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® NTWO and the Lagrange-Coppersmith-Shamir lattice



Lattices

A lattice in Z" is the set of all integer linear combination of (linearly
indipendent) basis vectors (b, ..., by):

L= "b-Z={Bx|x€Lb L}

i=1
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A lattice in Z" is the set of all integer linear combination of (linearly
indipendent) basis vectors (b, ..., by):

L= "b-Z={Bx|x€Lb L}

i=1

> B=[by,..., by € Z™%"

> The same lattice has many bases

L:iq'Z
i=1

Definition (Lattice)
A discrete additive subgroup of Z™



Minimum Distance

¢ Minimum distance:
AL =mineyer xzy X =yl
Minye g xo0l|X||
+ Distance function:

p(t, £) = mincegl|t — x|




Lattice problems: SVP

Definition (SVP, Shortest Vector Problem)

Given a basis B € Z"*" of L, find a nonzero lattice vector Bx (with
x € Z"/{0}) of length at most ||Bx|| < A; .




Lattice problems: CVP

Definition (CVP, Closest Vector Problem)

Given a basis B € Z"*" and a target vector t € Z", find a lattice vector
Bx closest to the target t, i.e., find an integer vector x € Z" such that
|Bx—t] < .




Lattice problems: SVP and CVP

We consider the following problem (equivalent CVP):

SMALLEST RESIDUE PROBLEM (SRP)

Input: LCZ", veZ"
Question: the smallest v/ € Z"st. v—Vv €L
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Lattice problems: SVP and CVP

We consider the following problem (equivalent CVP):

SMALLEST RESIDUE PROBLEM (SRP)

Input: LCZ", veZ"
Question: the smallest v/ € Z"st. v—Vv €L

» The exact version of these problems is NP-hard.
* Reduction algorithms (LLL, BKZ)



Lattices and codes

» Lattices — 7", Euclidean distance

Let w = (wi,...,w,) € N be weight vector, a = (a1,...,an) € Z":

lwall = /3 wia?.

Instead of /, one can choose a different norm /., 1 < r < oo.

» Codes — K", Hamming distance

Let x,y € K", du(x,y) =# of coordinates on which x and y differ.

e K=7Z/p: CC(Z/p)" — L CZ"; the CVP in L is equivalent to the
MLD (Maximum Likelihood Decoding).

e K =7/2 (binary codes): no substantial difference between Hamming
distance and Euclidean distance;

o the situation is different when p > 2



Hybrid lattices

A hybrid lattice is a subgroup L C Z" with a mixed distance.

Reordering the variables we may assume to have a block with Euclidean
distance and another block with Hamming distance.

A hybrid lattice with only the Hamming block is called a Hamming lattice.

A hybrid lattice with only the Euclidean block will be called a standard
lattice.

. : qZ" C L C 7", for a suitable g € N (possible prime).
« the membership of a vector x € Z" in L is determined by x mod g;

e these lattices are in one-one correspondence with linear code in Zg.



SRP in hybrid lattices. Example

Let g =131 and / = (1,4,17,53) (g-interpolators).
Vm € Zq, we can compute the length of the smallest integer vector (a, b, c, d)
(multipliers) such that

m=la+4b+17c+53d mod g

This length is < /7 and in average is 1.89.
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Vm € Zq, we can compute the length of the smallest integer vector (a, b, c, d)
(multipliers) such that
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23=4-2.17+53, 41=1+4—-17+53, 43=-1-2.17-53
(0,1,-2,1) (1,1,-1,1) (-1,0,—2,—1)



SRP in hybrid lattices. Example

Let g =131 and / = (1,4,17,53) (g-interpolators).
Vm € Zq, we can compute the length of the smallest integer vector (a, b, c, d)
(multipliers) such that

m=la+4b+17c+53d mod g
This length is < v/7 and in average is 1.89.

Let L C Z" be an Hamming lattice, gZ" C L; L' C 75" be the standard lattice:

L 0 0 0 O

/1 0 0 0

L= 4/ 0 [/ 0 O
177 0 0 / O

53/ 0 0 0 /[

Let a € Z" and b the shortest residue of a modylo L. Then we define
a’ =[a,0,0,0,0], b’ = [b,0,0,0,0] € Z°". Let b be the SR of a'.

