset X(K)$ such that $B \cap E_{\text {red }}=\emptyset$. Let C be the code obtained evaluating $H^{0}\left(X, O_{X}(d)(-E)\right)$ on B. Assume $\sharp(B)>d c$.

The minimum distance of C^{\perp} is the minimal cardinality, say s, of a subset $S \subseteq B$ such that $h^{1}\left(\mathbb{P}^{2}, I_{S \cup E}(d)\right)>h^{1}\left(\mathbb{P}^{2}, I_{E}(d)\right)$. A codeword of C^{\perp} has weight w if and only if it is supported by an $S \subseteq B$ such that
(1) $\#(S)=w$,
(2) $h^{1}\left(\mathbb{P}^{2}, I_{E \cup S}(d)\right)>h^{1}\left(\mathbb{P}^{2}, I_{E}(d)\right)$,
(3) $h^{1}\left(\mathbb{P}^{2}, \mathcal{I}_{E \cup S}(d)\right)>h^{1}\left(\mathbb{P}^{2}, \mathcal{I}_{E \cup S^{\prime}}(d)\right)$ for any $S^{\prime} \subsetneq S$.

The case of Hermitian two-point codes

The case of Hermitian two-point codes

Combining the Theorem and other geometric properties of the Hermitian curve we get the following result.

Corollary

Let X be the Hermitian curve and choose integers

$$
0<d \leq q, \quad 0 \leq a, b \leq d
$$

Set $E:=a P_{\infty}+b P_{0}$. Denote by $C(d, a, b)$ the code obtained evaluating $H^{0}\left(X, O_{X}(d)(-E)\right)$ on $B:=X\left(\mathbb{F}_{q^{2}}\right) \backslash\left\{P_{\infty}, P_{0}\right\}$ and let δ be the minimum distance of $C(d, a, b)^{\perp}$. A subset $S \subseteq B$ of cardinality δ is the support of a minimum-weight codeword of $C(d, a, b)^{\perp}$ if and only if

$$
h^{1}\left(\mathbb{P}^{2}, \mathcal{I}_{E \cup S}(d)\right)>0 .
$$

The key-condition

$$
h^{1}\left(\mathbb{P}^{2}, \mathcal{I}_{E \cup S}(d)\right)>0
$$

can be described in a purely geometric way, extending the recent results by Couvreur on the minimum distance of certain Goppa codes.

The main result

The main result

Corollary

Let X be the Hermitian curve and choose integers

$$
0<d \leq q, \quad 0 \leq a, b \leq d
$$

Set $E:=a P_{\infty}+b P_{0}$. Denote by $C(d, a, b)$ the code obtained evaluating $H^{0}\left(X, O_{X}(d)(-E)\right)$ on $B:=X\left(\mathbb{F}_{q^{2}}\right) \backslash\left\{P_{\infty}, P_{0}\right\}$. Let δ be the minimum distance of $C(d, a, b)^{\perp}$. Assume

$$
a+b+\delta \leq 4 d-5
$$

Let $S \subseteq B$ be a set of cardinality δ. Then S is the support of a minimumweight codeword of $C(d, a, b)^{\perp}$ if and only if there exists a subscheme $W \subseteq E \cup S$ with one of the following properties.

List of possible cases

(1) $\operatorname{deg}(W)=d+2$ and W is contained in a line.
(2) $\operatorname{deg}(W)=2 d+2$ and W is contained in a conic.
(3) $\operatorname{deg}(W)=3 d$ and W is the complete intersection of a cubic curve and a curve of degree d.
(9) $\operatorname{deg}(W)=3 d+1$ and W is contained in a cubic curve.

Our main result

Our main result

Combining this last result with the geometry of the Hermitian curve we characterized all the possible supports of a minimum-weight codeword of any $C(d, a, b)^{\perp}$ such that

$$
5<d \leq q,
$$

for any choice of q.

Here you are some explicit examples.

Example 1

Consider a code $C(d, a, b)$ such that

Example 1

Consider a code $C(d, a, b)$ such that

(1) $d>2$,
(2) $1 \leq a, b \leq d$,
(3) $d(q+1)-a-b<q^{2}-q-2 \quad$ (in particular, $d \leq q-1$),
(9) $a+b<2 d$.

