Polynomials and Cryptography

Michele Elia

Dipartimento di Elettronica Politecnico di Torino

Bunny 1 Trento, 10 marzo 2011

Preamble

- Polynomials have always occupied a prominent position in mathematics. In recent time their use has become unavoidable in cryptography.
- **Part I:** Short excursus on various types of polynomials used in cryptography.
- **Part II:** Comments on computing roots, and on evaluating polynomials over finite fields.

Part I

- **()** Nonlinear transformations over finite fields
- Rabin and RSA transformations
- Selliptic curves
- Secret-sharing schemes
- **•** Transformations in AES
- Deciphering in the McEliece scheme
- Key distribution in consumer systems
- S Error-correcting-codes for bio-imprints

All functions from GF(q) into GF(q) are polynomials

- A function f(x) over $GF(2^m)$ is Almost Perfect Nonlinear (APN) if
 - f(x+a) + f(x) + b has at most two zeros in the field for every $a \neq 0$, and b
 - $x \to f(x+a) + f(x)$ is 2 to 1 in $GF(2^m)$

Until 2006, all known APN functions were monomials or binomials.

Examples:

$$\begin{array}{ll} f(x) = x^3 \ , f(x) = x^6 + x^5 & \in GF(2^7) \\ f(x) = x^{2^k + 1} \ x \in GF(2^m) \ , (k,m) = 1, \quad Gold \\ f(x) = x^{2^{2k} - 2^k + 1} \ x \in GF(2^m) \ , (k,m) = 1, \quad Kasami \end{array}$$

John Dillon (2006) introduced APN functions which were trinomials noting the existing relation between these functions and two-error correcting codes with parity-check matrix:

$$H = \left(\begin{array}{cccc} 1 & \alpha & \alpha^2 & \cdots & \alpha^j & \cdots & \alpha^{2^m - 2} \\ f(1) & f(\alpha) & f(\alpha^2) & \cdots & f(\alpha^j) & \cdots & f(\alpha^{2^m - 2}) \end{array}\right)$$

- α a primitive element in $GF(2^m)$
- **H** parity-check matrix of a (2m 1, 2m 1 2m, 5) code
- **R** received vector
- $\mathbf{HR} = \mathbf{S}$ syndrome vector

System equations for finding the error positions j and h

$$\begin{cases} \alpha^{j} + \alpha^{h} = S_{1} \\ f(\alpha^{j}) + f(\alpha^{h}) = S_{2} \rightarrow f(\alpha^{h} + S_{1}) + f(\alpha^{h}) = S_{2} \\ \end{cases}$$
Unique solution $\longleftrightarrow f(x)$ is an APN function

Examples

$$\begin{array}{l} f(x) = x^3 & \text{on } GF(2^4) \ (\text{BCH}) \\ f(x) = x^3 + x^2 + x & \text{on } GF(2^4) \ (\text{BCH code}) \\ f(x) = x^5 + x^4 + x^3 + x^2 + x & \text{on } GF(2^7) \ (\text{equiv. to a monomial}) \\ f(x) = \alpha^7 x^{48} + \alpha x^9 + x^6 & \text{on } GF(2^6), \ \alpha^6 + \alpha + 1 = 0 \end{array}$$

Recently, classes of polynomials with more than three terms have been found

$$\begin{split} f(x) &= b^{2^k} x^{2^{k+s}+2^k} + b x^{2^k+1} + c x^{2^k+1} + \sum_{i=1}^{k-1} r_i x^{2^{i+k}+2^i} \\ & x \in GF(2^{2k}) \\ (s,2k) &= 1 \quad , \quad c \in GF(2^k) \quad , \quad b \in GF(2^{2k}) \quad , \quad r_i \in GF(2^k) \end{split}$$

Rabin and RSA transformations

Operations in rings of residues modulo M = pq

• $e \ (=2)$ divisor of $\phi(M)$

$$f(X) = X^e = a \mod M$$

- To invert the function f(X) and to factor M are equivalent problems
- $\diamond E$ prime with $\phi(M)$

$$f(x) = x^E = a \bmod M$$

 \diamond Are f(x) inversion and M factorization equivalent problems?

