Polynomials and Cryptography

Polynomials and Cryptography

Michele Elia

Dipartimento di Elettronica
Politecnico di Torino

Bunny 1
Trento, 10 marzo 2011

Polynomials and Cryptography

Preamble

o Polynomials have always occupied a prominent position in
mathematics. In recent time their use has become
unavoidable in cryptography.

o Part I: Short excursus on various types of polynomials
used in cryptography.

o Part II: Comments on computing roots, and on evaluating
polynomials over finite fields.

Polynomials and Cry

Part I

o
2]
o
o
o
o
7]
o

Nonlinear transformations over finite fields
Rabin and RSA transformations

Elliptic curves

Secret-sharing schemes

Transformations in AES

Deciphering in the McEliece scheme

Key distribution in consumer systems

Error-correcting-codes for bio-imprints

Polynomials and Cryptography

Nonlinear transformations over finite fields

All functions from GF'(q) into GF(q) are polynomials

A function f(x) over GF(2™) is Almost Perfect Nonlinear
(APN) if
o f(z+a)+ f(z)+ b has at most two zeros in the field for
every a # 0, and b
o x— f(x+a)+ f(z)is 2 to 1 in GF(2™)

Polynomials and Cryptography

Nonlinear transformations over finite fields

Until 2006, all known APN functions were monomials or
binomials.

Examples:
f(x)=23 ,f(x)=2%+2° < GF(27)

fz) = 22 g GF(2™) ,(k,m)=1, Gold
flo) =2 =2 e GF2™) L (kym) =1, Kasami

Polynomials a:

Nonlinear transformations over finite fields

John Dillon (2006) introduced APN functions which were
trinomials noting the existing relation between these functions
and two-error correcting codes with parity-check matrix:

o 1 o a2 ceeood a2m—2
"= (f@) fla) f(a®) - flad) - f(a®7?))

« a primitive element in GF'(2"™)

e H parity-check matrix of a (2m — 1,2m — 1 — 2m, 5) code
@ R received vector
°

HR = S syndrome vector

Polynomial

Nonlinear transformations over finite fields

System equations for finding the error positions j and h

{ ol +Ozh =5
fled)+ f(a") =Sy — f(a"+ 1) + f(a") =5,

Unique solution <— f(x) is an APN function

Polynomials and Cryptography

Nonlinear transformations over finite fields

fz) = m3 on GF(2%) (BCH)

f(z) = .CL‘ + az + x on GF(24) (BCH code)

fx) =25 +2* + 23+ 22 +2 on GF(27) (equiv. to a monomial)
fx)=a"z® +ax? + 25 on GF(25), a®+a+1=0

Recently, classes of polynomials with more than three terms
have been found

flz) = p2F g2 2R g2 2 +1+Z 21+k+21
r € GF(2%)
(5,2k) =1 , c€ GF(2*) , be GF(2%*) , r; € GF(2F)

Rabin and RSA transformations

Operations in rings of residues modulo M = pq
e e (= 2) divisor of ¢p(M)

f(X)=X°=amod M

e To invert the function f(X) and to factor M are equivalent
problems

{ FE prime with ¢(M)
f(z) = 2 = a mod M

{ Are f(z) inversion and M factorization equivalent
problems?

The computation of X™ in any associative domain D needs at
most 2log, m products in D

m=mo+mi2+m2® + -+ + my2° m; € {0, 1}

X xmotmi24ma2i e tme2® _ yrmo (X2)m™ (X22)m2 (XYM

The minimum number of products is given by the minimum
length L of an addition chain

ap,at,...,ar, with ap=1 and a; =a; +a; 1,1t <]

Example: m = 47 min chain length < 2log, 47 < 11.2
1) 1,2,4,8,16,32,40,44, 46,47 L=9,
2) 1,2,4,5,10,20,40,45,47 L = 8 minimum

Elliptic curves

E[F,] elliptic curve over a finite field F,
y2 + a1y + azy = x3 + a2x2 +a4x +ag a; € IF‘q

e Q(z,y) point on E[F] z,y € E[F]

