
Polynomials and Cryptography

.

.

. ..

.

.

Polynomials and Cryptography

Michele Elia

Dipartimento di Elettronica
Politecnico di Torino

Bunny 1
Trento, 10 marzo 2011



Polynomials and Cryptography

Preamble

Polynomials have always occupied a prominent position in
mathematics. In recent time their use has become
unavoidable in cryptography.

Part I: Short excursus on various types of polynomials
used in cryptography.

Part II: Comments on computing roots, and on evaluating
polynomials over finite fields.



Polynomials and Cryptography

Part I

...1 Nonlinear transformations over finite fields

...2 Rabin and RSA transformations

...3 Elliptic curves

...4 Secret-sharing schemes

...5 Transformations in AES

...6 Deciphering in the McEliece scheme

...7 Key distribution in consumer systems

...8 Error-correcting-codes for bio-imprints



Polynomials and Cryptography

Nonlinear transformations over finite fields

All functions from GF (q) into GF (q) are polynomials

A function f(x) over GF (2m) is Almost Perfect Nonlinear
(APN) if

f(x+ a) + f(x) + b has at most two zeros in the field for
every a ̸= 0, and b

x→ f(x+ a) + f(x) is 2 to 1 in GF (2m)



Polynomials and Cryptography

Nonlinear transformations over finite fields

Until 2006, all known APN functions were monomials or
binomials.

Examples:

f(x) = x3 , f(x) = x6 + x5 ∈ GF (27)

f(x) = x2
k+1 x ∈ GF (2m) , (k,m) = 1, Gold

f(x) = x2
2k−2k+1 x ∈ GF (2m) , (k,m) = 1, Kasami



Polynomials and Cryptography

Nonlinear transformations over finite fields

John Dillon (2006) introduced APN functions which were
trinomials noting the existing relation between these functions
and two-error correcting codes with parity-check matrix:

H =

(
1 α α2 · · · αj · · · α2m−2

f(1) f(α) f(α2) · · · f(αj) · · · f(α2m−2)

)
α a primitive element in GF (2m)

H parity-check matrix of a (2m− 1, 2m− 1− 2m, 5) code

R received vector

HR = S syndrome vector



Polynomials and Cryptography

Nonlinear transformations over finite fields

System equations for finding the error positions j and h{
αj + αh = S1

f(αj) + f(αh) = S2 → f(αh + S1) + f(αh) = S2

Unique solution ←→ f(x) is an APN function



Polynomials and Cryptography

Nonlinear transformations over finite fields

Examples

f(x) = x3 on GF (24) (BCH)
f(x) = x3 + x2 + x on GF (24) (BCH code)
f(x) = x5 + x4 + x3 + x2 + x on GF (27) (equiv. to a monomial)
f(x) = α7x48 + αx9 + x6 on GF (26), α6 + α+ 1 = 0

Recently, classes of polynomials with more than three terms
have been found

f(x) = b2
k
x2

k+s+2k + bx2
k+1 + cx2

k+1 +
∑k−1

i=1 rix
2i+k+2i

x ∈ GF (22k)
(s, 2k) = 1 , c ∈ GF (2k) , b ∈ GF (22k) , ri ∈ GF (2k)



Polynomials and Cryptography

Rabin and RSA transformations

Operations in rings of residues modulo M = pq

e (= 2) divisor of ϕ(M)

f(X) = Xe = a mod M

To invert the function f(X) and to factor M are equivalent
problems

♢ E prime with ϕ(M)

f(x) = xE = a mod M

♢ Are f(x) inversion and M factorization equivalent
problems?



Polynomials and Cryptography

Power computation

The computation of Xm in any associative domain D needs at
most 2 log2m products in D

m = m0 +m12 +m22
2 + · · ·+ms2

s mi ∈ {0, 1}

Xm = Xm0+m12+m222+···+ms2s = Xm0(X2)m1(X22)m2 · · · (X2s)ms

The minimum number of products is given by the minimum
length L of an addition chain

a0, a1, . . . , aL, with a0 = 1 and aj = ai + at i, t < j

Example: m = 47 min chain length < 2 log2 47 < 11.2

1) 1, 2, 4, 8, 16, 32, 40, 44, 46, 47 L = 9,

2) 1, 2, 4, 5, 10, 20, 40, 45, 47 L = 8 minimum



Polynomials and Cryptography

Elliptic curves

E[Fq] elliptic curve over a finite field Fq

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 ai ∈ Fq

Q(x, y) point on E[Fq] x, y ∈ E[Fq]

