Hybrid lattices and the NTWO cryptosystem *

Emmanuela Orsini

Dipartimento di Matematica Università di Pisa, Italy

Primo Workshop di Crittografia "BunnyTN", March 10, 2011 Dipartimento di Matematica, Università di Trento

(*joint work with Carlo Traverso)

Outline

1 Lattices and codes

Hybrid lattices

3 NTWO and the Lagrange-Coppersmith-Shamir lattice

- ロ > - 4 目 > - 4 目 > - 目 - りへの

Lattices

A **lattice** in \mathbb{Z}^n is the set of all integer linear combination of (linearly indipendent) basis vectors (b_1, \ldots, b_n) :

$$\mathcal{L} = \sum_{i=1}^{n} b_i \cdot \mathbb{Z} = \left\{ Bx \mid x_i \in \mathbb{Z}, b_i \in \mathbb{Z}^n \right\}.$$

Lattices

A **lattice** in \mathbb{Z}^n is the set of all integer linear combination of (linearly indipendent) basis vectors (b_1, \ldots, b_n) :

$$\mathcal{L} = \sum_{i=1}^{n} b_i \cdot \mathbb{Z} = \big\{ Bx \mid x_i \in \mathbb{Z}, b_i \in \mathbb{Z}^n \big\}.$$

$$\triangleright B = [b_1, \ldots, b_n] \in \mathbb{Z}^{n \times n}$$

 \triangleright The same lattice has many bases

$$\mathcal{L} = \sum_{i=1}^n c_i \cdot \mathbb{Z}$$

Definition (Lattice) A discrete additive subgroup of \mathbb{Z}^m

Minimum Distance

• Minimum distance:

$$\lambda_1 = \min_{\substack{x, y \in \mathcal{L}, x \neq y \\ \min_{x \in \mathcal{L}, x \neq 0} \|x\|}} \|x - y\|$$

• Distance function:

$$\mu(t,\mathcal{L}) = \min_{x \in \mathcal{L}} \|t - x\|$$

Lattice problems: SVP

Definition (SVP, Shortest Vector Problem)

Given a basis $B \in \mathbb{Z}^{n \times n}$ of \mathcal{L} , find a nonzero lattice vector Bx (with $x \in \mathbb{Z}^n / \{0\}$) of length at most $||Bx|| \leq \lambda_1$.

Lattice problems: CVP

Definition (CVP, Closest Vector Problem)

Given a basis $B \in \mathbb{Z}^{n \times n}$ and a target vector $t \in \mathbb{Z}^n$, find a lattice vector Bx closest to the target t, i.e., find an integer vector $x \in \mathbb{Z}^n$ such that $\|Bx - t\| \le \mu$.

Lattice problems: SVP and CVP

We consider the following problem (equivalent CVP):

SMALLEST RESIDUE PROBLEM (SRP) Input: $L \subseteq \mathbb{Z}^n$, $v \in \mathbb{Z}^n$ Question: the smallest $v' \in \mathbb{Z}^n$ s.t. $v - v' \in L$

Lattice problems: SVP and CVP

We consider the following problem (equivalent CVP):

SMALLEST RESIDUE PROBLEM (SRP) Input: $L \subseteq \mathbb{Z}^n$, $v \in \mathbb{Z}^n$ Question: the smallest $v' \in \mathbb{Z}^n$ s.t. $v - v' \in L$

• The exact version of these problems is NP-hard.

Reduction algorithms (LLL, BKZ)

Lattice problems: SVP and CVP

We consider the following problem (equivalent CVP):

SMALLEST RESIDUE PROBLEM (SRP) Input: $L \subseteq \mathbb{Z}^n$, $v \in \mathbb{Z}^n$ Question: the smallest $v' \in \mathbb{Z}^n$ s.t. $v - v' \in L$

- The exact version of these problems is NP-hard.
- Reduction algorithms (LLL, BKZ)

Lattices and codes

▶ Lattices $\longrightarrow \mathbb{Z}^n$, Euclidean distance

Let $w = (w_1, \ldots, w_n) \in \mathbb{N}^n$ be weight vector, $a = (a_1, \ldots, a_n) \in \mathbb{Z}^n$:

$$||wa||_2 = \sqrt{\sum w_i a_i^2}.$$

Instead of l_2 one can choose a different norm l_r , $1 \le r \le \infty$.

