
Semantics based analysis
for SW security

Roberto Giacobazzi
SPY Lab @ University of Verona

Italy

User Model Evolution

11

MAINFRAME

ERA

One
Computer

Thousands of
Users

 1960s 1990s 2000s 2020s

PC

ERA

One
Computer

One
User

MOBILITY

ERA

Several
Computers

One
User

UBIQUITY

ERA

Thousands of
Computers

One
User

The future of mobile will not be only
web or Apps. It’s everything everywhere.

Required Hacker
Skill Level

Open Platforms Pose an Opportunity & a Risk

 Ongoing trend towards openness (even TVs and STBs)
 Open devices/platforms attract more developers and consumers
 Unfortunately, they decrease the required hacker skill level

Low

Se
cu

rit
y

 T
hr

ea
t

Open Devices Closed Devices

Feature
Phone

Blackberry

Symbian
phone

Android
phone

Mac iPad
iPhone

Windows
PC

High

13
2011© IRDETO | This document contains information that is privileged or confidential

High

Game
Console

STB

TV

Un-Trusted Environment Reality

14

 Cloud Computing
Environments

Consumer Devices & Home Networks & Internet of Things

Public Internet
(HTML5)

Un-trusted
environments

are everywhere and
even becoming

more dominated in
digital world

Persistent security
on

un-trusted
environments
is becoming
#1 concern

Untrusted environment!

New Fundamental Challenges to Information Security

15

White-Box
Security

Dynamic
Security

Digital Asset Protection is More About
Security of Un-Trusted Environments

Traditional security is more about
security of trusted environments

Cryptographic AssumptionCryptographic Assumption and Traditional Attacks

Bob

Black Box Attacks or Grey Box Attacks

Alice

Software Software

Network

Trusted Inside Black Box
• Alice and Bob each have exclusive
control over their own computers
• No information leaves from or store
into their computers without their
approval

17

Man-In-The-Middle Attack
(Indirect, side-channel)

Perimeter Defenses

White-Box AttacksWhite-Box Attacks

Bob is the Attacker

Software

18

Network

Alice

Software

Man-At-The-End
Attack

 Device and environment are un-
trusted

 Attacker has direct access to the
machine and software no matter
whether it’s running or not

Attackers have open-end powers to do
 Trace every program instruction
 View the contents of memory and cache
 Stop execution at any point and run an off-line process
 Alter code or memory at will
 Do all of this for as long as they want, whenever they want,

in collusion with as many other attackers as they can find

Attacking has much less
limitation than protection

The tools

20

What Are the Threats?

IDA Pro
HexRays
OllyDbg
LordPE

GDB
HIEW

HexEdit
VMware

QEMU

Direct WhiteBox Attack
Colluding Attack

Differential Attack

time

version1 version2

Value of SW protectionValue of Software Protection

Secured Input
Authentication, validation,
integrity, confidentiality of

input data

Secured Output
Authentication, validation,

integrity, confidentiality
of output data

Hide Algorithms
& Computations

Hide Internal
Data

Including internally
initialized data

Tamper
Resistance

Makes it hard to modify
the code’s data and

control flow

Tamper
Detection

Damage
Mitigation

34

Anti
Bug

Example of static analysis (safety){n0>=0}
n := n0;

{n0=n,n0>=0}
i := n; n0 must be initially nonnegative

(otherwise the program does not
terminate properly)

{n0=i,n0=n,n0>=0}
while (i <> 0) do

{n0=n,i>=1,n0>=i}
j := 0;

{n0=n,j=0,i>=1,n0>=i}
while (j <> i) do

{n0=n,j>=0,i>=j+1,n0>=i}
j := j + 1 ̀ j < n0 so no upper overflow

{n0=n,j>=1,i>=j,n0>=i}
od;

{n0=n,i=j,i>=1,n0>=i}
i := i - 1 ̀ i > 0 so no lower overflow

{i+1=j,n0=n,i>=0,n0>=i+1}
od

{n0=n,i=0,n0>=0}

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 3 — ľ P. Cousot, 2005

Static analysis by abstract interpretation

Verification: define and prove automatically a property of
the possible behaviors of a complex computer pro-
gram;

Abstraction: the reasoning/calculus can be done on an ab-
straction of these behaviors dealing only with those
elements of the behaviors related to the considered
property;

Theory: abstract interpretation.

