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Codes
Let Fq be a finite field, with q = pm for m ∈ N and p a prime number.

(Linear) Code
Let k, n ∈ N be such that 1 ≤ k ≤ n. A code is any non-empty subset of (Fq)n.
A linear code C is a k-dimensional vector subspace of (Fq)n. We say that C is a linear
code over Fq with length n and dimension k and we write [n, k]q.

Distance of a code
The distance of the code C is the minimum distance between codewords of C .
The distance between two codewords is the number of coordinates in which these two
codewords differ.

Reed-Solomon code
Let Fq be a finite field. Set n = q − 1 and F∗

q = {α1 , . . . , αn}. Define the
Reed-Solomon code over Fq of length n and dimension 1 ≤ k ≤ n:

RSn,k =
{(

f (α1) , . . . , f (αn)
)

: f ∈ Fq[x ], deg(f ) ≤ k − 1
}

(1)

Then d(RSn,k) = n − k + 1.
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List decoding problem

Correction capability
The correction capability of a [n, k , d ]q code C is τ = b d−1

2 c.

On good channels, that is channels introducing few noise, one assumes that at
most τ errors happened.
What if we have a noisy channel and we want to assume that more than τ errors
may happen?

The setting
Let RSn,k be the Reed-Solomon code over Fq with length n = q − 1 and
dimension 1 ≤ k ≤ n.
Let {α1 , . . . , αn} = F∗

q be the non-zero elements of the field Fq.
Let v = (v1 , . . . , vn) be the received vector.
Let A =

{
(α1, v1) , . . . , (αn, vn)

}
⊆ (Fq)2.
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List decoding of Reed-Solomon codes

List decoding of RSn,k

Find a list of all functions f : Fq → Fq such that f (x) is a polynomial of degree at
most k − 1 with ∣∣∣{i ∈ {1 , . . . , n} : f (αi ) 6= vi

}∣∣∣ ≤ e

where e is the number of errors that may happen.
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Sudan list decoding

Let m = xαyβ . Define wk−1(m) = α + (k − 1)β.

Sudan list decoding
Find any function Q(x , y) : (Fq)2 → Fq not identically zero satisfying

an interpolation condition: Q(αi , vi ) = 0, ∀ 1 ≤ i ≤ n

a degree constraint: wk−1(Q(x , y)) ≤ m + l(k − 1), certain l ,m ∈ N
Then factor Q(x , y) and output all its factors of the form y − g(x) with
deg g(x) ≤ k − 1.

The interpolation condition
Polynomials in the vanishing ideal of A, that is in I (A), satisfy the interpolation
condition:

I (A) = I
({

(α1, v1) , . . . , (αn, vn)
})
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Gröbner bases

Gröbner basis
Fix a monomial order ≺ over K[x1 , . . . , xn]. Let I ⊆ K[x1 , . . . , xn] be an ideal.
A set G ⊂ I such that 〈G 〉 = I and lm(G ) = lm(I ) is said to be a Gröbner basis
(GB) for the ideal I .

Staircase
Fix a monomial order ≺ over K[x1 , . . . , xn]. Let I ⊆ K[x1 , . . . , xn] be an ideal.
The set N(I ) =M\ lm(I ) is called the Hilbert staircase or the footprint for I .

Degree constraint
With the purpose of minimizing the weighted degree:

The minimal polynomial wrt a monomial ordering is in a Gröbner basis wrt
that ordering.
So we compute a Gröbner basis and consider the polynomial having smallest
weighted degree in it.
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A Gröbner basis approach
The existence of Q(x , y)

Define mult(0,0)f as the smallest m ∈ N such that a monomial of total degree m occurs
in the polynomial f . Then mult(a,b)f = mult(0,0)g , where g(x , y) = f (x + a, y + b).

The ideal of points in A with multiplicity r

Iv,r = {f ∈ Fq[x , y ] : mult(αi ,vi )(f ) ≥ r for 1 ≤ i ≤ n} ∪ {0}

=
〈
(y − hv )i

(∏
(x − αj)

)r−i

: 0 ≤ i ≤ r
〉

(2)

Proposition (Sudan list decoding)

Suppose that f ∈ Iv,r is non-zero. If c ∈ RSn,k satisfies:

d(v , c) < n − wk−1(f )

r
(3)

then hc(x) is a root of f as a polynomial in y over Fq[x ], that is f (x , hc(x)) = 0.