0 Q — kQ = (ko + k12 + ko22 + ... + ks2%)Q
e Point Doubling = Q — 2Q

e Point Addition = P,Q — P+ Q

Polynomials and Cryptography

Elliptic curves

Sum and duplication of points

o P(x1,91), Q(w2,y2) points on E[F]

e Addition S =P+ Q) Doubling 2P = P + P
Y2 — Y1 322 + 2a9w1 + as — a1yy
m = y m =
To — 1 2y1 +arx1 + a3
r3 = m2—a1m—a2—$1—$2

ys = —a1$3—a3—yl—m(ﬂf3—l’1)

Polynomials and Cry

Secret-sharing (Shamir)

@ A common secret m is "shared” between any group of k
subjects out of n subjects

o The secret m is encrypted and n private keys are generated
as follows:

A random polynomial of degree k is selected
S(z) = a4+ apz+m

— x; Public identifier of a subject
— S(x;) = y; Private key for sharing

Polynomials and Cryptography

Secret-sharing

@ Recovering polynomial S(z) knowing the value of k pairs
(zi,9i)
o S(x) is rebuilt using the Lagrange interpolation

L(z) = Hki;lwm
s = Y

o The common secret m is obtained as

k k)
5(0) = 3 A — cppry sy e
i=1 ¢

00—z
i=1 v

Polynomial

Transformations in AES

The Sub-byte transformation is applied to all rows of the data
matrix
o Polynomials over GF(2%) :
e Data matrix row Xi(z) = Xio + Xinx + Xip2? + Xyza3
e Encryption polynomial a(z) = ap + a1z + agz? + azx®

e Encrypted row Xi(z) = X;(z)a(z) mod (z* — 1)

Polynomials and Cryptography

Deciphering in the McEliece scheme

Public key: binary n x k matrix G = PGB
P n x n secret permutation matrix
B k x k binary nonsingular secret matrix
G binary n X k secret generator matrix of a
cyclic or Goppa (n, k, 2t + 1) code over GF(2)
a primitive element of GF(2™), n =2" — 1
Enciphering: information vector x
error vector with ¢ errors e
encrypted message r = Gx + e

Polynomials and Cry

Deciphering in the McEliece scheme

Deciphering = decoding the vector r,
i.e. correction of ¢ errors:

Computation of R = P~!r, the modified received vector

Computation of 2t syndromes

Computation of the error locator polynomial o(z)
(Berlekamp-Massey)

Error location: evaluation of o(z) in n points.

Polynomial

Deciphering in the McEliece scheme

R = (Ry, Ry, ..., R,) modified received vector
R(z) = Y74 Riz’ polynomial of degree n — 1

Computation of 2t syndromes S; = R(a?), i = 1,...,2t

Construction of o(z) of degree t
Vandermonde — GPZ — Berlekamp-Massey

Evaluation of ¢(z) in n points o/ € GF(2™) (Chien
search): an error is in position j if

o(a?) =0

Polynomials and Cryptography

Key distribution in consumer systems

Parameters:
@ m common access key
o N number of users
e k, private key of user u

Braodcast hash function h(x), and polynomial

N N '
P(z) = H(m — h(ky,)) +m = ZPi:cZ
u=1 1=0

User u actions:

o h(k,) evaluation
e m = P(h(k,)) evaluation of P(x) to get the key m

Polynomials and Cryptography

Error-correcting codes for bio-imprints

e To store or distribute bio-imprints keeping the original
imprint secret, i.e. it should be difficult to recover the
original sample imprint from its stored version

o Automatically recognizing a claimed identity, which
requires fast checking of whether the imprint taken is
among a stored set of encrypted sample imprints, given
that the imprint taken is corrupted by sensor errors.

Polynomial

Error-correcting codes for bio-imprints

The model

@ x sample bio-imprint encoded as a binary stream of k bits
e C code word of an (n, k) t-error correcting code in GF(q)
@ ¢ has the meaning of a threshold

e z=C+ (z,0)) encrypted bio-imprint

Cheking a bio-imprint is a kind of incomplete decoding of the
(n.k)-code with n very large

Polynomials and Cryptography

Error-correcting codes for bio-imprints

Check:

@ y k-dimensional vector encoding the bio-imprint taken
d=(y,0) > R=z+d=e¢+C

e C code word corrupted by ¢ errors, i.e. vector (z — y)

- the number of errors ¢ is computed and compared with ¢
if £ <t test passed, if £ > t test not passed

- Operatively o(z) is computed and it is checked whether all
roots are in GF(q), i.e.

ged(o(2), 27 — 1) = o(z)
o The most expensive task is the computation of the

syndromes, and sub-orderly the computation of o(z) via
Berlekamp-Massey algorithm.

