
Publicly-verifiable proof of storage:
a modular construction

Federico Giacon

Ruhr-Universität Bochum
federico.giacon@rub.de

6th BunnyTN, Trent
17 December 2015



Proof of Storage

Proof of Storage (PoS)

A Proofs of Storage protocol allows a client to verify that a server is correctly storing a
user’s file.

A PoS protocol is publicly-verifiable when the verification doesn’t require any secret
parameter.

The parties involved are:
The server, who stores the file.
The user, who wants to store the file.
A verifier, who checks that the file is being stored by the server.

Federico Giacon Publicly-verifiable proof of storage: a modular construction 1 / 16



Proof of Storage

Proof of Storage (PoS)

A Proofs of Storage protocol allows a client to verify that a server is correctly storing a
user’s file.

A PoS protocol is publicly-verifiable when the verification doesn’t require any secret
parameter.

The parties involved are:
The server, who stores the file.
The user, who wants to store the file.
A verifier, who checks that the file is being stored by the server.

Federico Giacon Publicly-verifiable proof of storage: a modular construction 1 / 16



Proof of Storage

Proof of Storage (PoS)

A Proofs of Storage protocol allows a client to verify that a server is correctly storing a
user’s file.

A PoS protocol is publicly-verifiable when the verification doesn’t require any secret
parameter.

The parties involved are:
The server, who stores the file.
The user, who wants to store the file.
A verifier, who checks that the file is being stored by the server.

Federico Giacon Publicly-verifiable proof of storage: a modular construction 1 / 16



What PoS is NOT

Three different problems:
Secrecy of the stored file. The server can read any part of the file: a user must
encrypt the file to maintain privacy.
Retrieving the file. The server can refuse to give back the file to the user but still
pass the verification, because it is actually storing the file.
Recovering a partially corrupted file. Part of the stored file can become
corrupted. The PoS protocol detects the problem, but doesn’t restore the file.

Federico Giacon Publicly-verifiable proof of storage: a modular construction 2 / 16



What PoS is NOT

Three different problems:
Secrecy of the stored file. The server can read any part of the file: a user must
encrypt the file to maintain privacy.
Retrieving the file. The server can refuse to give back the file to the user but still
pass the verification, because it is actually storing the file.
Recovering a partially corrupted file. Part of the stored file can become
corrupted. The PoS protocol detects the problem, but doesn’t restore the file.

Federico Giacon Publicly-verifiable proof of storage: a modular construction 2 / 16



What PoS is NOT

Three different problems:
Secrecy of the stored file. The server can read any part of the file: a user must
encrypt the file to maintain privacy.
Retrieving the file. The server can refuse to give back the file to the user but still
pass the verification, because it is actually storing the file.
Recovering a partially corrupted file. Part of the stored file can become
corrupted. The PoS protocol detects the problem, but doesn’t restore the file.

Federico Giacon Publicly-verifiable proof of storage: a modular construction 2 / 16



What PoS is NOT

Three different problems:
Secrecy of the stored file. The server can read any part of the file: a user must
encrypt the file to maintain privacy.
Retrieving the file. The server can refuse to give back the file to the user but still
pass the verification, because it is actually storing the file.
Recovering a partially corrupted file. Part of the stored file can become
corrupted. The PoS protocol detects the problem, but doesn’t restore the file.

Federico Giacon Publicly-verifiable proof of storage: a modular construction 2 / 16



Proof of Storage
Additional requirement

We can trivially obtain a PoS protocol if the user stores a hash h of its file f and the
server sends back the whole file, f ′.

Verify(f ′): if H(f ′) == h return true; else return false;

We require the protocol be efficient in term of bandwidth: the communication
complexity must be much lower than the size of the file.

Federico Giacon Publicly-verifiable proof of storage: a modular construction 3 / 16



Applications

Cloud storage: the user can verify that their files are correctly stored by the cloud
provider: otherwise the server might remove files that are unlikely to be accessed
(e.g., old backups).
Automated, trustless payment for file storage: with public verifiability a trusted
third party (or a smart contract) can verify that the server is storing the file and
authorize the payment, without requiring any trust between the user and the
server.

Federico Giacon Publicly-verifiable proof of storage: a modular construction 4 / 16



Proof of Storage
The protocol

(f ′, st)← Encodesk (f )

c

π ← Provepk (f ′, c)
(pk, sk, st) (pk, f ′)

b = Verifypk(st, c, π)

Federico Giacon Publicly-verifiable proof of storage: a modular construction 5 / 16



Security

The protocol is correct:

The server knows f ′ =⇒ the verification succeeds.

The protocol is secure:

A can verify =⇒ we can “extract” the file f from A.

Federico Giacon Publicly-verifiable proof of storage: a modular construction 6 / 16



The result

Ateniese, Kamara, Katz – ASIACRYPT 2009
We can build a correct and secure publicly-verifiable PoS protocol based on the
hardness of factoring in the random oracle model.

Federico Giacon Publicly-verifiable proof of storage: a modular construction 7 / 16



Additional properties

Unlimited challenges.
Public verifiability.

