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Code-‐‑based  Cryptography	
•  Cryptographic primitives based on the decoding 

problem (decoding a random-like code) 

•  McEliece and Niederreiter cryptosystems: public-
key cryptosystems based on the decoding problem 

•  Courtois-Finiasz-Sendrier (CFS) and Kabatianskii-
Krouk-Smeets (KKS) systems: digital signature 
schemes based on the decoding problem 
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The  Quantum  Computer  Threat	
•  Quantum computers allow to 
    factorize large integers and to 
    compute discrete logarithms in 
    polynomial time 
•  They will seriously endanger RSA, DSA, 

 ECDSA… 
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•  October 2011: University of Southern California, 
Lockheed Martin and D-Wave Systems develop D-
Wave One 

•  August 2012: Harvard Researchers Use D-Wave 
quantum computer to fold proteins 

•  May 2013: NASA and Google jointly order a 512 qubit 
D-Wave Two 



McEliece  cryptosystem	
•  Public Key Cryptosystem (PKC) proposed by McEliece in 1978, 

exploiting the problem of decoding a random linear code  

•  Private key: 

{G, S, P} 

o  G:  generator matrix of a t-error correcting Goppa code 
o  S:  k x k non-singular scrambling matrix 
o  P:  n x n permutation matrix 

•  Public key: 

G’ = SGP 
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McEliece  cryptosystem  (2)	
•  Encryption map: 

x = uG’ + e 

•  Decryption map: 

x’ = xP-1 = uSG + eP-1 

all errors are corrected, thus obtaining: 
 

u’ = uS 
u = u’S-1 
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Goppa  codes  and  key  size	
•  Any degree-t (irreducible) polynomial generates a 

different Goppa code 

•  So, the number of different codes with same parameters 
and correction capability is very high 

•  Their matrices are non-structured, thus their storage 
requires kn bits, which are reduced to rk bits with a 
CCA2 secure conversion [1] 

•  Despite this, key size is large and grows quadratically 
with the code length 

[1]  K. Kobara, H. Imai, “Semantically secure McEliece public-key cryptosystems - conversions for McEliece 
PKC”, Proc. PKC 2001, pp. 19-35. 
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LDPC  codes	
•  Low-Density Parity-Check (LDPC) codes are capacity-

achieving codes under Belief Propagation decoding 

•  They allow a random-based design, which results in large 
families of codes with similar characteristics 

•  The low density of their parity-check matrices could be used to 
reduce the key size, but this exposes the system to key 
recovery attacks 

•  Hence, , the permutation matrix P must be replaced with a 
denser matrix Q which makes the public code denser as well 
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[2]  C. Monico, J. Rosenthal, and A. Shokrollahi, “Using low density parity check codes in the McEliece 
cryptosystem,” in Proc. IEEE ISIT 2000, Sorrento, Italy, Jun. 2000, p. 215. 

[3]  M. Baldi, F. Chiaraluce, “Cryptanalysis of a new instance of McEliece cryptosystem based on QC-LDPC 
codes,” Proc. IEEE ISIT 2007, Nice, France (June 2007) 2591–2595 

[4]  A. Otmani, J.P. Tillich, L. Dallot, “Cryptanalysis of two McEliece cryptosystems based on quasi-cyclic 
codes,” Proc. SCC 2008, Beijing, China (April 2008) 
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QC-‐‑LDPC  codes  with  rate  (n0  -‐‑  1)/n0	
•  A more efficient way to reduce the key size is to use dense 

public keys but with structured LDPC codes 

•  QC-LDPC codes with H as a row of circulant matrices: 

•  Systematic generator matrix: 
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[5]  M. Baldi, M. Bodrato, F. Chiaraluce, “A New Analysis of the McEliece Cryptosystem based on QC-LDPC 
Codes,” Proc. SCN 2008, Amalfi, Italy, vol. 5229 of LNCS., Springer (2008) 246–262 
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Key  Size  and  Security  level	
•  Minimum attack WF for m = 7: 

•  Key size (in bytes): 

[6]  M. Baldi, M. Bianchi, F. Chiaraluce, “Security and complexity of the McEliece cryptosystem based on 
QC-LDPC codes”, IET Information Security, in press, http://arxiv.org/abs/1109.5827 
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Comparison  with  Goppa  codes	
•  Comparison considering the Niederreiter version with 80-bit 

security (CCA2 secure conversion) 

 
•  For the QC-LDPC code-based system, the key size grows 

linearly with the code length, due to the quasi-cyclic nature 
of the codes, while with Goppa codes it grows quadratically 

Solution n k t Key size 
[bytes] 

Enc. 
compl. 

