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Preamble

Polynomials have always occupied a prominent position in
mathematics. In recent time their use has become
unavoidable in cryptography.

Part I: Short excursus on various types of polynomials
used in cryptography.

Part II: Comments on computing roots, and on evaluating
polynomials over finite fields.
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Nonlinear transformations over finite fields

All functions from GF (q) into GF (q) are polynomials

A function f(x) over GF (2m) is Almost Perfect Nonlinear
(APN) if

f(x+ a) + f(x) + b has at most two zeros in the field for
every a ̸= 0, and b

x→ f(x+ a) + f(x) is 2 to 1 in GF (2m)
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Nonlinear transformations over finite fields

Until 2006, all known APN functions were monomials or
binomials.

Examples:

f(x) = x3 , f(x) = x6 + x5 ∈ GF (27)

f(x) = x2
k+1 x ∈ GF (2m) , (k,m) = 1, Gold

f(x) = x2
2k−2k+1 x ∈ GF (2m) , (k,m) = 1, Kasami
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Nonlinear transformations over finite fields

John Dillon (2006) introduced APN functions which were
trinomials noting the existing relation between these functions
and two-error correcting codes with parity-check matrix:

H =

(
1 α α2 · · · αj · · · α2m−2

f(1) f(α) f(α2) · · · f(αj) · · · f(α2m−2)

)
α a primitive element in GF (2m)

H parity-check matrix of a (2m− 1, 2m− 1− 2m, 5) code

R received vector

HR = S syndrome vector
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Nonlinear transformations over finite fields

System equations for finding the error positions j and h{
αj + αh = S1

f(αj) + f(αh) = S2 → f(αh + S1) + f(αh) = S2

Unique solution ←→ f(x) is an APN function
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Nonlinear transformations over finite fields

Examples

f(x) = x3 on GF (24) (BCH)
f(x) = x3 + x2 + x on GF (24) (BCH code)
f(x) = x5 + x4 + x3 + x2 + x on GF (27) (equiv. to a monomial)
f(x) = α7x48 + αx9 + x6 on GF (26), α6 + α+ 1 = 0

Recently, classes of polynomials with more than three terms
have been found

f(x) = b2
k
x2

k+s+2k + bx2
k+1 + cx2

k+1 +
∑k−1

i=1 rix
2i+k+2i

x ∈ GF (22k)
(s, 2k) = 1 , c ∈ GF (2k) , b ∈ GF (22k) , ri ∈ GF (2k)
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Rabin and RSA transformations

Operations in rings of residues modulo M = pq

e (= 2) divisor of ϕ(M)

f(X) = Xe = a mod M

To invert the function f(X) and to factor M are equivalent
problems

♢ E prime with ϕ(M)

f(x) = xE = a mod M

♢ Are f(x) inversion and M factorization equivalent
problems?
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Power computation

The computation of Xm in any associative domain D needs at
most 2 log2m products in D

m = m0 +m12 +m22
2 + · · ·+ms2

s mi ∈ {0, 1}

Xm = Xm0+m12+m222+···+ms2s = Xm0(X2)m1(X22)m2 · · · (X2s)ms

The minimum number of products is given by the minimum
length L of an addition chain

a0, a1, . . . , aL, with a0 = 1 and aj = ai + at i, t < j

Example: m = 47 min chain length < 2 log2 47 < 11.2

1) 1, 2, 4, 8, 16, 32, 40, 44, 46, 47 L = 9,

2) 1, 2, 4, 5, 10, 20, 40, 45, 47 L = 8 minimum
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Elliptic curves

E[Fq] elliptic curve over a finite field Fq

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 ai ∈ Fq

Q(x, y) point on E[Fq] x, y ∈ E[Fq]

Q→ kQ = (k0 + k12 + k22
2 + . . .+ ks2

s)Q

Point Doubling ⇒ Q→ 2Q

Point Addition ⇒ P,Q→ P +Q
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Elliptic curves

Sum and duplication of points

P (x1, y1), Q(x2, y2) points on E[F]
Addition S = P +Q , Doubling 2P = P + P

m =
y2 − y1
x2 − x1

, m =
3x21 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3

x3 = m2 − a1m− a2 − x1 − x2
y3 = −a1x3 − a3 − y1 −m(x3 − x1)
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Secret-sharing (Shamir)

A common secret m is ”shared” between any group of k
subjects out of n subjects

The secret m is encrypted and n private keys are generated
as follows:

– A random polynomial of degree k is selected

S(x) = xk + a1x
k−1 + · · ·+ ak−1x+m

– xi Public identifier of a subject
– S(xi) = yi Private key for sharing
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Secret-sharing

Recovering polynomial S(x) knowing the value of k pairs
(xi, yi)

S(x) is rebuilt using the Lagrange interpolation

L(x) =
∏k

i=1(x− xi)

S(x) =
k∑

i=1

yi
L(x)

x− xi

The common secret m is obtained as

S(0) =
k∑

i=1

yi
L(0)

0− xi
= (−1)k−1

k∑
i=1

yi

∏k
j=1 xj

xi
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Transformations in AES

The Sub-byte transformation is applied to all rows of the data
matrix

Polynomials over GF (28) :

