Using sparse codes in cryptographic primitives

Marco Baldi and Marco Bianchi

Università Politecnica delle Marche Ancona, Italy

{m.baldi, m.bianchi}@univpm.it

Code-based Cryptography

- Cryptographic primitives based on the decoding problem (decoding a random-like code)
- McEliece and Niederreiter cryptosystems: publickey cryptosystems based on the decoding problem
- Courtois-Finiasz-Sendrier (CFS) and Kabatianskii-Krouk-Smeets (KKS) systems: digital signature schemes based on the decoding problem

The Quantum Computer Threat

 Quantum computers allow to factorize large integers and to compute discrete logarithms in polynomial time

- They will seriously endanger **RSA**, **DSA**, **ECDSA**...
- October 2011: University of Southern California, Lockheed Martin and D-Wave Systems develop D-Wave One
- August 2012: Harvard Researchers Use D-Wave quantum computer to fold proteins
- May 2013: NASA and Google jointly order a 512 qubit D-Wave Two

McEliece cryptosystem

- Public Key Cryptosystem (PKC) proposed by McEliece in 1978, exploiting the problem of decoding a random linear code
- Private key:

$\{\mathbf{G}, \mathbf{S}, \mathbf{P}\}$

- **G**: generator matrix of a *t*-error correcting Goppa code
- S: k x k non-singular scrambling matrix
- **P**: n x n permutation matrix
- Public key:

$$\mathbf{G'} = \mathbf{SGP}$$

McEliece cryptosystem (2)

• Encryption map:

• Decryption map:

$$x' = xP^{-1} = uSG + eP^{-1}$$

all errors are corrected, thus obtaining:

 $\mathbf{U}' = \mathbf{U}\mathbf{S}$ $\mathbf{U} = \mathbf{U}'\mathbf{S}^{-1}$

• M. Baldi and M. Bianchi - Using sparse codes in cryptographic primitives

22 May 2013 • 5/29

Goppa codes and key size

- Any degree-t (irreducible) polynomial generates a different Goppa code
- So, the number of different codes with same parameters and correction capability is very high
- Their matrices are non-structured, thus their storage requires kn bits, which are reduced to rk bits with a CCA2 secure conversion [1]
- Despite this, key size is large and grows quadratically with the code length
- [1] K. Kobara, H. Imai, "Semantically secure McEliece public-key cryptosystems conversions for McEliece PKC", Proc. PKC 2001, pp. 19-35.

LDPC codes

- Low-Density Parity-Check (LDPC) codes are capacityachieving codes under Belief Propagation decoding
- They allow a random-based design, which results in large families of codes with similar characteristics
- The low density of their parity-check matrices could be used to reduce the key size, but this exposes the system to key recovery attacks
- Hence, , the permutation matrix P must be replaced with a denser matrix Q which makes the public code denser as well
- [2] C. Monico, J. Rosenthal, and A. Shokrollahi, "Using low density parity check codes in the McEliece cryptosystem," in *Proc. IEEE ISIT 2000*, Sorrento, Italy, Jun. 2000, p. 215.
- [3] M. Baldi, F. Chiaraluce, "Cryptanalysis of a new instance of McEliece cryptosystem based on QC-LDPC codes," Proc. IEEE ISIT 2007, Nice, France (June 2007) 2591–2595
- [4] A. Otmani, J.P. Tillich, L. Dallot, "Cryptanalysis of two McEliece cryptosystems based on quasi-cyclic codes," Proc. SCC 2008, Beijing, China (April 2008)