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 4 — ľ P. Cousot, 2005

Example of static analysis

Verification: absence of runtime errors;
Abstraction: polyhedral abstraction (affine inequalities);
Theory: abstract interpretation.

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 5 — ľ P. Cousot, 2005

Potential impact of runtime errors
– 50% of the security attacks on computer systems are
through buffer overruns 1!
– Embedded computer system crashes easily result from
overflows of various kinds.

1 See for example the Microsoft Security Bulletins MS02-065, MS04-011, etc.

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 6 — ľ P. Cousot, 2005

“An info leak is the consequence of exploiting a
software vulnerability in order to disclose
the layout or content of process/kernel memory”,

Fermin J. Serna

“You do not find info leaks… you create them”,
Halvar Flake

Bug Exploit: Info Leak

Bug Exploit: Info Leak

• Stack Overflow

• Heap Overflow

• Use after free (UAF) structures

• Type Confusion

• (non-) Interference

The Technology:
Semantics Based Program

Anaysis

« An Informal Overview of
Abstract Interpretation »

Patrick Cousot
Jerome C. Hunsaker Visiting Professor
Massachusetts Institute of Technology

Department of Aeronautics and Astronautics
cousot mit edu

www.mit.edu/~cousot

Course 16.399: “Abstract interpretation”
http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 1 — ľ P. Cousot, 2005

What is static analysis
by abstract interpretation?

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 2 — ľ P. Cousot, 2005

Example of static analysis (input){n0>=0}
n := n0;

{n0=n,n0>=0}
i := n;

{n0=i,n0=n,n0>=0}
while (i <> 0) do

{n0=n,i>=1,n0>=i}
j := 0;

{n0=n,j=0,i>=1,n0>=i}
while (j <> i) do

{n0=n,j>=0,i>=j+1,n0>=i}
j := j + 1

{n0=n,j>=1,i>=j,n0>=i}
od;

{n0=n,i=j,i>=1,n0>=i}
i := i - 1

{i+1=j,n0=n,i>=0,n0>=i+1}
od

{n0=n,i=0,n0>=0}

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 3 — ľ P. Cousot, 2005

Example of static analysis (output){n0>=0}
n := n0;

{n0=n,n0>=0}
i := n;

{n0=i,n0=n,n0>=0}
while (i <> 0) do

{n0=n,i>=1,n0>=i}
j := 0;

{n0=n,j=0,i>=1,n0>=i}
while (j <> i) do

{n0=n,j>=0,i>=j+1,n0>=i}
j := j + 1

{n0=n,j>=1,i>=j,n0>=i}
od;

{n0=n,i=j,i>=1,n0>=i}
i := i - 1

{i+1=j,n0=n,i>=0,n0>=i+1}
od

{n0=n,i=0,n0>=0}

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 3 — ľ P. Cousot, 2005

« An Informal Overview of
Abstract Interpretation »

Patrick Cousot
Jerome C. Hunsaker Visiting Professor
Massachusetts Institute of Technology

Department of Aeronautics and Astronautics
cousot mit edu

www.mit.edu/~cousot

Course 16.399: “Abstract interpretation”
http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 1 — ľ P. Cousot, 2005

What is static analysis
by abstract interpretation?

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 2 — ľ P. Cousot, 2005

Example of static analysis (input){n0>=0}
n := n0;

{n0=n,n0>=0}
i := n;

{n0=i,n0=n,n0>=0}
while (i <> 0) do

{n0=n,i>=1,n0>=i}
j := 0;

{n0=n,j=0,i>=1,n0>=i}
while (j <> i) do

{n0=n,j>=0,i>=j+1,n0>=i}
j := j + 1

{n0=n,j>=1,i>=j,n0>=i}
od;

{n0=n,i=j,i>=1,n0>=i}
i := i - 1

{i+1=j,n0=n,i>=0,n0>=i+1}
od

{n0=n,i=0,n0>=0}

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 3 — ľ P. Cousot, 2005

Example of static analysis (output){n0>=0}
n := n0;

{n0=n,n0>=0}
i := n;

