An example of authentication scheme

Biometric Authentication using Online Signature

Claudia Tinnirello, PhD student

University of Trento Department of Mathematics

I and		-1		12		
			c	τı		
	 0	u	~			

Performance analysis and possible improvements

Outline

Introduction

An example of authentication scheme

Performance analysis and possible improvements

Le	•	20	A		~	÷		-	
	ιı	IU.	u	u	L	u	IU		

Performance analysis and possible improvements

Outline

Introduction

An example of authentication scheme

Performance analysis and possible improvements

I and		-1		12		
			c	τı		
	 0	u	~			

Performance analysis and possible improvements

Outline

Introduction

An example of authentication scheme

Performance analysis and possible improvements

There are three broad identification modes, based on

- 1. something you *know*;
- 2. something you *have*;
- 3. something you are.

ightarrow biometric recognition

There are three broad identification modes, based on

- 1. something you *know*;
- 2. something you *have*;
- 3. something you are.

\rightarrow biometric recognition

There are three broad identification modes, based on

- 1. something you *know*;
- 2. something you *have*;
- 3. something you are.

	EN
Username	
	,
Password	
🖲 @unitn.it 🔍 @guest.unitn.it	
Login	
Informativa sulla privacy Guida anti-phishing Help&info	FAQ

\rightarrow biometric recognition

Claudia Tinnirello, PhD student

There are three broad identification modes, based on

- 1. something you *know*;
- 2. something you have;
- 3. something you are.

\rightarrow biometric recognition

Claudia Tinnirello, PhD student

There are three broad identification modes, based on

- 1. something you *know*;
- 2. something you *have*;
- 3. something you are.

\rightarrow biometric recognition

Claudia Tinnirello, PhD student

There are three broad identification modes, based on

- 1. something you *know*;
- 2. something you *have*;
- 3. something you are.

 \rightarrow biometric recognition

Claudia Tinnirello, PhD student

An example of authentication scheme

Performance analysis and possible improvements

Handwritten Signature

The signature is captured using a digital table like

It extracts from the signature some information like: time stamp, pressure, coordinates x and y, ...

 \Rightarrow velocity, acceleration \ldots

Claudia Tinnirello, PhD student

An example of authentication scheme

Performance analysis and possible improvements

Handwritten Signature

The signature is captured using a digital table like

It extracts from the signature some information like: time stamp, pressure, coordinates x and y, ... \Rightarrow velocity, acceleration ...

- people are familiar with the use of signatures in their daily life;
- analysis requires no invasive measurements.

NEGATIVE ASPECTS:

 an individual signature is never entirely the same and can vary substantially over an individual's lifetime.

A user's biometric cannot be changed like a password-

- people are familiar with the use of signatures in their daily life;
- analysis requires no invasive measurements.

NEGATIVE ASPECTS:

 an individual signature is never entirely the same and can vary substantially over an individual's lifetime.

A user's biometric cannot be changed like a password.

Int	rod	luct	ion

- people are familiar with the use of signatures in their daily life;
- analysis requires no invasive measurements.

NEGATIVE ASPECTS:

 an individual signature is never entirely the same and can vary substantially over an individual's lifetime.

A user's biometric cannot be changed like a password.

Int	rod	luct	ion

- people are familiar with the use of signatures in their daily life;
- analysis requires no invasive measurements.

NEGATIVE ASPECTS:

- an individual signature is never entirely the same and can vary substantially over an individual's lifetime.
- A user's biometric cannot be changed like a password.

Int	rod	luct	ion

- people are familiar with the use of signatures in their daily life;
- analysis requires no invasive measurements.

NEGATIVE ASPECTS:

- an individual signature is never entirely the same and can vary substantially over an individual's lifetime.
- A user's biometric cannot be changed like a password.

000

Typical Verification Process

Claudia Tinnirello, PhD student

Our Algorithm

The algorithm consists of 3 main steps

- 1. **Training**: step necessary to compute time thresholds and the values used during the binarization phase;
- Enrollment: the steps the algorithm follows when a new user is enrolled into the system;
- 3. Authentication: the steps the algorithm follows when a user needs to verify his gesture.

Our Algorithm

The algorithm consists of 3 main steps

- 1. **Training**: step necessary to compute time thresholds and the values used during the binarization phase;
- 2. **Enrollment**: the steps the algorithm follows when a new user is enrolled into the system;
- 3. Authentication: the steps the algorithm follows when a user needs to verify his gesture.

