
What users should know about
Full Disk Encryption based on LUKS

Andrea VISCONTI

Department of Computer Science

Università degli Studi di Milano

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 1 / 34

Overview

1 Introduction

2 The key management process

3 Linux Uni�ed Key Setup (LUKS)

4 Analysis of a LUKS implementation [1]

5 Conclusions

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 2 / 34

Introduction

Problem Description

Mobile devices, laptops, USB memory usually store large amounts of
sensitive information frequently unprotected.

If such devices are lost or stolen, the risk of unauthorized disclosure of
con�dential, sensitive, or classi�ed information is very high.

Also operating systems store temporary �les and/or swap partitions on
hard drive and several problems arise when these �les contain sensitive data.

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 3 / 34

Introduction

A possible solution

A possible solution is to encrypt the whole hard disk: Full Disk
Encryption (FDE).

FDE solutions aim to provide data security, even in the event that an
encrypted device is lost or stolen.

All information is encrypted/decrypted on the �y, automatically and
transparently.

Without the encryption key, the data stored on the disk remains
inaccessible to any users (regular or malicious).

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 4 / 34

Introduction

Main issue and possible solution

One of the main issues facing Full Disk Encryption solutions is the
password management. Indeed, the master key used to encrypt the
whole disk is stored on it.

A well-known solution to this problem, is to adopt a two level key
hierarchy but sometimes it is not enough (e.g. two level key hierarchy
adopted by Android 3-4.3).

We analyze

the key management process used to derive the encryption key;

how the choice of speci�c hash functions and aggressive power
management options may a�ect the security of a FDE solution.

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 5 / 34

The key management process

The key management process

LUKS adopts a two level key hierarchy:

A strong master key generated by the system is used to
encrypt/decrypt whole hard disk;

The master key is unique;

Such a key is split, encrypted with a secret user key and stored
on the device itself;

Each user has their own secret key;

Several encrypted master keys are stored on disk, one for each
user.

A possible solution is to adopt a KDF [2, 3]. The KDF implemented is
PBKDF2 [4].

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 6 / 34

The key management process

The key management process (2)

DK = PBKDF2(p, s, c , dkLen)

More precisely, the derived key is computed as follows:

DK = T1||T2|| . . . ||TddkLen/hLene

Each single block Ti is computed as

Ti = U1 ⊕ U2 ⊕ ...⊕ Uc

where
U1 = PRF (p, s||i)

U2 = PRF (p,U1)

...

Uc = PRF (p,Uc−1)

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 7 / 34

The key management process

The key management process (3)

In order to prevent building universal dictionaries, PBKDF2 uses a salt.

The KDF allows legitimate users to spend a moderate amount of time on
key derivation, while inserts CPU-intensive operations on the attacker
side.

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 8 / 34

Linux Uni�ed Key Setup (LUKS)

A LUKS partition

A LUKS partition contains information about

start sector of key material;

salt;

iteration counts (e.g. c = 588, 761);

used cipher (e.g. AES);

cipher mode (e.g. XTS);

key length (e.g. 256 bits);

hash function (e.g. SHA-1);

master key checksum;

...

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 9 / 34

Linux Uni�ed Key Setup (LUKS)

A LUKS master key

When a user key is provided, it unlocks one of the eight key slots and
the following algorithm is executed:

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 10 / 34

Linux Uni�ed Key Setup (LUKS)

LUKS: the master key recovery process

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 11 / 34

Analysis of a LUKS implementation

Our testing activities...

Because salt parameter is known and user password may be guessed,
we focus on iteration counts and their ability to slow down a brute force
attack as much as possible.

We try to understand

1 where and how the iteration counts are used;

2 how the choice of speci�c hash functions may a�ect the iteration
count computation;

3 how unwitting users might signi�cantly reduce the security of a LUKS
implementation by setting aggressive power management options.

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 12 / 34

Analysis of a LUKS implementation

Our testing activities...

1) Where and how the iteration counts are used...

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 13 / 34

Analysis of a LUKS implementation

FIRST: Iteration counts (where and how)

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 14 / 34

Analysis of a LUKS implementation

FIRST: Iteration counts (where and how) (2)

This table shows the average iteration count values involved in the key
derivation process.

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 15 / 34

Analysis of a LUKS implementation

FIRST: Iteration counts (where and how) (3)

This table shows the average iteration count values involved in the master
key checksum process.

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 16 / 34

Analysis of a LUKS implementation

FIRST: Iteration counts (where and how) (4)

A closer look: we experimentally observed that about 75-80% of the
computational e�ort required to compute a derived key is generated by �rst
iteration count, while the remaining 20-25% by second one.

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 17 / 34

Analysis of a LUKS implementation

Avoiding the master key checksum process

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 18 / 34

Analysis of a LUKS implementation

Our testing activities...

2) How the choice of speci�c hash functions may a�ect the iteration count
computation...

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 19 / 34

Analysis of a LUKS implementation

SECOND: Iteration counts and hash functions

The iteration counts are automatically computed by making some
run-time tests when the encrypted partition is generated.

We collected several partition headers to be sure that such values are
not conditioned by external factors, e.g. running programs.

More precisely, for each processor (eight) and each hash function (four), we
execute 100 runs for a total of 8× 4× 100 = 3200 partition headers
collected.

The variation across runs is observed to be less than 0.4%.

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 20 / 34

Analysis of a LUKS implementation

SECOND: Iteration counts and hash functions (2)

As expected, devices with a di�erent hardware con�guration generate
di�erent iteration count values.

Surprisingly, the choice of a di�erent hash function may considerably
decrease the iteration count values.