▶ Codes $\longrightarrow \mathbb{K}^n$, Hamming distance

Let $x, y \in \mathbb{K}^n$, $d_H(x, y) = \#$ of coordinates on which x and y differ.

- K = Z/p: C ⊆ (Z/p)ⁿ → L ⊆ Zⁿ; the CVP in L is equivalent to the MLD (Maximum Likelihood Decoding).
- the situation is different when p > 2

Hybrid lattices

A hybrid lattice is a subgroup $L \subseteq \mathbb{Z}^n$ with a mixed distance.

- Reordering the variables we may assume to have a block with Euclidean distance and another block with Hamming distance.
- A hybrid lattice with only the Hamming block is called a Hamming lattice.
- A hybrid lattice with only the Euclidean block will be called a *standard lattice*.
- *q*-ary lattices : $q\mathbb{Z}^n \subseteq L \subseteq \mathbb{Z}^n$, for a suitable $q \in \mathbb{N}$ (possible prime).
 - the membership of a vector $x \in \mathbb{Z}^n$ in L is determined by x mod q;
 - these lattices are in one-one correspondence with linear code in \mathbb{Z}_q^n .

SRP in hybrid lattices. Example

Let q = 131 and l = (1, 4, 17, 53) (*q*-interpolators). $\forall m \in \mathbb{Z}_q$, we can compute the length of the smallest integer vector (a, b, c, d) (multipliers) such that

 $m \equiv 1a + 4b + 17c + 53d \mod q$

This length is $\leq \sqrt{7}$ and in average is 1.89.

SRP in hybrid lattices. Example

Let q = 131 and l = (1, 4, 17, 53) (*q*-interpolators). $\forall m \in \mathbb{Z}_q$, we can compute the length of the smallest integer vector (a, b, c, d) (multipliers) such that

 $m \equiv 1a + 4b + 17c + 53d \mod q$

This length is $\leq \sqrt{7}$ and in average is 1.89.

SRP in hybrid lattices. Example

Let q = 131 and l = (1, 4, 17, 53) (*q*-interpolators). $\forall m \in \mathbb{Z}_q$, we can compute the length of the smallest integer vector (a, b, c, d) (multipliers) such that

 $m \equiv 1a + 4b + 17c + 53d \mod q$

This length is $\leq \sqrt{7}$ and in average is 1.89.

Let $L \subseteq \mathbb{Z}^n$ be an Hamming lattice, $q\mathbb{Z}^n \subseteq L$; $L' \subseteq \mathbb{Z}^{5n}$ be the standard lattice:

$$L' = \begin{pmatrix} L & 0 & 0 & 0 & 0 \\ I & I & 0 & 0 & 0 \\ 4I & 0 & I & 0 & 0 \\ 17I & 0 & 0 & I & 0 \\ 53I & 0 & 0 & 0 & I \end{pmatrix}$$

Let $a \in \mathbb{Z}^n$ and b the shortest residue of a modulo L. Then we define $a' = [a, 0, 0, 0, 0], b' = [b, 0, 0, 0, 0] \in \mathbb{Z}^{5n}$. Let \overline{b} be the SR of a'. We have $\|\overline{b}\|_2 \le \sqrt{7} d_H(b', 0)$ and $b_1 + 4b_2 + 17b_3 + 53b_4$ is $\equiv a \mod L$.

NTRU (Hoffstein, Pipher, Silverman (1998))

Notation and parameters

• $A = \mathbb{Z}[x]/(x^n - 1)$

- p, q prime numbers, $p \neq q$, p very small (2,3)
- Small polynomial: small coefficients (uniquely represented mod p), few monomials: small Euclidean and Hamming weight.

Private and public keys Private key: $f, g \in A, f$ invertible (mod q, p). f and g small. Public key: $h = g/f \in A/(q)$

Encryption $c = phr + m, r \in A$ random small polynomial, m small

Decryption

 $fc = pgr + fm \pmod{q} \pmod{q}$, and then lifting to $\phi \in A$, then reducing mod p, $\phi \equiv fm \pmod{p}$, and dividing by f mod p.

