Publicly-verifiable proof of storage:

a modular construction

Federico Giacon

Ruhr-Universitat Bochum
federico.giacon@rub.de

6th BunnyTN, Trent
17 December 2015

RUHR
UNIVERSITAT
BOCHUM

Proof of Storage

Proof of Storage (PoS)

A Proofs of Storage protocol allows a client to verify that a server is correctly storing a
user’s file.

Federico Giacon Publicly-verifiable proof of storage: a modular construction

Proof of Storage

Proof of Storage (PoS)

A Proofs of Storage protocol allows a client to verify that a server is correctly storing a
user’s file.

A PoS protocol is publicly-verifiable when the verification doesn't require any secret
parameter.

Federico Giacon Publicly-verifiable proof of storage: a modular construction

Proof of Storage

Proof of Storage (PoS)

A Proofs of Storage protocol allows a client to verify that a server is correctly storing a
user’s file.

A PoS protocol is publicly-verifiable when the verification doesn't require any secret

parameter.

The parties involved are:
@ The server, who stores the file.
@ The user, who wants to store the file.
@ A verifier, who checks that the file is being stored by the server.

Publicly-verifiable proof of storage: a modular construction

Federico Giacon

What PoS is NOT

Three different problems:

Publicly-verifiable proof of storage: a modular construction

What PoS is NOT

Three different problems:

@ Secrecy of the stored file. The server can read any part of the file: a user must
encrypt the file to maintain privacy.

Federico Giacon Publicly-verifiable proof of storage: a modular construction

What PoS is T

Three different problems:

@ Secrecy of the stored file. The server can read any part of the file: a user must
encrypt the file to maintain privacy.

o Retrieving the file. The server can refuse to give back the file to the user but still
pass the verification, because it is actually storing the file.

Federico Giacon Publicly-verifiable proof of storage: a modular construction

What PoS is T

Three different problems:

@ Secrecy of the stored file. The server can read any part of the file: a user must
encrypt the file to maintain privacy.

o Retrieving the file. The server can refuse to give back the file to the user but still
pass the verification, because it is actually storing the file.

o Recovering a partially corrupted file. Part of the stored file can become
corrupted. The PoS protocol detects the problem, but doesn't restore the file.

Federico Giacon

Publicly-verifiable proof of storage: a modular construction

Proof of Storage

Additional requirement

We can trivially obtain a PoS protocol if the user stores a hash h of its file f and the
server sends back the whole file, .

Verify(f'): if H(f') == h return true; else return false;

We require the protocol be efficient in term of bandwidth: the communication
complexity must be much lower than the size of the file.

Federico Giacon Publicly-verifiable proof of storage: a modular construction

Applications

o Cloud storage: the user can verify that their files are correctly stored by the cloud
provider: otherwise the server might remove files that are unlikely to be accessed
(e.g., old backups).

o Automated, trustless payment for file storage: with public verifiability a trusted
third party (or a smart contract) can verify that the server is storing the file and
authorize the payment, without requiring any trust between the user and the
server.

Federico Giacon Publicly-verifiable proof of storage: a modular construction

Proof of Storage

The protocol

(f', st) + Encodesk(fz .

¢ \
([] Z i
T Prove(f', c) '
(PR ok st) (pk, ')

b = Verify,(st,c,T)

Federico Giacon Publicly-verifiable proof of storage: a modular construction

Security

The protocol is correct:

The server knows f/ == the verification succeeds.

The protocol is secure:

A can verify = we can “extract” the file f from A.

verifiable proof of storage: a modular construction

The result

Ateniese, Kamara, Katz — ASIACRYPT 2009

We can build a correct and secure publicly-verifiable PoS protocol based on the
hardness of factoring in the random oracle model.

Federico Giacon Publicly-verifiable proof of storage: a modular construction

Additional properties

o Unlimited challenges.

o Public verifiability.

And with respect to the file size:
o Communication complexity: O (1).
@ Server storage: the file f and a overhead O (1).

o Client storage: O (1).