Power computation

The computation of X^m in any associative domain \mathcal{D} needs at most $2\log_2 m$ products in \mathcal{D}

$$m = m_0 + m_1 2 + m_2 2^2 + \dots + m_s 2^s$$
 $m_i \in \{0, 1\}$

$$X^{m} = X^{m_{0}+m_{1}2+m_{2}2^{2}+\dots+m_{s}2^{s}} = X^{m_{0}}(X^{2})^{m_{1}}(X^{2^{2}})^{m_{2}}\cdots(X^{2^{s}})^{m_{s}}$$

The minimum number of products is given by the minimum length L of an *addition chain*

 $\begin{array}{ll} a_0, a_1, \dots, a_L, & \text{with } a_0 = 1 & \text{and } a_j = a_i + a_t & i, t < j \\ \\ \text{Example: } m = 47 & \text{min chain length} < 2 \log_2 47 < 11.2 \\ 1) & 1, 2, 4, 8, 16, 32, 40, 44, 46, 47 & L = 9, \\ 2) & 1, 2, 4, 5, 10, 20, 40, 45, 47 & L = 8 \text{ minimum} \end{array}$

Elliptic curves

 $E[\mathbb{F}_q]$ elliptic curve over a finite field \mathbb{F}_q

$$y^{2} + a_{1}xy + a_{3}y = x^{3} + a_{2}x^{2} + a_{4}x + a_{6}$$
 $a_{i} \in \mathbb{F}_{q}$

- Q(x,y) point on $E[\mathbb{F}_q]$ $x, y \in E[\mathbb{F}_q]$
- $Q \to kQ = (k_0 + k_1 2 + k_2 2^2 + \ldots + k_s 2^s)Q$
- Point Doubling $\Rightarrow Q \rightarrow 2Q$
- Point Addition $\Rightarrow P, Q \rightarrow P + Q$

Elliptic curves

Sum and duplication of points

- $P(x_1, y_1), Q(x_2, y_2)$ points on $E[\mathbb{F}]$
- Addition S = P + Q , Doubling 2P = P + P

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
, $m = \frac{3x_1^2 + 2a_2x_1 + a_4 - a_1y_1}{2y_1 + a_1x_1 + a_3}$

$$\begin{array}{rcl} x_3 & = & m^2 - a_1 m - a_2 - x_1 - x_2 \\ y_3 & = & -a_1 x_3 - a_3 - y_1 - m(x_3 - x_1) \end{array}$$

Secret-sharing (Shamir)

- A common secret *m* is "shared" between any group of *k* subjects out of *n* subjects
- The secret *m* is encrypted and *n* private keys are generated as follows:
 - A random polynomial of degree k is selected

$$S(x) = x^{k} + a_{1}x^{k-1} + \dots + a_{k-1}x + m$$

- x_i Public identifier of a subject
- $S(x_i) = y_i$ Private key for sharing

Secret-sharing

• Recovering polynomial S(x) knowing the value of k pairs (x_i, y_i)

• S(x) is rebuilt using the Lagrange interpolation

$$L(x) = \prod_{i=1}^{k} (x - x_i)$$

$$S(x) = \sum_{i=1}^{k} y_i \frac{L(x)}{x - x_i}$$

• The common secret **m** is obtained as

$$S(0) = \sum_{i=1}^{k} y_i \frac{L(0)}{0 - x_i} = (-1)^{k-1} \sum_{i=1}^{k} y_i \frac{\prod_{j=1}^{k} x_j}{x_i}$$

Transformations in AES

The Sub-byte transformation is applied to all rows of the data matrix

- Polynomials over $GF(2^8)$:
- Data matrix row $X_i(x) = X_{i0} + X_{i1}x + X_{i2}x^2 + X_{i3}x^3$
- Encryption polynomial $a(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$
- Encrypted row $X_i(x) \Rightarrow X_i(x)a(x) \mod (x^4 1)$

Deciphering in the McEliece scheme

Public key: binary $n \times k$ matrix $\mathbf{G} = \mathbf{PGB}$ $\mathbf{P} \ n \times n$ secret permutation matrix $\mathbf{B} \ k \times k$ binary nonsingular secret matrix \mathbf{G} binary $n \times k$ secret generator matrix of a cyclic or Goppa (n, k, 2t + 1) code over GF(2) α primitive element of $GF(2^m)$, $n = 2^m - 1$ Enciphering: information vector \mathbf{x} error vector with t errors \mathbf{e}

encrypted message $\mathbf{r} = \mathbf{G}\mathbf{x} + \mathbf{e}$

Deciphering in the McEliece scheme

Deciphering \Rightarrow decoding the vector **r**, i.e. correction of *t* errors:

- Computation of $\mathbf{R} = \mathbf{P}^{-1}\mathbf{r}$, the modified received vector
- Computation of 2t syndromes
- Computation of the error locator polynomial $\sigma(z)$ (Berlekamp-Massey)
- Error location: evaluation of $\sigma(z)$ in *n* points.