The Coppersmith-Shamir (or NTRU) lattice

NTRU can be seen as a lattice cryptosystem:

- $A = \mathbb{Z}[x]/(x^n 1) \cong \mathbb{Z}^n$ as abelian group;
- In A^2 , L_{CS} generated by (q,0) and (h,1) is a full-dimensional lattice

$$L_{CS} = \begin{pmatrix} qI & 0 \\ H & I \end{pmatrix} = \begin{pmatrix} q & 0 & \dots & 0 & 0 & 0 & \dots & 0 \\ 0 & q & \dots & 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & q & 0 & 0 & \dots & 0 \\ h_0 & h_1 & \dots & h_{N-1} & 1 & 0 & \dots & 0 \\ h_{N-1} & h_0 & \dots & h_{N-2} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ h_1 & h_2 & \dots & h_0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

The Coppersmith-Shamir (or NTRU) lattice

NTRU can be seen as a lattice cryptosystem:

- $A = \mathbb{Z}[x]/(x^n 1) \cong \mathbb{Z}^n$ as abelian group;
- In A^2 , L_{CS} generated by (q, 0) and (h, 1) is a full-dimensional lattice

$$L_{CS} = \begin{pmatrix} qI & 0 \\ H & I \end{pmatrix} = \begin{pmatrix} q & 0 & \dots & 0 & 0 & 0 & \dots & 0 \\ 0 & q & \dots & 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & q & 0 & 0 & \dots & 0 \\ h_0 & h_1 & \dots & h_{N-1} & 1 & 0 & \dots & 0 \\ h_{N-1} & h_0 & \dots & h_{N-2} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ h_1 & h_2 & \dots & h_0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

▷ Key attacks: $(g, f) \in L_{CS}$ and it is with high probability the SV ▷ Message attack: [m, pr] is presumably the shortest residue of [c, 0].

NTWO: Notation

M. Caboara, F. Caruso, C. Traverso. *Gröbner Bases in Public Key Cryptography.*, Proc. ISSAC '08, ACM (2008), pp. 315–323.

NTWO: Notation

- M. Caboara, F. Caruso, C. Traverso. Gröbner Bases in Public Key Cryptography., Proc. ISSAC '08, ACM (2008), pp. 315–323.
 - $A = \mathbb{Z}[X]/(X^N 1) = \mathbb{Z}[x_1, \dots, x_k]/(x_1^{n_1} 1, \dots, x_k^{n_k} 1)$ (multivariate polynomial algebra)
 - p, q prime numbers such that p = 2, 3 and $q \neq p$
 - $n_i \mid (q-1)$, for each n_i

k = 2 and $n_1 = n_2 = n$, so that $A = \mathbb{Z}[x, y]/(x^n - 1, y^n - 1)$

NTWO: Key preparation

$$\blacktriangleright A = \mathbb{Z}[x, y]/(x^n - 1, y^n - 1)$$

- $\Omega = \{(\omega^i, \omega^j) \mid \omega \text{ is a primitive } n\text{-th root of } 1\}$ = { roots of $(x^n - 1, y^n - 1)\}$
- $E \subset \Omega$ small; $\alpha \in A/q$ a polynomial having support E
- $f, g \in A$ small polynomials:
 - f invertible (mod p) (f_p^{-1}) and (mod α) $(f' \in A/q \text{ s.t. } ff' \equiv 1 \pmod{\alpha})$
 - g invertible (mod α)

NTWO: Key preparation

$$\blacktriangleright A = \mathbb{Z}[x, y]/(x^n - 1, y^n - 1)$$

- $\Omega = \{(\omega^i, \omega^j) \mid \omega \text{ is a primitive } n\text{-th root of } 1\}$ = { roots of $(x^n - 1, y^n - 1)\}$
- $E \subset \Omega$ small; $\alpha \in A/q$ a polynomial having support E
- $f, g \in A$ small polynomials:
 - f invertible (mod p) (f_p^{-1}) and (mod α) $(f' \in A/q \text{ s.t. } ff' \equiv 1 \pmod{\alpha})$
 - g invertible (mod α)

