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The Discrete Logarithm Problem

In 1976, Diffie and Hellman invented new cryptographic protocols
which base their security on the Discrete Logarithm Problem.

The Discrete Logarithm Problem (DLP)

Let G be a finite cyclic group, let g be a generator of G and h a generic
element of G . The Discrete Logarithm Problem consists in computing
x ∈ Z such that

g x = h.

In 1984, Koblitz and Miller independently proposed to employ Elliptic
Curves for Cryptosystems basing their security on the DLP.
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Algorithms solving the DLP

Finite Fields:

Index Calculus is the most efficient algorithm solving the DLP over
finite fields.

Subexponential complexity for FFDLP: efficiency relies on fast
factorisation algorithms.

Elliptic Curves:

Same arguments do not hold for elliptic curves: no analogous
factorisation in elliptic curves.

Algorithms do not exploit the structure of the curves: the most
efficient known is Pollard’s ρ which has exponential complexity and
works on generic groups.
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Index Calculus: a quick Overview

Given g generator of F∗p and h ∈ F∗p such that g x = h, the steps of the
index calculus are

1 choose a factor base of s prime numbers;

2 collect s powers of g that factorise in the set of prime numbers;

3 using linear algebra, solve the discrete logarithm problems with
respect to the base of prime numbers;

4 combine relations obtained from linear algebra;

5 using the logarithms previously computed, obtain x .
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Summation Polynomials
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Summation Polynomials

Summation polynomials were introduced by I. Semaev in 2004 as proposal
to solve the point decomposition problem for elliptic curves.

Definition

Let E be an elliptic curve defined over a field K, of any characteristic, with
K as its algebraic closure. For any integer m ≥ 2 the m-th summation
polynomial Sm ∈ K[X1, . . . ,Xm] is such that, given x1, . . . , xm ∈ K, then
Sm(x1, . . . , xm) = 0 if and only if there exist y1, . . . , ym ∈ K for which
(x1, y1), . . . , (xm, ym) ∈ E (K) and

(x1, y1) + . . .+ (xm, ym) =∞
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Summation Polynomials

Let E be an elliptic curve defined over a field K, with char(K) 6= 2, 3, by
y2 = x3 + Ax + B, with A,B ∈ K. Let m ≥ 2 be an integer number.
Then

S2(X1,X2) = X1 − X2

S3(X1,X2,X3) =

(X1−X2)2X 2
3 −2[(X1 +X2)(X1X2 +A) + 2B]X3 + (X1X2−A)2−4B(X1 +X2)

and for all m ≥ 4 and 1 ≤ k ≤ m − 3 it holds

Sm(X1, . . . ,Xm) = ResX (Sm−k (X1, . . . ,Xm−k−1,X ),Sk+2(Xm−k , . . . ,Xm,X )).
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Summation polynomials

Summation polynomials have the following properties:

Sm is symmetric of degree 2m−2 in each variable Xi ,

they are absolutely irreducible,

Sm(X1, . . . ,Xm) = S2m−1(X1, . . . ,Xm−1)X 2m−2

m + . . . for any m ≥ 3.

For fields of characteristic 2 and 3, adjustments are needed, but the
previous properties still hold.
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A sketch of the algorithm

The proposal for an Index Calculus algorithm for elliptic curves is due to
Semaev (2004) and Gaundry (2009), that suggest that it should be made
of the following steps.

Take an elliptic curve E defined over Fp, a point P ∈ E (Fp), an integer w
and Q := wP. Fix m ≥ 2 and

for two random integers u and v , set R := uP + vQ = (x , y);

find x1, . . . , xm ∈ Fp of Sm+1(x1, . . . , xm, x) = 0 and compute a
relation

(x1, y1) + . . .+ (xm, ym) + R =∞;

collect several point relations and combine them using linear algebra.

The solutions are sought with components in a subset V ⊂ Fp of size
around m

√
p.

Generalisations can be made for curves defined over Fq.
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Useful Observations

It can happen that some of the points appearing in the point relation
have their y -coordinate in Fq2 \ Fq. The sum of all such points is a
point of order 2.

To find roots of the polynomial Sm+1(X1, . . . ,Xm, x) (combined with
the field equations and the constaint of belonging in V), a Gröbner
basis algorithm should be employed (F4).

For elliptic curves defined over Fq = Fpn , the roots are sought with
components in a random vector subspace V ⊂ Fq of dimension d n

me
using the Weil descent technique.
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Simplifying computations

Due to the high degree of Sm+1, it can be really hard to find its roots.

In 2015 Semaev and Karabina proposed to split a summation polynomial
equation into a polynomial system: solving the polynomial equation
Sm+1(X1, . . . ,Xm, x) = 0 looking for solutions with components in V is
equivalent to solve the polynomial system

S3(X1,X2,U1) = 0
S3(Ui ,Ui+1,Xi+2) = 0 1 ≤ i ≤ m − 3
S3(Um−2,Xm, x) = 0

looking for solutions in x1, . . . , xm ∈ V and u1, . . . um−2 ∈ Fq. The system
is made of polynomials of total degree 4. Moreover the probability of
finding a solution with x1, . . . , xm ∈ V is about

|V |m

q ·m!
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F4 algorithm solving the system

Use F4 algorithm to compute the Gröbner basis and then compute
the roots.

