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Background

Background

In cryptography, one of the most studied problems is how to share a
secret key over an insecure channel.

Key exchange methods are usually based on one-way functions, that
is functions which are easy to compute but whose inverses are difficult
to determine.
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Anshel-Anshel-Goldfeld

Anshel-Anshel-Goldfeld

Circumstances: Alice and Bob want to agree on a common key.

Platform: let G be a nonabelian group
PUBLIC KEYS
Alice chooses a1, . . . , al in G and makes them PUBLIC.

Bob chooses b1, . . . , bk in G and makes them PUBLIC.
PRIVATE KEYS
Alice chooses A ∈ 〈a1, . . . , al〉.

Bob chooses B ∈ 〈b1, . . . , bk〉.
EXCHANGED INFORMATION
Alice computes b′1 = bA1 , . . . , b

′
k = bAk , and sends them to Bob.

Bob computes a′1 = aB1 , . . . , a
′
l = aBl , and sends them to Alice.
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Anshel-Anshel-Goldfeld

The shared key

The shared key is K = [A,B] = A−1B−1AB .

Alice determine K via:
1 Write A = w(a1, . . . , al) as a word in a1, . . . , al .

2 Compute

A−1w(a′1, . . . , a
′
l) = A−1w(aB1 , . . . , a

B
l )

= A−1w(a1, . . . , al)
B = A−1AB = [A,B] = K .

Bob uses the dual approach to determine K .
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Anshel-Anshel-Goldfeld

Eavesdropping
Since the conversation is not protected, an eavesdropper could
obtain b′1, . . . b

′
k , and a′1, . . . a

′
l as well.

Using the public data and the stolen information, one way to break
the algorithm is the following:

find C ∈ 〈a1, . . . , al〉 such that


bC1 = b′1

. . .

bCk = b′k .
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Anshel-Anshel-Goldfeld

Breaking AAG

Note that C = xA for some x ∈ CG (B):

bCj = b′j = bAj implies bCA
−1

j = bj , that is CA−1 ∈ CG (bj) for
every j = 1, . . . , k .

Therefore, CA−1 ∈ CG (b1, . . . , bm) ⊂ CG (B).

Write C = v(a1, . . . , al) as word in the generators ai , and
compute

C−1v(a′1, . . . , a
′
l) = C−1v(aB1 , . . . , a

B
l ) = C−1v(a1, . . . , al)

B

= C−1CB = (xA)−1B−1(xA)B = A−1x−1B−1xAB

= A−1B−1AB = [A,B]

obtaining the shared key.
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Anshel-Anshel-Goldfeld

In order to break AAG, one needs to solve:

Word Problem
Let G be a finitely presented group. If you are given an element g
in G , decide whether g = 1.

Multiple Conjugacy Search Problem
Let x1, . . . , xn, y1, . . . , yn be elements of G and suppose that there
exists C ∈ G such that 

xC1 = y1

. . .

xCn = yn.

Find such a C .
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Anshel-Anshel-Goldfeld

What features should a group G have to be suitable for AAG?

G requires fast multiplication and comparison of elements.

G should have a difficult multiple conjugacy search problem.
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Recently, B. Eick and D.Kahrobaei investigated the algorithmic prop-
erties of a special class of groups, namely

Polycyclic Groups
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Polycyclic Groups

Polycyclic Groups

A group G is said to be polycyclic if it has a chain of subgroups

G = G1 ≥ G2 ≥ . . . ≥ Gn+1 = 1

in which each Gi+1 is a normal subgroup of Gi , and the quotient
group Gi/Gi+1 is cyclic.

Such a chain of subgroups is called a polycyclic series.
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Polycyclic Groups

Let G = G1 ≥ G2 ≥ . . . ≥ Gn+1 = 1 be a polycyclic series for G .

As Gi/Gi+1 is cyclic, for every index i there exists xi ∈ Gi such that

〈xiGi+1〉 = Gi/Gi+1. (1)

X = [x1, . . . , xn] is said to be a polycyclic sequence for G if (1) holds
for i = 1, . . . , n.