Public key $h = gf' + \alpha \in A/q.$

Private key $f, g, J = (\alpha, q) \subseteq A; J$ is the **private ideal**

NTWO: encryption and decryption

Encryption

c = phr + m, $r \in A$ random small polynomial, m small

Decryption

$$fc = phr + fm \Rightarrow fc = pgr + fm + \beta$$

where $\beta \in J$ is unknown to the receiver. **We can conjecture that** β **is the closest vector to** *fc*. So if we have a "good" basis of J we can correctly identify β . We have pgr + fm and we can continue like in NTRU. If pgr + fm is a moderate polynomial ϕ in A, then we reduce ϕ modulo p and then we multiply by f_p^{-1} .

• The case k = 1 and J = (q) is just the NTRU cryptosystem.

The Lagrange basis

For each point (a, b) of Ω define a Lagrange interpolator

$$\lambda_{a,b} = \frac{ab(x^n-1)(y^n-1)}{n^2(x-a)(y-b)}$$

being a polynomial vanishing everywhere in Ω except (a, b), where its value is 1. The $\lambda_{a,b}$ are a basis of A/q (the Lagrange basis).

J (as a vector subspace of A/q) has a basis composed of the $\lambda_{a,b}$ such that $(a, b) \in E$. As ideal, it is generated by $\sum_{(a,b)\in E} \lambda_{a,b}$, or by any other polynomial not vanishing in E (every ideal is generated by polynomials having the same support of the ideal).

The Lagrange-Coppersmith-Shamir lattice

NTWO can be seen as a lattice cryptosystem:

- $A = \mathbb{Z}[x, y]/(x^n 1)(y^n 1) \cong \mathbb{Z}^{n^2}$ as abelian group;
- In A^3 , L_{LCS} generated by (q, 0, 0), (h, 1, 0) and (1, 0, 1) is a full-dimensional lattice

$$L_{LCS} = \left(\begin{array}{rrr} qI & 0 & 0\\ H & I & 0\\ L & 0 & I \end{array}\right)$$

The Lagrange-Coppersmith-Shamir lattice

NTWO can be seen as a lattice cryptosystem:

- $A = \mathbb{Z}[x, y]/(x^n 1)(y^n 1) \cong \mathbb{Z}^{n^2}$ as abelian group;
- In A^3 , L_{LCS} generated by (q, 0, 0), (h, 1, 0) and (1, 0, 1) is a full-dimensional lattice

$$L_{LCS} = \left(\begin{array}{rrr} qI & 0 & 0\\ H & I & 0\\ L & 0 & I \end{array}\right)$$

The Lagrange-Coppersmith-Shamir lattice

NTWO can be seen as a lattice cryptosystem:

- $A = \mathbb{Z}[x, y]/(x^n 1)(y^n 1) \cong \mathbb{Z}^{n^2}$ as abelian group;
- In A^3 , L_{LCS} generated by (q, 0, 0), (h, 1, 0) and (1, 0, 1) is a full-dimensional lattice

$$L_{LCS} = \left(\begin{array}{rrr} qI & 0 & 0\\ H & I & 0\\ L & 0 & I \end{array}\right)$$

- ▷ Key attacks: $(g, f, \alpha) \in L_{LCS}$
- \triangleright (g, f, α) is with high probability the SV (Euclidean + Hamming)

Expanded NTWO lattice

Find a small set of interpolators (c_1, \ldots, c_m) of elements of \mathbb{Z}/q , such that every $a \in \mathbb{Z}/q$ can be represented as $\sum a_i c_i$, with (a_1, \ldots, a_m) of small Euclidean norm.

• We can map the expanded lattice to the LCS lattice:

$$(x, y, a_1, \ldots, a_m) \longmapsto (x, y, \sum a_i c_i)$$

- Elements of small Hamming weight are represented by elements of (slightly larger) Euclidean weight.
- Attack to the NTWO key, but the increase in dimension makes the problem much harder.

