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Lattices

A lattice in Zn is the set of all integer linear combination of (linearly
indipendent) basis vectors (b1, . . . , bn):

L =
n∑

i=1

bi · Z =
{

Bx | xi ∈ Z, bi ∈ Zn
}
.

B B = [b1, . . . , bn] ∈ Zn×n

B The same lattice has many bases

L =
n∑

i=1

ci · Z

Definition (Lattice)

A discrete additive subgroup of Zm
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Minimum Distance

Minimum distance:

λ1 =minx,y∈L,x 6=y‖x − y‖
minx∈L,x 6=0‖x‖

Distance function:

µ(t,L) = minx∈L‖t − x‖



Lattice problems: SVP

Definition (SVP, Shortest Vector Problem)

Given a basis B ∈ Zn×n of L, find a nonzero lattice vector Bx (with
x ∈ Zn/{0}) of length at most ‖Bx‖ ≤ λ1 .



Lattice problems: CVP

Definition (CVP, Closest Vector Problem)

Given a basis B ∈ Zn×n and a target vector t ∈ Zn, find a lattice vector
Bx closest to the target t, i.e., find an integer vector x ∈ Zn such that
‖Bx − t‖ ≤ µ.



Lattice problems: SVP and CVP

We consider the following problem (equivalent CVP):

SMALLEST RESIDUE PROBLEM (SRP)

Input: L ⊆ Zn, v ∈ Zn

Question: the smallest v ′ ∈ Zn s.t. v − v ′ ∈ L

The exact version of these problems is NP-hard.

Reduction algorithms (LLL, BKZ)
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Lattices and codes

I Lattices −→ Zn, Euclidean distance

Let w = (w1, . . . ,wn) ∈ Nn be weight vector, a = (a1, . . . , an) ∈ Zn:

||wa||2 =
√∑

wia2
i .

Instead of l2 one can choose a different norm lr , 1 ≤ r ≤ ∞.

I Codes −→ Kn, Hamming distance

Let x , y ∈ Kn, dH(x , y) =# of coordinates on which x and y differ.

K = Z/p: C ⊆ (Z/p)n −→ L ⊆ Zn; the CVP in L is equivalent to the
MLD (Maximum Likelihood Decoding).

K = Z/2 (binary codes): no substantial difference between Hamming
distance and Euclidean distance;

the situation is different when p > 2



Hybrid lattices

A hybrid lattice is a subgroup L ⊆ Zn with a mixed distance.

Reordering the variables we may assume to have a block with Euclidean
distance and another block with Hamming distance.

A hybrid lattice with only the Hamming block is called a Hamming lattice.

A hybrid lattice with only the Euclidean block will be called a standard
lattice.

q-ary lattices : qZn ⊆ L ⊆ Zn, for a suitable q ∈ N (possible prime).

the membership of a vector x ∈ Zn in L is determined by x mod q;

these lattices are in one-one correspondence with linear code in Zn
q.



SRP in hybrid lattices. Example

Let q = 131 and l = (1, 4, 17, 53) (q-interpolators).
∀m ∈ Zq, we can compute the length of the smallest integer vector (a, b, c , d)
(multipliers) such that

m ≡ 1a + 4b + 17c + 53d mod q

This length is ≤
√

7 and in average is 1.89.
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SRP in hybrid lattices. Example

Let q = 131 and l = (1, 4, 17, 53) (q-interpolators).
∀m ∈ Zq, we can compute the length of the smallest integer vector (a, b, c , d)
(multipliers) such that

m ≡ 1a + 4b + 17c + 53d mod q

This length is ≤
√

7 and in average is 1.89.

Let L ⊆ Zn be an Hamming lattice, qZn ⊆ L; L′ ⊆ Z5n be the standard lattice:

L′ =


L 0 0 0 0
I I 0 0 0

4I 0 I 0 0
17I 0 0 I 0
53I 0 0 0 I


Let a ∈ Zn and b the shortest residue of a modulo L. Then we define
a′ = [a, 0, 0, 0, 0], b′ = [b, 0, 0, 0, 0] ∈ Z5n. Let b be the SR of a′.

We have ‖b‖2 ≤
√

7 dH(b′, 0) and b1 + 4b2 + 17b3 + 53b4 is ≡ a mod L.



NTRU (Hoffstein, Pipher, Silverman (1998))

Notation and parameters

A = Z[x ]/(xn − 1)

p, q prime numbers, p 6= q, p very small (2, 3)

Small polynomial: small coefficients (uniquely represented mod p), few
monomials: small Euclidean and Hamming weight.

Private and public keys

Private key: f , g ∈ A, f invertible (mod q, p). f and g small.
Public key: h = g/f ∈ A/(q)

Encryption
c = phr + m, r ∈ A random small polynomial, m small

Decryption

fc = pgr + fm (mod q) (moderate), and then lifting to φ ∈ A, then reducing mod p,
φ ≡ fm (mod p), and dividing by f mod p.



The Coppersmith-Shamir (or NTRU) lattice

NTRU can be seen as a lattice cryptosystem:

A = Z[x ]/(xn − 1) ∼= Zn as abelian group;

In A2, LCS generated by (q, 0) and (h, 1) is a full-dimensional lattice

LCS =

(
qI 0
H I

)
=



q 0 . . . 0 0 0 . . . 0
0 q . . . 0 0 0 . . . 0
...

...
. . .

... 0 0 . . . 0
0 0 . . . q 0 0 . . . 0
h0 h1 . . . hN−1 1 0 . . . 0

hN−1 h0 . . . hN−2 0 1 . . . 0
...

...
. . .

...
...

...
. . .