The sequence of relative orders for X is the sequence

R(X ) = (r1, . . . , rn)

defined by ri = |Gi : Gi+1| ∈ N ∪ {∞}.

Moreover, we define I (X ) as the set of i ∈ {1, . . . , n} such that ri is
finite.
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Polycyclic Presentation

Polycyclic Presentation

A presentation 〈x1, . . . , xn | R〉 is called a polycyclic presentation if
there exist a sequence S = (s1, . . . , sn) with si ∈ N∪ {∞} and inte-
gers ai ,k , bi ,j ,k , ci ,j ,k such that R consists of the following relations:

x sii = Ri ,i := x
ai,i+1
i+1 · · · x

ai,n
n for 1 ≤ i ≤ n, if si is finite;

x
xj
i = Ri ,j := x

bi,j,j+1
j+1 · · · xbi,j,nn for 1 ≤ j < i ≤ n;

x
x−1
j

i = Rj ,i := x
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Polycyclic Presentation

Word Problem

Suppose that G is given by a pc-presentation.

Let Gi = 〈xi , . . . , xn〉 for 1 ≤ i ≤ n + 1.

Consistency

A pc-presentation is consistence if si = |Gi : Gi+1| for every
i ∈ I (X ).

Normal Form in a Consistence PC-Presentation
For each g ∈ G there exists a unique vector (e1, . . . , en) ∈ Zn with
0 ≤ ei < si if i ∈ I (X ) such that

g = xe11 . . . xenn .
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Polycyclic Presentation

Collection

Suppose an element g is given as a word in x1, . . . , xn.

The collection algorithm determines the normal form of g by an
iterated rewriting of the word using the relations of the polycyclic
presentation.

Efficiency
The collection algorithm is generally effective in practical
applications.

For finite groups, collection was shown to be polynomial by
Leedham-Green and Soicher.
For infinite groups, Gebhardt showed that the complexity
depends on the exponents occurring during the collection
process, so it has no bound.
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Polycyclic Presentation

Conjugacy Search Problem

Multiple conjugacy search problem can be reduced to finitely many
iterations of single conjugacy search problem and centralizers com-
putation.

Conjugacy Search Problem (CSP)

If g and h are conjugate elements of G , find u ∈ G such that

gu = h.
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Polycyclic Presentation

How to solve CSP

Let G be given by a consistent pc-presentation. Let g , h ∈ G and
U ≤ G :

Problems
Decide if g and h are conjugate in U.

If g and h are conjugate, determine a conjugating element
in U.

Compute CU(g).
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Special Behaviour of some Polycyclic Groups

"Privileged"

Nilpotent
Word Problem: can be solved evaluating polynomials, as
shown by Leedham-Green and Soicher.

Conjugacy Search Problem: can be solved using induction
on a refinement of the lower central series, as shown by Sims.

Virtually Nilpotent
Word Problem: can be solved evaluating polynomials, as
shown by Du Sautoy.

Conjugacy Search Problem: no special solution is known so
far.
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Special Behaviour of some Polycyclic Groups

Virtually Nilpotent Polycyclic Groups

Growth Rate

Let G be a finitely generated group. The growth rate of G is the asymptotic
behaviour of its growth function γ : N→ R defined as

γ(n) = |{w ∈ G : l(w) ≤ n}|,

where l(w) is the length of w as a word in the generators of G .

Remark
Wolf and Milnor proved that polycyclic groups have polynomial
growth rate if and only if they are virtually nilpotent.

Being the secret key a word in the group, the faster the growth rate
the larger the key space.
Non-virtually nilpotent polycyclic groups seem to be good candidates
to use as platform groups, having exponential growth rate.
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Special Behaviour of some Polycyclic Groups

Classes of Groups

{Polycyclic}

∪

{Virtually Nilpotent Polycyclic}
∪

→ {Supersoluble}←
∪

{Finitely Generated Nilpotent}
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Special Behaviour of some Polycyclic Groups

What about Supersoluble?