Dec. 
compl. 

Goppa 
based 

1632 1269 33 57581 48 7890 

QC-LDPC 
based 

24576 18432 38 2304 1206 1790 (BF) 
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MDPC  code-‐‑based  variant	
•  A recent follow-up uses Moderate-Density Parity-Check 

(MDPC) codes in the place of LDPC codes 

•  With MDPC codes, the public code can still be 
permutation equivalent to the private code 

•  Using randomly designed MDPC codes has permitted to 
obtain the first security reduction (to the random linear 
code decoding problem ) for these schemes 

•  On the other hand, decoding MDPC codes is more 
complex than for LDPC codes 

[7]  R. Misoczki, J.-P. Tillich, N. Sendrier, P. S. L. M. Barreto, “MDPC-McEliece: New McEliece Variants from 
Moderate Density Parity-Check Codes”, cryptology ePrint archive, http://eprint.iacr.org/2012/409 
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Code  Density  Optimization	
•  To use LDPC codes securely, the permutation matrix 

P must be replaced with a matrix Q having average 
row and column weight m, 1 < m << n 

•  This avoids the existence of a sparse (and hence 
weak) representation for the public code… 

•  …but also increases the number of intentional errors 
by a factor up to m 

•  The choice of m can be optimized by using simple 
tools 
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[8]  M. Baldi, M. Bianchi, F. Chiaraluce, "Optimization of the parity-check matrix density in QC-LDPC code-
based McEliece cryptosystems“, to be presented at IEEE ICC 2013, http://arxiv.org/abs/1303.2545 
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ANacks  Work  Factor  (log2)	
       Dual code attacks              Information Set Decoding 
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Private  Code  Density  Design	
•  Design procedure: 
o  Fix the security level 
o  Obtain dv’ and t 
o  Fix n 
o  Find m such that there is 

a length-n code with    
dv = dv’/m and able to 
correct t’ = tm errors 

•  The higher m, the 
lower decoding 
complexity 

•  Hence, LDPC codes 
are advantageous 
over MDPC codes 
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Irregular  Codes	
•  Irregular LDPC codes achieve higher error correction 

than regular ones 

•  This can be exploited to increase the system efficiency 
by reducing the code length… 

•  …although the QC structure and the need to avoid 
enumeration impose some constraints 
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QC-LDPC 
code type 

n0 dv’ t dv n Key size 
(bytes) 

regular 4 97 79 13 54616 5121 

irregular 4 97 79 13 46448 4355 

160-bit security 

[9]  M. Baldi, M. Bianchi, N. Maturo, F. Chiaraluce, “Improving the efficiency of the LDPC code-based 
McEliece cryptosystem through irregular codes”, to be presented at IEEE ISCC 2013 
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Code  Based  Signature  Schemes	
•  Standard signature schemes rely on classic 

cryptographic primitives as RSA and DSA 
•  They will be endangered by quantum computers as 

well as RSA and DSA 
•  Code-based cryptographic primitives could be 

used for digital signatures 
•  Two main schemes were proposed for code based 

signatures:  
Ø  Kabatianskii-Krouk-Smeets (KKS) 
Ø Courtois-Finiasz-Sendrier (CFS) 
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KKS	
•  The KKS scheme is quite different from traditional 

code based cryptosystem 
•  It is based on two code, one selecting the subset 

support of the other 
•  It does not require a decoding phase 
•  Majour issue: there is an attack for almost all of the 

parameter sets 
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CFS  (1)	
•  Close to the original McEliece Cryptosystem 
•  It is based on Goppa codes 
 
Ø  Public: 

Ø A hash function H(D) 
Ø A function F(C,h) able to transform the hash h into a 

correctable syndrome through the code C 

Ø  Initialization:  
Ø  The signer chooses a Goppa code G able to decode t 

errors and a parity check matrix H that allows decoding 
Ø He chooses also a scrambling matrix S and publishes H’=SH 
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CFS  (2)	
Ø  Signing the document D: 