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 21 / 34

Analysis of a LUKS implementation

SECOND: Iteration counts and hash functions (3)

The iteration counts related to SHA-256/512 are considerably smaller
than those of SHA-1.

It is easier to attack a FDE solution which makes use of a new hash
function (e.g., SHA256 or SHA512) rather than one which uses an old
hash function (e.g., SHA-1).

This is a counter-intuitive idea!

From an user's point of view, SHA-256 and SHA-512 are still considered
more secure than SHA-1, therefore a FDE solution based on SHA-2 is
expected to be stronger.

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 22 / 34

Analysis of a LUKS implementation

SECOND: Iteration counts and hash functions (4)

The computational time spent to compute a list of master key candidates
does not only depend on the iteration count values.

Even the number of �ngerprints required to compute a single iteration
a�ects the total execution time!

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 23 / 34

Analysis of a LUKS implementation

PBKDF2

DK = PBKDF2(p, s, c , dkLen)

More precisely, the derived key is computed as follows:

DK = T1||T2|| . . . ||TddkLen/hLene

Each single block Ti is computed as

Ti = U1 ⊕ U2 ⊕ ...⊕ Uc

where
U1 = PRF (p, s||i)

U2 = PRF (p,U1)

...

Uc = PRF (p,Uc−1)

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 24 / 34

Analysis of a LUKS implementation

SECOND: Iteration counts and hash functions

... but a SHA-1 �ngerprint is only 160 bits in length and cannot be used as
derived key, hence a second �ngerprint is necessary:

DerKey = T1||T2

On the other hand, SHA-256 and SHA-512 generate enough bits to
compute a derived key:

DerKey = T1

At equal iteration count values, we need to run the HMAC-SHA1 two
times. Hence, a FDE solution based on HMAC-SHA1 slow down a brute
force attack better than one based on HMAC-SHA256/SHA512.

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 25 / 34

Analysis of a LUKS implementation

THIRD: Iteration counts and power management

3) How unwitting users might signi�cantly reduce the security of a LUKS
implementation by setting aggressive power management options...

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 26 / 34

Analysis of a LUKS implementation

THIRD: Iteration counts and power management

Another important feature that users have to take into account during
encryption operations are the power management options.

A common way to increase the battery life of devices is to enable
aggressive power saving policies. Such policies save power, but they
also impact performance by lowering CPU clock speed.

... and the iteration count values fall down even further!

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 27 / 34

Analysis of a LUKS implementation

THIRD: Iteration counts and power management

This means that power saving policies might have an important impact
on the iteration count values, hence, on the strength of the FDE solution
adopted.

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 28 / 34

Analysis of a LUKS implementation

Testing: a toy example

We implemented a brute-force attack based on a password-list of 250,000
master keys (i.e. a dictionary attack).

We run our code on a laptop equipped with an i7 4710MQ processor. No
GPUs have been used.

We target two LUKS partitions collected using the following con�guration
options:

default iteration count values, AES-256 XTS mode, HMAC-SHA1,
laptop plugged in;

default iteration count values, AES-256 XTS mode, HMAC-SHA512,
laptop unplugged;

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 29 / 34

Analysis of a LUKS implementation

Testing: a toy example (2)

The second approach (i.e., SHA-512 unplugged) abruptly reduce the
timeframe for brute forcing, showing how the simple choice of
con�guration parameters may a�ect a FDE solution based on LUKS.

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 30 / 34

Conclusions

Conclusions

We identify a number of issues that should be assessed and faced when a
full disk encryption is implemented:

The iteration count values are used to slow down a brute force
attack, therefore, they should not be too small. Experimental
results show that sometimes they are.

The problem of EXT family �le system allows attackers to substitute
the master key checksum process by a simple decryption operation.
The CPU-intensive operations used to compute a derived key
should not be avoided by executing a set of functionally-equivalent
instructions.

From an user's point of view a FDE solution based on
HMAC-SHA256/SHA512, is expected to be much stronger
than one based on SHA-1, and be far more resistant to brute-force
attacks. Our testing disprove this.

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 31 / 34

Conclusions

Conclusions (2)

Power management options should not a�ect the strength of a FDE
solution. Testing results show that aggressive power-saving
approaches may have a relevant impact on the iteration count
values, hence, on the strength of the solution adopted.

Master keys stored on disk are protected with user keys which
should have a minimum length requirement in order to prevent a
brute force attack. We experimentally observed that a number of
distribution such as Debian, Ubuntu, and ArchLinux have no minimum
length requirement, while Fedora has (but only eight characters).

...the cryptsetup 1.7 release changes defaults for LUKS...

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 32 / 34

Conclusions

Thanks for your attention!

andrea.visconti@unimi.it

www.di.unimi.it/visconti

www.club.di.unimi.it

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 33 / 34

andrea.visconti@unimi.it
www.di.unimi.it/visconti
www.club.di.unimi.it

Conclusions

Bibliography

S. Bossi and A. Visconti, �What users should know about Full Disk
Encryption based on LUKS,� in Proceedings of the 14th International

Conference on Cryptology and Network Security, CANS15, 2015.

RSA Laboratories, �Pkcs #5 v2.1: Password based cryptography
standard,� 2012.

NIST, �SP 800-132: Recommendation for password-based key
derivation,� 2010.

A. Visconti, S. Bossi, H. Ragab, and A. Caló, �On the weaknesses of
PBKDF2,� in Proceedings of the 14th International Conference on

Cryptology and Network Security, CANS15, 2015.

BunnyTN15 andrea.visconti@unimi.it December 17, 2015 34 / 34

	Introduction
	The key management process
	Linux Unified Key Setup (LUKS)
	Analysis of a LUKS implementation LUKS
	Conclusions