Our Algorithm

The algorithm consists of 3 main steps

- 1. **Training**: step necessary to compute time thresholds and the values used during the binarization phase;
- 2. **Enrollment**: the steps the algorithm follows when a new user is enrolled into the system;
- 3. Authentication: the steps the algorithm follows when a user needs to verify his gesture.

An example of authentication scheme

Performance analysis and possible improvements

Training

For this step we need a training database, representative of the population we want to enrol into the system.

The tablet extracts some or all of the following data per gesture:

- spatial coordinates X and Y;
- a time-stamp, *T*;
- pressure, *P*;
- event type, E
- event ID different touch events have different ID when they are simultaneously in contact with the device.

Training

For this step we need a training database, representative of the population we want to enrol into the system.

The tablet extracts some or all of the following data per gesture:

- spatial coordinates X and Y ;
- a time-stamp, *T*;
- pressure, *P*;
- event type, E
- event ID different touch events have different ID when they are simultaneously in contact with the device.

Training

For this step we need a training database, representative of the population we want to enrol into the system.

The tablet extracts some or all of the following data per gesture:

- spatial coordinates X and Y;
- a time-stamp, *T*;
- pressure, *P*;
- event type, E
- event ID different touch events have different ID when they are simultaneously in contact with the device.

000

Feature Extraction

Starting from this data, we computed a total of 63 features for each gesture.

ID	Description	ID	Description	ID	Description
1	Number of Sample	19,21,23,25	Y Local Acceleration	49	Height
2	Time Duration	26-27	X and Y Absolute Mean Velocity	50	Y Maximum
3	Aspect Ratio	28-29	X and Y Initial Value	51	Y Minimum
4-5	X and Y Areas	30-31	X and Y Final Value	52	Y Mean
6	X Mean Velocity	32-35	Statistic Moments M _{1,1} , M _{1,2} , M _{2,1} , M _{0,3}	53	Pressure Mean
7	X Mean Acceleration	37-40	X Local Area	54	Pressure Maximum
8	Y Mean Velocity	41-44	Y Local Area	55	Pressure Minimum
9	Y Mean Acceleration	45	Width	56-57	X and Y Maximum Velocity
10,12,14,16	X Local Velocity	46	X Maximum	58-61	Pressure Local Area
11,13,15,17	X Local Acceleration	47	X Minimun	62	X Peak Number
18,20,22,24	Y Local Velocity	48	X Mean	63	Y Peak Number

н			4-	~	~	А		~	÷	:	~	-	
5	5	5	ι		υ	u	u	L	ι	1	υ		

000

Performance analysis and possible improvements

Training

From the training database we calculate the following values:

- *four time thresholds th*₁, *th*₂, *th*₃, *th*₄ (Time Threshold Control);
- *three medians* m_1 , M, m_2 for each feature (Binarization process)

Int	YO.	du	at:	01
IIIL	10		ιu	

An example of authentication scheme $\circ \circ \bullet$

Performance analysis and possible improvements

Training

From the training database we calculate the following values:

- four time thresholds th₁, th₂, th₃, th₄ (Time Threshold Control);
- *three medians* m_1 , M, m_2 for each feature (Binarization process)

Int	YO.	du	at:	01
IIIL	10		ιu	

Training

From the training database we calculate the following values:

- four time thresholds th₁, th₂, th₃, th₄ (Time Threshold Control);
- *three medians* m₁, M, m₂ for each feature (Binarization process)

An example of authentication scheme

.00

Performance analysis and possible improvements

Enrollment

• 5 biometric measurements are recorded for each user;

- The mean time duration *T* is compared to the four time thresholds computed during the training stage, obtaining Fascia_temp.
- For each feature the median value is compared to m_1, M, m_2 in order to assign it one of the following strings {1011, 1111, 0111, 0101} obtaining the vector **B**.

The same process is applied to each of the five feature vectors, obtaining the vectors b_1, b_2, b_3, b_4, b_5

An example of authentication scheme

.00

Performance analysis and possible improvements

Enrollment

- 5 biometric measurements are recorded for each user;
- The mean time duration *T* is compared to the four time thresholds computed during the training stage, obtaining Fascia_temp.
- For each feature the median value is compared to m_1, M, m_2 in order to assign it one of the following strings {1011, 1111, 0111, 0101} obtaining the vector **B**.