A group G is said to be supersoluble if it has a chain of subgroups

G = G1 ≥ G2 ≥ . . . ≥ Gn+1 = 1

in which each Gi is a normal subgroup of G , and the quotient group
Gi/Gi+1 is cyclic.
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Special Behaviour of some Polycyclic Groups

A Special Subgroup in Supersolubles

For any 1 ≤ i ≤ n, we can consider

CG (Gi/Gi+1) = {g ∈ G | [g , x ] ∈ Gi+1 for every x ∈ Gi}.

The intersection of all these centralizers

H =
n⋂

i=1

CG (Gi/Gi+1)

is a normal nilpotent subgroup of G such that G/H is finite abelian.
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Special Behaviour of some Polycyclic Groups

Achievements

Recently, we focused our attention on the algorithmical properties
of supersoluble groups, and we achieved a solution for MCSP in
supersoluble groups.

On Polycyclic Group–Based Cryptography Carmine Monetta November 16, 2016



Special Behaviour of some Polycyclic Groups

Let G be a supersoluble group, and let T = {t1, . . . , tr} be a
transversal to H in G .

Proposition
Let x and y be elements of G . Then x and y are conjugate in G if
and only if x and y ti are conjugate in H for some i ∈ {1, . . . , r}.

Proof.
If x and y ti are conjugate in H for some i , then of course x and y
are conjugate in G .

Viceversa, suppose that x and y are conjugate in G =
⋃r

i=1 tiH.
Therefore, there exist u ∈ H and i ∈ {1, . . . , r} such that
x = y tiu = (y ti )u.
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Special Behaviour of some Polycyclic Groups

If G = G1 ≥ G2 ≥ . . . ≥ Gn+1 = 1 is a normal cyclic series of G , we
can consider

G ≥ H = H1 ≥ . . . ≥ Hn ≥ Hn+1 = 1

where Hi = H ∩ Gi . So for any i

Hi / G ,
G/H is finite abelian,
Hi/Hi+1 is cyclic,
Hi/Hi+1 ≤ Z (H/Hi+1).
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Special Behaviour of some Polycyclic Groups

CSP in Supersoluble
1 Compute each centralizer CG (Gi/Gi+1) as kernel of some

homomorphisms between polycyclic groups.

2 Consider H =
⋂n

i=1 CG (Gi/Gi+1).

3 Since H is nilpotent, use well-known methods to check
whether x and y ti are conjugate in H.
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Special Behaviour of some Polycyclic Groups

In order to solve the Multiple Conjugacy Search Problem, we should
be able to compute CU(v) for any v ∈ G and any U ≤ G .

It becomes easy if we manage to compute CG (v), since CU(v) =
U ∩ CG (v).

We found an algorithm which works as follows.

Let T = {t1, . . . , tr} be a transversal to H in G . Then, {ti1hi1 , . . . , timhim}
is a transversal to CH(v) in CG (v), where

v
tij hij = v

for any j = 1, . . . ,m.

Determine S = {i ∈ {1, . . . , n} | v tihi = v}
CG (v) = 〈CH(v), tihi | i ∈ S〉.

On Polycyclic Group–Based Cryptography Carmine Monetta November 16, 2016



Special Behaviour of some Polycyclic Groups

In order to solve the Multiple Conjugacy Search Problem, we should
be able to compute CU(v) for any v ∈ G and any U ≤ G .

It becomes easy if we manage to compute CG (v), since CU(v) =
U ∩ CG (v).

We found an algorithm which works as follows.

Let T = {t1, . . . , tr} be a transversal to H in G . Then, {ti1hi1 , . . . , timhim}
is a transversal to CH(v) in CG (v), where

v
tij hij = v

for any j = 1, . . . ,m.

Determine S = {i ∈ {1, . . . , n} | v tihi = v}
CG (v) = 〈CH(v), tihi | i ∈ S〉.

