Polynomial interpolation over finite fields and applications to list decoding of Reed-Solomon codes

Roberta Barbi

December 17, 2015

Roberta Barbi

Codes

Let \mathbb{F}_q be a finite field, with $q = p^m$ for $m \in \mathbb{N}$ and p a prime number.

(Linear) Code

Let $k, n \in \mathbb{N}$ be such that $1 \le k \le n$. A code is any non-empty subset of $(\mathbb{F}_q)^n$. A linear code \mathscr{C} is a k-dimensional vector subspace of $(\mathbb{F}_q)^n$. We say that \mathscr{C} is a linear code over \mathbb{F}_q with length n and dimension k and we write $[n, k]_q$.

Image: A math a math

Codes

Let \mathbb{F}_q be a finite field, with $q = p^m$ for $m \in \mathbb{N}$ and p a prime number.

(Linear) Code

Let $k, n \in \mathbb{N}$ be such that $1 \le k \le n$. A code is any non-empty subset of $(\mathbb{F}_q)^n$. A **linear code** \mathscr{C} is a k-dimensional vector subspace of $(\mathbb{F}_q)^n$. We say that \mathscr{C} is a linear code over \mathbb{F}_q with *length* n and *dimension* k and we write $[n, k]_q$.

Distance of a code

The *distance* of the code \mathscr{C} is the minimum distance between codewords of \mathscr{C} . The distance between two codewords is the number of coordinates in which these two codewords differ.

イロト イポト イヨト

Codes

Let \mathbb{F}_q be a finite field, with $q = p^m$ for $m \in \mathbb{N}$ and p a prime number.

(Linear) Code

Let $k, n \in \mathbb{N}$ be such that $1 \le k \le n$. A code is any non-empty subset of $(\mathbb{F}_q)^n$. A **linear code** \mathscr{C} is a k-dimensional vector subspace of $(\mathbb{F}_q)^n$. We say that \mathscr{C} is a linear code over \mathbb{F}_q with *length* n and *dimension* k and we write $[n, k]_q$.

Distance of a code

The *distance* of the code \mathscr{C} is the minimum distance between codewords of \mathscr{C} . The distance between two codewords is the number of coordinates in which these two codewords differ.

Reed-Solomon code

Let \mathbb{F}_q be a finite field. Set n = q - 1 and $\mathbb{F}_q^* = \{\alpha_1, \ldots, \alpha_n\}$. Define the Reed-Solomon code over \mathbb{F}_q of length n and dimension $1 \le k \le n$:

$$RS_{n,k} = \left\{ \left(f(\alpha_1), \ldots, f(\alpha_n) \right) : f \in \mathbb{F}_q[x], \ \deg(f) \le k - 1 \right\}$$
(1)

Then $d(RS_{n,k}) = n - k + 1$.

Correction capability

The correction capability of a $[n, k, d]_q$ code \mathscr{C} is $\tau = \lfloor \frac{d-1}{2} \rfloor$.

On good channels, that is channels introducing few noise, one assumes that at most τ errors happened.

What if we have a noisy channel and we want to assume that more than τ errors may happen?

< □ > < 同 > < 3

Correction capability

The correction capability of a $[n, k, d]_q$ code \mathscr{C} is $\tau = \lfloor \frac{d-1}{2} \rfloor$.

On good channels, that is channels introducing few noise, one assumes that at most τ errors happened.

What if we have a noisy channel and we want to assume that more than τ errors may happen?

The setting

- Let $RS_{n,k}$ be the Reed-Solomon code over \mathbb{F}_q with length n = q 1 and dimension $1 \le k \le n$.
- Let $\{\alpha_1, \ldots, \alpha_n\} = \mathbb{F}_q^*$ be the non-zero elements of the field \mathbb{F}_q .
- Let $v = (v_1, \ldots, v_n)$ be the received vector.
- Let $\underline{\mathcal{A}} = \{ (\alpha_1, v_1), \ldots, (\alpha_n, v_n) \} \subseteq (\mathbb{F}_q)^2.$

イロト イヨト イヨト

List decoding of $RS_{n,k}$

Find a list of all functions $f : \mathbb{F}_q \to \mathbb{F}_q$ such that f(x) is a polynomial of degree at most k-1 with

$$\left\{i \in \{1, \ldots, n\} : f(\alpha_i) \neq v_i\}\right| \leq \mathsf{e}$$

where e is the number of errors that may happen.

