Hybrid lattices and the NTWO cryptosystem

Emmanuela Orsini
Dipartimento di Matematica
Università di Pisa, Italy

Primo Workshop di Crittografia "BunnyTN", March 10, 2011
Dipartimento di Matematica, Università di Trento

(*joint work with Carlo Traverso)

Outline

(1) Lattices and codes
(2) Hybrid lattices
(3) NTWO and the Lagrange-Coppersmith-Shamir lattice

Lattices

A lattice in \mathbb{Z}^{n} is the set of all integer linear combination of (linearly indipendent) basis vectors (b_{1}, \ldots, b_{n}):

$$
\mathcal{L}=\sum_{i=1}^{n} b_{i} \cdot \mathbb{Z}=\left\{B x \mid x_{i} \in \mathbb{Z}, b_{i} \in \mathbb{Z}^{n}\right\} .
$$

Lattices

A lattice in \mathbb{Z}^{n} is the set of all integer linear combination of (linearly indipendent) basis vectors (b_{1}, \ldots, b_{n}):

$$
\mathcal{L}=\sum_{i=1}^{n} b_{i} \cdot \mathbb{Z}=\left\{B x \mid x_{i} \in \mathbb{Z}, b_{i} \in \mathbb{Z}^{n}\right\} .
$$

$\triangleright B=\left[b_{1}, \ldots, b_{n}\right] \in \mathbb{Z}^{n \times n}$
\triangleright The same lattice has many bases

$$
\mathcal{L}=\sum_{i=1}^{n} c_{i} \cdot \mathbb{Z}
$$

Definition (Lattice)

A discrete additive subgroup of \mathbb{Z}^{m}

Minimum Distance

- Minimum distance:

$$
\begin{gathered}
\lambda_{1}=\min _{x, y \in \mathcal{L}, x \neq y}\|x-y\| \\
\min _{x \in \mathcal{L}, x \neq 0}\|x\|
\end{gathered}
$$

- Distance function:

$$
\mu(t, \mathcal{L})=\min _{x \in \mathcal{L}}\|t-x\|
$$

Lattice problems: SVP

Definition (SVP, Shortest Vector Problem)

Given a basis $B \in \mathbb{Z}^{n \times n}$ of \mathcal{L}, find a nonzero lattice vector $B x$ (with $x \in \mathbb{Z}^{n} /\{0\}$) of length at most $\|B x\| \leq \lambda_{1}$.

Lattice problems: CVP

Definition (CVP, Closest Vector Problem)
Given a basis $B \in \mathbb{Z}^{n \times n}$ and a target vector $t \in \mathbb{Z}^{n}$, find a lattice vector $B x$ closest to the target t, i.e., find an integer vector $x \in \mathbb{Z}^{n}$ such that $\|B x-t\| \leq \mu$.

Lattice problems: SVP and CVP

We consider the following problem (equivalent CVP):

SMALLEST RESIDUE PROBLEM (SRP)

Input: $L \subseteq \mathbb{Z}^{n}, v \in \mathbb{Z}^{n}$
Question: the smallest $v^{\prime} \in \mathbb{Z}^{n}$ s.t. $v-v^{\prime} \in L$

Lattice problems: SVP and CVP

We consider the following problem (equivalent CVP):

SMALLEST RESIDUE PROBLEM (SRP)

Input: $L \subseteq \mathbb{Z}^{n}, v \in \mathbb{Z}^{n}$
Question: the smallest $v^{\prime} \in \mathbb{Z}^{n}$ s.t. $v-v^{\prime} \in L$

- The exact version of these problems is NP-hard.

Lattice problems: SVP and CVP

We consider the following problem (equivalent CVP):

SMALLEST RESIDUE PROBLEM (SRP)

Input: $L \subseteq \mathbb{Z}^{n}, v \in \mathbb{Z}^{n}$
Question: the smallest $v^{\prime} \in \mathbb{Z}^{n}$ s.t. $v-v^{\prime} \in L$

- The exact version of these problems is NP-hard.
- Reduction algorithms (LLL, BKZ)

Lattices and codes

- Lattices $\longrightarrow \mathbb{Z}^{n}$, Euclidean distance

Let $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{N}^{n}$ be weight vector, $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$:

$$
\|w a\|_{2}=\sqrt{\sum w_{i} a_{i}^{2}}
$$

Instead of I_{2} one can choose a different norm $I_{r}, 1 \leq r \leq \infty$.
\wedge Codes $\longrightarrow \mathbb{K}^{n}$, Hamming distance
Let $x, y \in \mathbb{K}^{n}, d_{H}(x, y)=\#$ of coordinates on which x and y differ.