We have ||b||a < /7 dy(b’,0) and by + 4b, + 17b3 + 53b, is = a mod L.



NTRU (Hoffstein, Pipher, Silverman (1998))

Notation and parameters
* A=Z[x]/(x" - 1)
® p, g prime numbers, p # g, p very small (2,3)

® Small polynomial: small coefficients (uniquely represented mod p), few
monomials: small Euclidean and Hamming weight.

Private and public keys

Private key: f,g € A, f invertible (mod g, p). f and g small.
Public key: h=g/f € A/(q)

Encryption

¢ = phr + m, r € A random small polynomial, m small

Decryption

fc = pgr + fm (mod q) (moderate), and then lifting to ¢ € A, then reducing mod p,
¢ = fm (mod p), and dividing by f mod p.



The Coppersmith-Shamir (or NTRU) lattice

NTRU can be seen as a lattice cryptosystem:
o A=7Z[x]/(x" — 1) 2 Z" as abelian group;
e In A%, Lcs generated by (g,0) and (h,1) is a full-dimensional lattice

q 0o ... 0 0] 0 (0]

0] qg ... 0 0] 0 (0]

: : . : (0] (0] (0]

Lcsz(ql O): (0] o ... q 0] 0 0]
H | ho hh ... hy1 1 0] 0

hy—1 ho ... hy— O 1 0

hy hy ... ho 0 o0 coo b




The Coppersmith-Shamir (or NTRU) lattice

NTRU can be seen as a lattice cryptosystem:
o A=7Z[x]/(x" — 1) 2 Z" as abelian group;
e In A%, Lcs generated by (g,0) and (h,1) is a full-dimensional lattice

q 0o ... 0 0] 0 (0]

0] qg ... 0 0] 0 (0]

: : %5 : (0] (0] (0]

Les = gl 0 _ (0] o ... q 0] 0 0]
H | ho hh ... hy1 1 0] 0

hy—1 ho ... hy— O 1 0

h h, ... ho (0] (0] 1

> Key attacks: (g,f) € Lcs and it is with high probability the SV

> Message attack: [m, pr] is presumably the shortest residue of [c, 0].



NTWO: Notation

‘ M. Caboara, F. Caruso, C. Traverso. Grobner Bases in Public Key Cryptography., Proc.
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‘ M. Caboara, F. Caruso, C. Traverso. Grobner Bases in Public Key Cryptography., Proc.
ISSAC '08, ACM (2008), pp. 315-323.

o A=ZIX]/(XN = 1) = Z[x1, .., xil] /O — 1, x = 1)
(multivariate polynomial algebra)

® p,q prime numbers such that p=2,3 and g # p

e n; | (g —1), for each n;

k=2and n; = np = n, sothat A=7Z[x,y]/(x" —1,y" — 1)



NTWO: Key preparation
> A=Z[x,y]/(x"—1,y"—1)
e 0= {(w',u’)|wis a primitive n-th root of 1}
= { roots of (x" —1,y" — 1)}
e EC Qsmall; « € A/q a polynomial having support E

e f,g € A small polynomials:

« finvertible (mod p) (f,!) and (mod @) (f' € A/gs.t. ff'=1 (mod a))
s g invertible (mod «)



NTWO: Key preparation
> A=Z[x,y]/(x"—1,y"—1)
e 0= {(w',u’)|wis a primitive n-th root of 1}
= { roots of (x" —1,y" — 1)}
e EC Qsmall; « € A/q a polynomial having support E

e f,g € A small polynomials:

« f invertible (mod p) (f,') and (mod @) (f' € A/gs.t. ff' =1 (mod a))
« g invertible (mod «)

Public key
h=gf'+aeAlqg.

Private key
f,g, J=(a,q) C A; Jis the private ideal



NTWO: encryption and decryption

Encryption

¢ = phr + m, r € A random small polynomial, m small

Decryption

fc = phr + fm = fc = pgr + fm+

where 8 € J is unknown to the receiver.

We can conjecture that 3 is the closest vector to fc.

So if we have a “good” basis of J we can correctly identify 5.