A B A B A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Sudan list decoding

Let
$$m = x^{\alpha}y^{\beta}$$
. Define $w_{k-1}(m) = \alpha + (k-1)\beta$.

Sudan list decoding

Find any function $Q(x,y): (\mathbb{F}_q)^2 \to \mathbb{F}_q$ not identically zero satisfying

- an interpolation condition: $Q(\alpha_i, v_i) = 0, \quad \forall 1 \le i \le n$
- a degree constraint: $w_{k-1}(Q(x,y)) \le m + l(k-1)$, certain $l, m \in \mathbb{N}$

Then factor Q(x, y) and output all its factors of the form y - g(x) with deg $g(x) \le k - 1$.

Sudan list decoding

Let
$$m = x^{\alpha}y^{\beta}$$
. Define $w_{k-1}(m) = \alpha + (k-1)\beta$.

Sudan list decoding

Find any function $Q(x,y): (\mathbb{F}_q)^2 \to \mathbb{F}_q$ not identically zero satisfying

- an interpolation condition: $Q(\alpha_i, v_i) = 0, \quad \forall 1 \le i \le n$
- a degree constraint: $w_{k-1}(Q(x,y)) \le m + l(k-1)$, certain $l, m \in \mathbb{N}$

Then factor Q(x, y) and output all its factors of the form y - g(x) with deg $g(x) \le k - 1$.

The interpolation condition

Polynomials in the vanishing ideal of A, that is in I(A), satisfy the interpolation condition:

$$I(\mathcal{A}) = I\left(\left\{\left(\alpha_1, v_1\right), \ldots, \left(\alpha_n, v_n\right)\right\}\right)$$

イロト イヨト イヨト イ

Gröbner basis

Fix a monomial order \prec over $\mathbb{K}[x_1, \ldots, x_n]$. Let $I \subseteq \mathbb{K}[x_1, \ldots, x_n]$ be an ideal. A set $G \subset I$ such that $\langle G \rangle = I$ and Im(G) = Im(I) is said to be a Gröbner basis (GB) for the ideal I.

イロト イロト イヨト

Gröbner basis

Fix a monomial order \prec over $\mathbb{K}[x_1, \ldots, x_n]$. Let $I \subseteq \mathbb{K}[x_1, \ldots, x_n]$ be an ideal. A set $G \subset I$ such that $\langle G \rangle = I$ and Im(G) = Im(I) is said to be a Gröbner basis (GB) for the ideal I.

Staircase

Fix a monomial order \prec over $\mathbb{K}[x_1, \ldots, x_n]$. Let $I \subseteq \mathbb{K}[x_1, \ldots, x_n]$ be an ideal. The set $N(I) = \mathcal{M} \setminus \text{Im}(I)$ is called the Hilbert staircase or the footprint for I.

A B A B A B
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Gröbner basis

Fix a monomial order \prec over $\mathbb{K}[x_1, \ldots, x_n]$. Let $I \subseteq \mathbb{K}[x_1, \ldots, x_n]$ be an ideal. A set $G \subset I$ such that $\langle G \rangle = I$ and Im(G) = Im(I) is said to be a Gröbner basis (GB) for the ideal I.

Staircase

Fix a monomial order \prec over $\mathbb{K}[x_1, \ldots, x_n]$. Let $I \subseteq \mathbb{K}[x_1, \ldots, x_n]$ be an ideal. The set $N(I) = \mathcal{M} \setminus \text{Im}(I)$ is called the Hilbert staircase or the footprint for I.

Degree constraint

With the purpose of minimizing the weighted degree:

- The minimal polynomial wrt a monomial ordering is in a Gröbner basis wrt that ordering.
- So we compute a Gröbner basis and consider the polynomial having smallest weighted degree in it.

A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The existence of Q(x, y)

Define $\operatorname{mult}_{(0,0)} f$ as the smallest $m \in \mathbb{N}$ such that a monomial of total degree m occurs in the polynomial f. Then $\operatorname{mult}_{(a,b)} f = \operatorname{mult}_{(0,0)} g$, where g(x, y) = f(x + a, y + b).

The existence of Q(x, y)

Define $\operatorname{mult}_{(0,0)} f$ as the smallest $m \in \mathbb{N}$ such that a monomial of total degree m occurs in the polynomial f. Then $\operatorname{mult}_{(a,b)} f = \operatorname{mult}_{(0,0)} g$, where g(x, y) = f(x + a, y + b).

