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Example of translation based cipher

S-boxes
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F : F* — F* permutation

m >3 — not AC

general

md>8 — not AC
mACand Ai=3 — 6=38
mnm>1 — not AC

ni = |{\: deg(F - \) =i}
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permutations

Let F:F" — F" be an APN permutation. Then F is AC iif
n=0.
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Let F be an APN permutation with n even. Then ny = 0.

Proposition

No partially-bent components.

Extend the results of J. Seberry, X.-M. Zhang, and Y. Zheng
(1994) and K. Nyberg (1995).
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Proposition

Let F be a cubic APN permutation with n even. Then 9 X s.t.
{a: F(Dsf) =0} >2" — 22 1.



Given f : F* — F balanced and deg(f) = 3, then
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Given f : F* — F balanced and deg(f) = 3, then

[{a: F(D.f) = 0}] < 11

No 4-bit permutation can be APN.
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