And with respect to the file size:
Communication complexity: O (1).
Server storage: the file f and a overhead O (1).
Client storage: O (1).

Federico Giacon Publicly-verifiable proof of storage: a modular construction 8 / 16



Modular construction

Proof of Storage

Homomorphic Linear Authentication

Homomorphic Identification Protocol

Hardness of factoring

Federico Giacon Publicly-verifiable proof of storage: a modular construction 9 / 16



Modular construction

Proof of Storage

Homomorphic Linear Authentication

Homomorphic Identification Protocol

Hardness of factoring

Pseudo-random
functions

Federico Giacon Publicly-verifiable proof of storage: a modular construction 9 / 16



Modular construction

Proof of Storage

Homomorphic Linear Authentication

Homomorphic Identification Protocol

Hardness of factoring

Random Oracle
Model

Pseudo-random
functions

Federico Giacon Publicly-verifiable proof of storage: a modular construction 9 / 16



Proof of Storage

Proof of Storage

Homomorphic Linear Authentication

Homomorphic Identification Protocol

Hardness of factoring

Federico Giacon Publicly-verifiable proof of storage: a modular construction 10 / 16



Homomorphic Linear Authentication

~f = (f 1, . . . , f N )

(~t′, st)← Tagsk (~f )

~c

τ ← Authpk (~f ,~t,~c)

b = Verifypk(st, µ,~c, τ)

Federico Giacon Publicly-verifiable proof of storage: a modular construction 10 / 16



Homomorphic Linear Authentication

b = Verifypk (st, µ,~c, τ)

Correctness

Verifypk

(
st,
∑

i

ci f i ,~c, τ

)
= 1

Security

A polynomial adversary cannot forge a valid authentication proof for µ 6=
∑

i
ci f i .

Federico Giacon Publicly-verifiable proof of storage: a modular construction 11 / 16



HLA ⇒ PoS

The file is split: ~f = (f 1, . . . , f N ), with f i ∈ Zp .
The server stores a file with HLA tags: ~f ′ = (~f ,~t).

The request procedure consists in:
Share a key K for the pseudo-random function F : the commitment is
ci = FK (i) ∈ Zp .

Using the HLA protocol we compute τ ← Authpk (~f ,~t,~c) and set µ =
∑

i f i ci .
The PoS proof is π = (µ, τ).
To verify we use Verify of the HLA protocol.

Federico Giacon Publicly-verifiable proof of storage: a modular construction 12 / 16



Homomorphic Linear Authentication

Proof of Storage

Homomorphic Linear Authentication

Homomorphic Identification Protocol

Hardness of factoring

Federico Giacon Publicly-verifiable proof of storage: a modular construction 13 / 16



Identification Protocol

Verify that the user knows the secret key sk without revealing additional information.

α← Commitpk (r)

β

γ ← Respondpk (sk, r , β)

(pk, sk) pk

b = Verifypk(α, β, γ)

Federico Giacon Publicly-verifiable proof of storage: a modular construction 13 / 16



Homomorphic Identification Protocol

For an homomorphic protocol we add Combine1 and Combine3.

Correctness

If {(αi , βi , γi )}n
i=1 is a set of valid IP transcript (Verify = 1) and ~c is a vector:

Verifypk

(
Combine1(~c, ~α),

∑
i

ciβi , Combine3(~c, ~γ)

)
.

Security

A polynomial adversary A has negligible probability to output a string (~c, µ′, γ′) such
that:

µ′ 6=
∑

i ciβi .
Verifypk (Combine1(~c, ~α), µ′, γ′) = 1.

Federico Giacon Publicly-verifiable proof of storage: a modular construction 14 / 16



HIP ⇒ HLA

The file is split: ~f = (f 1, . . . , f N ), with f i ∈ Zp . Implicitly βi = f i .

Tagsk (~f ): We take a random element st and we fix ri = H(st, i) and
αi = Commitpk (ri ). We compute γi = Respondpk (sk, ri , f i ).
The tag is ~t = (γ1, . . . , γn).

Authpk (~f ,~t,~c): Output the combined tag τ = Combine3(~c,~t).
Verifypk (st, µ,~c, τ): Output the combined verification

Verifypk (Combine1(~c, ~α), µ, τ).

Federico Giacon Publicly-verifiable proof of storage: a modular construction 15 / 16



Homomorphic Identification Protocol

Proof of Storage

Homomorphic Linear Authentication

Homomorphic Identification Protocol

Hardness of factoring

Federico Giacon Publicly-verifiable proof of storage: a modular construction 16 / 16



Instantiation

Quadratic residuosity: N = pq, J+1
N is the set of element in ZN with Jacobi symbol

+1, and QRN is the set of quadratic residues mod N.

y $←− QRN ; pk = (N, y); sk = (p, q).

Commitpk (r): output α = r as element of J+1
N .

Respondpk (sk, r , β): output γ, a random 23k -th root of ±ryβ .

Verifypk (α, β, γ): output 1 if and only if γ23k = ±αyβ and β < 23k .

Combine(~c, ~x): output
∏

i xci
i .

Federico Giacon Publicly-verifiable proof of storage: a modular construction 16 / 16



Thank you for your attention.


