Using sparse codes in cryptographic primitives

Marco Baldi and Marco Bianchi
Università Politecnica delle Marche Ancona, Italy
\{m.baldi, m.bianchi\}@univpm.it

Code-based Cryptography

- Cryptographic primitives based on the decoding problem (decoding a random-like code)
- McEliece and Niederreiter cryptosystems: publickey cryptosystems based on the decoding problem
- Courtois-Finiasz-Sendrier (CFS) and Kabatianskii-Krouk-Smeets (KKS) systems: digital signature schemes based on the decoding problem

The Quantum Computer Threat

- Quantum computers allow to factorize large integers and to compute discrete logarithms in polynomial time
- They will seriously endanger RSA, DSA,
 ECDSA...
- October 2011: University of Southern California, Lockheed Martin and D-Wave Systems develop DWave One
- August 2012: Harvard Researchers Use D-Wave quantum computer to fold proteins
- May 2013: NASA and Google jointly order a 512 qubit D-Wave Two

McEliece cryptosystem

- Public Key Cryptosystem (PKC) proposed by McEliece in 1978, exploiting the problem of decoding a random linear code
- Private key:

$$
\{\mathbf{G}, \mathbf{S}, \mathbf{P}\}
$$

- G: generator matrix of a t-error correcting Goppa code
- S: kxknon-singular scrambling matrix
- P: nxn permutation matrix
- Public key:

$$
\mathbf{G}^{\prime}=\mathbf{S G P}
$$

McEliece cryptosystem (2)

- Encryption map:

$$
\mathbf{x}=\mathbf{U} \mathbf{G}^{\prime}+\mathbf{e}
$$

- Decryption map:

$$
\mathbf{x}^{\prime}=\mathbf{x P ^ { - 1 }}=\mathbf{U S G}+\mathbf{e P}^{-1}
$$

all errors are corrected, thus obtaining:

$$
\begin{gathered}
\mathbf{u}^{\prime}=\mathbf{U S} \\
\mathbf{U}=\mathbf{U}^{\prime} \mathbf{S}^{-1}
\end{gathered}
$$

Goppa codes and key size

- Any degree-t (irreducible) polynomial generates a different Goppa code
- So, the number of different codes with same parameters and correction capability is very high
- Their matrices are non-structured, thus their storage requires kn bits, which are reduced to rk bits with a CCA2 secure conversion [1]
- Despite this, key size is large and grows quadratically with the code length
[1] K. Kobara, H. Imai, "Semantically secure McEliece public-key cryptosystems - conversions for McEliece PKC", Proc. PKC 2001, pp. 19-35.

LDPC codes

- Low-Density Parity-Check (LDPC) codes are capacityachieving codes under Belief Propagation decoding
- They allow a random-based design, which results in large families of codes with similar characteristics
- The low density of their parity-check matrices could be used to reduce the key size, but this exposes the system to key recovery attacks
- Hence, , the permutation matrix \mathbf{P} must be replaced with a denser matrix \mathbf{Q} which makes the public code denser as well
[2] C. Monico, J. Rosenthal, and A. Shokrollahi, "Using low density parity check codes in the McEliece cryptosystem," in Proc. IEEE ISIT 2000, Sorrento, Italy, Jun. 2000, p. 215.
[3] M. Baldi, F. Chiaraluce, "Cryptanalysis of a new instance of McEliece cryptosystem based on QC-LDPC codes," Proc. IEEE ISIT 2007, Nice, France (June 2007) 2591-2595
[4] A. Otmani, J.P. Tillich, L. Dallot, "Cryptanalysis of two McEliece cryptosystems based on quasi-cyclic codes," Proc. SCC 2008, Beijing, China (April 2008)

QC-LDPC codes with rate $\left(n_{0}-1\right) / n_{0}$

- A more efficient way to reduce the key size is to use dense public keys but with structured LDPC codes
- QC-LDPC codes with \mathbf{H} as a row of circulant matrices:

$$
\mathbf{H}=\left[\begin{array}{llll}
\mathbf{H}_{0}^{c} & \mathbf{H}_{1}^{c} & \mathrm{~L} & \mathbf{H}_{n_{0}-1}^{c}
\end{array}\right] \longleftarrow \begin{gathered}
\text { completely } \\
\text { described by }
\end{gathered}
$$