The ideal of points in \mathcal{A} with multiplicity r

< □ > < 同 > < 3

The existence of Q(x, y)

Define $\operatorname{mult}_{(0,0)} f$ as the smallest $m \in \mathbb{N}$ such that a monomial of total degree m occurs in the polynomial f. Then $\operatorname{mult}_{(a,b)} f = \operatorname{mult}_{(0,0)} g$, where g(x, y) = f(x + a, y + b).

The ideal of points in \mathcal{A} with multiplicity r

Proposition (Sudan list decoding)

Suppose that $f \in I_{v,r}$ is non-zero. If $c \in RS_{n,k}$ satisfies:

$$d(v,c) < n - \frac{\mathsf{w}_{k-1}(f)}{\mathsf{r}} \tag{3}$$

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

then $h_c(x)$ is a root of f as a polynomial in y over $\mathbb{F}_q[x]$, that is $f(x, h_c(x)) = 0$.

The existence of Q(x, y)

Define $\operatorname{mult}_{(0,0)} f$ as the smallest $m \in \mathbb{N}$ such that a monomial of total degree m occurs in the polynomial f. Then $\operatorname{mult}_{(a,b)} f = \operatorname{mult}_{(0,0)} g$, where g(x, y) = f(x + a, y + b).

The ideal of points in \mathcal{A} with multiplicity r

Proposition (Sudan list decoding)

Suppose that $f \in I_{v,r}$ is non-zero. If $c \in RS_{n,k}$ satisfies:

$$d(v,c) < n - \frac{w_{k-1}(f)}{r}$$
(3)

then $h_c(x)$ is a root of f as a polynomial in y over $\mathbb{F}_q[x]$, that is $f(x, h_c(x)) = 0$.

 $\Rightarrow \text{ We may use the ideal } I_{v,r} \text{ for list dec. if } \exists Q \in I_{v,r} \text{ s.t. } w_{k-1}(Q) < r(n-d(v,c)).$

Interpolation step of list decoding

 $\mid (1,k-1)$ -weighted degree ordering $\prec_{\mathsf{w}_{k-1}}$

Let $m_1 = x^{i_1} y^{j_1}$ and $m_2 = x^{i_2} y^{j_2}$. Define $w_{k-1}(m_1) = i_1 + j_1(k-1)$. Then $m_1 \prec_{w_{k-1}} m_2$ if: $\begin{cases} w_{k-1}(m_1) < w_{k-1}(m_2) \text{ or} \\ w_{k-1}(m_1) = w_{k-1}(m_2) \text{ and } j_1 < j_2 \end{cases}$

Interpolation step of list decoding

$$(1, k-1)$$
-weighted degree ordering $\prec_{\mathsf{w}_{k-1}}$

Let $m_1 = x^{i_1} y^{j_1}$ and $m_2 = x^{i_2} y^{j_2}$. Define $w_{k-1}(m_1) = i_1 + j_1(k-1)$. Then $m_1 \prec_{w_{k-1}} m_2$ if: $\begin{cases} w_{k-1}(m_1) < w_{k-1}(m_2) \text{ or} \\ w_{k-1}(m_1) = w_{k-1}(m_2) \text{ and } j_1 < j_2 \end{cases}$

A Gröbner basis approach

- We fix the multiplicity r (starting with r = 1).
- As a candidate for Q(x, y) we choose the minimal polynomial Ψ(x, y) of I_{v,r} wrt (1, k 1)-weighted degree ordering.
- We find Ψ(x, y) by computing a Gröbner basis of I_{v,r} wrt (1, k 1)-weighted degree ordering.
 - \rightarrow If $\Psi(x, y)$ satisfies (3) then we set $Q(x, y) = \Psi(x, y)$.
 - \rightarrow If $\Psi(x, y)$ does not satisfy (3), meaning that its weighted degree is too large, we must increase r (go back to 1).

Gröbner basis with respect to lex

Buchberger-Möller algorithm over \mathcal{A}

Compute a Gröbner basis for I(A) wrt lexicographical ordering $x \prec_{\text{lex}} y$ using Buchberger-Möller algorithm:

$$\mathcal{G}^{(lex)} = \left\{ \prod_{i=1}^{n} (x - \alpha_i) , y - h_v(x) \right\}$$

where $h_v(x)$ is the Lagrange interpolant $h_v(\alpha_i) = v_i$: $h_v(x) = \sum_{i=1}^n v_i \prod_{j \neq i}^{n} \frac{x - \alpha_j}{\alpha_i - \alpha_j}$.