{n0=i,n0=n,n0>=0}
while (i <> 0) do

{n0=n,i>=1,n0>=i}
j := 0;

{n0=n,j=0,i>=1,n0>=i}
while (j <> i) do

{n0=n,j>=0,i>=j+1,n0>=i}
j := j + 1

{n0=n,j>=1,i>=j,n0>=i}
od;

{n0=n,i=j,i>=1,n0>=i}
i := i - 1

{i+1=j,n0=n,i>=0,n0>=i+1}
od

{n0=n,i=0,n0>=0}

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 3 — ľ P. Cousot, 2005

Example of static analysis (safety){n0>=0}
n := n0;

{n0=n,n0>=0}
i := n; n0 must be initially nonnegative

(otherwise the program does not
terminate properly)

{n0=i,n0=n,n0>=0}
while (i <> 0) do

{n0=n,i>=1,n0>=i}
j := 0;

{n0=n,j=0,i>=1,n0>=i}
while (j <> i) do

{n0=n,j>=0,i>=j+1,n0>=i}
j := j + 1 ̀ j < n0 so no upper overflow

{n0=n,j>=1,i>=j,n0>=i}
od;

{n0=n,i=j,i>=1,n0>=i}
i := i - 1 ̀ i > 0 so no lower overflow

{i+1=j,n0=n,i>=0,n0>=i+1}
od

{n0=n,i=0,n0>=0}

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 3 — ľ P. Cousot, 2005

Static analysis by abstract interpretation

Verification: define and prove automatically a property of
the possible behaviors of a complex computer pro-
gram;

Abstraction: the reasoning/calculus can be done on an ab-
straction of these behaviors dealing only with those
elements of the behaviors related to the considered
property;

Theory: abstract interpretation.

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 4 — ľ P. Cousot, 2005

Example of static analysis

Verification: absence of runtime errors;
Abstraction: polyhedral abstraction (affine inequalities);
Theory: abstract interpretation.

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 5 — ľ P. Cousot, 2005

Potential impact of runtime errors
– 50% of the security attacks on computer systems are
through buffer overruns 1!
– Embedded computer system crashes easily result from
overflows of various kinds.

1 See for example the Microsoft Security Bulletins MS02-065, MS04-011, etc.

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 6 — ľ P. Cousot, 2005

A very informal introduction
to the principles of
abstract interpretation

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 7 — ľ P. Cousot, 2005

Semantics

The concrete semantics of a program formalizes (is a
mathematical model of) the set of all its possible execu-
tions in all possible execution environments.

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 8 — ľ P. Cousot, 2005

Graphic example: Possible behaviors

x(t)

t

!"##$%&'(
)*+,'-)"*$'#

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 9 — ľ P. Cousot, 2005

Undecidability

– The concrete mathematical semantics of a program is
an “infinite” mathematical object, not computable;
– All non trivial questions on the concrete program se-
mantics are undecidable.
Example: Kurt Gödel argument on termination
– Assume termination(P) would always terminates and
returns true iff P always terminates on all input data;
– The following program yields a contradiction

P ” while termination(P) do skip od.

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 10 — ľ P. Cousot, 2005

Graphic example: Safety properties

The safety properties of a program express that no possi-
ble execution in any possible execution environment can
reach an erroneous state.

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 11 — ľ P. Cousot, 2005

Graphic example: Safety property

x(t)

t

!"#$%&&'()*"('

+",,%$-')
.#/0'1."#%',

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 12 — ľ P. Cousot, 2005

Safety proofs

– A safety proof consists in proving that the intersection
of the program concrete semantics and the forbidden
zone is empty;
– Undecidable problem (the concrete semantics is not
computable);
– Impossible to provide completely automatic answers
with finite computer resources and neither human in-
teraction nor uncertainty on the answer 2.

2 e.g. probabilistic answer.

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 13 — ľ P. Cousot, 2005

Test/debugging

– consists in considering a subset of the possible execu-
tions;
– not a correctness proof;
– absence of coverage is the main problem.