- $\mathbb{K}=\mathbb{Z} / p: C \subseteq(\mathbb{Z} / p)^{n} \longrightarrow L \subseteq \mathbb{Z}^{n}$; the CVP in L is equivalent to the MLD (Maximum Likelihood Decoding).
- $\mathbb{K}=\mathbb{Z} / 2$ (binary codes): no substantial difference between Hamming distance and Euclidean distance;
- the situation is different when $p>2$

Hybrid lattices

A hybrid lattice is a subgroup $L \subseteq \mathbb{Z}^{n}$ with a mixed distance.

- Reordering the variables we may assume to have a block with Euclidean distance and another block with Hamming distance.
- A hybrid lattice with only the Hamming block is called a Hamming lattice.
- A hybrid lattice with only the Euclidean block will be called a standard lattice.
- q-ary lattices : $q \mathbb{Z}^{n} \subseteq L \subseteq \mathbb{Z}^{n}$, for a suitable $q \in \mathbb{N}$ (possible prime).
- the membership of a vector $x \in \mathbb{Z}^{n}$ in L is determined by $x \bmod q$;
- these lattices are in one-one correspondence with linear code in \mathbb{Z}_{q}^{n}.

SRP in hybrid lattices. Example

Let $q=131$ and $/=(1,4,17,53)$ (q-interpolators).
$\forall m \in \mathbb{Z}_{q}$, we can compute the length of the smallest integer vector (a, b, c, d) (multipliers) such that

$$
m \equiv 1 a+4 b+17 c+53 d \quad \bmod q
$$

This length is $\leq \sqrt{7}$ and in average is 1.89 .

SRP in hybrid lattices. Example

Let $q=131$ and $/=(1,4,17,53)$ (q-interpolators).
$\forall m \in \mathbb{Z}_{q}$, we can compute the length of the smallest integer vector (a, b, c, d) (multipliers) such that

$$
m \equiv 1 a+4 b+17 c+53 d \quad \bmod q
$$

This length is $\leq \sqrt{7}$ and in average is 1.89 .

$$
\begin{gathered}
23=4-2 \cdot 17+53, \\
(0,1,-2,1)
\end{gathered}
$$

$$
\begin{gathered}
41=1+4-17+53, \\
\\
(1,1,-1,1)
\end{gathered}
$$

$$
43 \equiv-1-2 \cdot 17-53
$$

$$
(-1,0,-2,-1)
$$

SRP in hybrid lattices. Example

Let $q=131$ and $I=(1,4,17,53)$ (q-interpolators).
$\forall m \in \mathbb{Z}_{q}$, we can compute the length of the smallest integer vector (a, b, c, d) (multipliers) such that

$$
m \equiv 1 a+4 b+17 c+53 d \quad \bmod q
$$

This length is $\leq \sqrt{7}$ and in average is 1.89 .
Let $L \subseteq \mathbb{Z}^{n}$ be an Hamming lattice, $q \mathbb{Z}^{n} \subseteq L ; L^{\prime} \subseteq \mathbb{Z}^{5 n}$ be the standard lattice:

$$
L^{\prime}=\left(\begin{array}{ccccc}
L & 0 & 0 & 0 & 0 \\
I & I & 0 & 0 & 0 \\
4 I & 0 & I & 0 & 0 \\
17 I & 0 & 0 & I & 0 \\
53 I & 0 & 0 & 0 & I
\end{array}\right)
$$

Let $a \in \mathbb{Z}^{n}$ and b the shortest residue of a modulo L. Then we define $a^{\prime}=[a, 0,0,0,0], b^{\prime}=[b, 0,0,0,0] \in \mathbb{Z}^{5 n}$. Let \bar{b} be the SR of a^{\prime}.
We have $\|\bar{b}\|_{2} \leq \sqrt{7} \mathrm{~d}_{H}\left(b^{\prime}, 0\right)$ and $b_{1}+4 b_{2}+17 b_{3}+53 b_{4}$ is $\equiv \operatorname{amod} L$.

NTRU (Hoffstein, Pipher, Silverman (1998))

Notation and parameters

- $A=\mathbb{Z}[x] /\left(x^{n}-1\right)$
- p, q prime numbers, $p \neq q, p$ very small $(2,3)$
- Small polynomial: small coefficients (uniquely represented mod p), few monomials: small Euclidean and Hamming weight.

