Polynomial interpolation over finite fields and applications

 to list decoding of Reed-Solomon codesRoberta Barbi

December 17, 2015

Codes

Let \mathbb{F}_{q} be a finite field, with $q=p^{m}$ for $m \in \mathbb{N}$ and p a prime number.

(Linear) Code

Let $k, n \in \mathbb{N}$ be such that $1 \leq k \leq n$. A code is any non-empty subset of $\left(\mathbb{F}_{q}\right)^{n}$. A linear code \mathscr{C} is a k-dimensional vector subspace of $\left(\mathbb{F}_{q}\right)^{n}$. We say that \mathscr{C} is a linear code over \mathbb{F}_{q} with length n and dimension k and we write $[n, k]_{q}$.

Codes

Let \mathbb{F}_{q} be a finite field, with $q=p^{m}$ for $m \in \mathbb{N}$ and p a prime number.

(Linear) Code

Let $k, n \in \mathbb{N}$ be such that $1 \leq k \leq n$. A code is any non-empty subset of $\left(\mathbb{F}_{q}\right)^{n}$. A linear code \mathscr{C} is a k-dimensional vector subspace of $\left(\mathbb{F}_{q}\right)^{n}$. We say that \mathscr{C} is a linear code over \mathbb{F}_{q} with length n and dimension k and we write $[n, k]_{q}$.

Distance of a code

The distance of the code \mathscr{C} is the minimum distance between codewords of \mathscr{C}. The distance between two codewords is the number of coordinates in which these two codewords differ.

Codes

Let \mathbb{F}_{q} be a finite field, with $q=p^{m}$ for $m \in \mathbb{N}$ and p a prime number.

(Linear) Code

Let $k, n \in \mathbb{N}$ be such that $1 \leq k \leq n$. A code is any non-empty subset of $\left(\mathbb{F}_{q}\right)^{n}$. A linear code \mathscr{C} is a k-dimensional vector subspace of $\left(\mathbb{F}_{q}\right)^{n}$. We say that \mathscr{C} is a linear code over \mathbb{F}_{q} with length n and dimension k and we write $[n, k]_{q}$.

Distance of a code

The distance of the code \mathscr{C} is the minimum distance between codewords of \mathscr{C}.
The distance between two codewords is the number of coordinates in which these two codewords differ.

Reed-Solomon code

Let \mathbb{F}_{q} be a finite field. Set $n=q-1$ and $\mathbb{F}_{q}^{*}=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. Define the Reed-Solomon code over \mathbb{F}_{q} of length n and dimension $1 \leq k \leq n$:

$$
\begin{equation*}
R S_{n, k}=\left\{\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)\right): f \in \mathbb{F}_{q}[x], \operatorname{deg}(f) \leq k-1\right\} \tag{1}
\end{equation*}
$$

Then $d\left(R S_{n, k}\right)=n-k+1$.

List decoding problem

Correction capability

The correction capability of a $[n, k, d]_{q}$ code \mathscr{C} is $\tau=\left\lfloor\frac{d-1}{2}\right\rfloor$.
On good channels, that is channels introducing few noise, one assumes that at most τ errors happened.
What if we have a noisy channel and we want to assume that more than τ errors may happen?

List decoding problem

Correction capability

The correction capability of a $[n, k, d]_{q}$ code \mathscr{C} is $\tau=\left\lfloor\frac{d-1}{2}\right\rfloor$.
On good channels, that is channels introducing few noise, one assumes that at most τ errors happened.
What if we have a noisy channel and we want to assume that more than τ errors may happen?

The setting

- Let $R S_{n, k}$ be the Reed-Solomon code over \mathbb{F}_{q} with length $n=q-1$ and dimension $1 \leq k \leq n$.
- Let $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}=\mathbb{F}_{q}^{*}$ be the non-zero elements of the field \mathbb{F}_{q}.
- Let $v=\left(v_{1}, \ldots, v_{n}\right)$ be the received vector.
- Let $\mathcal{A}=\left\{\left(\alpha_{1}, v_{1}\right), \ldots,\left(\alpha_{n}, v_{n}\right)\right\} \subseteq\left(\mathbb{F}_{q}\right)^{2}$.