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 14 — ľ P. Cousot, 2005

Graphic example: Property test/simulation

x(t)

t

!"#$%&'%(%'")%$*(+",$&*-"#

.&*/-00"1%2&1"

3&##-/4"%
$*(+",$&*-"#

5**&*%666

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 15 — ľ P. Cousot, 2005

Abstract interpretation

– consists in considering an abstract semantics, that is
to say a superset of the concrete semantics of the pro-
gram;
– hence the abstract semantics covers all possible con-
crete cases;
– correct: if the abstract semantics is safe (does not in-
tersect the forbidden zone) then so is the concrete se-
mantics.

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 16 — ľ P. Cousot, 2005

Graphic example: Abstract interpretation

x(t)

t

7/#$*(,$-&1%&'%$8"%$*(+",$&*-"#

.&*/-00"1%2&1"

3&##-/4"%
$*(+",$&*-"#

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 17 — ľ P. Cousot, 2005

Formal methods

Formal methods are abstract interpretations, which dif-
fer in the way to obtain the abstract semantics:
– “model checking”:
- the abstract semantics is given manually by the user;
- in the form of a finitary model of the program exe-
cution;
- can be computed automatically, by techniques rele-
vant to static analysis.

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 18 — ľ P. Cousot, 2005

Graphic example: Property test/simulation

x(t)

t

!"#$%&'%(%'")%$*(+",$&*-"#

.&*/-00"1%2&1"

3&##-/4"%
$*(+",$&*-"#

5**&*%666

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 15 — ľ P. Cousot, 2005

Abstract interpretation

– consists in considering an abstract semantics, that is
to say a superset of the concrete semantics of the pro-
gram;
– hence the abstract semantics covers all possible con-
crete cases;
– correct: if the abstract semantics is safe (does not in-
tersect the forbidden zone) then so is the concrete se-
mantics.

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 16 — ľ P. Cousot, 2005

Graphic example: Abstract interpretation

x(t)

t

7/#$*(,$-&1%&'%$8"%$*(+",$&*-"#

.&*/-00"1%2&1"

3&##-/4"%
$*(+",$&*-"#

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 17 — ľ P. Cousot, 2005

Formal methods

Formal methods are abstract interpretations, which dif-
fer in the way to obtain the abstract semantics:
– “model checking”:
- the abstract semantics is given manually by the user;
- in the form of a finitary model of the program exe-
cution;
- can be computed automatically, by techniques rele-
vant to static analysis.

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 18 — ľ P. Cousot, 2005

Idea

– “deductive methods”:
- the abstract semantics is specified by verification con-
ditions;
- the user must provide the abstract semantics in the
form of inductive arguments (e.g. invariants);
- can be computed automatically by methods relevant
to static analysis.

– “static analysis”: the abstract semantics is computed
automatically from the program text according to pre-
defined abstractions (that can sometimes be tailored
automatically/manually by the user).

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 19 — ľ P. Cousot, 2005

Required properties of the abstract semantics

– sound so that no possible error can be forgotten;
– precise enough (to avoid false alarms);
– as simple/abstract as possible (to avoid combinatorial
explosion phenomena).

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 20 — ľ P. Cousot, 2005

Graphic example: Erroneous abstraction — I

x(t)

t

!""#$%#&'()"*+%,)#"-(*.')"*,)/#$

0#"./11%$(2#$%

3#''/.4%(
)"*+%,)#"/%'

!""#"(555

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 21 — ľ P. Cousot, 2005

Graphic example: Erroneous abstraction — II

x(t)

t

!""#$%#&'()"*+%,)#"-(*.')"*,)/#$

0#"./11%$(2#$%

3#''/.4%(
)"*+%,)#"/%'

!""#"(555

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 22 — ľ P. Cousot, 2005

Sound

– “deductive methods”:
- the abstract semantics is specified by verification con-
ditions;
- the user must provide the abstract semantics in the
form of inductive arguments (e.g. invariants);
- can be computed automatically by methods relevant
to static analysis.

– “static analysis”: the abstract semantics is computed
automatically from the program text according to pre-
defined abstractions (that can sometimes be tailored
automatically/manually by the user).

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 19 — ľ P. Cousot, 2005

Required properties of the abstract semantics

– sound so that no possible error can be forgotten;
– precise enough (to avoid false alarms);
– as simple/abstract as possible (to avoid combinatorial
explosion phenomena).