Data matrix row Xi(x) = Xi0 +Xi1x+Xi2x
2 +Xi3x

3

Encryption polynomial a(x) = a0 + a1x+ a2x
2 + a3x

3

Encrypted row Xi(x)⇒ Xi(x)a(x) mod (x4 − 1)
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Deciphering in the McEliece scheme

Public key: binary n× k matrix G = PGB
P n× n secret permutation matrix
B k × k binary nonsingular secret matrix
G binary n× k secret generator matrix of a
cyclic or Goppa (n, k, 2t+ 1) code over GF (2)
α primitive element of GF (2m), n = 2m − 1

Enciphering: information vector x
error vector with t errors e
encrypted message r = Gx+ e
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Deciphering in the McEliece scheme

Deciphering ⇒ decoding the vector r,
i.e. correction of t errors:

- Computation of R = P−1r, the modified received vector

- Computation of 2t syndromes

- Computation of the error locator polynomial σ(z)
(Berlekamp-Massey)

- Error location: evaluation of σ(z) in n points.
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Deciphering in the McEliece scheme

R = (R1, R2, . . . , Rn) modified received vector

R(x) =
∑n−1

i=0 Rix
i polynomial of degree n− 1

Computation of 2t syndromes Si = R(αi), i = 1, . . . , 2t

Construction of σ(z) of degree t

Vandermonde→ GPZ→ Berlekamp-Massey

Evaluation of σ(z) in n points αj ∈ GF (2m) (Chien
search): an error is in position j if

σ(αj) = 0
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Key distribution in consumer systems

Parameters:

m common access key

N number of users

ku private key of user u

Braodcast hash function h(x), and polynomial

P (x) =

N∏
u=1

(x− h(ku)) +m =

N∑
i=0

Pix
i

User u actions:

h(ku) evaluation

m = P (h(ku)) evaluation of P (x) to get the key m
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Error-correcting codes for bio-imprints

To store or distribute bio-imprints keeping the original
imprint secret, i.e. it should be difficult to recover the
original sample imprint from its stored version

Automatically recognizing a claimed identity, which
requires fast checking of whether the imprint taken is
among a stored set of encrypted sample imprints, given
that the imprint taken is corrupted by sensor errors.
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Error-correcting codes for bio-imprints

The model

x sample bio-imprint encoded as a binary stream of k bits

C code word of an (n, k) t-error correcting code in GF (q)

t has the meaning of a threshold

z = C + (x, 0)) encrypted bio-imprint

Cheking a bio-imprint is a kind of incomplete decoding of the
(n.k)-code with n very large
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Error-correcting codes for bio-imprints

Check:

y k-dimensional vector encoding the bio-imprint taken

d = (y, 0)→ R = z + d = e+ C

C code word corrupted by ℓ errors, i.e. vector (x− y)

- the number of errors ℓ is computed and compared with t
if ℓ < t test passed, if ℓ > t test not passed

- Operatively σ(z) is computed and it is checked whether all
roots are in GF(q), i.e.

gcd(σ(z), zq − 1)
?
= σ(z)

The most expensive task is the computation of the
syndromes, and sub-orderly the computation of σ(z) via
Berlekamp-Massey algorithm.
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Part II

Computation of the roots of polynomials in their full
splitting finite field. Application to decoding cyclic and
Goppa codes.

Evaluation of polynomials over finite fields: a fast
algorithm that admits of asymptotic upper bounds to the
number of products and sums respectively equal to

c
√
n , c′

n

logn
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Roots of Polynomials over GF (q)

Two steps:

Computation of the roots of σ(x), defined over GF (q) and
full split in GF (qm) by means of the Cantor-Zassenhaus
algorithm. The roots β are expressed in a polynomial basis
of GF (qm)

Computation of the exponential representation β = αj ,
given α, primitive in GF (qm), by means of Shanks’
algorithm.

The usual method applied in the decoders requires the
evaluation of σ(x) in qm points, thus has complexity

qm × complexity of σ(αi) evaluation

to perform both tasks.
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Cantor-Zassenhaus’ Algorithm in characteristic 2

σ(x) polynomial of degree t in F2m

L = 22m−1
3 ω random in F22m

ζ primitive cubic root of unity in F22m

Compute a(x) = (x+ ω)L mod σ(x)

...1 If a(x) ̸= 1, ζ, ζ2 then σ(x) has a common factor with at
least one of the following polynomials

a(x), a(x)− 1, a(x)− ζ, a(x)− ζ2 ,

with probability greater than 8
9 .

...2 All roots are obtained with at most t repetitions.

The largest computational cost is given by the computation of
a(x) which entails computing powers of polynomial modulo
another polynomial in finite felds.
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Shanks’ algorithm for discrete logarithm

Shank’s algorithm:

The exponent ℓ in the equality

αℓ = b0 + b1α+ · · ·+ bm−1α
m−1 .

is written in the form ℓ = ℓ0 + ℓ1⌈
√
n⌉.