- Systematic generator matrix:

\int_{-1} itcompletely described by its $(k+1)$-th column

$$
\begin{gathered}
{\left[\left(\mathbf{H}_{n_{0}-1}^{c}\right)^{-1} \cdot \mathbf{H}_{0}^{c}\right]^{T}} \\
{\left[\left(\mathbf{H}_{n_{0}-1}^{c}\right)^{-1} \cdot \mathbf{H}_{1}^{c}\right]^{T}} \\
{\left[\left(\mathbf{H}_{n_{0}-1}^{c}\right)^{-1} \cdot \mathbf{H}_{n_{0}-2}^{c}\right]^{T}}
\end{gathered}
$$

[5] M. Baldi, M. Bodrato, F. Chiaraluce, "A New Analysis of the McEliece Cryptosystem based on QC-LDPC Codes," Proc. SCN 2008, Amalfi, Italy, vol. 5229 of LNCS., Springer (2008) 246-262

Key Size and Security level

- Minimum attack WF for $m=7$:

p [bits]		4096	5120	6144	7168	8192	9216	10240	11264	12288	13312	14336	15360	16384
$n_{0}=3$	$d_{v}=13$	2^{54}	2^{63}	2^{73}	2^{84}	2^{94}	2^{105}	2^{116}	2^{125}	2^{135}	2^{146}	2^{157}	2^{161}	2^{161}
	2^{54}	2^{64}	2^{75}	2^{85}	2^{94}	2^{105}	2^{116}	2^{126}	2^{137}	2^{146}	2^{157}	2^{168}	2^{179}	
$n_{0}=4$	$d_{v}=13$	2^{60}	2^{73}	2^{85}	2^{98}	2^{109}	2^{121}	2^{134}	2^{146}	2^{153}	2^{154}	2^{154}	2^{154}	2^{154}
	2^{62}	2^{75}	2^{88}	2^{100}	2^{113}	2^{127}	2^{138}	2^{152}	2^{165}	2^{176}	2^{176}	2^{176}	2^{176}	

- Key size (in bytes):

p [bits]	4096	5120	6144	7168	8192	9216	10240	11264	12288	13312	14336	15360	16384
$n_{0}=3$	1024	1280	1536	1792	2048	2304	2560	2816	3072	3328	3584	3840	4096
$n_{0}=4$	1536	1920	2304	2688	3072	3456	3840	4224	4608	4992	5376	5760	6144

[6] M. Baldi, M. Bianchi, F. Chiaraluce, "Security and complexity of the McEliece cryptosystem based on QC-LDPC codes", IET Information Security, in press, http://arxiv.org/abs/1109.5827

- M. Baldi and M. Bianchi - Using sparse codes in cryptographic primitives

Comparison with Goppa codes

- Comparison considering the Niederreiter version with 80-bit security (CCA2 secure conversion)

Solution	n	k	\mathbf{t}	Key size lbytes]	Enc. compl.	Dec. compl.
Goppa based	1632	1269	33	57581	48	7890
QC-LDPC based	24576	18432	38	2304	1206	1790 (BF)

- For the QC-LDPC code-based system, the key size grows linearly with the code length, due to the quasi-cyclic nature of the codes, while with Goppa codes it grows quadratically

MDPC code-based variant

- A recent follow-up uses Moderate-Density Parity-Check (MDPC) codes in the place of LDPC codes
- With MDPC codes, the public code can still be permutation equivalent to the private code
- Using randomly designed MDPC codes has permitted to obtain the first security reduction (to the random linear code decoding problem) for these schemes
- On the other hand, decoding MDPC codes is more complex than for LDPC codes
[7] R. Misoczki, J.-P. Tillich, N. Sendrier, P. S. L. M. Barreto, "MDPC-McEliece: New McEliece Variants from Moderate Density Parity-Check Codes", cryptology ePrint archive, http://eprint.iacr.org/2012/409