Polynomial

Part 11

o Computation of the roots of polynomials in their full
splitting finite field. Application to decoding cyclic and
Goppa codes.

o Evaluation of polynomials over finite fields: a fast
algorithm that admits of asymptotic upper bounds to the
number of products and sums respectively equal to

cv/noo,

;N

¢ logn

Polynomials and Cryptography

Roots of Polynomials over GF(q)

Two steps:

e Computation of the roots of o(z), defined over GF(q) and
full split in GF(¢™) by means of the Cantor-Zassenhaus

algorithm. The roots 5 are expressed in a polynomial basis
of GF(q™)

e Computation of the exponential representation = o |
given «, primitive in GF(¢™), by means of Shanks’
algorithm.

The usual method applied in the decoders requires the
evaluation of o(z) in ¢ points, thus has complexity

¢™ x complexity of o(a’) evaluation

to perform both tasks.

Polynomials and Cryptography

Cantor-Zassenhaus’ Algorithm in characteristic 2

e o(x) polynomial of degree t in Fam

2m __ .
o L =2"-1 w random in Fy2m

3
o (primitive cubic root of unity in Fozm
o Compute a(z) = (z + w)’ mod o(x)

@ Ifa(z) #1,¢,¢? then o(z) has a common factor with at
least one of the following polynomials

CL(I), a($) - 1a CL(I) - Ca CL($) - C2)
with probability greater than %.

@ All roots are obtained with at most ¢ repetitions.

The largest computational cost is given by the computation of
a(z) which entails computing powers of polynomial modulo
another polynomial in finite felds.

Shanks’ algorithm for discrete logarithm

Shank’s algorithm:
o The exponent ¢ in the equality

ol = by +bra+ -+ byt

is written in the form ¢ = ¢y + ¢1[/n].
o A table T is constructed with [y/n] entries o/1Iv7]
e then a cycle of length [\/n] is started computing

Aj = (b()‘i‘blOé—F""i‘bmflam_l)a_j J=0,..., [\/ﬁ-|_1)

and looking for A; in the Table;

@ when a match is found with the x-th entry, we set £y = j
and /1 = k, and the discrete logarithm ¢ is obtained as
J+&[v/n].

e This algorithm can be performed with complexity O(y/n).
In our scenario, since we need to compute ¢ roots, the
complexity is O(ty/n).

Polynomials and Cryptography

Evaluation of a polynomial in the point «

m

p(z) = po + p1& + pox® + -+ + P
The direct evalutation needs

e Computation of m powers o

e Computation of m products p;a’

o Computation of m sums

o Total 2m — 1 products and m sums

Horner’s Rule

p(z) =po+x(pr + P2+ + 2(Pm-1+ TPm))

needs m products and m sums

This rule is universal, i.e., it holds in every field (associative
ring), and is optimal if the field has an infinite number of
elements.

Polynomials and Cry

Evaluation of a polynomial in the point «

In finite fields it is possible to do better

- The exemplification is restricted to GF(2) and extensions
- Three different problems:

@ To evaluate a polynomial in a single point
® 'To evaluate a polynomial in s distinct points
® To evaluate f polynomials in the same point

Evaluation of a polynomial in the point «

Evaluation of p(z) over GF(2) in a single point v in GF(2™)

n

5]

p(x) = po+prz+pox® + -+ pux” p € GF(2) €= |

p(x) = po+par’+- - +porr® +x(p1+psz’ +psa’+- - -+ pary12”)
p(z) = poo()* + zpo1 (x)* = p(@) = poo(a)® + zpo1 (a)®
Evaluation of p(«) requires
@ The evaluation of pgo(«) and po1(«) of degree n/2
© The computation of 2 squares
@ The computation of 1 product apg(a)?