QC-LDPC codes with rate $(n_0 - 1)/n_0$

- A more efficient way to reduce the key size is to use dense public keys but with structured LDPC codes
- QC-LDPC codes with **H** as a row of circulant matrices:

$$\mathbf{H} = \begin{bmatrix} \mathbf{H}_{0}^{c} & \mathbf{H}_{1}^{c} & \mathbf{L} & \mathbf{H}_{n_{0}-1}^{c} \end{bmatrix} \longleftarrow \begin{array}{c} \text{completely} \\ \text{described by} \\ \text{its first row} \end{array}$$
Systematic generator matrix:
$$\int \begin{array}{c} \text{completely} \\ \text{described by} \\ \text{its } (k+1)\text{-th} \\ \text{column} \end{array} \quad \mathbf{G} = \begin{bmatrix} \left[\left(\mathbf{H}_{n_{0}-1}^{c} \right)^{-1} \cdot \mathbf{H}_{0}^{c} \right]^{T} \\ \left[\left(\mathbf{H}_{n_{0}-1}^{c} \right)^{-1} \cdot \mathbf{H}_{1}^{c} \right]^{T} \\ \left[\left(\mathbf{H}_{n_{0}-1}^{c} \right)^{-1} \cdot \mathbf{H}_{n_{0}-2}^{c} \right]^{T} \end{bmatrix}$$

[5] M. Baldi, M. Bodrato, F. Chiaraluce, "A New Analysis of the McEliece Cryptosystem based on QC-LDPC Codes," Proc. SCN 2008, Amalfi, Italy, vol. 5229 of LNCS., Springer (2008) 246–262

Key Size and Security level

• Minimum attack WF for m = 7:

p [bits]		4096	5120	6144	7168	8192	9216	10240	11264	12288	13312	14336	15360	16384
•	$d_v = 13$	2^{54}	2^{63}	2^{73}	2^{84}	2^{94}			2^{125}	2^{135}	2^{146}	2^{157}	2^{161}	2^{161}
$n_0 = 3$	$d_v = 15$	2^{54}	2^{64}	2^{75}	2^{85}	2^{94}	2^{105}	2^{116}	2^{126}	2^{137}	2^{146}	2^{157}	2^{168}	2^{179}
$n_{n} = 1$	$d_v = 13$	2^{60}	2^{73}	2^{85}	-	2	-	2	2^{146}	2^{153}	2^{154}	2^{154}	2^{154}	2^{154}
$n_0 = 4$	$d_v = 15$	2^{62}	2^{75}	2^{88}	2^{100}	2^{113}	2^{127}	2^{138}	2^{152}	2^{165}	2^{176}	2^{176}	2^{176}	2^{176}

• Key size (in bytes):

p [bits]	4096	5120	6144	7168	8192	9216	10240	11264	12288	13312	14336	15360	16384
$n_0 = 3$	1024	1280	1536	1792	2048	2304	2560	2816	3072	3328	3584	3840	4096
$n_0 = 4$	1536	1920	2304	2688	3072	3456	3840	4224	4608	4992	5376	5760	6144

[6] M. Baldi, M. Bianchi, F. Chiaraluce, "Security and complexity of the McEliece cryptosystem based on QC-LDPC codes", IET Information Security, in press, http://arxiv.org/abs/1109.5827

Comparison with Goppa codes

Comparison considering the Niederreiter version with 80-bit security (CCA2 secure conversion)

Solution	n	k	t	Key size [bytes]	Enc. compl.	Dec. compl.
Goppa based	1632	1269	33	57581	48	7890
QC-LDPC based	24576	18432	38	2304	1206	1790 (BF)
			(-/25	<u>I</u>	

• For the QC-LDPC code-based system, the key size grows linearly with the code length, due to the quasi-cyclic nature of the codes, while with Goppa codes it grows quadratically

MDPC code-based variant

- A recent follow-up uses Moderate-Density Parity-Check (MDPC) codes in the place of LDPC codes
- With MDPC codes, the public code can still be permutation equivalent to the private code
- Using randomly designed MDPC codes has permitted to obtain the first security reduction (to the random linear code decoding problem) for these schemes
- On the other hand, decoding MDPC codes is more complex than for LDPC codes
- [7] R. Misoczki, J.-P. Tillich, N. Sendrier, P. S. L. M. Barreto, "MDPC-McEliece: New McEliece Variants from Moderate Density Parity-Check Codes", cryptology ePrint archive, http://eprint.iacr.org/2012/409

