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Flow Network

Definition
A directed graph, with sources and sinks, where each edge e has a capacity ce,
where each edge receives a non-negative flow fe (limited by ce), and where the
net flow into any non-source non-sink vertex is zero.
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Figure : Flow Network
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The Min-Cut Max-Flow Theorem

Let G = (V,E) be a graph (network), and let S be the source a T a sink.

Definition
A cut between S and T is a set of graph edges whose removal disconnects S from
T . A min-cut is a cut with the smallest (minimal) value. The value of the cut is
the sum of the capacities of the edges in the cut.

We will consider unit capacity edge.
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Theorem (Min-Cut Max-Flow Theorem)

Consider a graph G = (V,E) with unit capacity edges, a source vertex S, and a
receiver vertex T . If the min-cut between S and T equals h, then the information
can be send from S to T at a maximum rate of h. Equivalently, there exist
exactly h edge-disjoint paths between S and T .

S

T

Corollary: max-flow from a single source
S to a single sink T over network of
unit-capacity edges is achievable via
routing
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Butterfly Network

Network: one source, two sinks,
unit-capacity edges

can route two packets to one sink,
one to the other

and vice-versa. Time-sharing
between these two strategies can
achieve a multicast rate of 1.5
packets per use of the network.

We can do better?

Yes! Perform coding at the
bottle-neck

S

T1 T2

a and b are packets of bits; a⊕ b is the modulo-two sum (XOR) of a and b. Since
a⊕ (a⊕ b) = b, and b⊕ (a⊕ b) = a, both sinks can recover both messages!
Network coding achieves a multicast rate of 2 packets per use of the network (the
best possible).
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Some Lessons Learned from The Butterfly Example

The information superhighway is not like a real superhighway;
a bit is not a car!

Nodes in a network are allowed to form outgoing streams from incoming streams
in any way (not only time-multiplexing).

The aim of network coding is to provide a receiver with sufficient ”evidence” Y
about the message X; we want H(X|Y ) = 0. It is not necessary to to supply the
receiver with X itself.
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Linear Network Coding

A combinational packet network N = (G,S, T,A) comprises:

a finite directed acyclic graph G = (V,E) where V is the set of vertices and
E is the set of directed edges;

a distinguished set S ⊂ V of sources;

a distinguished set T ⊂ V of sinks;

and a finite packet alphabet A with |A| ≥ 2.

Vertices: communication nodes
Edges: error-free communication channels of unit capacity (one symbol from A).
Packets transmitted on non-source edges from a node v are functions of packets
received at v.
Does not model errors, delay, cycles, etc., but suffices to capture main ideas.
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Packets are length-m vectors
over a finite field Fq

Nodes create outgoing packets
as Fq-linear combinations of
incoming packets

Original packets can be
recovered by solving a linear
system of equations

Xi = [xi1, . . . , x
i
m] ∈ Fmq

u

P1

P2

∑2
i=1 aiPi

 Y1
...
Yn

 =

 A11 . . . A1n

...
...

An1 . . . Ann


transfer matrix

 X1

...
Xn


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Theorem (Linear Network Multicasting Theorem)

Let N = (G, s, T,Fq). A multicast rate of R(s, T ) = mint∈Tmincut(s, t) is
achievable, for sufficiently large q, with linear network coding.

Algebraic proof: Koetter and Médard, 2003. (Can show that q > |T |
suffices.)

Linear Information Flow Algorithm: Jaggi, Sanders, et al., 2005. (Requires
only q ≥ |T |.)
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Proof Sketch: Linear Network Multicasting Theorem

S

t2

t1 t3

P1 P2

a1P1 + a2P2

a3P1 + a4(a1P1 + a2P2)
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A1 =

[
1 0

a3 + a1a4 a2a4

]
A2 =

[
0 1
a1 a2

]
A3 =

[
a1 a2

a3 + a1a4 a2a4

]
Condition for decoding: det(Ai) 6= 0 for 1 ≤ i ≤ 3.
This is an algebraic condition: we require a nonzero value for the polynomial

p(a1, a2, a3, a4) = det(A1) · det(A2) · det(A3).

Lemma (Sparse Zeros Lemma)

Over a sufficiently large finite field, a nonzero polynomial takes on a nonzero value.

(Here, one can show that q > |T | suffices.) Thus linear network coding achieves
the multicast capacity.
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Linear Information Flow Algorithm

S

t1 t2 t3

Network: one source, three
sinks, multicast capacity 3

find 3 edge-disjoint paths to
t1

find 3 edge-disjoint paths to
t2

find 3 edge-disjoint paths to
t3

discard unused vertices and
edges

process edges in topological
order (i.e., upstream before
downstream)

Idea: maintain the invariant that the transfer matrix induced so far at each sink is
invertible.
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e must be a linear combination of u1, u2 and u3

e, which replaces rows in some transfer matrices, must maintain their full rank
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Suppose u1, u2 and u3 span an m-dimensional space V1.

Assuming multicast capacity r, at a sink node t, the vectors not being
replaced span an (r − 1)-dimensional space V2.

We have dim(V1 ∩ V2) = dim(V1) + dim(V2)− dim(V1 ∪ V2) = m− 1

All vectors in V1 ∩ V2 are ruled out as choices for .

In total, the zero vector + at most |T |(qm−1 − 1) nonzero vectors are ruled
out, leaving at least

qm − 1− |T |(qm−1 − 1) = qm−1(q − |T |) + |T | − 1

choices for e, which is strictly positive as long as q ≥ |T |.
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Random Network Coding

As observed by Tracey Ho, et al. [HMKKESL,2006], choosing the local network
coding coefficients at random leads to full rank transfer matrices with high
probability if the field size is sufficiently large.
If η random choices must be made,

P [success] ≥ (1− |T |/q)η ≥ 1− η|T |
q
,

or

P [failure] ≤ η|T |
q

= η|T |2−m

for q = 2m, i.e., exponential decrease with the number of bits per field element.
Thus, a network code chosen at random is highly likely to achieve the multicast
capacity, if q is large enough.
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Routing versus Coding

Multicast by routing:

requires packing of multiple
distribution trees

optimal packing may not achieve
multicast capacity

optimal fractional packing of
distribution trees is NP hard [Jain,
Mahdian, Salavatipour, SODA2003]

Multicast by linear network coding:

achieves multicast capacity

optimal solution can be found
efficiently (polynomial time)

S

t2 t3

t1

Multicasting via distribution trees
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Linearly-coded Networks

We distinguish between two models for network coding:

1 Coherent: the network is given, and the local coding coefficients are fixed at
design time (so that Ai is known at receiver ti, where Ai is the transfer
matrix of ti)

2 Noncoherent: the local coding coefficients are chosen randomly at run time
(so that Ai is not known to the transmitters or receivers)
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Random (Noncoherent) Linear Network Coding

Nodes draw coding coefficients uniformly at random from Fq
The transfer matrix will be invertible with high probability if q is sufficiently
large

The transfer matrix can be recorded by appending a header to each original
packet

X = [I D]

Y = AX = [AAD]⇒ A−1Y = [I D] = X

Captures most of the practical applications of network coding
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Conclusion

Linear network codes:

achieve the multicast capacity for sufficiently large q

can be chosen randomly without sacrificing optimality
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Thanks for your attention!
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