List decoding of Reed-Solomon codes

List decoding of $R S_{n, k}$

Find a list of all functions $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ such that $f(x)$ is a polynomial of degree at most $k-1$ with

$$
\left|\left\{i \in\{1, \ldots, n\}: f\left(\alpha_{i}\right) \neq v_{i}\right\}\right| \leq \mathrm{e}
$$

where e is the number of errors that may happen.

Sudan list decoding

Let $m=x^{\alpha} y^{\beta}$. Define $w_{k-1}(m)=\alpha+(k-1) \beta$.

Sudan list decoding

Find any function $Q(x, y):\left(\mathbb{F}_{q}\right)^{2} \rightarrow \mathbb{F}_{q}$ not identically zero satisfying

- an interpolation condition: $Q\left(\alpha_{i}, v_{i}\right)=0, \quad \forall 1 \leq i \leq n$
- a degree constraint: $w_{k-1}(Q(x, y)) \leq m+I(k-1)$, certain $I, m \in \mathbb{N}$ Then factor $Q(x, y)$ and output all its factors of the form $y-g(x)$ with $\operatorname{deg} g(x) \leq k-1$.

Sudan list decoding

Let $m=x^{\alpha} y^{\beta}$. Define $w_{k-1}(m)=\alpha+(k-1) \beta$.

Sudan list decoding

Find any function $Q(x, y):\left(\mathbb{F}_{q}\right)^{2} \rightarrow \mathbb{F}_{q}$ not identically zero satisfying

- an interpolation condition: $Q\left(\alpha_{i}, v_{i}\right)=0, \quad \forall 1 \leq i \leq n$
- a degree constraint: $w_{k-1}(Q(x, y)) \leq m+I(k-1)$, certain $I, m \in \mathbb{N}$ Then factor $Q(x, y)$ and output all its factors of the form $y-g(x)$ with $\operatorname{deg} g(x) \leq k-1$.

The interpolation condition

Polynomials in the vanishing ideal of \mathcal{A}, that is in $I(\mathcal{A})$, satisfy the interpolation condition:

$$
I(\mathcal{A})=I\left(\left\{\left(\alpha_{1}, v_{1}\right), \ldots,\left(\alpha_{n}, v_{n}\right)\right\}\right)
$$

Gröbner bases

Gröbner basis

Fix a monomial order \prec over $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. Let $I \subseteq \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. A set $G \subset I$ such that $\langle G\rangle=I$ and $\operatorname{Im}(G)=\operatorname{Im}(I)$ is said to be a Gröbner basis (GB) for the ideal I.

Gröbner bases

Gröbner basis

Fix a monomial order \prec over $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. Let $I \subseteq \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. A set $G \subset I$ such that $\langle G\rangle=I$ and $\operatorname{Im}(G)=\operatorname{Im}(I)$ is said to be a Gröbner basis (GB) for the ideal I.

Staircase

Fix a monomial order \prec over $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. Let $I \subseteq \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. The set $N(I)=\mathcal{M} \backslash \operatorname{lm}(I)$ is called the Hilbert staircase or the footprint for I.

Gröbner bases

Gröbner basis

Fix a monomial order \prec over $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. Let $I \subseteq \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. A set $G \subset I$ such that $\langle G\rangle=I$ and $\operatorname{Im}(G)=\operatorname{Im}(I)$ is said to be a Gröbner basis (GB) for the ideal I.

Staircase

Fix a monomial order \prec over $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. Let $I \subseteq \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. The set $N(I)=\mathcal{M} \backslash \operatorname{lm}(I)$ is called the Hilbert staircase or the footprint for I.

Degree constraint

With the purpose of minimizing the weighted degree:

- The minimal polynomial wrt a monomial ordering is in a Gröbner basis wrt that ordering.
- So we compute a Gröbner basis and consider the polynomial having smallest weighted degree in it.

A Gröbner basis approach

The existence of $Q(x, y)$
Define $\operatorname{mult}_{(0,0)} f$ as the smallest $m \in \mathbb{N}$ such that a monomial of total degree m occurs in the polynomial f. Then mult $(a, b) f=\operatorname{mult}_{(0,0)} g$, where $g(x, y)=f(x+a, y+b)$.