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 20 — ľ P. Cousot, 2005

Graphic example: Erroneous abstraction — I

x(t)

t

!""#$%#&'()"*+%,)#"-(*.')"*,)/#$

0#"./11%$(2#$%

3#''/.4%(
)"*+%,)#"/%'

!""#"(555

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 21 — ľ P. Cousot, 2005

Graphic example: Erroneous abstraction — II

x(t)

t

!""#$%#&'()"*+%,)#"-(*.')"*,)/#$

0#"./11%$(2#$%

3#''/.4%(
)"*+%,)#"/%'

!""#"(555

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 22 — ľ P. Cousot, 2005

Sound

Graphic example: Imprecision) false alarms

x(t)

t

!"#$%&'(%)*$+,%&*-$.)+/(*$+&*'-0

1-$/'22%0)3-0%

4-(('/5%)
$+,%&-$'%(

1+5(%)+5+$"

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 23 — ľ P. Cousot, 2005

Abstract domains

Standard abstractions
– that serve as a basis for the design of static analyzers:
- abstract program data,
- abstract program basic operations;
- abstract program control (iteration, procedure, con-
currency, . . .);

– can be parametrized to allow for manual adaptation
to the application domains.

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 24 — ľ P. Cousot, 2005

Graphic example: Standard abstraction
by intervals

x(t)

t

!"#$%&'(%)*$+,%&*-$.)+/(*$+&*'-0)/.)'0*%$6+5(

1-$/'22%0)3-0%

4-(('/5%)
$+,%&-$'%(

1+5(%)+5+$"(

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 25 — ľ P. Cousot, 2005

Graphic example: A more refined abstraction

x(t)

t

7%8'0%"%0*)-8)'0*%$6+5(

1-$/'22%0)3-0%

4-(('/5%)
$+,%&-$'%(

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 26 — ľ P. Cousot, 2005

Graphic example: Imprecision) false alarms

x(t)

t

!"#$%&'(%)*$+,%&*-$.)+/(*$+&*'-0

1-$/'22%0)3-0%

4-(('/5%)
$+,%&-$'%(

1+5(%)+5+$"

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 23 — ľ P. Cousot, 2005

Abstract domains

Standard abstractions
– that serve as a basis for the design of static analyzers:
- abstract program data,
- abstract program basic operations;
- abstract program control (iteration, procedure, con-
currency, . . .);

– can be parametrized to allow for manual adaptation
to the application domains.

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 24 — ľ P. Cousot, 2005

Graphic example: Standard abstraction
by intervals

x(t)

t

!"#$%&'(%)*$+,%&*-$.)+/(*$+&*'-0)/.)'0*%$6+5(

1-$/'22%0)3-0%

4-(('/5%)
$+,%&-$'%(

1+5(%)+5+$"(

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 25 — ľ P. Cousot, 2005

Graphic example: A more refined abstraction

x(t)

t

7%8'0%"%0*)-8)'0*%$6+5(

1-$/'22%0)3-0%

4-(('/5%)
$+,%&-$'%(

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 26 — ľ P. Cousot, 2005

Graphic example: Imprecision) false alarms

x(t)

t

!"#$%&'(%)*$+,%&*-$.)+/(*$+&*'-0

1-$/'22%0)3-0%

4-(('/5%)
$+,%&-$'%(

1+5(%)+5+$"

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 23 — ľ P. Cousot, 2005

Abstract domains

Standard abstractions
– that serve as a basis for the design of static analyzers:
- abstract program data,
- abstract program basic operations;
- abstract program control (iteration, procedure, con-
currency, . . .);

– can be parametrized to allow for manual adaptation
to the application domains.

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 24 — ľ P. Cousot, 2005

Graphic example: Standard abstraction
by intervals

x(t)

t

!"#$%&'(%)*$+,%&*-$.)+/(*$+&*'-0)/.)'0*%$6+5(

1-$/'22%0)3-0%

4-(('/5%)
$+,%&-$'%(

1+5(%)+5+$"(

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 25 — ľ P. Cousot, 2005

Graphic example: A more refined abstraction

x(t)

t

7%8'0%"%0*)-8)'0*%$6+5(

1-$/'22%0)3-0%

4-(('/5%)
$+,%&-$'%(

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 26 — ľ P. Cousot, 2005

Abstract Semantics

– Trace-based refinement of the reachable states for the
concrete operational semantics
– Volatile environment is specified by a trusted configu-
ration file.