⇒ We may use the ideal Iv,r for list dec. if ∃Q ∈ Iv,r s.t. wk−1(Q) < r
(
n − d(v , c)

)
.
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A Gröbner basis approach
Interpolation step of list decoding

(1, k − 1)-weighted degree ordering ≺wk−1

Let m1 = x i1y j1 and m2 = x i2y j2 . Define wk−1(m1) = i1 + j1(k − 1). Then
m1 ≺wk−1 m2 if: {

wk−1(m1) < wk−1(m2) or
wk−1(m1) = wk−1(m2) and j1 < j2

A Gröbner basis approach
1 We fix the multiplicity r (starting with r = 1).
2 As a candidate for Q(x , y) we choose the minimal polynomial Ψ(x , y) of Iv ,r

wrt (1, k − 1)-weighted degree ordering.
3 We find Ψ(x , y) by computing a Gröbner basis of Iv ,r wrt (1, k − 1)-weighted

degree ordering.
→ If Ψ(x , y) satisfies (3) then we set Q(x , y) = Ψ(x , y).
→ If Ψ(x , y) does not satisfy (3), meaning that its weighted degree is too large,

we must increase r (go back to 1).
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A Gröbner basis approach
Gröbner basis with respect to lex

Buchberger-Möller algorithm over A
Compute a Gröbner basis for I (A) wrt lexicographical ordering x ≺lex y using
Buchberger-Möller algorithm:

G (lex) =
{ n∏

i=1

(x − αi ) , y − hv (x)
}

where hv (x) is the Lagrange interpolant hv (αi ) = vi : hv (x) =
∑n

i=1 vi
∏n

j=1
j 6=i

x−αj

αi−αj
.

G (lex) is not useful for list decoding:
The only polynomial in y is y − hv (x).
The interpolant hv (x) cannot represent a codeword (received vector is not a
codeword).
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A Gröbner basis approach
Gröbner basis with respect to weighted degree ordering: Buchberger-Möller algorithm

Gröbner basis for I (A) wrt ≺wk−1 : Buchberger-Möller algorithm
A GB wrt (1, k − 1)-weighted degree ordering for the vanishing ideal I (Ak) where
Ak =

{
(α1, v1), . . . , (αk , vk)

}
is given by

G (k) =
{
y − h(v1 , ... , vk )(x) ,

k∏
i=1

(x − αi )
}

Complexity
Buchberger-Möller takes O(N3) where N is the number of points in input.
We use G (k) and Ak as input of Buchberger-Möller algorithm thus reducing the
complexity to O((n − k)3):

Constraint over k k ≥ n − 3√n k ≥ n − 3√
n2

BM complexity (n − k)3 ≈ n (n − k)3 ≈ n2

Interpolation complexity k2 k2
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A Gröbner basis approach
Gröbner basis with respect to weighted degree ordering: FGLM algorithm

Given G (lex) and ≺wk−1 , FGLM algorithm computes a GB for 〈G (lex)〉 wrt ≺wk−1 in
time O(n3):

Figure : We use G (lex) =
{∏n

i=1(x − αi ) , y − hv (x)
}

as input for FGLM algorithm to
compute a GB with respect to (1, k − 1)-weighted degree ordering.
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Future work

Compute the staircase of I (A) wrt (1, k − 1)-weighted degree ordering

1
x
x2

...
xk−2

xk−1 y
xk xy

xk+1 x2y
...

...
x2k−3 xk−2y
x2k−2 xk−1y y2

x2k−1 xky xy2

x2k xk+1y x2y2

...
...

...
x3k−4 x2k−3y xk−2y2

...
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ m ? ?
? ? ? ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
...
∗ ∗ ∗ ∗ ∗ ∗ ?

...
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ m ? ?
? ? ? ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
...
∗ ∗ ∗ ∗ ∗ ∗ ∗
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