A Gröbner basis approach

The existence of $Q(x, y)$
Define $\operatorname{mult}_{(0,0)} f$ as the smallest $m \in \mathbb{N}$ such that a monomial of total degree m occurs in the polynomial f. Then mult $_{(a, b)} f=\operatorname{mult}_{(0,0)} g$, where $g(x, y)=f(x+a, y+b)$.

The ideal of points in \mathcal{A} with multiplicity r

$$
\begin{align*}
I_{v, r} & =\left\{f \in \mathbb{F}_{q}[x, y]: \operatorname{mult}_{\left(\alpha_{i}, v_{i}\right)}(f) \geq r \text { for } 1 \leq i \leq n\right\} \cup\{0\} \\
& =\left\langle\left(y-h_{v}\right)^{i}\left(\prod\left(x-\alpha_{j}\right)\right)^{r-i}: 0 \leq i \leq r\right\rangle \tag{2}
\end{align*}
$$

A Gröbner basis approach

The existence of $Q(x, y)$
Define $\operatorname{mult}_{(0,0)} f$ as the smallest $m \in \mathbb{N}$ such that a monomial of total degree m occurs in the polynomial f. Then $\operatorname{mult}_{(a, b)} f=\operatorname{mult}_{(0,0)} g$, where $g(x, y)=f(x+a, y+b)$.

The ideal of points in \mathcal{A} with multiplicity r

$$
\begin{align*}
I_{v, r} & =\left\{f \in \mathbb{F}_{q}[x, y]: \operatorname{mult}_{\left(\alpha_{i}, v_{v}\right)}(f) \geq r \text { for } 1 \leq i \leq n\right\} \cup\{0\} \\
& =\left\langle\left(y-h_{v}\right)^{i}\left(\prod\left(x-\alpha_{j}\right)\right)^{r-i}: 0 \leq i \leq r\right\rangle \tag{2}
\end{align*}
$$

Proposition (Sudan list decoding)

Suppose that $f \in I_{\mathrm{v}, \mathrm{r}}$ is non-zero. If $c \in R S_{n, k}$ satisfies:

$$
\begin{equation*}
d(v, c)<n-\frac{w_{k-1}(f)}{r} \tag{3}
\end{equation*}
$$

then $h_{c}(x)$ is a root of f as a polynomial in y over $\mathbb{F}_{q}[x]$, that is $f\left(x, h_{c}(x)\right)=0$.

A Gröbner basis approach

The existence of $Q(x, y)$
Define $\operatorname{mult}_{(0,0)} f$ as the smallest $m \in \mathbb{N}$ such that a monomial of total degree m occurs in the polynomial f. Then mult $_{(a, b)} f=\operatorname{mult}_{(0,0)} g$, where $g(x, y)=f(x+a, y+b)$.

The ideal of points in \mathcal{A} with multiplicity r

$$
\begin{align*}
I_{v, r} & =\left\{f \in \mathbb{F}_{q}[x, y]: \operatorname{mult}_{\left(\alpha_{i}, v_{v}\right)}(f) \geq r \text { for } 1 \leq i \leq n\right\} \cup\{0\} \\
& =\left\langle\left(y-h_{v}\right)^{i}\left(\prod\left(x-\alpha_{j}\right)^{r-i}: 0 \leq i \leq r\right\rangle\right. \tag{2}
\end{align*}
$$

Proposition (Sudan list decoding)

Suppose that $f \in I_{\mathrm{v}, \mathrm{r}}$ is non-zero. If $c \in R S_{n, k}$ satisfies:

$$
\begin{equation*}
d(v, c)<n-\frac{\mathrm{w}_{k-1}(f)}{r} \tag{3}
\end{equation*}
$$

then $h_{c}(x)$ is a root of f as a polynomial in y over $\mathbb{F}_{q}[x]$, that is $f\left(x, h_{c}(x)\right)=0$.
\Rightarrow We may use the ideal $I_{v, r}$ for list dec. if $\exists Q \in I_{v, r}$ s.t. $W_{k-1}(Q)<r(n-d(v, c))$.