Private and public keys
Private key: $f, g \in A, f$ invertible $(\bmod q, p) . f$ and g small.
Public key: $h=g / f \in A /(q)$

Encryption

$c=p h r+m, r \in A$ random small polynomial, m small

Decryption

$f c=p g r+f m(\bmod q)($ moderate $)$, and then lifting to $\phi \in A$, then reducing $\bmod p$,
$\phi \equiv f m(\bmod p)$, and dividing by $\mathrm{f} \bmod \mathrm{p}$.

The Coppersmith-Shamir (or NTRU) lattice

NTRU can be seen as a lattice cryptosystem:

- $A=\mathbb{Z}[x] /\left(x^{n}-1\right) \cong \mathbb{Z}^{n}$ as abelian group;
- In $A^{2}, L_{C S}$ generated by $(q, 0)$ and $(h, 1)$ is a full-dimensional lattice

$$
L_{C S}=\left(\begin{array}{cc}
q l & 0 \\
H & I
\end{array}\right)=\left(\begin{array}{cccccccc}
q & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 \\
0 & q & \ldots & 0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & 0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & q & 0 & 0 & \ldots & 0 \\
h_{0} & h_{1} & \ldots & h_{N-1} & 1 & 0 & \ldots & 0 \\
h_{N-1} & h_{0} & \ldots & h_{N-2} & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
h_{1} & h_{2} & \ldots & h_{0} & 0 & 0 & \ldots & 1
\end{array}\right)
$$

The Coppersmith-Shamir (or NTRU) lattice

NTRU can be seen as a lattice cryptosystem:

- $A=\mathbb{Z}[x] /\left(x^{n}-1\right) \cong \mathbb{Z}^{n}$ as abelian group;
- In $A^{2}, L_{C S}$ generated by $(q, 0)$ and $(h, 1)$ is a full-dimensional lattice

$$
L_{C S}=\left(\begin{array}{cc}
q l & 0 \\
H & I
\end{array}\right)=\left(\begin{array}{cccccccc}
q & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 \\
0 & q & \ldots & 0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & 0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & q & 0 & 0 & \ldots & 0 \\
h_{0} & h_{1} & \ldots & h_{N-1} & 1 & 0 & \ldots & 0 \\
h_{N-1} & h_{0} & \ldots & h_{N-2} & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
h_{1} & h_{2} & \ldots & h_{0} & 0 & 0 & \ldots & 1
\end{array}\right)
$$

\triangleright Key attacks: $(g, f) \in L_{C S}$ and it is with high probability the SV
\triangleright Message attack: $[m, p r]$ is presumably the shortest residue of $[c, 0]$.

NTWO: Notation

M. Caboara, F. Caruso, C. Traverso. Gröbner Bases in Public Key Cryptography., Proc. ISSAC '08, ACM (2008), pp. 315-323.

NTWO: Notation

M. Caboara, F. Caruso, C. Traverso. Gröbner Bases in Public Key Cryptography., Proc. ISSAC '08, ACM (2008), pp. 315-323.

- $A=\mathbb{Z}[X] /\left(X^{N}-1\right)=\mathbb{Z}\left[x_{1}, \ldots, x_{k}\right] /\left(x_{1}^{n_{1}}-1, \ldots, x_{k}^{n_{k}}-1\right)$ (multivariate polynomial algebra)
- p, q prime numbers such that $p=2,3$ and $q \neq p$
- $n_{i} \mid(q-1)$, for each n_{i}

$$
k=2 \text { and } n_{1}=n_{2}=n \text {, so that } A=\mathbb{Z}[x, y] /\left(x^{n}-1, y^{n}-1\right)
$$

NTWO: Key preparation

$>A=\mathbb{Z}[x, y] /\left(x^{n}-1, y^{n}-1\right)$

- $Q=\left\{\left(\omega^{i}, \omega^{j}\right) \mid \omega\right.$ is a primitive n-th root of 1$\}$
$=\left\{\right.$ roots of $\left.\left(x^{n}-1, y^{n}-1\right)\right\}$
- $E \subset Q$ small; $\alpha \in A / q$ a polynomial having support E
- $f, g \in A$ small polynomials:
- f invertible $(\bmod p)\left(f_{p}^{-1}\right)$ and $(\bmod \alpha)\left(f^{\prime} \in A / q\right.$ s.t. $\left.f f^{\prime} \equiv 1(\bmod \alpha)\right)$
- g invertible $(\bmod \alpha)$

NTWO: Key preparation

- $A=\mathbb{Z}[x, y] /\left(x^{n}-1, y^{n}-1\right)$
- $Q=\left\{\left(\omega^{i}, \omega^{j}\right) \mid \omega\right.$ is a primitive n-th root of 1$\}$
$=\left\{\right.$ roots of $\left.\left(x^{n}-1, y^{n}-1\right)\right\}$
- $E \subset Q$ small; $\alpha \in A / q$ a polynomial having support E
- $f, g \in A$ small polynomials:
- f invertible $(\bmod p)\left(f_{p}^{-1}\right)$ and $(\bmod \alpha)\left(f^{\prime} \in A / q\right.$ s.t. $\left.f f^{\prime} \equiv 1(\bmod \alpha)\right)$
- g invertible $(\bmod \alpha)$

Public key
$h=g f^{\prime}+\alpha \in \boldsymbol{A} / \boldsymbol{q}$.