The minimum distance of $C(d, a, b)^{\perp}$ is d.

The minimum distance of $C(d, a, b)^{\perp}$ is d.

Let $L_{0, \infty}$ denote the line through P_{0} and P_{∞}. A subset

$$
S \subseteq X\left(\mathbb{F}_{q^{2}}\right) \backslash\left\{P_{\infty}, P_{0}\right\}
$$

is the support of a minimum-weight codeword of $C(d, a, b)^{\perp}$

if and only if

The minimum distance of $C(d, a, b)^{\perp}$ is d.

Let $L_{0, \infty}$ denote the line through P_{0} and P_{∞}. A subset

$$
S \subseteq X\left(\mathbb{F}_{q^{2}}\right) \backslash\left\{P_{\infty}, P_{0}\right\}
$$

is the support of a minimum-weight codeword of $C(d, a, b)^{\perp}$

if and only if

(1) $\sharp(S)=d$,
(2) $S \subseteq L_{0, \infty}$.

Corollary

Let $C(d, a, b)$ be a code such that
(1) $d>2$,
(2) $1 \leq a, b \leq d$,
(3) $d(q+1)-a-b<q^{2}-q-2$,
(9) $a+b<2 d$.

Then the minimum distance of $C(d, a, b)^{\perp}$ is d and the number of the minimum-weight codewords of $C(d, a, b)^{\perp}$ is

$$
\left(q^{2}-1\right)\binom{q-1}{d}
$$

Example 2 (small-weight codewords)

Example 2 (small-weight codewords)

Corollary

Consider a code $C(d, a, b)$ such that

$$
0<d \leq q-2
$$

Example 2 (small-weight codewords)

Corollary

Consider a code $C(d, a, b)$ such that

$$
0<d \leq q-2
$$

Let w be an integer such that

$$
d \leq w \leq \min \{3 d-a-b, 2 d-3\}
$$

Example 2 (small-weight codewords)

Corollary

Consider a code $C(d, a, b)$ such that

$$
0<d \leq q-2 .
$$

Let w be an integer such that

$$
d \leq w \leq \min \{3 d-a-b, 2 d-3\}
$$

The supports of a codeword of $C(d, a, b)^{\perp}$ of weight w are exactly the sets in the following list.

List of possible cases

(1) Any subset of w elements of $L_{0, \infty} \cap X\left(\mathbb{F}_{q^{2}}\right) \backslash\left\{P_{0}, P_{\infty}\right\}$, where $L_{0, \infty}$ is the line through P_{0} and P_{∞}.
(2) Any subset of w elements of $L \cap X\left(\mathbb{F}_{q^{2}}\right) \backslash\left\{P_{0}, P_{\infty}\right\}$, where L is any line through P_{0} which is not tangent to X (only if $w \geq d+1$).
(3) Any subset of w elements of $L \cap X\left(\mathbb{F}_{q^{2}}\right) \backslash\left\{P_{0}, P_{\infty}\right\}$, where L is any line through P_{∞} which is not tangent to X (only if $w \geq d+1$).
(9) Any subset of w elements of $L \cap X\left(\mathbb{F}_{q^{2}}\right) \backslash\left\{P_{0}, P_{\infty}\right\}$, where L is any line which is not tangent to X and such that $P_{0}, P_{\infty} \notin L$ (only if $w \geq d+2$).

Example 3 (smooth conics)

Consider a code $C(d, a, b)$ such that

Example 3 (smooth conics)

Consider a code $C(d, a, b)$ such that

(1) $d=q>3$,
(2) $2<a \leq b<d=q$,
(3) $a+b<d+2$.

The minimum distance of $C(d, a, b)^{\perp}$ is $2 d-2=2 q-2$.

The minimum distance of $C(d, a, b)^{\perp}$ is $2 d-2=2 q-2$.
The points in the support of any minimum-weight codeword of $C(d, a, b)^{\perp}$ lie on a smooth conic which is tangent to the Hermitian curve X at both P_{0} and P_{∞}.

