

A DATA PSEUDONYMIZATION PROTOCOL FOR SMART GRIDS

Giulia Mauri 22-05-2013

Introduction (I)

Introduction (II)

- Detailed energy consumption measurements allow:
 - Timely management of energy distribution,
 - Efficient grid monitoring,
 - Energy forecasting and provisioning.
 - Inference of customers' personal habits,
 - Identifying and tracking customers,
 - * Exposing customer behaviour for commercial benefits.

Introduction (III)

Why anonymizing metering data?

According to NIST, "Smart Grid data should be anonymized wherever possible to limit the potential for computer matching of records."

- Different approaches have been proposed for data anonymization, including:
 - Generalization
 - Perturbation
 - Pseudonimization
 - Aggregation

Introduction (IV)

- Some open problems need to be solved:
 - Multiple data Consumers,
 - ✓ Low computational load on Meters,
 - ✓ Frequent re-pseudonymization,
 - ✓ Identity recovery, if necessary.

Pseudonymization Architecture

Three different sets of nodes are comprised in proposed

1. Producers, p

2. PPNs, *n*

3. Consumers, c

Scheme Description

- The pseudonymization protocol consists of a tuple of algorithms:
- ✓ Setup(1 l) \rightarrow (k_d , params)
- \checkmark pSend(param, i, p, x_i^p) \rightarrow $\left(e_i^p(1), \dots, e_i^p(n), \dots, e_i^p(N), ID_p, r_i^p\right)$
- ✓ PPNSend($param, i, n, ID_p, r_i^p, e_i^p(n)$) $\rightarrow \left(PD_c^p, e_i^p(n)\right)$
- \checkmark cReceive $(param, i, c, PD_c^p, e_i^p(1), ..., e_i^p(N)) \rightarrow (PD_c^p, x_i^p)$
- The encryption algorithm used in pSend is the Shamir Secret Sharing Scheme, that we assume to be unconditionally secure.

Security Properties

✓ Full Pseudonymization:

$$\Pr(full - p = 1) \le \frac{1}{2} + negl(l)$$

✓ Full Pseudonymization with Perfect Forward Anonymity:

$$\Pr(full - p - pfa = 1) \le \frac{1}{2} + negl(l)$$

Unconditionally Indistinguishable Encryption:

$$\Pr(blind = 1) = \frac{1}{2}$$

Security Properties The full-p experiment

- The experiment for an algorithm A and a parameter I, assumes an adversary Consumer c*, and focuses on two Producers ID1,ID2.
- The Setup outputs the system parameters.
- ✓ The first and second Producers execute pSend and output the messages: $msg_1^1 ... msg_N^1, msg_1^2 ... msg_N^2$.
- ✓ Each PPN receives the two messages, and calls the PPNSend. Then each PPN sends two messages $pmsg_n^p$ with $p \in \{1,2\}$ to the Consumers.
- ✓ Finally each Consumer runs cReceive and obtains the measurement with the pseudonym.
- ✓ The malicious Consumer c^* executes A and outputs $p' \in \{1,2\}$.
- \checkmark The output of the experiment is 1 if p' = p, and 0 otherwise.

Pseudonymization Function

- We use a keyed one-way function with trapdoor E_{Ke}(m,r) = y with the following properties:
- The Configurator generates public/private key pair and keeps the private key and distributes the public key.
- ✓ Our implementation of E_{Ke} builds upon <u>RSA with OAEP</u>.
- Each PPN calculates the pseudonym as:

$$PD_c^p = E_{k_e}[ID_p||c||\left[\frac{i}{\alpha}\right]\alpha, w_p^c]$$

- •ID_p: Producer's Identity
- •c: Consumer's Identity
- •i: round identifier
- •α: length of the validity time span of pseudonym
- •w^c_n: security nonce

Other security properties

- There exists a p.t. algorithm that, given the private key, can recover the identity of Producer from its pseudonym.
 - ✓ This property is consequence of Configurator having the private key.
- Before sending its data, the **Producer is aware** of the set of Consumer monitoring its data.
 - ✓ This happens thanks to the message SpecifyMonitoringSet.
- Given a pair of distinct Producers' identities (p,p') and the same Consumer c, or a pair of distinct Consumers (c,c') and the same Producer p, the **output** of the function $E_{k_{\rho}}$ is **always different**.
 - ✓ This property is consequence of using the ciphering function that relies on RSA with OAEP.

Communication Protocol (I) Shamir Secret Sharing Scheme

At every round, the following procedure is repeated:

1. Producer *p* divides its measurements in *t* shares and gives one share to each of the *t* PPNs.

Communication Protocol (II) Shamir Secret Sharing Scheme

At every round, the following procedure is repeated:

- 1. Producer *p* divides its measurements in *t* shares and gives one share to each of the *t* PPNs.
- 2. PPN *n* receives a share from Producer *p* destined to Consumer *c*, computes the pseudonym basing on *p* and *c* and sends it to *c* together with the share.