Code Density Optimization

- To use LDPC codes securely, the permutation matrix
 P must be replaced with a matrix Q having average row and column weight m, 1 < m << n
- This avoids the existence of a sparse (and hence weak) representation for the public code...
- ...but also increases the number of intentional errors by a factor up to m
- The choice of m can be optimized by using simple tools
- [8] M. Baldi, M. Bianchi, F. Chiaraluce, "Optimization of the parity-check matrix density in QC-LDPC codebased McEliece cryptosystems", to be presented at IEEE ICC 2013, http://arxiv.org/abs/1303.2545

Attacks Work Factor (log₂)

Private Code Density Design

- Design procedure:
 - Fix the security level
 - \circ Obtain d_v ' and t
 - o Fix n
 - Find *m* such that there is a length-*n* code with $d_v = d_v'/m$ and able to correct *t*' = *tm* errors
- The higher *m*, the lower decoding complexity
- Hence, LDPC codes are advantageous over MDPC codes

Irregular Codes

- Irregular LDPC codes achieve higher error correction than regular ones
- This can be exploited to increase the system efficiency by reducing the code length...
- ...although the QC structure and the need to avoid enumeration impose some constraints

160-bit security

QC-LDPC code type	n ₀	d _v '	t	d _v	n	Key size (bytes)
regular	4	97	79	13	54616	5121
irregular	4	97	79	13	46448	4355 -150

[9] M. Baldi, M. Bianchi, N. Maturo, F. Chiaraluce, "Improving the efficiency of the LDPC code-based McEliece cryptosystem through irregular codes", to be presented at IEEE ISCC 2013

• M. Baldi and M. Bianchi - Using sparse codes in cryptographic primitives

22 May 2013 • 15/29

Code Based Signature Schemes

- Standard signature schemes rely on classic cryptographic primitives as RSA and DSA
- They will be endangered by quantum computers as well as RSA and DSA
- Code-based cryptographic primitives could be used for digital signatures
- Two main schemes were proposed for code based signatures:
 - Kabatianskii-Krouk-Smeets (KKS)
 - Courtois-Finiasz-Sendrier (CFS)

KKS

- The KKS scheme is quite different from traditional code based cryptosystem
- It is based on two code, one selecting the subset support of the other
- It does not require a decoding phase
- Majour issue: there is an attack for almost all of the parameter sets

CFS (1)

- Close to the original McEliece Cryptosystem
- It is based on Goppa codes

> Public:

- > A hash function $\mathcal{H}(D)$
- > A function $\mathcal{F}(C,h)$ able to transform the hash h into a correctable syndrome through the code C

> Initialization:

- The signer chooses a Goppa code G able to decode t errors and a parity check matrix H that allows decoding
- ➢ He chooses also a scrambling matrix S and publishes H'=SH

CFS (2)

 \succ Signing the document D:

- > The signer computes $s = \mathcal{F}(G, \mathcal{H}(D))$
- \succ s' = s(**S**^T)⁻¹
- He decodes the syndrome s' through the secret parity check matrix H: eH^T=s'
- > The error e is the signature

> Verification:

- > The verifier computes $s = \mathcal{F}(G, \mathcal{H}(D))$
- > He checks that $eH'^{T}=e(H^{T}S^{T})=s(S^{T})^{-1}S^{T}=s$

CFS (3)

- The main problem is to find an efficient function $\mathcal{F}(C,h)$
- For Goppa codes two techniques were proposed:
 - \succ Appending a counter to $\mathcal{H}(D)$ until a valid signature is generated
 - Performing complete decoding
- Both these methods require codes with very special parameters:
 - > very low rate
 - very small error correction capability

CFS (4)