...
h1 h2 . . . h0 0 0 . . . 1



B Key attacks: (g , f ) ∈ LCS and it is with high probability the SV

B Message attack: [m, pr ] is presumably the shortest residue of [c , 0].
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NTWO: Notation

M. Caboara, F. Caruso, C. Traverso. Gröbner Bases in Public Key Cryptography., Proc.
ISSAC ’08, ACM (2008), pp. 315–323.

A = Z[X ]/(XN − 1) = Z[x1, . . . , xk ]/(xn1
1 − 1, . . . , xnk

k − 1)
(multivariate polynomial algebra)

p, q prime numbers such that p = 2, 3 and q 6= p

ni | (q − 1), for each ni

k = 2 and n1 = n2 = n, so that A = Z[x , y ]/(xn − 1, yn − 1)
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NTWO: Key preparation

I A = Z[x , y ]/(xn − 1, yn − 1)

Q = {(ωi , ωj) | ω is a primitive n-th root of 1}
= { roots of (xn − 1, yn − 1)}

E ⊂ Q small; α ∈ A/q a polynomial having support E

f , g ∈ A small polynomials:

f invertible (mod p) (f −1
p ) and (mod α) (f ′ ∈ A/q s.t. ff ′ ≡ 1 (mod α))

g invertible (mod α)

Public key

h = gf ′ + α ∈ A/q.

Private key

f , g , J = (α, q) ⊆ A; J is the private ideal



NTWO: Key preparation

I A = Z[x , y ]/(xn − 1, yn − 1)

Q = {(ωi , ωj) | ω is a primitive n-th root of 1}
= { roots of (xn − 1, yn − 1)}

E ⊂ Q small; α ∈ A/q a polynomial having support E

f , g ∈ A small polynomials:

f invertible (mod p) (f −1
p ) and (mod α) (f ′ ∈ A/q s.t. ff ′ ≡ 1 (mod α))

g invertible (mod α)

Public key

h = gf ′ + α ∈ A/q.

Private key

f , g , J = (α, q) ⊆ A; J is the private ideal



NTWO: encryption and decryption

Encryption

c = phr + m, r ∈ A random small polynomial, m small

Decryption

fc = phr + fm⇒ fc = pgr + fm + β

where β ∈ J is unknown to the receiver.
We can conjecture that β is the closest vector to fc.
So if we have a “good” basis of J we can correctly identify β.
We have pgr + fm and we can continue like in NTRU. If pgr + fm is a moderate
polynomial φ in A, then we reduce φ modulo p and then we multiply by f −1

p .

The case k = 1 and J = (q) is just the NTRU cryptosystem.



The Lagrange basis

For each point (a, b) of Q define a Lagrange interpolator

λa,b =
ab(xn − 1)(yn − 1)

n2(x − a)(y − b)

being a polynomial vanishing everywhere in Q except (a, b), where its
value is 1. The λa,b are a basis of A/q (the Lagrange basis).

J (as a vector subspace of A/q) has a basis composed of the λa,b such
that (a, b) ∈ E . As ideal, it is generated by

∑
(a,b)∈E λa,b, or by any other

polynomial not vanishing in E (every ideal is generated by polynomials
having the same support of the ideal).



The Lagrange-Coppersmith-Shamir lattice

NTWO can be seen as a lattice cryptosystem:

A = Z[x , y ]/(xn − 1)(yn − 1) ∼= Zn2

as abelian group;

In A3, LLCS generated by (q, 0, 0), (h, 1, 0) and (1, 0, 1) is a
full-dimensional lattice

LLCS =

 qI 0 0
H I 0
L 0 I



B Key attacks: (g , f , α) ∈ LLCS

B (g , f , α) is with high probability the SV (Euclidean + Hamming)
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Expanded NTWO lattice
Find a small set of interpolators (c1, . . . , cm) of elements of Z/q, such that
every a ∈ Z/q can be represented as

∑
aici , with (a1, . . . , am) of small

Euclidean norm. 

qI 0 0 0 . . . 0
H I 0 0 . . . 0

c1L 0 I 0 . . . 0
c2L 0 0 I . . . 0

...
...

...
...

. . .
...

cmL 0 0 0 . . . 1


We can map the expanded lattice to the LCS lattice:

(x , y , a1, . . . , am) 7−→ (x , y ,
∑

aici )

Elements of small Hamming weight are represented by elements of (slightly
larger) Euclidean weight.

Attack to the NTWO key, but the increase in dimension makes the
problem much harder.
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Parameters for n, p, q

We experimented mainly p = 2, and

n = 7 q = 29, 43

n = 9 q = 19, 37, 73

n = 11 q = 67, 89

n = 13 q = 53, 79, 131, 157

n = 17 q = 103, 137, 239

n = 19 q = 191, 229

n = 23 q = 47, 139, 277, 461

n = 29 q = 59, 233, 349, 523

n = 3, 5 have been used for toy examples.
Cracking a key is easy up to n = 7, it can be done sometimes with n = 9, it has
been impossible with 3 days of computation for n = 11. No message has ever
been cracked with n = 13 or more.



Conclusions and further work

We have shown that CVP in hybrid lattices can be useful as a hardcore
problem for the construction of cryptosystems.

NTWO has a much more involved decryption, but it seems to allow
considerably shorter keys (f , g) and slightly larger r and m, making the
attacks to the messages more difficult.

I Prepare an efficient production implementation.
Extensive tests with different q, p and n (and smallnes bounds).

I Discover what properties (of the private ideal especially) produce keys that

make decoding easy and reliable;

make breaking messages harder

I Study alternatives to hybrid lattice reduction
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