Deciphering in the McEliece scheme

- $\mathbf{R} = (R_1, R_2, \dots, R_n)$ modified received vector
- $R(x) = \sum_{i=0}^{n-1} R_i x^i$ polynomial of degree n-1
- Computation of 2t syndromes $S_i = R(\alpha^i), i = 1, ..., 2t$
- Construction of $\sigma(z)$ of degree t

 $\mathrm{Vandermonde} \to \mathrm{GPZ} \to \mathrm{Berlekamp}\text{-}\mathrm{Massey}$

• Evaluation of $\sigma(z)$ in n points $\alpha^j \in GF(2^m)$ (Chien search): an error is in position j if

$$\sigma(\alpha^j) = 0$$

Key distribution in consumer systems

Parameters:

- *m* common access key
- $\bullet~N$ number of users
- k_u private key of user **u**

Braodcast hash function h(x), and polynomial

$$P(x) = \prod_{u=1}^{N} (x - h(\mathbf{k}_{u})) + m = \sum_{i=0}^{N} P_{i} x^{i}$$

User \mathbf{u} actions:

- $h(\underline{k}_u)$ evaluation
- $\mathbf{m} = P(h(\mathbf{k}_u))$ evaluation of P(x) to get the key \mathbf{m}

Error-correcting codes for bio-imprints

- To store or distribute bio-imprints keeping the original imprint secret, i.e. it should be difficult to recover the original sample imprint from its stored version
- Automatically recognizing a claimed identity, which requires fast checking of whether the imprint taken is among a stored set of encrypted sample imprints, given that the imprint taken is corrupted by sensor errors.

Error-correcting codes for bio-imprints

The model

- ${\bf x}$ sample bio-imprint encoded as a binary stream of k bits
- C code word of an (n, k) t-error correcting code in GF(q)
- t has the meaning of a threshold
- z = C + (x, 0)) encrypted bio-imprint

Cheking a bio-imprint is a kind of incomplete decoding of the (n.k)-code with n very large

Error-correcting codes for bio-imprints

Check:

 $\bullet~y~k\mbox{-dimensional}$ vector encoding the bio-imprint taken

$$d = (y, 0) \rightarrow R = z + d = e + C$$

- C code word corrupted by ℓ errors, i.e. vector (x y)
 - the number of errors ℓ is computed and compared with t if $\ell < t$ test passed, if $\ell > t$ test not passed
 - Operatively $\sigma(z)$ is computed and it is checked whether all roots are in GF(q), i.e.

$$gcd(\sigma(z), z^q - 1) \stackrel{?}{=} \sigma(z)$$

• The most expensive task is the computation of the syndromes, and sub-orderly the computation of $\sigma(z)$ via Berlekamp-Massey algorithm.

Part II

- Computation of the roots of polynomials in their full splitting finite field. Application to decoding cyclic and Goppa codes.
- Evaluation of polynomials over finite fields: a fast algorithm that admits of asymptotic upper bounds to the number of products and sums respectively equal to

$$c\sqrt{n}$$
 , $c'\frac{n}{\log n}$

Roots of Polynomials over GF(q)

Two steps:

- Computation of the roots of $\sigma(x)$, defined over GF(q) and full split in $GF(q^m)$ by means of the Cantor-Zassenhaus algorithm. The roots β are expressed in a polynomial basis of $GF(q^m)$
- Computation of the exponential representation $\beta = \alpha^j$, given α , primitive in $GF(q^m)$, by means of Shanks' algorithm.

The usual method applied in the decoders requires the evaluation of $\sigma(x)$ in q^m points, thus has complexity

 $q^m \times \text{ complexity of } \sigma(\alpha^i) \text{ evaluation}$

to perform both tasks.

Cantor-Zassenhaus' Algorithm in characteristic 2

• $\sigma(x)$ polynomial of degree t in \mathbb{F}_{2^m}

•
$$L = \frac{2^{2m}-1}{3}$$
 ω random in $\mathbb{F}_{2^{2m}}$

- ζ primitive cubic root of unity in $\mathbb{F}_{2^{2m}}$
- Compute $a(x) = (x + \omega)^L \mod \sigma(x)$
- If $a(x) \neq 1, \zeta, \zeta^2$ then $\sigma(x)$ has a common factor with at least one of the following polynomials

$$a(x), a(x) - 1, a(x) - \zeta, a(x) - \zeta^{2},$$

with probability greater than $\frac{8}{9}$.

2 All roots are obtained with at most t repetitions.

The largest computational cost is given by the computation of a(x) which entails computing powers of polynomial modulo another polynomial in finite felds.