Code Density Optimization

- To use LDPC codes securely, the permutation matrix P must be replaced with a matrix \mathbf{Q} having average row and column weight $m, 1<m \ll n$
- This avoids the existence of a sparse (and hence weak) representation for the public code...
- ...but also increases the number of intentional errors by a factor up to m
- The choice of m can be optimized by using simple tools
[8] M. Baldi, M. Bianchi, F. Chiaraluce, "Optimization of the parity-check matrix density in QC-LDPC codebased McEliece cryptosystems", to be presented at IEEE ICC 2013, http://arxiv.org/abs/1303.2545

Attacks Work Factor $\left(\log _{2}\right)$

Dual code attacks

Public code \mathbf{H} column weight ($\mathrm{d}_{\mathrm{v}}^{\prime}$)

Information Set Decoding

Number of intentional errors (t)

Private Code Density Design

- Design procedure:
- Fix the security level
- Obtain d_{v} ' and t
- Fix n
- Find m such that there is a length-n code with $d_{v}=d_{v}{ }^{\prime} / m$ and able to correct \dagger ' $=$ tm errors
- The higher m, the lower decoding complexity
- Hence, LDPC codes are advantageous over MDPC codes

Number of correctable errors

Code length (n)

Irregular Codes

- Irregular LDPC codes achieve higher error correction than regular ones
- This can be exploited to increase the system efficiency by reducing the code length...
- ...although the QC structure and the need to avoid enumeration impose some constraints

160-bit security

QC-LDPC code type	n_{0}	$d_{v}{ }^{\prime}$	t	d_{v}	n	Key size (bytes)
regular	4	97	79	13	54616	5121
irregular	4	97	79	13	46448	4355

[9] M. Baldi, M. Bianchi, N. Maturo, F. Chiaraluce, "Improving the efficiency of the LDPC code-based McEliece cryptosystem through irregular codes", to be presented at IEEE ISCC 2013

- M. Baldi and M. Bianchi - Using sparse codes in cryptographic primitives

Code Based Signature Schemes

- Standard signature schemes rely on classic cryptographic primitives as RSA and DSA
- They will be endangered by quantum computers as well as RSA and DSA
- Code-based cryptographic primitives could be used for digital signatures
- Two main schemes were proposed for code based signatures:
> Kabatianskii-Krouk-Smeets (KKS)
> Courtois-Finiasz-Sendrier (CFS)

KKS

- The KKS scheme is quite different from traditional code based cryptosystem
- It is based on two code, one selecting the subset support of the other
- It does not require a decoding phase
- Majour issue: there is an attack for almost all of the parameter sets

CFS (1)

- Close to the original McEliece Cryptosystem
- It is based on Goppa codes
> Public:
> A hash function $\mathcal{H}(D)$
> A function $F(C, h)$ able to transform the hash h into a correctable syndrome through the code C
> Initialization:
> The signer chooses a Goppa code G able to decode \dagger errors and a parity check matrix \boldsymbol{H} that allows decoding
> He chooses also a scrambling matrix \boldsymbol{S} and publishes $\boldsymbol{H}^{\prime}=\mathbf{S H}$

CFS (2)

> Signing the document D:
> The signer computes $s=F(G, \mathcal{H}(D))$
$>s^{\prime}=s\left(S^{\top}\right)^{-1}$
> He decodes the syndrome s' through the secret parity check matrix \boldsymbol{H} : $\mathrm{eH}^{\boldsymbol{T}}=\mathrm{s}^{\prime}$
> The error e is the signature
> Verification:
> The verifier computes $s=F(G, \mathcal{H}(D))$
$>$ He checks that $e H^{\top \top}=e\left(H^{\top} S^{\top}\right)=s\left(S^{\top}\right)^{-1} S^{\top}=s$

CFS (3)

- The main problem is to find an efficient function $F(C, h)$
- For Goppa codes two techniques were proposed:
> Appending a counter to $\mathcal{H}(\mathrm{D})$ until a valid signature is generated
> Performing complete decoding
- Both these methods require codes with very special parameters:
> very low rate
> very small error correction capability

CFS (4)

- Codes with small \dagger and low rate could be decoded, with good probability, through the Generalized Birthday Paradox Algorithm (GBA)
- In GBA, the columns of H^{\prime} summing in the desired vector are selected by partial zero-summing
- Decoding is not guaranteed (it is guaranteed in ISD decoding)
- GBA works with random vectors, for code-based algorithms the vectors are H^{\prime} columns: lack of randomness requires extra-effort
- However, for CFS parameters, the average correct decoding probability is astonishing close to 1