@ The computation of 1 sum

Polynomial

Evaluation of a polynomial in the point «

The evaluation of pyo(a) and pp1(«) of degree n/2 can be done
with
e n/2 multiplications

o n — 1 additions

The total number of operations for obtaining p(«) is
e 3+ n/2 multiplications
e n additions

The procedure can be re-applied iteratively to every p;;(«) and
their descendants

Polynomials and Cryptography

At each iteration the number of polynomials is
doubled and their degrees are halved

st # des
0 p(x) 1
1 pY(=) Ie)) 2
2 Ph(=) i) Pi(=) e)) 4
L || pk@) | p2@) | ok e pL || 2%

The reconstruction starts from the bottom level (L) and ends
with p(a) after L steps

Notational remark: p(z) = p;;(z)

Polynomials and Cry

Evaluation of a polynomial in the point «

Computational complexity

o After L steps we have 2F polynomials of degree |5z

o Number di operations
Q [5z] powers of a
@ n additions for producing 2% polynomials py,; ()
@ 2Lt —2 =204 ... 4 2 squares of the polynomials p;;(c)
@ 2L —1=2L"14... 4+ 1 additions for reconstructing p()
@ 2L —1=2L"14 ... +1 products for reconstructing p(c)

o Total number of arithmetic operations
@ 3-2% -3+ [#] products
© n + 2L — 1 additions

Polynomials and Crypt

Evaluation of a polynomial in the point «

Optimal value of L

I n

3'2 27L
n

oL ~ =
3

The total number of products is approximately 2v/3n
The total number of sums can be reduced to about

In(n)

re-utilizing sums in the evaluations of 2 polynomials at level L

Polynomial

Evaluation of a polynomial in the point «

Polynomial with coefficients in GF'(2°)

The computation is reduced to the evaluation of s polynomials
with coefficients in GF(2)

p(z) = po(z) + api(z) + a’pa(x) + - - - 4 ®ps(x)

Typical cases n = 2™ or 2™ — 1
Asymptotic number of multiplications

O(vnln(n))

Polynomials and Cryptography

Open Problems

@ Find an upper bound to the multiplicative complexity
necessary to evaluate a polynomial of degree n over finite
fields (over infinite fields Horner’s rule is optimal, according
to Borodin and Munro)

@ Can Berlekamp-Massey algorithm be improved when both
t and n are large? (the complexity is ¢? log(t) according to
von zur Gathen)

Polynomials and Cryptography

Open Problems

@ Find the minimum number of additions necessary to
evaluate a polynomial of degree n over finite fields (over
infinite fields the Horner’s rule is optimal, according to
Borodin and Munro)

© Find the constant c(p) such that c(p) iy is a tight upper

In(n)
bound to the additive complexity for evaluating a

polynomial of degree n over finite fields of characteristic p.

Polynomials and Cryptography

References

@ Borodin A., Munro I., The Computational Complexity of
Algebraic Numeric Problems, Elsevier Computer, New
York, 1975

@ Budaghyan L., Carlet C., Classes of Quadratic APN
Trinomials and Hexanomials and Related Structures, IEEE
Trans. Inform. Theory, 54 (2008), no. 5, 2354-2357;

@ Bracken C., Byrne E., Markin N., McGuire G., New
families of quadratic almost perfect nonlinear trinomials
and multinomials. Finite Fields Appl. 14 (2008), no. 3,
703-714.

@ Dillon J., APN polynomials and related codes, conference
talk at Banff International Research Station, November,
2006.

Polynomials and Cryptography

References

@ Elia M., Schipani D., Improvements on the
Cantor-Zassenhaus Factorization Algorithm,
http://www.math.uzh.ch/fileadmin/user/davide/publikation/Can

@ Interlando J.C. , Byrne E., Rosenthal J., The Gate
Complexity of Syndrome Decoding of Hamming Codes,
Proceedings of the Tenth International Conference on
Applications of Computer Algebra, 2004, pp. 33-37.

@ Knuth D., The Art of Computer programming, vol I, II,
Academic Press, 1980.

@ Schipani D., Elia M., Rosenthal J., Efficient evaluations of

polynomials over finite fields, http://arxiv.org/PS
cache/arxiv/pdf/1102/1102.4771v1.pdf