Course 16.399: “Abstract interpretation”, Thursday May 12th, 2005 — 141 — ľ P. Cousot, 2005

Implicit Specification: Absence of Runtime Errors

– No violation of the norm of C (e.g. array index out of
bounds)
– No implementation-specific undefined behaviors (e.g.
maximum short integer is 32767)
– No violation of the programming guidelines (e.g. static
variables cannot be assumed to be initialized to 0)
– No violation of the programmer assertions (must all
be statically verified).

Course 16.399: “Abstract interpretation”, Thursday May 12th, 2005 — 142 — ľ P. Cousot, 2005

Example application
– Primary flight control software of the A340/A380 fly-
by-wire system

– C program, automatically generated from a propri-
etary high-level specification (à la Simulink/Scade)
– A340 family: 132,000 lines, 75,000 LOCs after pre-
processing, 10,000 global variables, over 21,000 after
expansion of small arrays
– A380: ˆ 3

Course 16.399: “Abstract interpretation”, Thursday May 12th, 2005 — 143 — ľ P. Cousot, 2005

The Class of Considered Periodic Synchronous Programs
declare volatile input, state and output variables;
initialize state and output variables;
loop forever

- read volatile input variables,
- compute output and state variables,
- write to volatile output variables;

wait_for_clock ();
end loop

– Requirements: the only interrupts are clock ticks;
– Execution time of loop body less than a clock tick [1].
Reference

[1] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling, S. Thesing, and R. Wil-
helm. Reliable and precise WCET determination for a real-life processor. ESOP (2001), LNCS 2211,
469–485.

Course 16.399: “Abstract interpretation”, Thursday May 12th, 2005 — 144 — ľ P. Cousot, 2005

Java UniversaL Interpretation and Abstraction

The team

Julia Awards

 Julia, jul.2010
 Best performing tool at TERMcomp 2010, worldwide

competition for termination analysis

 Julia, nov.2011
 Telecom Working Capital – National prize for Innovation -

Italy, Turin, nov.18 2011: appointed by 9th best ICT
projects, among 2139 totally applied

 Julia, mar.2012
 Special purpose DARPA project on benefit for US Air Force

(static analyzer for Android critical apps): 3 years
cooperation job

 Julia, apr.2012
 Appointed at Italian roadshow of Mind the Bridge

Competition – MtB Foundation, San Francisco, CA

 Julia, apr.-oct.2012
 Appointed as 2nd at Talent of Ideas Prize by Unicredit-CII

(Confederation of Italian Industry), 2012

Julia Business Model

32

• Static & always terminates (≠BLAST and SLAM)

• Automatic (no end-user needed)

• Sound (covers the whole state space)

• Infinitary (≠ Model Checking)

• Specializable (abstraction refinement)

• Domain Aware

• Parametric (efficiency and costs)

• Modular (abstraction vs interpreter)

About

What can do for you

• Provide automatic anti-bug technology

• nullness, termination, numetrical, array, class/method bugs, storage
overrun

• Provide continuous code maintainence

• Provide sigantures for anti-tampering

• Bring you into a HSLab

http://www.juliasoft.com

Thanks a lot!

http://www.juliasoft.com
http://www.juliasoft.com
http://www.juliasoft.com
http://www.juliasoft.com

source analyz. acti- ser- prov- rece- simple checks nullness termination
program lines lines vities vices iders ivers time eq cast static uncalled time ws prec time ws prec

ApiDemos 23134 163178 228 7 1 6 113.37 0 42/638 0 218 - - - - - -
BackupRestore 393 60831 1 0 0 0 15.94 0 0/3 0 2 147.97 8 98.81% 62.58 2 0.00%
BluetoothChat 703 90307 2 0 0 0 21.84 0 3/14 0 0 300.01 34∗∗∗ 94.89% 129.34 2 33.33%
ContactManager 466 93015 2 0 0 0 25.94 0 1/20 0 0 331.67 8 97.62% 153.55 0 100.00%

