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Vectorial Boolean function

F : Fn → Fm

coordinate function
F (x) = (f1(x), . . . , fm(x))

component function
λ ∈ Fm fλ(x) = F (x) · λ

degree
deg(F ) = maxλ deg(fλ)

permutation deg(F ) ≤ n − 1
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Some definitions of “non-linearity”

Derivative

a ∈ Fn r {0} DaF (x) = F (x) + F (x + a)

Uniform differentiability

δ = max
a,b
|{x ∈ Fn : DaF (x) = b}|

Weakly uniform differentiability

∀a ∈ Fn \ {0} |Im(DaF )| > 2n−1

δ

Anti-crookedness (AC)

∀a ∈ Fn \ {0} Im(DaF ) not affine subspace of Fn
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On anti-crookedness

affine invariant property

sufficient condition: n̂ = 0

n̂ = max
a 6=0
|{λ 6= 0 : deg(DaF · λ) = 0}|
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Our results on 4-bit permutations

F : F4 → F4, permutation

n̂ > 3 −→ not AC
general: n̂ > 2n−2 − 1

δ > 8 −→ not AC
AC and n̂ = 3 −→ δ = 8
n1 > 1 −→ not AC

ni = |{λ : deg(F · λ) = i}|
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Almost Perfect Nonlinear (APN)

∀a, b ∈ Fn, a 6= 0, |{x ∈ Fn : DaF (x) = b}| ≤ 2

Proposition
Let F : Fn → Fn be an APN permutation. Then F is AC iif
n̂ = 0.
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ODD CASE

There exist many family of
APN permutation such as:

F (x) = x2n−2

EVEN CASE
n = 4 no APN permutations

(computational proof by
X. Hou in 2006)

n = 6 (J. F. Dillon in 2010)
n3 = 7, n4 = 56, n̂ = 1

n ≥ 8
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Even case

Proposition
Let F be an APN permutation with n even. Then n2 = 0.

Proposition
No partially-bent components.

Extend the results of J. Seberry, X.-M. Zhang, and Y. Zheng
(1994) and K. Nyberg (1995).
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Formal proof for the case n = 4

Definition
For g : Fn → F, let F(g) =

∑
x (−1)g(x).

F : F4 → F4 APN permutation

n1 = n2 = 0

∀λ 6= 0 deg(fλ) = 3

∃ λ s.t. |{a : F(Dafλ) = 0}| ≥ 11

Proposition
Let F be a cubic APN permutation with n even. Then ∃ λ s.t.
|{a : F(Dafλ) = 0}| ≥ 2n − 2n−2 − 1.
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Proposition
Given f : F4 → F balanced and deg(f ) = 3, then

|{a : F(Daf ) = 0}| < 11

Theorem
No 4-bit permutation can be APN.
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Thank you for your attention
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