LDGM codes

- LDGM codes are codes with low density in the generator matrix G
- They are known for other applications like concatenated decoding
- We will consider LDGM generator matrix in the form:

$$
G=\left[I_{k} \mid A\right]
$$

- A valid parity check matrix is:

$$
H=\left[A^{T} \mid I_{r}\right]
$$

- \boldsymbol{G} row weight is w_{G}

Idea

- Using \boldsymbol{H} in triangular form, it is trivial to find a vector e such that e $\boldsymbol{H}^{\top}=s$, for every s : it is just $e=[0 \mid s]$
- In this simplified scenario e has maximum weight equal to r
- Differently from CFS not only decodable syndrome are used (every weight is permitted for s)
- We need to check that e has a relatively low weight, otherwise it is easy to find e' such that $e^{\prime} H^{\top}=s$ and the weight of e^{\prime} is about $n / 2$
- I.e.

$$
e^{\prime}=\left(\left(\boldsymbol{H}^{\top}\left(\boldsymbol{H} \boldsymbol{H}^{\top}\right)^{-1}\right) s^{\top}\right)^{\top}
$$

Proposed Scheme

- Use LDGM codes, fixing a target weight w_{c}
- Use \boldsymbol{H} with an identity block somewhere (i.e. on the right end)
- $H^{\prime}=Q^{-1} H S^{-1}$
- S is a sparse, not singular, matrix with row and column weight m_{s}
- $Q=R+T$
- \boldsymbol{T} is a sparse, not singular, matrix with row and column weight m_{T}
- $\boldsymbol{R}=\mathbf{a}^{\top} \mathbf{b}$, with $\mathbf{a}, \mathbf{b}(z \times r)$ matrices
- Our $F(h, p)$ function has to transform an hash into a vector s such that $\mathbf{b s}=\mathbf{0}$ depending on the parameter p

Signing

- The signer chooses secret \mathbf{H}, \mathbf{Q} and \mathbf{S}
- He computes $s=F(\mathcal{H}(D), p)$, it requires 2^{z-1} attempts in the average case
- $s^{\prime}=\mathbf{Q}$
- He decodes the syndrome s' through the secret parity check matrix \boldsymbol{H} : $\mathrm{eH}^{\top}=\mathrm{s}^{\prime}$, that is $\mathrm{e}=\left[0 \mid \mathrm{s}^{\prime}\right]$
- He chooses a random low-weight codeword c having weight w_{c} that is (close to) a small multiple of W_{G}, w_{c} is made public
- The signature is the couple $\left[p, e^{\prime}=(e+c) S^{\top}\right]$

Verification

- The verifier computes the vector $s=F(\mathcal{H}(D), p)$ having weight w
- The verifier checks that the weight of e^{\prime} is equal or smaller than $\left(m_{T} w+w_{C}\right) m_{s}$
- He checks that e' $H^{\top T}=s$

Rationale

- Removing the request for low rate codes makes GBA unfeasable
- ISD algorithms are not able to find errors of moderately high weight
- The insertion of the codeword c is needed to make the system not-linear (it becomes an affine map)
- The use of \mathbf{Q} reinforces the system against the most dangerous known attack (Support Intersection Attack)
- We can use Quasi Cyclic codes in order to keep the public key size small

Parameters

SL (bits)	n	k	p	w	w_{g}	w_{c}	z	m_{T}	m_{S}	$A_{w_{c}}$	N_{s}	$S_{k}(\mathrm{KiB})$
80	9800	4900	50	18	20	160	2	1	9	$2^{82.76}$	$2^{166.10}$	117
120	24960	10000	80	23	25	325	2	1	14	$2^{140.19}$	$2^{242.51}$	570
160	46000	16000	100	29	31	465	2	1	20	$2^{169.23}$	$2^{326.49}$	1685

- For the same security levels (SL), CFS requires Key Sizes $\left(S_{k}\right)$ in the range 1.25-20 MiB (parallel version) or greater than 52 MiB (standard version)

ESCAPADE research project

http://escapade.dii.univpm.it