The same process is applied to each of the five feature vectors, obtaining the vectors b_1 , b_2 , b_3 , b_4 , b_5

An example of authentication scheme

.00

Performance analysis and possible improvements

Enrollment

- 5 biometric measurements are recorded for each user;
- The mean time duration *T* is compared to the four time thresholds computed during the training stage, obtaining Fascia_temp.
- For each feature the median value is compared to m₁, M, m₂ in order to assign it one of the following strings {1011, 1111, 0111, 0101} obtaining the vector B.

The same process is applied to each of the five feature vectors, obtaining the vectors b_1 , b_2 , b_3 , b_4 , b_5

An example of authentication scheme

•00

Performance analysis and possible improvements

Enrollment

- 5 biometric measurements are recorded for each user;
- The mean time duration *T* is compared to the four time thresholds computed during the training stage, obtaining Fascia_temp.
- For each feature the median value is compared to m₁, M, m₂ in order to assign it one of the following strings {1011, 1111, 0111, 0101} obtaining the vector B.

The same process is applied to each of the five feature vectors, obtaining the vectors b_1, b_2, b_3, b_4, b_5

An example of authentication scheme

•00

Performance analysis and possible improvements

Enrollment

- 5 biometric measurements are recorded for each user;
- The mean time duration *T* is compared to the four time thresholds computed during the training stage, obtaining Fascia_temp.
- For each feature the median value is compared to m₁, M, m₂ in order to assign it one of the following strings {1011, 1111, 0111, 0101} obtaining the vector B.

The same process is applied to each of the five feature vectors, obtaining the vectors b_1, b_2, b_3, b_4, b_5

Performance analysis and possible improvements

Enrollment

Claudia Tinnirello, PhD student

An example of authentication scheme

Performance analysis and possible improvements

Stored templates

The system saves the following data:

• *m*₁, *M*, *m*₂

000

- *HD*₁, the sum between the binarized vector *B* and the code word obtain for each user *s*
- HD₂, the correction capability vector
- Hash
- Fascia_temp

An example of authentication scheme

Performance analysis and possible improvements

Stored templates

The system saves the following data:

• *m*₁, *M*, *m*₂

000

- *HD*₁, the sum between the binarized vector *B* and the code word obtain for each user *s*
- HD₂, the correction capability vector
- Hash
- Fascia_temp

In	÷	~	А		~	4.3	-	-	
	u	U	u	u	L	u	U		

Performance analysis and possible improvements

Authentication

The authentication process is organized into two steps:

- 1. Time threshold control
- 2. Feature analysis

ī			4-		~	А		~	÷		~	-	
5	5	5	ι	F	υ	u	u	L	ι	1	U		

Performance analysis and possible improvements

Authentication

The authentication process is organized into two steps:

- 1. Time threshold control
- 2. Feature analysis

An example of authentication scheme

Performance analysis and possible improvements

000 000 0**0**0

Time threshold control

Figure : Scheme representing how the time threshold will be used.

000 000 000

Feature analysis

Claudia Tinnirello, PhD student

In	÷	~	А		~	6.7	-	-	
	ιı	υ	u	u	L	u	U		

Performance Evaluation

Evaluating a verification system requires the analysis of two types of errors:

- 1. False Acceptance Rate (FAR): rate of incorrectly accepted forgeries
- 2. False Rejection Rate (FRR): rate of genuine signatures that are incorrectly rejected by the system

I and		-1					
				c	т		
	 0	u	C.	5	•	U	

Performance analysis and possible improvements

Results

Different choices of *time thresholds* and *code correction capability* lead to different percentages.

Allowing the user to have a *second* signature attempt in case the first one fails to authenticate, the best results achieved with the used database are:

FAR = 1.91% FRR = 6.66%

ln.	÷ .	-	А		~	s-		~	
	ιı	υ	u	u	L	ι	ļ	υ	

Performance analysis and possible improvements

Results

Different choices of *time thresholds* and *code correction capability* lead to different percentages.

Allowing the user to have a *second* signature attempt in case the first one fails to authenticate, the best results achieved with the used database are:

$$FAR = 1.91\%$$
 $FRR = 6.66\%$

Possible improvements

Many modifications are possible that can enhance the performance of the previous algorithm. For example, one can change

- the extracted set of features;
- the encoding scheme;
- the binarization process

(in order to test your new verification scheme you could need a database containing genuine and forgery signatures).

An example of authentication scheme

Performance analysis and possible improvements

Thank you for attention!