Shanks' algorithm for discrete logarithm

Shank's algorithm:

• The exponent ℓ in the equality

$$\alpha^{\ell} = b_0 + b_1 \alpha + \dots + b_{m-1} \alpha^{m-1}$$

is written in the form $\ell = \ell_0 + \ell_1 \lceil \sqrt{n} \rceil$.

- A table \mathcal{T} is constructed with $\lceil \sqrt{n} \rceil$ entries $\alpha^{\ell_1 \lceil \sqrt{n} \rceil}$,
- then a cycle of length $\lceil \sqrt{n} \rceil$ is started computing

$$A_j = (b_0 + b_1 \alpha + \dots + b_{m-1} \alpha^{m-1}) \alpha^{-j} \quad j = 0, \dots, \lceil \sqrt{n} \rceil - 1 \quad ,$$

and looking for A_i in the Table;

- when a match is found with the κ -th entry, we set $\ell_0 = j$ and $\ell_1 = \kappa$, and the discrete logarithm ℓ is obtained as $j + \kappa \lceil \sqrt{n} \rceil$.
- This algorithm can be performed with complexity $O(\sqrt{n})$. In our scenario, since we need to compute t roots, the complexity is $O(t\sqrt{n})$.

$$p(x) = p_0 + p_1 x + p_2 x^2 + \dots + p_m x^m$$

The direct evalutation needs

- Computation of m powers α^i
- Computation of m products $p_i \alpha^i$
- Computation of *m* sums
- Total 2m 1 products and m sums

Horner's Rule

$$p(x) = p_0 + x(p_1 + x(p_2 + \dots + x(p_{m-1} + xp_m) \dots))$$

needs m products and m sums

This rule is universal, i.e., it holds in every field (associative ring), and is optimal if the field has an infinite number of elements.

In finite fields it is possible to do better

- The exemplification is restricted to GF(2) and extensions
- Three different problems:
 - To evaluate a polynomial in a single point
 - **2** To evaluate a polynomial in s distinct points
 - **③** To evaluate f polynomials in the same point

Evaluation of p(x) over GF(2) in a single point α in $GF(2^m)$

$$p(x) = p_0 + p_1 x + p_2 x^2 + \dots + p_n x^n$$
 $p_i \in GF(2)$ $\ell = \lfloor \frac{n}{2} \rfloor$

$$p(x) = p_0 + p_2 x^2 + \dots + p_{2\ell} x^{2\ell} + x(p_1 + p_3 x^2 + p_5 x^4 + \dots + p_{2\ell+1} x^{2\ell})$$
$$p(x) = p_{00}(x)^2 + xp_{01}(x)^2 \Rightarrow p(\alpha) = p_{00}(\alpha)^2 + xp_{01}(\alpha)^2$$

Evaluation of $p(\alpha)$ requires

- The evaluation of $p_{00}(\alpha)$ and $p_{01}(\alpha)$ of degree n/2
- 2 The computation of 2 squares
- The computation of 1 product $\alpha p_{01}(\alpha)^2$
- The computation of 1 sum

The evaluation of $p_{00}(a)$ and $p_{01}(\alpha)$ of degree n/2 can be done with

- n/2 multiplications
- n-1 additions

The total number of operations for obtaining $p(\alpha)$ is

- 3 + n/2 multiplications
- *n* additions

The procedure can be re-applied iteratively to every $p_{ij}(\alpha)$ and their descendants

At each iteration the number of polynomials is doubled and their degrees are halved

st										# des
0					p(x)					1
1			$p_0^0(x)$				$p_1^0(x)$			2
2		$p_0^1(x)$		$p_1^1(x)$		$p_2^1(x)$		$p_{3}^{1}(x)$		4
					÷					
L	$p_0^L(x)$	$p_1^L(x)$	$p_2^L(x)$						$p_s^L(x)$	2^L

The reconstruction starts from the bottom level (L) and ends with $p(\alpha)$ after L steps