A Gröbner basis approach

Interpolation step of list decoding
(1,k-1)-weighted degree ordering $\prec_{w_{k-1}}$
Let $m_{1}=x^{i_{1}} y^{j_{1}}$ and $m_{2}=x^{i_{2}} y^{j_{2}}$. Define $w_{k-1}\left(m_{1}\right)=i_{1}+j_{1}(k-1)$. Then $m_{1} \prec_{w_{k-1}} m_{2}$ if:

$$
\left\{\begin{array}{l}
\mathrm{w}_{k-1}\left(m_{1}\right)<\mathrm{w}_{k-1}\left(m_{2}\right) \text { or } \\
\mathrm{w}_{k-1}\left(m_{1}\right)=\mathrm{w}_{k-1}\left(m_{2}\right) \text { and } j_{1}<j_{2}
\end{array}\right.
$$

A Gröbner basis approach

Interpolation step of list decoding

(1, $k-1$)-weighted degree ordering $\prec_{w_{k-1}}$

Let $m_{1}=x^{i_{1}} y^{j_{1}}$ and $m_{2}=x^{i_{2}} y^{j_{2}}$. Define $w_{k-1}\left(m_{1}\right)=i_{1}+j_{1}(k-1)$. Then $m_{1} \prec_{w_{k-1}} m_{2}$ if:

$$
\left\{\begin{array}{l}
\mathrm{w}_{k-1}\left(m_{1}\right)<\mathrm{w}_{k-1}\left(m_{2}\right) \text { or } \\
\mathrm{w}_{k-1}\left(m_{1}\right)=\mathrm{w}_{k-1}\left(m_{2}\right) \text { and } j_{1}<j_{2}
\end{array}\right.
$$

A Gröbner basis approach

(1) We fix the multiplicity r (starting with $r=1$).
(3) As a candidate for $Q(x, y)$ we choose the minimal polynomial $\Psi(x, y)$ of $I_{v, r}$ wrt ($1, k-1$)-weighted degree ordering.
(0) We find $\Psi(x, y)$ by computing a Gröbner basis of $I_{v, r}$ wrt $(1, k-1)$-weighted degree ordering.
\rightarrow If $\Psi(x, y)$ satisfies (3) then we set $Q(x, y)=\Psi(x, y)$.
\rightarrow If $\Psi(x, y)$ does not satisfy (3), meaning that its weighted degree is too large, we must increase r (go back to 1).

A Gröbner basis approach

Gröbner basis with respect to lex

Buchberger-Möller algorithm over \mathcal{A}

Compute a Gröbner basis for $I(\mathcal{A})$ wrt lexicographical ordering $x \prec_{\text {lex }} y$ using Buchberger-Möller algorithm:

$$
G^{(l e x)}=\left\{\prod_{i=1}^{n}\left(x-\alpha_{i}\right), y-h_{v}(x)\right\}
$$

where $h_{v}(x)$ is the Lagrange interpolant $h_{v}\left(\alpha_{i}\right)=v_{i}: h_{v}(x)=\sum_{i=1}^{n} v_{i} \prod_{\substack{j=1 \\ j \neq i}}^{n} \frac{x-\alpha_{j}}{\alpha_{i}-\alpha_{j}}$.

A Gröbner basis approach

Gröbner basis with respect to lex

Buchberger-Möller algorithm over \mathcal{A}

Compute a Gröbner basis for $I(\mathcal{A})$ wrt lexicographical ordering $x \prec_{\text {lex }} y$ using Buchberger-Möller algorithm:

$$
G^{(l e x)}=\left\{\prod_{i=1}^{n}\left(x-\alpha_{i}\right), y-h_{v}(x)\right\}
$$

where $h_{v}(x)$ is the Lagrange interpolant $h_{v}\left(\alpha_{i}\right)=v_{i}: h_{v}(x)=\sum_{i=1}^{n} v_{i} \prod_{\substack{j=1 \\ j \neq i}}^{n} \frac{x-\alpha_{j}}{\alpha_{i}-\alpha_{j}}$.
$G^{(l e x)}$ is not useful for list decoding:

- The only polynomial in y is $y-h_{v}(x)$.
- The interpolant $h_{v}(x)$ cannot represent a codeword (received vector is not a codeword).