Federico Giacon Publicly-verifiable proof of storage: a modular construction

Modular construction

Proof of Storage

A

Homomorphic Linear Authentication

A

Homomorphic Identification Protocol

A

Hardness of factoring

Federico Giacon Publicly-verifiable proof of storage: a modular construction

Modular construction

(Proof of Storage

—
—~—

A

Pseudo-random Homomorphic Linear Authentication

functions

A

Homomorphic Identification Protocol

A

Hardness of factoring

Federico Giacon Publicly-verifiable proof of storage: a modular construction

Modular construction

(Proof of Storage

—
—~—

A

Pseudo-random Homomorphic Linear Authentication

1 e
functions —~—

A

Random Oracle Homomorphic Identification Protocol

Model

A

Hardness of factoring

Federico Giacon Publicly-verifiable proof of storage: a modular construction

Proof of Storage

Proof of Storage

A

Homomorphic Linear Authentication

A

Homomorphic Identification Protocol

A

Hardness of factoring

Federico Giacon Publicly-verifiable proof of storage: a modular construction

Homomorphic Linear Authentication

f=(f1,....fn)

(t', st) < Tagsk(f) .

\

4

E \

4
o

T < Authy(f, £,)

b = Verify,(st,u,c,7)

Federico Giacon Publicly-verifiable proof of storage: a modular construction

Homomorphic Linear Authentication

b = Verify, (st,u,c,T)

Correctness

Verify,, st,E cifi,é,7 | =1

i

A polynomial adversary cannot forge a valid authentication proof for y 7 E cifi.
i

Federico Giacon Publicly-verifiable proof of storage: a modular construction

HLA = PoS

The file is split: f = (f1,...,fn), with f; € Zp.
The server stores a file with HLA tags: = (f, ?).

The request procedure consists in:
@ Share a key K for the pseudo-random function F: the commitment is
ci = Fk(i) € Zp.
@ Using the HLA protocol we compute 7 Authpk(F7 £,¢) and set = Zi fici.
The PoS proof is m = (p, 7).
o To verify we use Verify of the HLA protocol.

Federico Giacon Publicly-verifiable proof of storage: a modular construction

Homomorphic Linear Authentication

Proof of Storage

A

Homomorphic Linear Authentication

A

Homomorphic Identification Protocol

A

Hardness of factoring

Federico Giacon Publicly-verifiable proof of storage: a modular construction

Identification Protocol

Verify that the user knows the secret key sk without revealing additional information.

o <— Commitpk(r)

g
< Respond , (sk, r, 6\)

4

\Q/\

b =Verify (o, 3,7)

Federico Giacon Publicly-verifiable proof of storage: a modular construction

Homomorphic Identification Protocol

For an homomorphic protocol we add Combine; and Combines.

Correctness

If {(ai, Bi,vi)}7_; is a set of valid IP transcript (Verify = 1) and C is a vector:

Verify,, Combine; (C, &), E ¢iBi, Combines(&,7)

1

A polynomial adversary A has negligible probability to output a string (&, #/,7’) such
that:

oy # Y cifi.

o Verify,, (Combinei(,d),n’,7") =1.

Federico Giacon Publicly-verifiable proof of storage: a modular construction

HIP = HLA

The file is split: f= (f1,...,fn), with f; € Zp. Implicitly 3; = f;.

Tag,, (): We take a random element st and we fix r; = H(st, i) and
a; = Commitpk(ri). We compute v; = Respond, (sk, ri, f;).
The tagis £ = (71, -»7Yn)-
Authpk(i?, £,¢): Output the combined tag 7 = Combines(C, £).

Verify,(st,p, ¢, 7): Output the combined verification
Verify, (Combine:(C, &), u,T).

Federico Giacon Publicly-verifiable proof of storage: a modular construction

Homomorphic Identification Protocol

Proof of Storage

A

Homomorphic Linear Authentication

A

Homomorphic Identification Protocol

A

Hardness of factoring

Federico Giacon Publicly-verifiable proof of storage: a modular construction

Instantiation

Quadratic residuosity: N = pgq, JJI is the set of element in Zy with Jacobi symbol
+1, and QR is the set of quadratic residues mod N.

$
y < QRp; pk = (N,y); sk = (p, q).

Commit(r): output o = r as element of J,\Tl.
Respondpk(sk, r,3): output v, a random 23%-th root of £ry”.
Verify,, (o, 8,7): output 1 if and only if ’stk = +ay?® and B < 23k,

Combine(¢&, X): output Hi X7

Federico Giacon Publicly-verifiable proof of storage: a modular construction

Thank you for your attention.