CubeLiveWallpaper 414 34514 1 2 0 0 2.76 0 0/66 0 0 44.84 5 98.48% 21.95 0 100.00%
GestureBuilder 563 89972 2 0 0 0 22.38 0 3/23 1 1 279.49 20 94.74% 134.92 0 100.00%

Home 947 93213 2 0 0 0 24.83 0 2/23 3 3 412.24 45∗ 94.51% 157.26 3 62.50%
JetBoy 820 73997 1 0 0 0 17.78 0 0/31 0 0 181.58 27 98.54% 85.86 3 57.14%

LunarLander 613 61931 1 0 0 0 12.70 0 0/44 0 0 131.46 6 99.29% 65.40 3∗ 0.00%
MultiResolution 95 62437 1 0 0 0 13.72 0 0/3 0 0 134.00 0 100.00% 62.67 0 100.00%

NotePad 676 78275 4 0 1 0 18.18 0 0/13 0 1 208.95 4 99.60% 102.20 0 100.00%
SampleSyncAdapter 1266 67790 1 2 0 0 14.06 0 0/9 1 14 152.15 23 97.00% 79.39 2 60.00%
SearchableDictionary 429 93136 2 0 1 0 23.44 0 0/4 0 0 281.79 3 99.33% 138.20 1 0.00%

SkeletonApp 93 60045 1 0 0 0 13.10 0 0/3 0 0 143.06 1 98.11% 60.10 0 100.00%
Snake 445 61332 1 0 0 0 12.02 0 0/17 5 3 127.72 4 99.18% 65.53 1 90.00%

SoftKeyboard 779 58263 0 1 0 0 10.49 0 0/25 0 4 86.91 24 96.61% 52.83 0 100.00%
Spinner 118 64718 1 0 0 0 12.67 0 0/3 0 3 156.25 1 98.44% 71.48 0 100.00%

TicTacToe 624 63434 2 0 0 0 14.28 0 0/31 0 0 134.36 2 99.61% 68.98 1 85.71%
VoiceRecognition 71 33393 1 1 0 0 2.51 0 0/0 0 0 42.94 0 100.00% 21.93 0 100.00%

Wiktionary 600 116457 1 1 0 1 35.66 0 0/8 0 2 745.36 22∗ 95.10% 367.30 2 33.33%
Mileage 7253 111188 21 0 1 1 41.32 1 18/175 6 50 470.67 113∗ 98.50% 302.44 13 65.79%

OpenSudoku 6968 128216 10 0 0 0 56.50 2 27/276 0 58 410.19 240∗ 96.06% 573.37 7 88.52%
Solitaire 4440 66637 1 0 0 0 14.93 0 10/262 0 12 185.10 374 92.42% 160.38 10 86.49%
TiltMazes 2040 95591 2 0 0 0 26.84 0 0/64 0 6 285.65 28 99.06% 152.76 1 88.89%

TippyTipper 2437 68971 5 0 0 0 15.70 0 4/75 0 14 174.06 26 98.34% 83.10 0 100.00%

Fig. 3. Our experiments of analysis. source lines counts the non-comment non-blank lines of programmatic and XML code. analyzed lines

includes the portion of the java.* and android.* libraries analyzed with each program and is a more faithful measure of the analyzed
codebase. activities, services, providers and receivers count the Android components declared in the application’s manifest file. Times
are in seconds. Those for simple checks include all simple checks. Columns eq, cast, static and uncalled refer to warnings issued by the
first four analyses in Sect. 4 (method redefinition checks never issued any warning and are not reported). Column cast counts the casts
that Julia could not prove safe, over the total number of casts in the program (0/x is the maximal precision). Column uncalled counts
the constructors or methods found as definite dead code by Julia. For nullness analysis, ws counts the warnings issued by Julia (possible
dereference of null, possibly passing null to a library method) and prec reports its precision, as the ratio of the dereferences proved safe
over their total number (100% is the maximal precision). For termination analysis, ws counts the warnings issued by Julia (constructors
or methods possibly diverging) and its precision, as the ratio of the constructors or methods proved to terminate over the total number of
constructors or methods containing loops or recursive (100% is the maximal precision). Asterisks stand for actual bugs in the programs.