A Gröbner basis approach

Gröbner basis with respect to weighted degree ordering: Buchberger-Möller algorithm

Gröbner basis for $I(\mathcal{A})$ wrt $\prec_{w_{k-1}}$: Buchberger-Möller algorithm

A GB wrt $(1, k-1)$-weighted degree ordering for the vanishing ideal $I\left(\mathcal{A}_{k}\right)$ where $\mathcal{A}_{k}=\left\{\left(\alpha_{1}, v_{1}\right), \ldots,\left(\alpha_{k}, v_{k}\right)\right\}$ is given by

$$
G^{(k)}=\left\{y-h_{\left(v_{1}, \ldots, v_{k}\right)}(x), \prod_{i=1}^{k}\left(x-\alpha_{i}\right)\right\}
$$

A Gröbner basis approach

Gröbner basis with respect to weighted degree ordering: Buchberger-Möller algorithm

Gröbner basis for $I(\mathcal{A})$ wrt $\prec_{w_{k-1}}$: Buchberger-Möller algorithm

A GB wrt $(1, k-1)$-weighted degree ordering for the vanishing ideal $I\left(\mathcal{A}_{k}\right)$ where $\mathcal{A}_{k}=\left\{\left(\alpha_{1}, v_{1}\right), \ldots,\left(\alpha_{k}, v_{k}\right)\right\}$ is given by

$$
G^{(k)}=\left\{y-h_{\left(v_{1}, \ldots, v_{k}\right)}(x), \prod_{i=1}^{k}\left(x-\alpha_{i}\right)\right\}
$$

Complexity

Buchberger-Möller takes $O\left(N^{3}\right)$ where N is the number of points in input. We use $G^{(k)}$ and \mathcal{A}_{k} as input of Buchberger-Möller algorithm thus reducing the complexity to $O\left((n-k)^{3}\right)$:

Constraint over $k \quad k \geq n-\sqrt[3]{n} \quad k \geq n-\sqrt[3]{n^{2}}$
$\begin{array}{lc}\text { BM complexity } & (n-k)^{3} \approx n \quad(n-k)^{3} \approx n^{2} \\ k^{2}\end{array}$
Interpolation complexity

$$
k^{2}
$$

$$
k^{2}
$$

A Gröbner basis approach

Gröbner basis with respect to weighted degree ordering: FGLM algorithm
Given $G^{(l e x)}$ and $\prec_{w_{k-1}}$, FGLM algorithm computes a GB for $\left\langle G^{(l e x)}\right\rangle$ wrt $\prec_{w_{k-1}}$ in time $O\left(n^{3}\right)$:

Figure: We use $G^{(l e x)}=\left\{\prod_{i=1}^{n}\left(x-\alpha_{i}\right), y-h_{v}(x)\right\}$ as input for FGLM algorithm to compute a GB with respect to $(1, k-1)$-weighted degree ordering.

Future work

Compute the staircase of $I(\mathcal{A})$ wrt $(1, k-1)$-weighted degree ordering

$$
\begin{array}{ccc}
1 & & \\
x & & \\
x^{2} & & \\
\vdots & & \\
x^{k-2} & & \\
x^{k-1} & y & \\
x^{k} & x y & \\
x^{k+1} & x^{2} y & \\
\vdots & \vdots & \\
x^{2 k-3} & x^{k-2} y & \\
x^{2 k-2} & x^{k-1} y & y^{2} \\
x^{2 k-1} & x^{k} y & x y^{2} \\
x^{2 k} & x^{k+1} y & x^{2} y^{2} \\
\vdots & \vdots & \vdots \\
x^{3 k-4} & x^{2 k-3} y & x^{k-2} y^{2}
\end{array}
$$

Future work

Compute the staircase of $I(\mathcal{A})$ wrt $(1, k-1)$-weighted degree ordering

$$
\begin{array}{ccc}
1 & & \\
x & & \\
x^{2} & & \\
\vdots & & \\
x^{k-2} & & \\
x^{k-1} & y & \\
x^{k} & x y & \\
x^{k+1} & x^{2} y & \\
\vdots & \vdots & \\
x^{2 k-3} & x^{k-2} y & \\
x^{2 k-2} & x^{k-1} y & y^{2} \\
x^{2 k-1} & x^{k} y & x y^{2} \\
x^{2 k} & x^{k+1} y & x^{2} y^{2} \\
\vdots & \vdots & \vdots \\
x^{3 k-4} & x^{2 k-3} y & x^{k-2} y^{2}
\end{array}
$$

Thats all Jolks!