Private key
$f, g, J=(\alpha, q) \subseteq A ; J$ is the private ideal

NTWO: encryption and decryption

Encryption

$c=p h r+m, r \in A$ random small polynomial, m small

Decryption

$$
f c=p h r+f m \Rightarrow f c=p g r+f m+\beta
$$

where $\beta \in J$ is unknown to the receiver.
We can conjecture that β is the closest vector to $f c$.
So if we have a "good" basis of J we can correctly identify β.
We have $p g r+f m$ and we can continue like in NTRU. If $p g r+f m$ is a moderate polynomial ϕ in A, then we reduce ϕ modulo p and then we multiply by f_{p}^{-1}.

- The case $k=1$ and $J=(q)$ is just the NTRU cryptosystem.

The Lagrange basis

For each point (a, b) of Q define a Lagrange interpolator

$$
\lambda_{a, b}=\frac{a b\left(x^{n}-1\right)\left(y^{n}-1\right)}{n^{2}(x-a)(y-b)}
$$

being a polynomial vanishing everywhere in Q except (a, b), where its value is 1 . The $\lambda_{a, b}$ are a basis of A / q (the Lagrange basis).
J (as a vector subspace of A / q) has a basis composed of the $\lambda_{a, b}$ such that $(a, b) \in E$. As ideal, it is generated by $\sum_{(a, b) \in E} \lambda_{a, b}$, or by any other polynomial not vanishing in E (every ideal is generated by polynomials having the same support of the ideal).

The Lagrange-Coppersmith-Shamir lattice

NTWO can be seen as a lattice cryptosystem:

- $A=\mathbb{Z}[x, y] /\left(x^{n}-1\right)\left(y^{n}-1\right) \cong \mathbb{Z}^{n^{2}}$ as abelian group;
- In $A^{3}, L_{L C S}$ generated by $(q, 0,0),(h, 1,0)$ and $(1,0,1)$ is a full-dimensional lattice

$$
L_{L C S}=\left(\begin{array}{ccc}
q l & 0 & 0 \\
H & l & 0 \\
L & 0 & l
\end{array}\right)
$$

The Lagrange-Coppersmith-Shamir lattice

NTWO can be seen as a lattice cryptosystem:

- $A=\mathbb{Z}[x, y] /\left(x^{n}-1\right)\left(y^{n}-1\right) \cong \mathbb{Z}^{n^{2}}$ as abelian group;
- In $A^{3}, L_{L C S}$ generated by $(q, 0,0),(h, 1,0)$ and $(1,0,1)$ is a full-dimensional lattice

$$
L_{L C S}=\left(\begin{array}{ccc}
q l & 0 & 0 \\
H & l & 0 \\
L & 0 & l
\end{array}\right)
$$

The Lagrange-Coppersmith-Shamir lattice

NTWO can be seen as a lattice cryptosystem:

- $A=\mathbb{Z}[x, y] /\left(x^{n}-1\right)\left(y^{n}-1\right) \cong \mathbb{Z}^{n^{2}}$ as abelian group;
- In $A^{3}, L_{L C S}$ generated by $(q, 0,0),(h, 1,0)$ and $(1,0,1)$ is a full-dimensional lattice

$$
L_{L C S}=\left(\begin{array}{ccc}
q l & 0 & 0 \\
H & l & 0 \\
L & 0 & l
\end{array}\right)
$$

\triangleright Key attacks: $(g, f, \alpha) \in L_{L C S}$
$\triangleright(g, f, \alpha)$ is with high probability the SV (Euclidean + Hamming)

Expanded NTWO lattice

Find a small set of interpolators $\left(c_{1}, \ldots, c_{m}\right)$ of elements of \mathbb{Z} / q, such that every $a \in \mathbb{Z} / q$ can be represented as $\sum a_{i} c_{i}$, with $\left(a_{1}, \ldots, a_{m}\right)$ of small Euclidean norm.

