Haruspex: ICT risk analysis with Monte Carlo method

Claudio Telmon claudio@di.unipi.it

Trento, 12 March 2012

Haruspex: ICT risk analysis with Monte Carlo method

Harúspex

The simulator has been developed by the ICT risk and management research group at the Dipartimento di Informatica of the University of Pisa

- Prof. Fabrizio Baiardi
- Daniele Sgandurra*, Claudio Telmon, Gabriele Piga**
- * IIT CNR Pisa
- ** Worked on the project for his thesis
- Haruspex: Etruscan man practising a form of divination based on the inspection of the entrails of sacrificed animals.

The problem

ICT security is a tool for operational risk management

- Focus is on intelligent threats (agents)
- Risk is a function of impact and probability of adverse events
 - With some simplifications, impact x probability
- Impact can be estimated
 - Or at least, estimation is inside the organization
- What about the probability that a threat agent can successfully attack the system and cause that impact?

Too complex for a mathematical model

Haruspex: ICT risk analysis with Monte Carlo method

Decomposing the problem

Probability of a complex (multi-step) attack:

- Threat (agent) properties
- Probability that the agent actually attempts the attack
- Discovery probability of every single vulnerability
- Ability of the threat to detect its goals in the system
- Ability of the threat to perform attacks
- Success probability of elementary attacks
- Can we deal with each of them separately?

A simple system

Haruspex: ICT risk analysis with Monte Carlo method

Attacks

local LAN exlpoit

Haruspex: ICT risk analysis with Monte Carlo method

System representation

- The system is represented as a set of interacting components
- The analyst decides the detail level for the components
 - Some subsystems may be represented as a single component, others may be very detailed
 - We can start with a "high level" representation, and then detail the most critical/interesting subsystems

Components, an example: a PC

e.g. every component connected to the LAN can be connected to "unpatched local LAN exploit"

Haruspex: ICT risk analysis with Monte Carlo method

Attack graph

Haruspex: ICT risk analysis with Monte Carlo method

Use and limits of the attack graph

An attack graph shows everything that "can be done"

Including highly-improbable (non high-impact) attacks... we won't waste our money on them!

• ... and we don't have all that money anyway

We associate probabilities:

- To the presence/discovery of vulnerabilities
- To attack success (e.g. password guessing, race conditions, version-dependent exploits...)

Probability: a "local" problem?

- What is the probability that a vulnerability of a component is discovered **in a given time frame**?
 - What is the probability (frequency) that a remote vulnerability is discovered in a Windows pc in the next six months? What is the "exposure window" before patching?
 - Answer: statistics based on Microsoft security bulletins
- There are answers to these (simpler) questions!

Probabilities

Independent probabilities?

- Case 1: probability that a remote vulnerability is discovered in a Windows pc within the next six months
 - Evaluated through Microsoft bulletins
 - What if we have 1000 PCs? Not that much difference, probabilities are not independent!
- Case2: probability that a user is fooled by a phishing e-mail
 - Evaluated through in-house probing (e.g. during awareness rising programs)
 - What if we have 1000 users? A lot of difference... probabilities are mostly independent (however, users have usually the same awareness level)
- Attacks:
 - Probability for an attack to be successful, given the required competences and resources... depends on the threat and on the countermeasures

Haruspex: ICT risk analysis with Monte Carlo method

With probabilities the attack graph gets more complicated...

Haruspex: ICT risk analysis with Monte Carlo method

No easy analytical solution

Threats have their own goals and strategies:

- Threats don't "see" the whole system, so they need a strategy
 - To suppose that threats know everything is a "worst case" that lets us spend more and worse
 - Threats goals are not (necessarily) the ones with the highest impact for the system

State transitions cannot be represented as a Markov chain, since the way a given status is reached influences the future behavior of the threat

Threats react to countermeasures by changing their plans

Haruspex: let's enter the simulator

Monte Carlo method: several independent simulations of the system being attacked by threat agents

Input:

- A threat description (goals, starting privileges, resources...)
- A system decomposition
 - Components, rights...
 - Vulnerabilities and their probabilities
- Attacks
 - Vulnerabilities
 - Rights: preconditions and postconditions
 - Required resources
 - Success probability

Haruspex: ICT risk analysis with Monte Carlo method

A simulation

At every simulation step:

- Vulnerabilities can be discovered
- Threat agents can attempt some attacks
 - If they have the required resources and competences, and the required vulnerabilities have been discovered; attacks selection is based on strategies for reaching threat goals
 - If they succeed, threat agents gain new access rights that can be used in subsequent attacks
 - Whenever a threat reaches a goal, it causes an impact

Haruspex: ICT risk analysis with Monte Carlo method

Haruspex: ICT risk analysis with Monte Carlo method

Countermeasures

- The ultimate goal of Haruspex is to help in the selection of countermeasures
- A (technical) countermeasure can:
- decrease the existence/discovery probability for a vulnerability
 - e.g. better patch management or coding practices
- decrease the success probability for an attack
 - e.g. increase password quality, personnel training against phishing
- -modify the system architecture
 - Introducing new security components, e.g. an IDS
 - Actually modifying the architecture, e.g. separating services on dedicated virtual machines

Selecting countermeasures

- Haruspex provides the most probable attack paths in the system for a given set of strategies
- We can use it for
 - Selecting countermeasures, within budget constrains
 - Prioritizing countermeasures, if we hope that we will have enough budget for a cut set of the attack graph (yeah, sure...)
- After planning some countermeasures, a new simulation can be used to evaluate the effectiveness of the set
 - Before actually spending the money
 - Because threats adapt to countermeasures
 - Countermeasures usually don't remove vulnerabilities, they decrease probabilities
 - Adding countermeasures could increase the risk...

Haruspex: ICT risk analysis with Monte Carlo method

Other uses and issues

Sensibility analysis

- How relevant is a given parameter for the overall risk?
- How relevant is the evaluation of the probability of an attack for the overall risk?
- Definition of "robustness" metrics for a system, both for design and for audit
- Attack strategies evaluation
- Evaluation of information availability for the threat
 - Strategies may be more effective with a better knowledge of the system
 - Insider vs. outsider, security trough obscurity
- ... and much more
 - Output is collected in a database, so data mining and other types of analysis are possible

Practical issues

Definition of component libraries

 Components with their vulnerabilities and typical probabilities for them

Vulnerabilities probability sharing within communities

- Easier than sharing information on the overall attack, easier to anonymize
- Less bound to specific properties (e.g. size, market) of an organization
 - More useful for different organizations
 - Easier definition of benchmarks

Did we solve our problem?

Probability of a complex attack:

- Threat (agent) properties
- Probability that the agent actually attempts the attack
- Discovery probability of every single vulnerability
- Ability for the threat to detect its goals in the system
- Ability for the threat to perform attacks
- Success probability of elementary attacks

We can answer with a given confidence level to the question:

"If a threat with given strategy and resources attacks the system, what is the probability for it to reach its goals, and cause an impact?"

Thank you!

haruspex@di.unipi.it

Haruspex: ICT risk analysis with Monte Carlo method