Expanded NTWO lattice

Find a small set of interpolators (c_1, \ldots, c_m) of elements of \mathbb{Z}/q , such that every $a \in \mathbb{Z}/q$ can be represented as $\sum a_i c_i$, with (a_1, \ldots, a_m) of small Euclidean norm.

$$\left(\begin{array}{ccccccccc} qI & 0 & 0 & 0 & \dots & 0 \\ H & I & 0 & 0 & \dots & 0 \\ c_1L & 0 & I & 0 & \dots & 0 \\ c_2L & 0 & 0 & I & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ c_mL & 0 & 0 & 0 & \dots & 1 \end{array}\right)$$

• We can map the expanded lattice to the LCS lattice:

$$(x, y, a_1, \ldots, a_m) \longmapsto (x, y, \sum a_i c_i)$$

- Elements of small Hamming weight are represented by elements of (slightly larger) Euclidean weight.
- Attack to the NTWO key, but the increase in dimension makes the problem much harder.

Expanded NTWO lattice

Find a small set of interpolators (c_1, \ldots, c_m) of elements of \mathbb{Z}/q , such that every $a \in \mathbb{Z}/q$ can be represented as $\sum a_i c_i$, with (a_1, \ldots, a_m) of small Euclidean norm.

$$\left(\begin{array}{ccccccccc} qI & 0 & 0 & 0 & \dots & 0 \\ H & I & 0 & 0 & \dots & 0 \\ c_1L & 0 & I & 0 & \dots & 0 \\ c_2L & 0 & 0 & I & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ c_mL & 0 & 0 & 0 & \dots & 1 \end{array}\right)$$

• We can map the expanded lattice to the LCS lattice:

$$(x, y, a_1, \ldots, a_m) \longmapsto (x, y, \sum a_i c_i)$$

- Elements of small Hamming weight are represented by elements of (slightly larger) Euclidean weight.
- Attack to the NTWO key, but the increase in dimension makes the problem much harder.

Parameters for n, p, q

We experimented mainly p = 2, and

n = 7	q = 29,43
n = 9	q = 19, 37, 73
n = 11	q=67,89
n = 13	q = 53, 79, 131, 157
n = 17	q = 103, 137, 239
n = 19	q=191,229
n = 23	q = 47, 139, 277, 461
n = 29	q = 59, 233, 349, 523

n = 3, 5 have been used for toy examples.

Cracking a key is easy up to n = 7, it can be done sometimes with n = 9, it has been impossible with 3 days of computation for n = 11. No message has ever been cracked with n = 13 or more.

Conclusions and further work

We have shown that CVP in hybrid lattices can be useful as a hardcore problem for the construction of cryptosystems.
NTWO has a much more involved decryption, but it seems to allow considerably shorter keys (f, g) and slightly larger r and m, making the attacks to the messages more difficult.

Prepare an efficient production implementation. Extensive tests with different q, p and n (and smallnes bounds).

Discover what properties (of the private ideal especially) produce keys that

- make decoding easy and reliable;
- make breaking messages harder

Study alternatives to hybrid lattice reduction

Conclusions and further work

We have shown that CVP in hybrid lattices can be useful as a hardcore problem for the construction of cryptosystems.
NTWO has a much more involved decryption, but it seems to allow considerably shorter keys (f, g) and slightly larger r and m, making the attacks to the messages more difficult.

Prepare an efficient production implementation. Extensive tests with different q, p and n (and smallnes bounds).

Discover what properties (of the private ideal especially) produce keys that

- make decoding easy and reliable;
- make breaking messages harder

Study alternatives to hybrid lattice reduction

Conclusions and further work

We have shown that CVP in hybrid lattices can be useful as a hardcore problem for the construction of cryptosystems.
NTWO has a much more involved decryption, but it seems to allow considerably shorter keys (f, g) and slightly larger r and m, making the attacks to the messages more difficult.

Prepare an efficient production implementation. Extensive tests with different q, p and n (and smallnes bounds).

Discover what properties (of the private ideal especially) produce keys that

- make decoding easy and reliable;
- make breaking messages harder

Study alternatives to hybrid lattice reduction