A table T is constructed with ⌈
√
n⌉ entries αℓ1⌈

√
n⌉,

then a cycle of length ⌈
√
n⌉ is started computing

Aj = (b0+ b1α+ · · ·+ bm−1α
m−1)α−j j = 0, . . . , ⌈

√
n⌉−1 ,

and looking for Aj in the Table;

when a match is found with the κ-th entry, we set ℓ0 = j
and ℓ1 = κ, and the discrete logarithm ℓ is obtained as
j + κ⌈

√
n⌉.

This algorithm can be performed with complexity O(
√
n).

In our scenario, since we need to compute t roots, the
complexity is O(t

√
n).
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Evaluation of a polynomial in the point α

p(x) = p0 + p1x+ p2x
2 + · · ·+ pmxm

The direct evalutation needs

Computation of m powers αi

Computation of m products piα
i

Computation of m sums

Total 2m− 1 products and m sums

Horner’s Rule

p(x) = p0 + x(p1 + x(p2 + · · ·+ x(pm−1 + xpm) · · · )

needs m products and m sums
This rule is universal, i.e., it holds in every field (associative
ring), and is optimal if the field has an infinite number of
elements.
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Evaluation of a polynomial in the point α

In finite fields it is possible to do better

- The exemplification is restricted to GF (2) and extensions

- Three different problems:
...1 To evaluate a polynomial in a single point
...2 To evaluate a polynomial in s distinct points
...3 To evaluate f polynomials in the same point
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Evaluation of a polynomial in the point α

Evaluation of p(x) over GF (2) in a single point α in GF (2m)

p(x) = p0 + p1x+ p2x
2 + · · ·+ pnx

n pi ∈ GF (2) ℓ = ⌊n
2
⌋

p(x) = p0+p2x
2+· · ·+p2ℓx

2ℓ+x(p1+p3x
2+p5x

4+· · ·+p2ℓ+1x
2ℓ)

p(x) = p00(x)
2 + xp01(x)

2 ⇒ p(α) = p00(α)
2 + xp01(α)

2

Evaluation of p(α) requires
...1 The evaluation of p00(α) and p01(α) of degree n/2
...2 The computation of 2 squares
...3 The computation of 1 product αp01(α)

2

...4 The computation of 1 sum
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Evaluation of a polynomial in the point α

The evaluation of p00(a) and p01(α) of degree n/2 can be done
with

n/2 multiplications

n− 1 additions

The total number of operations for obtaining p(α) is

3 + n/2 multiplications

n additions

The procedure can be re-applied iteratively to every pij(α) and
their descendants
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At each iteration the number of polynomials is
doubled and their degrees are halved

st # des

0 p(x) 1

1 p00(x) p01(x) 2

2 p10(x) p11(x) p12(x) p13(x) 4

· · ·
... · · ·

L pL0 (x) pL1 (x) pL2 (x) · · · pLs (x) 2L

The reconstruction starts from the bottom level (L) and ends
with p(α) after L steps

Notational remark: pij(x) = pij(x)
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Evaluation of a polynomial in the point α

Computational complexity

After L steps we have 2L polynomials of degree ⌊ n
2L
⌋

Number di operations
...1 ⌊ n

2L
⌋ powers of α

...2 n additions for producing 2L polynomials pLj(α)

...3 2L+1 − 2 = 2L + · · ·+ 2 squares of the polynomials pij(α)

...4 2L − 1 = 2L−1 + · · ·+ 1 additions for reconstructing p(α)

...5 2L − 1 = 2L−1 + · · ·+ 1 products for reconstructing p(α)

Total number of arithmetic operations
...1 3 · 2L − 3 + ⌊ n

2L
⌋ products

...2 n+ 2L − 1 additions
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Evaluation of a polynomial in the point α

Optimal value of L

3 · 2L ≈ n

2L

2L ≈
√

n

3

The total number of products is approximately 2
√
3n

The total number of sums can be reduced to about

n

ln(n)

re-utilizing sums in the evaluations of 2L polynomials at level L



Polynomials and Cryptography

Evaluation of a polynomial in the point α

Polynomial with coefficients in GF (2s)

The computation is reduced to the evaluation of s polynomials
with coefficients in GF (2)

p(x) = p0(x) + αp1(x) + α2p2(x) + · · ·+ αsps(x)

Typical cases n = 2m or 2m − 1
Asymptotic number of multiplications

O(
√
n ln(n))
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Open Problems

...1 Find an upper bound to the multiplicative complexity
necessary to evaluate a polynomial of degree n over finite
fields (over infinite fields Horner’s rule is optimal, according
to Borodin and Munro)

...2 Can Berlekamp-Massey algorithm be improved when both
t and n are large? (the complexity is t2 log(t) according to
von zur Gathen)



Polynomials and Cryptography

Open Problems

...1 Find the minimum number of additions necessary to
evaluate a polynomial of degree n over finite fields (over
infinite fields the Horner’s rule is optimal, according to
Borodin and Munro)

...2 Find the constant c(p) such that c(p) n
ln(n) is a tight upper

bound to the additive complexity for evaluating a
polynomial of degree n over finite fields of characteristic p.
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