We have pgr + fm and we can continue like in NTRU. If pgr + fm is a moderate
polynomial ¢ in A, then we reduce ¢ modulo p and then we multiply by fp_l.

e The case k =1 and J = (q) is just the NTRU cryptosystem.



The Lagrange basis

For each point (a, b) of Q define a Lagrange interpolator

ab(x" — 1)(y" — 1)
®(x — a)(y - b)

being a polynomial vanishing everywhere in Q except (a, b), where its
value is 1. The A, are a basis of A/q (the Lagrange basis).

)\a,b =

J (as a vector subspace of A/q) has a basis composed of the )\, 5 such
that (a, b) € E. As ideal, it is generated by Z(a7b)65 Aa,b, OF by any other
polynomial not vanishing in E (every ideal is generated by polynomials
having the same support of the ideal).



The Lagrange-Coppersmith-Shamir lattice

NTWO can be seen as a lattice cryptosystem:

o A=7Z[x,y]/(x" = 1)(y" — 1) = Z" as abelian group;

e In A3, L;cs generated by (g,0,0), (h,1,0) and (1,0,1) is a
full-dimensional lattice

Lics =

=T
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The Lagrange-Coppersmith-Shamir lattice

NTWO can be seen as a lattice cryptosystem:

o A=7Z[x,y]/(x" = 1)(y" — 1) = Z" as abelian group;
e In A3, L;cs generated by (g,0,0), (h,1,0) and (1,0,1) is a
full-dimensional lattice

ql 0
Lics=| H |
L 0

-~ O o

> Key attacks: (g,f,a) € Lics
> (g, f,a) is with high probability the SV (Euclidean + Hamming)



Expanded NTWO lattice

Find a small set of interpolators (cy, ..., cm) of elements of Z/q, such that
every a € Z/q can be represented as >_ ajc;, with (a1,...,a,) of small
Euclidean norm.

gl 0 0 O 0
H | 0 O 0
aL 0 [ 0 0
ol 0 0 |/ 0
cml 0 0 O 1
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» Elements of small Hamming weight are represented by elements of (slightly
larger) Euclidean weight.



Expanded NTWO lattice

Find a small set of interpolators (cy, ..., cm) of elements of Z/q, such that
every a € Z/q can be represented as >_ ajc;, with (a1,...,a,) of small
Euclidean norm.

gl 0 0 0 0
H | 0 0 0
al 0 [ 0 0
ol 0 0 |/ 0
cml 0 0 0 1

® We can map the expanded lattice to the LCS lattice:

(X, ¥s 81, am) — (., ) aici)

» Elements of small Hamming weight are represented by elements of (slightly
larger) Euclidean weight.

o Attack to the NTWO key, but the increase in dimension makes the
problem much harder.



Parameters for n, p, g

We experimented mainly p = 2, and

=" qg=29,43

n=29 qg=19,37,73

m= 1 qg=67,89

m= 13 g =53,79,131,157
n=17 qg = 103,137,239
n=19 g = 191,229

= 23 qg =47,139,277,461
n=29 g = 59, 233,349,523

n = 3,5 have been used for toy examples.

Cracking a key is easy up to n =7, it can be done sometimes with n =9, it has
been impossible with 3 days of computation for n = 11. No message has ever
been cracked with n = 13 or more.



Conclusions and further work

* We have shown that CVP in hybrid lattices can be useful as a hardcore
problem for the construction of cryptosystems.

NTWO has a much more involved decryption, but it seems to allow

considerably shorter keys (f, g) and slightly larger r and m, making the
attacks to the messages more difficult.
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» Prepare an efficient production implementation.
Extensive tests with different g, p and n (and smallnes bounds).

» Discover what properties (of the private ideal especially) produce keys that

* make decoding easy and reliable;

e make breaking messages harder



Conclusions and further work

* We have shown that CVP in hybrid lattices can be useful as a hardcore
problem for the construction of cryptosystems.

NTWO has a much more involved decryption, but it seems to allow
considerably shorter keys (f, g) and slightly larger r and m, making the
attacks to the messages more difficult.

» Prepare an efficient production implementation.
Extensive tests with different g, p and n (and smallnes bounds).

» Discover what properties (of the private ideal especially) produce keys that

* make decoding easy and reliable;

e make breaking messages harder

» Study alternatives to hybrid lattice reduction
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