$$
\left(\begin{array}{cccccc}
q I & 0 & 0 & 0 & \ldots & 0 \\
H & l & 0 & 0 & \ldots & 0 \\
c_{1} L & 0 & l & 0 & \ldots & 0 \\
c_{2} L & 0 & 0 & I & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
c_{m} L & 0 & 0 & 0 & \ldots & 1
\end{array}\right)
$$

Expanded NTWO lattice

Find a small set of interpolators $\left(c_{1}, \ldots, c_{m}\right)$ of elements of \mathbb{Z} / q, such that every $a \in \mathbb{Z} / q$ can be represented as $\sum a_{i} c_{i}$, with $\left(a_{1}, \ldots, a_{m}\right)$ of small Euclidean norm.

$$
\left(\begin{array}{cccccc}
q l & 0 & 0 & 0 & \ldots & 0 \\
H & l & 0 & 0 & \ldots & 0 \\
c_{1} L & 0 & l & 0 & \ldots & 0 \\
c_{2} L & 0 & 0 & I & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
c_{m} L & 0 & 0 & 0 & \ldots & 1
\end{array}\right)
$$

- We can map the expanded lattice to the LCS lattice:

$$
\left(x, y, a_{1}, \ldots, a_{m}\right) \longmapsto\left(x, y, \sum a_{i} c_{i}\right)
$$

- Elements of small Hamming weight are represented by elements of (slightly larger) Euclidean weight.

Expanded NTWO lattice

Find a small set of interpolators $\left(c_{1}, \ldots, c_{m}\right)$ of elements of \mathbb{Z} / q, such that every $a \in \mathbb{Z} / q$ can be represented as $\sum a_{i} c_{i}$, with $\left(a_{1}, \ldots, a_{m}\right)$ of small Euclidean norm.

$$
\left(\begin{array}{cccccc}
q I & 0 & 0 & 0 & \ldots & 0 \\
H & 1 & 0 & 0 & \ldots & 0 \\
c_{1} L & 0 & I & 0 & \ldots & 0 \\
c_{2} L & 0 & 0 & I & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
c_{m} L & 0 & 0 & 0 & \ldots & 1
\end{array}\right)
$$

- We can map the expanded lattice to the LCS lattice:

$$
\left(x, y, a_{1}, \ldots, a_{m}\right) \longmapsto\left(x, y, \sum a_{i} c_{i}\right)
$$

- Elements of small Hamming weight are represented by elements of (slightly larger) Euclidean weight.
- Attack to the NTWO key, but the increase in dimension makes the problem much harder.

Parameters for n, p, q

We experimented mainly $p=2$, and

$$
\begin{array}{ll}
n=7 & q=29,43 \\
n=9 & q=19,37,73 \\
n=11 & q=67,89 \\
n=13 & q=53,79,131,157 \\
n=17 & q=103,137,239 \\
n=19 & q=191,229 \\
n=23 & q=47,139,277,461 \\
n=29 & q=59,233,349,523
\end{array}
$$

$n=3,5$ have been used for toy examples.
Cracking a key is easy up to $n=7$, it can be done sometimes with $n=9$, it has been impossible with 3 days of computation for $n=11$. No message has ever been cracked with $n=13$ or more.

Conclusions and further work

- We have shown that CVP in hybrid lattices can be useful as a hardcore problem for the construction of cryptosystems.
NTWO has a much more involved decryption, but it seems to allow considerably shorter keys (f, g) and slightly larger r and m, making the attacks to the messages more difficult.

Prepare an efficient production implementation.
Extencive tests with different a n and n (and smallines bounds
\qquad

- Study alternatives to hybrid lattice reduction

Conclusions and further work

- We have shown that CVP in hybrid lattices can be useful as a hardcore problem for the construction of cryptosystems.
NTWO has a much more involved decryption, but it seems to allow considerably shorter keys (f, g) and slightly larger r and m, making the attacks to the messages more difficult.
- Prepare an efficient production implementation.

Extensive tests with different q, p and n (and smallnes bounds).

- Discover what properties (of the private ideal especially) produce keys that
- make decoding easy and reliable;
- make breaking messages harder

Conclusions and further work

- We have shown that CVP in hybrid lattices can be useful as a hardcore problem for the construction of cryptosystems.
NTWO has a much more involved decryption, but it seems to allow considerably shorter keys (f, g) and slightly larger r and m, making the attacks to the messages more difficult.
- Prepare an efficient production implementation.

Extensive tests with different q, p and n (and smallnes bounds).

- Discover what properties (of the private ideal especially) produce keys that
- make decoding easy and reliable;
- make breaking messages harder
- Study alternatives to hybrid lattice reduction