In case Fq = Fpn , first apply the Weil descent.

The complexity of F4 is

(2m − 2)ωDreg

where ω is the linear algebra constant and Dreg is a parameter that
depends on the degrees of the polynomial equations of the system. In
the case of Fq = Fpn , after applying the Weil descent, the complexity
of F4 becomes

[n(m − 1)]ωDreg
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The First Fall Degree

Generally Dreg is approximated with another parameter: the first fall
degree.

Definition

Let R be a polynomial ring over a field K and let F := {f1, . . . , fs} ⊂ R be
a set of polynomials of total degrees ≤ D. The first fall degree of F is the
smallest D, denoted by Dfirstfall , such that there exist r polynomials gi ∈ R
such that maxi∈{1,...,r}(deg(fi ) + deg(gi )) = Dfirstfall and
deg(

∑r
i=1 gi fi ) < Dfirstfall , but

∑r
i=1 gi fi 6= 0.

First Fall Degree Assumption: Dreg = Dfirstfall .
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Complexity for the polynomial System

For the polynomial system
S3(X1,X2,U1) = 0
S3(Ui ,Ui+1,Xi+2) = 0 1 ≤ i ≤ m − 3
S3(Um−2,Xm, x) = 0

in characteristic 2, the first fall degree is 4.

The complexity of F4 for the previous system is

[n(m − 1)]4ω

in characteristic 2.

No generic bounds for the first fall degree of the previous system are
known in other characteristics.
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Collecting relations

To compute the Discrete Logarithm we have to combine point relations.
Suppose that we have found

P
(i)
1 + . . .+ P

(i)
m = uiP + viQ = Ri

where ui 6= uj and vi 6= vj if i 6= j .
The goal is to obtain a sufficient number of relations such that they are
dependent, i.e. there exist integers µ1, . . . , µs for which

s∑
j=1

µj (P
(j)
1 + . . .+ P

(j)
m ) =

s∑
j=1

µjRj =∞

obtaining the congruence

w(
s∑

j=1

µjvj ) ≡ −
s∑

j=1

µjuj mod ord(P)

for which w can be computed. Around |V| ≈ m
√
q point relations are

expected to be computed
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Algorithmic Complexity

The complexity is given by the sum of the two main parts of the
algorithm: computation of relations and combination of relations.
Consider elliptic curves defined over Fq = Fpn , set k = d n

me.

m!

pmk−n
pknDff ω + p2k ≈ pc

√
n log n

with c = 2√
2 log p

and m ≈
√

2n log p
log n .

In case p = 2 and the value of m ≈
√

2n log 2
log n ,

2c
√

n log n

where c =
2√

2 log 2
≈ 1.44, which is faster than Pollard’s ρ starting from

a certain n.
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OUR RESULTS
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Consider an elliptic curve E defined over a finite field Fp, p odd prime, and
fix an integer m ≥ 3. Set s := d m

√
pe. We construct the set V with a

different approach. Define the set F as:

F = {Ri ∈ E (Fp)|Ri = uiP + viQ, i ∈ {1, . . . , s}}.

with ui and vi random integers and define V as the set of x-coordinates of
the points in F .
After defining V we try to solve the single system with t ∈ {3, . . . ,m}

S3(X1,X2,U1) = 0
S3(Ui ,Ui+1,Xi+2) = 0 1 ≤ i ≤ t − 4
S3(Ut−3,Xt−1,Xt) = 0.

looking for solutions x1, . . . , xt ∈ V.
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Once a solution with components in V is found, then, we can write the
following point relation:

±Pi1 ± . . .± Pit =∞

where Pi1 , . . . ,Pit ∈ F . We obtain:

±(ui1P + vi1Q)± . . .± (uitP + vitQ) =∞,

which gives the following linear congruence

(±ui1 ± . . .± uit ) + (±vi1 ± . . .± vit )w ≡ 0 mod ord(P)

Following this procedure, only one point relation is needed (instead of
about m

√
p) and so no linear algebra steps are employed.
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Experimental results and asymptotical complexity

We compared the time resolutions of our proposal with Semaev’s
algorithm (as well as with Pollard’s ρ).

bit(p) m our method (s) Semaev’s method (s) Pollard’s ρ (s)
11 3 0.000 - 0.290 1504.070 - 8020.840 0.000
12 3 0.020 - 3.560 23773.500 - 55610.460 0.000
13 3 0.090 - 3.310 89843.100 - 550387.840 0.000

We estimated the complexity of our proposed algorithm as:

2
3Dff +1

2

√
log p log log p

with m ≈
√

log p.
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Thank you for your attention!
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