- Codes with small t and low rate could be decoded, with good probability, through the Generalized Birthday Paradox Algorithm (GBA)
- In GBA, the columns of H' summing in the desired vector are selected by partial zero-summing
- Decoding is not guaranteed (it is guaranteed in ISD decoding)
- GBA works with random vectors, for code-based algorithms the vectors are H' columns: lack of randomness requires extra-effort
- However, for CFS parameters, the average correct decoding probability is astonishing close to 1

LDGM codes

- LDGM codes are codes with low density in the generator matrix G
- They are known for other applications like concatenated decoding
- We will consider LDGM generator matrix in the form:

 $\boldsymbol{G} = [\boldsymbol{I}_k \mid \boldsymbol{A}]$

• A valid parity check matrix is:

$$\boldsymbol{H} = [\boldsymbol{A}^T \mid \boldsymbol{I}_r]$$

• **G** row weight is W_G

• M. Baldi and M. Bianchi - Using sparse codes in cryptographic primitives

22 May 2013 • 22/29

Idea

- Using H in triangular form, it is trivial to find a vector e such that eH^T=s, for every s: it is just e = [0 | s]
- In this simplified scenario e has maximum weight equal to r
- Differently from CFS not only decodable syndrome are used (every weight is permitted for s)
- We need to check that e has a relatively low weight, otherwise it is easy to find e' such that e'H^T=s and the weight of e' is about n/2

• l.e.

$e' = ((\mathbf{H}^{\mathsf{T}}(\mathbf{H} \ \mathbf{H}^{\mathsf{T}})^{-1})s^{\mathsf{T}})^{\mathsf{T}}$

Proposed Scheme

- Use LDGM codes, fixing a target weight w_c
- Use H with an identity block somewhere (i.e. on the right end)
- $H' = Q^{-1}HS^{-1}$
- ${\bf S}$ is a sparse, not singular, matrix with row and column weight $m_{\rm s}$
- $\mathbf{Q} = \mathbf{R} + \mathbf{T}$
- **T** is a sparse, not singular, matrix with row and column weight $m_{\rm T}$
- $\mathbf{R} = \mathbf{a}^{\mathsf{T}}\mathbf{b}$, with \mathbf{a}, \mathbf{b} (z x r) matrices
- Our F(h,p) function has to transform an hash into a vector s such that bs=0 depending on the parameter p

Signing

- The signer chooses secret H, Q and S
- He computes s=F(H(D),p), it requires 2^{z-1} attempts in the average case
- s' = **Q**s
- He decodes the syndrome s' through the secret parity check matrix H: eH^T=s', that is e =[0|s']
- He chooses a random low-weight codeword c having weight w_c that is (close to) a small multiple of w_G , w_c is made public
- The signature is the couple $[p,e'=(e+c)S^T]$

Verification

- The verifier computes the vector s=F(H(D),p) having weight w
- The verifier checks that the weight of e' is equal or smaller than $(m_T w + w_c)m_s$
- He checks that e'**H'**^T = s

Rationale

- Removing the request for low rate codes makes GBA unfeasable
- ISD algorithms are not able to find errors of moderately high weight
- The insertion of the codeword c is needed to make the system not-linear (it becomes an affine map)
- The use of Q reinforces the system against the most dangerous known attack (Support Intersection Attack)
- We can use Quasi Cyclic codes in order to keep the public key size small

Parameters

SL (bits)	n	k	p	w	w_g	w_c	\boldsymbol{z}	m_T	m_S	A_{w_c}	N_s	S_k (KiB)
80	9800	4900	50	18	20	160	2		9	4	$2^{166.10}$	111
120	24960	10000	80	23	25	325	2			$2^{140.19}$		
160	46000	16000	100	29	31	465	2	1	20	$2^{169.23}$	$2^{326.49}$	1685

- For the same security levels (SL), CFS requires Key Sizes (S_k) in the range 1.25-20 MiB (parallel version) or greater than 52 MiB (standard version)

ESCAPADE research project

http://escapade.dii.univpm.it

22 May 2013 • 29/29