Notational remark: $p_j^i(x) = p_{ij}(x)$

Computational complexity

- After L steps we have 2^L polynomials of degree $\lfloor \frac{n}{2^L} \rfloor$
- Number di operations
 - [ⁿ/_{2L}] powers of α
 [n additions for producing 2^L polynomials p_{Lj}(α)
 [2^{L+1} 2 = 2^L + ··· + 2 squares of the polynomials p_{ij}(α)
 [2^L 1 = 2^{L-1} + ··· + 1 additions for reconstructing p(α)
 [2^L 1 = 2^{L-1} + ··· + 1 products for reconstructing p(α)
 [2^L 1 = 2^{L-1} + ··· + 1 products for reconstructing p(α)
 [2^L 1 = 2^{L-1} + ··· + 1 products for reconstructing p(α)
 [2^L 1 = 2^{L-1} + ··· + 1 products for reconstructing p(α)
 [2^L 1 = 2^{L-1} + ··· + 1 products for reconstructing p(α)
 [2^L 1 = 2^{L-1} + ··· + 1 products for reconstructing p(α)
 [2^L 1 = 2^{L-1} + ··· + 1 products for reconstructing p(α)
 [2^L 1 = 2^{L-1} + ··· + 1 products for reconstructing p(α)
 [2^L 1 = 2^{L-1} + ··· + 1 products for reconstructing p(α)
 [2^L 1 = 2^{L-1} + ··· + 1 products for reconstructing p(α)
 [2^L 1 = 2^{L-1} + ··· + 1 products for reconstructing p(α)
 [2^L 1 = 2^{L-1} + ··· + 1 products for reconstructing p(α)
 [2^L 1 = 2^{L-1} + ··· + 1 products for reconstructing p(α)
 [2^L 1 = 2^{L-1} + ··· + 1 products for reconstructing p(α)
 [2^L 1 = 2^{L-1} + ··· + 1 products for reconstructing p(α)
 [2^L 1 = 2^{L-1} + ··· + 1 products for reconstructing p(α)
 [2^L 1 = 2^{L-1} + ··· + 1 products for reconstructing p(α)
 [2^L 1 = 2^{L-1} + ··· + 1 products for products f
- Total number of arithmetic operations

$$\begin{array}{c} \bullet \quad 3 \cdot 2^L - 3 + \lfloor \frac{n}{2^L} \rfloor \text{ products} \\ \bullet \quad n + 2^L - 1 \text{ additions} \end{array}$$

Optimal value of ${\cal L}$

$$3 \cdot 2^L \approx \frac{n}{2^L}$$
$$2^L \approx \sqrt{\frac{n}{3}}$$

The total number of products is approximately $2\sqrt{3n}$ The total number of sums can be reduced to about

 $\frac{n}{\ln(n)}$

re-utilizing sums in the evaluations of 2^L polynomials at level L

Polynomial with coefficients in $GF(2^s)$

The computation is reduced to the evaluation of s polynomials with coefficients in GF(2)

$$p(x) = p_0(x) + \alpha p_1(x) + \alpha^2 p_2(x) + \dots + \alpha^s p_s(x)$$

Typical cases $n = 2^m$ or $2^m - 1$ Asymptotic number of multiplications

 $O(\sqrt{n}\ln(n))$

Open Problems

- Find an upper bound to the multiplicative complexity necessary to evaluate a polynomial of degree *n* over finite fields (over infinite fields Horner's rule is optimal, according to Borodin and Munro)
- Can Berlekamp-Massey algorithm be improved when both t and n are large? (the complexity is t² log(t) according to von zur Gathen)

Open Problems

- Find the minimum number of additions necessary to evaluate a polynomial of degree *n* over finite fields (over infinite fields the Horner's rule is optimal, according to Borodin and Munro)
- Find the constant c(p) such that c(p) n/ln(n) is a tight upper bound to the additive complexity for evaluating a polynomial of degree n over finite fields of characteristic p.

References

- Borodin A., Munro I., The Computational Complexity of Algebraic Numeric Problems, Elsevier Computer, New York, 1975
- Budaghyan L., Carlet C., Classes of Quadratic APN Trinomials and Hexanomials and Related Structures, IEEE Trans. Inform. Theory, 54 (2008), no. 5, 2354-2357;
- Bracken C., Byrne E., Markin N., McGuire G., New families of quadratic almost perfect nonlinear trinomials and multinomials. Finite Fields Appl. 14 (2008), no. 3, 703-714.
- Dillon J., APN polynomials and related codes, conference talk at Banff International Research Station, November, 2006.

References

- Elia M., Schipani D., Improvements on the Cantor-Zassenhaus Factorization Algorithm, http://www.math.uzh.ch/fileadmin/user/davide/publikation/Cam
- Interlando J.C., Byrne E., Rosenthal J., The Gate Complexity of Syndrome Decoding of Hamming Codes, Proceedings of the Tenth International Conference on Applications of Computer Algebra, 2004, pp. 33-37.
- Solution Knuth D., The Art of Computer programming, vol I, II, Academic Press, 1980.
- Schipani D., Elia M., Rosenthal J., Efficient evaluations of polynomials over finite fields, http://arxiv.org/PS cache/arxiv/pdf/1102/1102.4771v1.pdf