Q→ kQ = (k0 + k12 + k22
2 + . . .+ ks2

s)Q

Point Doubling ⇒ Q→ 2Q

Point Addition ⇒ P,Q→ P +Q



Polynomials and Cryptography

Elliptic curves

Sum and duplication of points

P (x1, y1), Q(x2, y2) points on E[F]
Addition S = P +Q , Doubling 2P = P + P

m =
y2 − y1
x2 − x1

, m =
3x21 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3

x3 = m2 − a1m− a2 − x1 − x2
y3 = −a1x3 − a3 − y1 −m(x3 − x1)



Polynomials and Cryptography

Secret-sharing (Shamir)

A common secret m is ”shared” between any group of k
subjects out of n subjects

The secret m is encrypted and n private keys are generated
as follows:

– A random polynomial of degree k is selected

S(x) = xk + a1x
k−1 + · · ·+ ak−1x+m

– xi Public identifier of a subject
– S(xi) = yi Private key for sharing



Polynomials and Cryptography

Secret-sharing

Recovering polynomial S(x) knowing the value of k pairs
(xi, yi)

S(x) is rebuilt using the Lagrange interpolation

L(x) =
∏k

i=1(x− xi)

S(x) =
k∑

i=1

yi
L(x)

x− xi

The common secret m is obtained as

S(0) =
k∑

i=1

yi
L(0)

0− xi
= (−1)k−1

k∑
i=1

yi

∏k
j=1 xj

xi



Polynomials and Cryptography

Transformations in AES

The Sub-byte transformation is applied to all rows of the data
matrix

Polynomials over GF (28) :

Data matrix row Xi(x) = Xi0 +Xi1x+Xi2x
2 +Xi3x

3

Encryption polynomial a(x) = a0 + a1x+ a2x
2 + a3x

3

Encrypted row Xi(x)⇒ Xi(x)a(x) mod (x4 − 1)



Polynomials and Cryptography

Deciphering in the McEliece scheme

Public key: binary n× k matrix G = PGB
P n× n secret permutation matrix
B k × k binary nonsingular secret matrix
G binary n× k secret generator matrix of a
cyclic or Goppa (n, k, 2t+ 1) code over GF (2)
α primitive element of GF (2m), n = 2m − 1

Enciphering: information vector x
error vector with t errors e
encrypted message r = Gx+ e



Polynomials and Cryptography

Deciphering in the McEliece scheme

Deciphering ⇒ decoding the vector r,
i.e. correction of t errors:

- Computation of R = P−1r, the modified received vector

- Computation of 2t syndromes

- Computation of the error locator polynomial σ(z)
(Berlekamp-Massey)

- Error location: evaluation of σ(z) in n points.



Polynomials and Cryptography

Deciphering in the McEliece scheme

R = (R1, R2, . . . , Rn) modified received vector

R(x) =
∑n−1

i=0 Rix
i polynomial of degree n− 1

Computation of 2t syndromes Si = R(αi), i = 1, . . . , 2t

Construction of σ(z) of degree t

Vandermonde→ GPZ→ Berlekamp-Massey

Evaluation of σ(z) in n points αj ∈ GF (2m) (Chien
search): an error is in position j if

σ(αj) = 0



Polynomials and Cryptography

Key distribution in consumer systems

Parameters:

m common access key

N number of users

ku private key of user u

Braodcast hash function h(x), and polynomial

P (x) =

N∏
u=1

(x− h(ku)) +m =

N∑
i=0

Pix
i

User u actions:

h(ku) evaluation

m = P (h(ku)) evaluation of P (x) to get the key m



Polynomials and Cryptography

Error-correcting codes for bio-imprints

To store or distribute bio-imprints keeping the original
imprint secret, i.e. it should be difficult to recover the
original sample imprint from its stored version

Automatically recognizing a claimed identity, which
requires fast checking of whether the imprint taken is
among a stored set of encrypted sample imprints, given
that the imprint taken is corrupted by sensor errors.



Polynomials and Cryptography

Error-correcting codes for bio-imprints

The model

x sample bio-imprint encoded as a binary stream of k bits

C code word of an (n, k) t-error correcting code in GF (q)

t has the meaning of a threshold

z = C + (x, 0)) encrypted bio-imprint

Cheking a bio-imprint is a kind of incomplete decoding of the
(n.k)-code with n very large



Polynomials and Cryptography

Error-correcting codes for bio-imprints

Check:

y k-dimensional vector encoding the bio-imprint taken

d = (y, 0)→ R = z + d = e+ C

C code word corrupted by ℓ errors, i.e. vector (x− y)

- the number of errors ℓ is computed and compared with t
if ℓ < t test passed, if ℓ > t test not passed

- Operatively σ(z) is computed and it is checked whether all
roots are in GF(q), i.e.

gcd(σ(z), zq − 1)
?
= σ(z)

The most expensive task is the computation of the
syndromes, and sub-orderly the computation of σ(z) via
Berlekamp-Massey algorithm.



