Secure eCommerce with Bitcoin

eCommerce with an irreversible payment system

Timo Hanke, RWTH Aachen Ilja Gerhardt, MPI Stuttgart

PGP:

Timo Hanke 1EFF 69BC 6FB7 8744 14DB 631D 1BB5 D6E3 AB96 7DA8 Ilia Gerhardt 1986 0949 8102 817D C3E3 B5AA 3CF6 E44C 7EF3 637B

The Merchant-Customer relation

Assumptions

General scheme

- cash in advance
- no escrow
- irreversible payments and shipments

Identities

Asymmetry

- merchant has public identity (PKI)
 - customer has no identity

Trust

- both parties do not fully trust each other
- merchant cares about reputation

Consequence

- merchant can sign
- customer cannot sign anything

Signatures

Attack Types

Attack on	Counter-measure	
Merchant bitcoin funds	Pay directly to cold storage	/
Customer bitcoin funds	Cold storage trusted device to sign transactionMultisignature storage	
Payment protocol: payment and shipping address	?	

Cold Storage:

Presence of attackers

Assumption (new)

- all online infrastructure is compromised
- the communication channel is compromised

Merchant conclusion

- don't sign at order time!
- can't sign invoice

Problem: need customer's signature

Payment as Contract

Link metadata to **B** address

Task: generate a \$\mathbb{B}\$ address such that a unique given hash is verifiably linked to it (not necessarily visible in clear text)

Owner of a bitcoin address

person who knows the corresponding private key

address owned, signed by merchant

payment address

Task: given P, derive a pubkey P[m] with the same owner such that the unique given m is verifiably linked to P[m]

hash of invoice

ECDSA keypair homomorphism

Keypair (s,P)

- fixed large prime N
- private key s is integer in range 0,...,N-I
- public key P = P(s) is function of s (bitoin address)

Homomorphic property

Not possible with RSA!

(s,P), (t,Q) keypairs => $(s+t \mod N, P+Q)$ keypair

Owners

If t is publicly known then P and P+Q have the same owner.

ECDSA linking

Task: given P, derive a pubkey P[m] with the same owner such that the unique given m is verifiably linked to P[m]

Properties

- given (P,m), it is impractical to find (P',m') != (P,m) with P'[m'] = P[m], hence m the unique metadata linked to P[m] collision resistance
- P and P[m] have the same owner (m known)

keypair homomorphism

Example

-----BEGIN PGP SIGNED MESSAGE-----Hash: SHA1 Tea set Teapot classic (BTC 3.90): 1 pcs Mug (BTC 0.89): 4 pcs Teaspoon (BTC 0.49): 2 pcs **Delivery address:** John Doe, 150 W San Carlos St, San Jose, CA 95113 PaymentBase: 043f30a7e...1bb6300bfc23aa7e0f03cd SHABEGININGP SIGNATURE-----**Versi64f5231Pl6flvå144alc(IQNV66b9x**12ba1b8457c8ebf46b87cd637 IEYEARECAAYFAIGKtVcACgkvppbkTp7zY3vWFwCfQyCHg1zmYGZiftjL C15m0hKBYsYAnj1imO64VUbADMT7qJ+45HFFsZIC erivation =37MT----END PGP SIGNATURE P[m]

0279be667ef9dcbbac55...ce28d959f2815b16f81798

Summary

Protocol

- bitcoin funds in cold storage
- merchant only pre-signs, not at order time
- customer generates invoice and payment address
- customer only signs payment (identity = payer)

Lack of mutual trust

payment + invoice = contract

Third party attackers

- attacker cannot steal funds, nor redirect goods
- no SSL-communication required

Anonymity

Additional features

- anonymity well-protected (with randomized invoice)
- compatible with multi-transaction payments

Thank you!

Homomorphic Payment Addresses & the Pay-to-Contract Protocol: http://arxiv.org/abs/1212.3257