On Polycyclic Group–Based Cryptography Carmine Monetta November 16, 2016



Special Behaviour of some Polycyclic Groups

In order to solve the Multiple Conjugacy Search Problem, we should
be able to compute CU(v) for any v ∈ G and any U ≤ G .

It becomes easy if we manage to compute CG (v), since CU(v) =
U ∩ CG (v).

We found an algorithm which works as follows.

Let T = {t1, . . . , tr} be a transversal to H in G . Then, {ti1hi1 , . . . , timhim}
is a transversal to CH(v) in CG (v), where

v
tij hij = v

for any j = 1, . . . ,m.

Determine S = {i ∈ {1, . . . , n} | v tihi = v}
CG (v) = 〈CH(v), tihi | i ∈ S〉.

On Polycyclic Group–Based Cryptography Carmine Monetta November 16, 2016



Special Behaviour of some Polycyclic Groups

In order to solve the Multiple Conjugacy Search Problem, we should
be able to compute CU(v) for any v ∈ G and any U ≤ G .

It becomes easy if we manage to compute CG (v), since CU(v) =
U ∩ CG (v).

We found an algorithm which works as follows.

Let T = {t1, . . . , tr} be a transversal to H in G . Then, {ti1hi1 , . . . , timhim}
is a transversal to CH(v) in CG (v), where

v
tij hij = v

for any j = 1, . . . ,m.

Determine S = {i ∈ {1, . . . , n} | v tihi = v}
CG (v) = 〈CH(v), tihi | i ∈ S〉.

On Polycyclic Group–Based Cryptography Carmine Monetta November 16, 2016



Special Behaviour of some Polycyclic Groups

In order to solve the Multiple Conjugacy Search Problem, we should
be able to compute CU(v) for any v ∈ G and any U ≤ G .

It becomes easy if we manage to compute CG (v), since CU(v) =
U ∩ CG (v).

We found an algorithm which works as follows.

Let T = {t1, . . . , tr} be a transversal to H in G . Then, {ti1hi1 , . . . , timhim}
is a transversal to CH(v) in CG (v), where

v
tij hij = v

for any j = 1, . . . ,m.

Determine S = {i ∈ {1, . . . , n} | v tihi = v}
CG (v) = 〈CH(v), tihi | i ∈ S〉.

On Polycyclic Group–Based Cryptography Carmine Monetta November 16, 2016



Special Behaviour of some Polycyclic Groups

In order to solve the Multiple Conjugacy Search Problem, we should
be able to compute CU(v) for any v ∈ G and any U ≤ G .

It becomes easy if we manage to compute CG (v), since CU(v) =
U ∩ CG (v).

We found an algorithm which works as follows.

Let T = {t1, . . . , tr} be a transversal to H in G . Then, {ti1hi1 , . . . , timhim}
is a transversal to CH(v) in CG (v), where

v
tij hij = v

for any j = 1, . . . ,m.

Determine S = {i ∈ {1, . . . , n} | v tihi = v}
CG (v) = 〈CH(v), tihi | i ∈ S〉.

On Polycyclic Group–Based Cryptography Carmine Monetta November 16, 2016



Special Behaviour of some Polycyclic Groups

In order to solve the Multiple Conjugacy Search Problem, we should
be able to compute CU(v) for any v ∈ G and any U ≤ G .

It becomes easy if we manage to compute CG (v), since CU(v) =
U ∩ CG (v).

We found an algorithm which works as follows.

Let T = {t1, . . . , tr} be a transversal to H in G . Then, {ti1hi1 , . . . , timhim}
is a transversal to CH(v) in CG (v), where

v
tij hij = v

for any j = 1, . . . ,m.

Determine S = {i ∈ {1, . . . , n} | v tihi = v}
CG (v) = 〈CH(v), tihi | i ∈ S〉.

On Polycyclic Group–Based Cryptography Carmine Monetta November 16, 2016



Special Behaviour of some Polycyclic Groups

Aims

We are now interested in studying the MCSP in virtually nilpotent
groups hoping to extend the supersoluble case.
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Thank you for the attention!
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