Polynomials and Cryptography

Part II

Computation of the roots of polynomials in their full
splitting finite field. Application to decoding cyclic and
Goppa codes.

Evaluation of polynomials over finite fields: a fast
algorithm that admits of asymptotic upper bounds to the
number of products and sums respectively equal to

c
√
n , c′

n

logn



Polynomials and Cryptography

Roots of Polynomials over GF (q)

Two steps:

Computation of the roots of σ(x), defined over GF (q) and
full split in GF (qm) by means of the Cantor-Zassenhaus
algorithm. The roots β are expressed in a polynomial basis
of GF (qm)

Computation of the exponential representation β = αj ,
given α, primitive in GF (qm), by means of Shanks’
algorithm.

The usual method applied in the decoders requires the
evaluation of σ(x) in qm points, thus has complexity

qm × complexity of σ(αi) evaluation

to perform both tasks.



Polynomials and Cryptography

Cantor-Zassenhaus’ Algorithm in characteristic 2

σ(x) polynomial of degree t in F2m

L = 22m−1
3 ω random in F22m

ζ primitive cubic root of unity in F22m

Compute a(x) = (x+ ω)L mod σ(x)

...1 If a(x) ̸= 1, ζ, ζ2 then σ(x) has a common factor with at
least one of the following polynomials

a(x), a(x)− 1, a(x)− ζ, a(x)− ζ2 ,

with probability greater than 8
9 .

...2 All roots are obtained with at most t repetitions.

The largest computational cost is given by the computation of
a(x) which entails computing powers of polynomial modulo
another polynomial in finite felds.



Polynomials and Cryptography

Shanks’ algorithm for discrete logarithm

Shank’s algorithm:

The exponent ℓ in the equality

αℓ = b0 + b1α+ · · ·+ bm−1α
m−1 .

is written in the form ℓ = ℓ0 + ℓ1⌈
√
n⌉.

A table T is constructed with ⌈
√
n⌉ entries αℓ1⌈

√
n⌉,

then a cycle of length ⌈
√
n⌉ is started computing

Aj = (b0+ b1α+ · · ·+ bm−1α
m−1)α−j j = 0, . . . , ⌈

√
n⌉−1 ,

and looking for Aj in the Table;

when a match is found with the κ-th entry, we set ℓ0 = j
and ℓ1 = κ, and the discrete logarithm ℓ is obtained as
j + κ⌈

√
n⌉.

This algorithm can be performed with complexity O(
√
n).

In our scenario, since we need to compute t roots, the
complexity is O(t

√
n).



Polynomials and Cryptography

Evaluation of a polynomial in the point α

p(x) = p0 + p1x+ p2x
2 + · · ·+ pmxm

The direct evalutation needs

Computation of m powers αi

Computation of m products piα
i

Computation of m sums

Total 2m− 1 products and m sums

Horner’s Rule

p(x) = p0 + x(p1 + x(p2 + · · ·+ x(pm−1 + xpm) · · · )

needs m products and m sums
This rule is universal, i.e., it holds in every field (associative
ring), and is optimal if the field has an infinite number of
elements.



Polynomials and Cryptography

Evaluation of a polynomial in the point α

In finite fields it is possible to do better

- The exemplification is restricted to GF (2) and extensions

- Three different problems:
...1 To evaluate a polynomial in a single point
...2 To evaluate a polynomial in s distinct points
...3 To evaluate f polynomials in the same point



Polynomials and Cryptography

Evaluation of a polynomial in the point α

Evaluation of p(x) over GF (2) in a single point α in GF (2m)

p(x) = p0 + p1x+ p2x
2 + · · ·+ pnx

n pi ∈ GF (2) ℓ = ⌊n
2
⌋

p(x) = p0+p2x
2+· · ·+p2ℓx

2ℓ+x(p1+p3x
2+p5x

4+· · ·+p2ℓ+1x
2ℓ)

p(x) = p00(x)
2 + xp01(x)

2 ⇒ p(α) = p00(α)
2 + xp01(α)

2

Evaluation of p(α) requires
...1 The evaluation of p00(α) and p01(α) of degree n/2
...2 The computation of 2 squares
...3 The computation of 1 product αp01(α)