Gröbner basis with respect to lex

Buchberger-Möller algorithm over \mathcal{A}

Compute a Gröbner basis for I(A) wrt lexicographical ordering $x \prec_{lex} y$ using Buchberger-Möller algorithm:

$$G^{(lex)} = \left\{ \prod_{i=1}^{n} (x - \alpha_i) , y - h_{\nu}(x) \right\}$$

where $h_v(x)$ is the Lagrange interpolant $h_v(\alpha_i) = v_i$: $h_v(x) = \sum_{i=1}^n v_i \prod_{j \neq i}^n \frac{x - \alpha_j}{\alpha_i - \alpha_j}$.

$G^{(lex)}$ is not useful for list decoding:

- The only polynomial in y is $y h_v(x)$.
- The interpolant $h_v(x)$ cannot represent a codeword (received vector is not a codeword).

A B A B A B
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Gröbner basis with respect to weighted degree ordering: Buchberger-Möller algorithm

Gröbner basis for $I(\mathcal{A})$ wrt $\prec_{w_{k-1}}$: Buchberger-Möller algorithm

A GB wrt (1, k - 1)-weighted degree ordering for the vanishing ideal $I(A_k)$ where $A_k = \{(\alpha_1, v_1), \dots, (\alpha_k, v_k)\}$ is given by

$$G^{(k)} = \left\{ y - h_{(v_1, \ldots, v_k)}(x) , \prod_{i=1}^k (x - \alpha_i) \right\}$$

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Gröbner basis with respect to weighted degree ordering: Buchberger-Möller algorithm

Gröbner basis for $I(\mathcal{A})$ wrt $\prec_{w_{k-1}}$: Buchberger-Möller algorithm

A GB wrt (1, k - 1)-weighted degree ordering for the vanishing ideal $I(A_k)$ where $A_k = \{(\alpha_1, v_1), \dots, (\alpha_k, v_k)\}$ is given by

$$\mathcal{G}^{(k)} = \left\{ y - h_{(\mathbf{v_1},\ldots,\mathbf{v_k})}(x) , \prod_{i=1}^k (x - \alpha_i) \right\}$$

Complexity

Buchberger-Möller takes $O(N^3)$ where N is the number of points in input. We use $G^{(k)}$ and A_k as input of Buchberger-Möller algorithm thus reducing the complexity to $O((n-k)^3)$:

Constraint over <i>k</i>	$k \ge n - \sqrt[3]{n}$	$k \ge n - \sqrt[3]{n^2}$
BM complexity	$(n-k)^3 \approx n$	$(n-k)^3 \approx n^2$
Interpolation complexity	k^2	k ²

Gröbner basis with respect to weighted degree ordering: FGLM algorithm

Given $G^{(lex)}$ and $\prec_{w_{k}}$, FGLM algorithm computes a GB for $\langle G^{(lex)} \rangle$ wrt $\prec_{w_{k}}$, in time $O(n^3)$:

Figure : We use $G^{(lex)} = \left\{ \prod_{i=1}^{n} (x - \alpha_i), y - h_v(x) \right\}$ as input for FGLM algorithm to compute a GB with respect to (1, k - 1)-weighted degree ordering. December 17, 2015 11 / 13

Roberta Barbi

Compute the staircase of I(A) wrt (1, k - 1)-weighted degree ordering

<ロ> <回> <回> <回> <回> <回</p>

Compute	e the st	taircase	of /	(\mathcal{A})) w	rt ([1,]	k —	1)-	weig	hte	ed	de	gre	e o	rde	ring
1																	
$x x^{2}$																	
:																	
x^{k-2}_{k-1}											•						
x^{k}	y xy		*	*	*	*	*	*		:	*	*	*	* m	*	*	
x^{k+1}	x^2y		*	*	*	m	*	*		1	* *	*	*	*	*	*	
24.3	:		*	*	*	*	*	*		:	*	*	*	*	*	*	
x^{2k-3} x^{2k-2}	$x^{k-2}y$ $x^{k-1}y$	y^2	•								•						
x^{2k-1}	$x^{k}y$	xy^2	*	*	*	*	*	*	*	:	*	*	*	*	*	*	*
:	, y :	× y :															
x ^{3k-4}	$x^{2k-3}y$	$x^{k-2}y^{2}$															
				_	_	_	_	_	_								