Communication Protocol (III) Shamir Secret Sharing Scheme

At every round, the following procedure is repeated:

- 1. Producer *p* divides its measurements in *t* shares and gives one share to each of the *t* PPNs.
- 2. PPN *n* receives a share from Producer *p* destined to Consumer *c*, computes the pseudonym basing on *p* and *c* and sends it to *c* together with the share.
- 3. Consumer *c* combines the shares associated to the same pseudonym and recovers the measurements.

Comparison and Results

- We compare the performance of our proposed protocol with:
- Mixing Scheme: it moves the computational load on the Producer that computes its pseudonym and creates the mixing packet. The Producers encrypt with RSA and the PPNs only forward messages.
- Proxy Re-Encryption Scheme: it guarantees that a collusion of all PPN can't obtain the relation between Producer's measurement and identity. The Producers and PPNs encrypt with Paring based algorithm.
- We evaluate the number of sent messages and the computational cost in the three scheme.

Results (I) Number of Sent Messages

Asymptotic Values	Mixing Scheme	Shamir Secret Sharing	Proxy Re- Encryption
Messages sent by each Producer	C	N	1
Messages sent by each PPN	P * C / N	P * C	P * C / N

Results (I) Number of Sent Messages

|P|=200, |N|=5

Results (II) Computational Costs

Asymptotic Values	Mixing Scheme	Shamir Secret Sharing	Proxy Re- Encryption
Producer	C * Cost(RSA _{enc})	Cost(Share _{gen})	Cost(Pairing)
PPN	P * C / N * Cost(Forward)	P * C * Cost(Forward)	P * C / N * Cost(Pairing)
Consumer	P *Cost(RSA _{dec})	P *Cost(Share _{join})	2* P * Cost(Pairing)

Results (II) Computational Costs

C=10	Mixing	Sharing	Re-Encryption
Producer	5,12 ms	0,10 ms	21,43 ms
PPN	-	-	> 5 min
Consumer	4,86 s	2,11 s	> 5 min
C=50	Mixing	Sharing	Re-Encryption
Producer	25,60 ms	0,10 ms	21,43 ms
PPN	-	-	>> 5 min
Consumer	4,86 s	2,11 s	> 5 min
C=100	Mixing	Sharing	Re-Encryption
Producer	51,20 ms	0,10 ms	21,43 ms
PPN	-	-	>> 5 min
Consumer	4,86 s	2,11 s	> 5 min

|P|=1000, |N|=5

Processor: 2.7 GHz Intel Core i7, Memory: 4GB 1333 MHz DDR3

Conclusion

- We propose a pseudonymization protocol for smart metering measurements,
- ✓ The protocol allows collecting metering data without revealing the association between users' identities and their pseudonyms,
- We described a possible implementation of the proposed algorithm,
- ✓ This work evaluates the security guarantees and the performance the algorithm achieves.
- ✓ We compare three different solutions in terms of number of sent messages and computational costs.
- → Results show that the most suitable protocol is the one based on pseudonymization with the Shamir secret sharing scheme.

Giulia Mauri

Appendix: Related Work (I)

- Solutions proposed for protecting user data in AMI (Advanced Metering Infrastructure):
- Zero-knowledge cryptographic protocols [1],
- Data aggregation [2],
- ✓ Escrow services [3].
- Our solution has been proposed in:
- C. Rottondi, G. Mauri and G. Verticale, "A data pseudonymization protocol for smart grids", in *IEEE OnLine Conference on Green Communication*, 2012.
- [1] A. Rial and G. Danezis, "Privacy-preserving smart metering," in *Proceedings of the 10th annual ACM workshop on Privacy in the electronic society*, ser. WPES 2011.
- [2] C. Rottondi, G. Verticale, and A. Capone, "A security framework for smart metering with multiple data consumers," in *First IEEE INFOCOM CCSES Workshop on Green Networking and Smart Grids*, 2012.
- [3] C. Efthymiou and G. Kalogridis, "Smart grid privacy via anonymization of smart metering data," in *First IEEE International Conference on Smart Grid Communications (SmartGridComm)*, 2010

Mixing Scheme

At every round, the following procedure is repeated:

1. Producer *p* generates the measurements and computes its pseudonym. It creates the mixing packet, composed by measurement

and pseudonym, that is sent to a randomly chosen PPN *n*.

- 2. PPN *n* forwards the packet to the Consumer *c*, to whom the message is destined.
- 3. Consumer *c* recovers the individual data by decrypting the packets.

Proxy Re-Encryption Scheme

At every round, the following procedure is repeated:

- 1. Producer *p* encrypt its measurements based on the identity of PPN, to whom the message is destined.
- 2. PPN *n* computes the pseudonym basing on *p* and *c*, re-encrypt the packet and sends it to *c*
- 3. Consumer *c* recovers the individual data by double decrypting the packets.