Ø  The signer computes  s=F(G,H(D)) 
Ø  s’ = s(ST)-1 
Ø He decodes the syndrome s’ through the secret parity 

check matrix H: eHT=s’  
Ø  The error e is the signature 

Ø Verification:  
Ø  The verifier computes  s=F(G,H(D)) 
Ø He checks that eH’T=e(HTST)= s(ST)-1ST =s 
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CFS  (3)	
•  The main problem is to find an efficient function 

F(C,h) 
•  For Goppa codes two techniques were proposed: 

Ø Appending a counter to H(D) until a valid signature is 
generated 

Ø  Performing complete decoding 

•  Both these methods require codes with very special 
parameters:  
Ø  very low rate  
Ø  very small error correction capability 
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CFS  (4)	
•  Codes with small t and low rate could be decoded, 

with good probability, through the Generalized 
Birthday Paradox Algorithm (GBA) 

•  In GBA, the columns of H’ summing in the desired 
vector are selected by partial  zero-summing 

•  Decoding is not guaranteed (it is guaranteed in ISD 
decoding) 

•  GBA works with random vectors, for code-based 
algorithms the vectors are H’ columns: lack of 
randomness requires extra-effort 

•  However, for CFS parameters, the average correct 
decoding probability is astonishing close to 1 
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LDGM  codes	
•  LDGM codes are codes with low density in the 

generator matrix G 
•  They are known for other applications like 

concatenated decoding 
•  We will consider LDGM generator matrix in the form: 

•  A valid parity check matrix is: 

•  G row weight is wG 

22 May 2013 M. Baldi and M. Bianchi - Using sparse codes in cryptographic primitives 

][ A|IG k=

][ r
T I|AH =

22/29 



Idea	
•  Using H in triangular form, it is trivial to find a vector 

e such that eHT=s, for every s: it is just e =[0|s] 
•  In this simplified scenario e has maximum weight 

equal to r 
•  Differently from CFS not only decodable syndrome 

are used (every weight is permitted for s) 
•  We need to check that e has a relatively low 

weight, otherwise it is easy to find e’ such that 
e’HT=s and the weight of e’ is about n/2 

•  I.e. 
     e’= ((HT(H HT)-1)sT) T 
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Proposed  Scheme	
•  Use LDGM codes, fixing a target weight wc 
•  Use H with an identity block somewhere (i.e. on the right 

end) 
•  H’ = Q-1HS-1 

•  S is a sparse, not singular, matrix with row and column 
weight ms 

•  Q = R + T 
•  T is a sparse, not singular, matrix with row and column 

weight mT 

•  R = aTb, with a,b (z x r) matrices 
•  Our F(h,p) function has to transform an hash into a 

vector s such that bs=0 depending on the parameter p 
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Signing	
•  The signer chooses secret H, Q and S 
•  He computes  s=F(H(D),p), it requires 2z-1 attempts in 

the average case 
•  s’ = Qs 
•  He decodes the syndrome s’ through the secret 

parity check matrix H: eHT=s’, that is e =[0|s’] 
•  He chooses a random low-weight codeword c 

having weight wc that is (close to) a small multiple of 
wG, wc is made public 

•  The signature is the couple [p,e’=(e+c)ST] 
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Verification	
•  The verifier computes the vector s=F(H(D),p) having 

weight w 
•  The verifier checks that the weight of e’ is equal or 

smaller than (mTw+wc)ms 
•  He checks that e’H’T = s 

22 May 2013 M. Baldi and M. Bianchi - Using sparse codes in cryptographic primitives 26/29 



Rationale	
•  Removing the request for low rate codes makes 

GBA unfeasable 
•  ISD algorithms are not able to find errors of 

moderately high weight 
•  The insertion of the codeword c is needed to make 

the system not-linear (it becomes an affine map) 
•  The use of Q reinforces the system against the most 

dangerous known attack (Support Intersection 
Attack) 

•  We can use Quasi Cyclic codes in order to keep the 
public key size small 
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Parameters	

•  For the same security levels (SL), CFS requires Key 
Sizes (Sk) in the range 1.25-20 MiB (parallel version) or 
greater than 52 MiB (standard version) 
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ESCAPADE  research  project	
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http://escapade.dii.univpm.it 
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