2

...4 The computation of 1 sum



Polynomials and Cryptography

Evaluation of a polynomial in the point α

The evaluation of p00(a) and p01(α) of degree n/2 can be done
with

n/2 multiplications

n− 1 additions

The total number of operations for obtaining p(α) is

3 + n/2 multiplications

n additions

The procedure can be re-applied iteratively to every pij(α) and
their descendants



Polynomials and Cryptography

At each iteration the number of polynomials is
doubled and their degrees are halved

st # des

0 p(x) 1

1 p00(x) p01(x) 2

2 p10(x) p11(x) p12(x) p13(x) 4

· · ·
... · · ·

L pL0 (x) pL1 (x) pL2 (x) · · · pLs (x) 2L

The reconstruction starts from the bottom level (L) and ends
with p(α) after L steps

Notational remark: pij(x) = pij(x)



Polynomials and Cryptography

Evaluation of a polynomial in the point α

Computational complexity

After L steps we have 2L polynomials of degree ⌊ n
2L
⌋

Number di operations
...1 ⌊ n

2L
⌋ powers of α

...2 n additions for producing 2L polynomials pLj(α)

...3 2L+1 − 2 = 2L + · · ·+ 2 squares of the polynomials pij(α)

...4 2L − 1 = 2L−1 + · · ·+ 1 additions for reconstructing p(α)

...5 2L − 1 = 2L−1 + · · ·+ 1 products for reconstructing p(α)

Total number of arithmetic operations
...1 3 · 2L − 3 + ⌊ n

2L
⌋ products

...2 n+ 2L − 1 additions



Polynomials and Cryptography

Evaluation of a polynomial in the point α

Optimal value of L

3 · 2L ≈ n

2L

2L ≈
√

n

3

The total number of products is approximately 2
√
3n

The total number of sums can be reduced to about

n

ln(n)

re-utilizing sums in the evaluations of 2L polynomials at level L



Polynomials and Cryptography

Evaluation of a polynomial in the point α

Polynomial with coefficients in GF (2s)

The computation is reduced to the evaluation of s polynomials
with coefficients in GF (2)

p(x) = p0(x) + αp1(x) + α2p2(x) + · · ·+ αsps(x)

Typical cases n = 2m or 2m − 1
Asymptotic number of multiplications

O(
√
n ln(n))



Polynomials and Cryptography

Open Problems

...1 Find an upper bound to the multiplicative complexity
necessary to evaluate a polynomial of degree n over finite
fields (over infinite fields Horner’s rule is optimal, according
to Borodin and Munro)

...2 Can Berlekamp-Massey algorithm be improved when both
t and n are large? (the complexity is t2 log(t) according to
von zur Gathen)



Polynomials and Cryptography

Open Problems

...1 Find the minimum number of additions necessary to
evaluate a polynomial of degree n over finite fields (over
infinite fields the Horner’s rule is optimal, according to
Borodin and Munro)

...2 Find the constant c(p) such that c(p) n
ln(n) is a tight upper

bound to the additive complexity for evaluating a
polynomial of degree n over finite fields of characteristic p.



Polynomials and Cryptography

References

...1 Borodin A., Munro I., The Computational Complexity of
Algebraic Numeric Problems, Elsevier Computer, New
York, 1975

...2 Budaghyan L., Carlet C., Classes of Quadratic APN
Trinomials and Hexanomials and Related Structures, IEEE
Trans. Inform. Theory, 54 (2008), no. 5, 2354-2357;

...3 Bracken C., Byrne E., Markin N., McGuire G., New
families of quadratic almost perfect nonlinear trinomials
and multinomials. Finite Fields Appl. 14 (2008), no. 3,
703-714.

...4 Dillon J., APN polynomials and related codes, conference
talk at Banff International Research Station, November,
2006.



Polynomials and Cryptography

References

...1 Elia M., Schipani D., Improvements on the
Cantor-Zassenhaus Factorization Algorithm,
http://www.math.uzh.ch/fileadmin/user/davide/publikation/CantorZas26.pdf

...2 Interlando J.C. , Byrne E., Rosenthal J., The Gate
Complexity of Syndrome Decoding of Hamming Codes,
Proceedings of the Tenth International Conference on
Applications of Computer Algebra, 2004, pp. 33-37.

...3 Knuth D., The Art of Computer programming, vol I, II,
Academic Press, 1980.

...4 Schipani D., Elia M., Rosenthal J., Efficient evaluations of
polynomials over finite fields, http://arxiv.org/PS
cache/arxiv/pdf/1102/1102.4771v1.pdf


